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Issues in the Pricing 
of Catastrophe Risk

BO N D S A N D OT H E R I N S T R U M E N T S W I T H PAY M E N T S L I N K E D TO E X P L I C I T E V E N T S A R E G R O W -

I N G I N P O P U L A R I T Y A M O N G I N V E S TO R S A N D I N T E R M E D I A R I E S . Examples include cata-

strophe bonds and other insurance-linked securities, as well as weather-related

and credit-risk derivatives. Most Wall Street institutions have committed resources to an-

alyze these products for the purposes of both issuing and trading them.

Of particular interest to market participants is the
pricing of catastrophe event and weather risks. Fi-
nancial economists find these risks to be unique be-
cause their actuarial properties can be objectively
modeled with considerable sophistication. The risks
are of great interest to practitioners because their
prices have fallen dramatically over the past few years,
as traditional reinsurance markets have become more
competitive. The appropriate level for these prices
going forward is a matter of considerable debate
among practitioners and academics.

Catastrophe risks need to be priced at a rate that
covers the chance of loss, expenses, and a profit fac-
tor for assuming the risk. If a catastrophic event has
a probability of 1 percent, then the risk will be priced
higher than 1 percent. But how much higher? What
are the factors that determine the profit factor, the ex-
tra premium above the 1 percent probability?

Some analysts would argue that the risk premium
should be quite small. Cat and weather risks tend to
be uncorrelated with the returns on diversified fi-
nancial portfolios. In addition, each risk is small rel-
ative to the risks in financial markets. In most equi-
librium models this would imply that event risks
should yield an unbiased actuarial estimate of ex-
pected loss, implying a profit factor close to zero. This
statement arises from well-known concepts in finan-
cial theory. However, the theory applies only in mar-
kets that have reached an equilibrium so that risks

are widely shared—a state that markets most cer-
tainly have not reached.

But many observers argue that event risks have
not been, and should not be, priced at actuarial lev-
els, even in equilibrium. Many practitioners expect
the risks to provide a yield considerably greater than
the actuarially expected loss. There is little agreement,
however, on the determinants of this premium spread.
For cat-linked instruments, the premium is most com-
monly determined as a fixed constant times the
volatility (or variance) of loss. More sophisticated
users add to the premium based on the skewness of
the loss profile. Others argue that the expected loss
conditional on an event effectively explains cat-linked
yields (see Morton Lane 1998, for example).

Yet another group (e.g., Warren Buffett) argues
that the uncertainty associated with actuarial proba-
bilities is an important explanatory factor for high
event yields. Our article addresses this argument. It
begins by asking what the pricing of event bonds
ought to be in an equilibrium where actuarial prob-
abilities are uncertain. We first show that uncertain-
ty in actuarial probabilities does not affect the pric-
ing of the event instruments as long as the actuarial
probabilities are unbiased and are uncorrelated with
the event itself. Even if the uncertainty about proba-
bilities is correlated with the event outcomes—a rel-
atively unlikely state of affairs—we find that the un-
certainty about event probabilities is insufficient to
explain the level of cat-event spreads. If the uncer-
tainty about event probabilities is correlated across a
number of different events, there is a detectable,
though generally small, upward influence on spread.
As a result, parameter uncertainty about the proba-
bility of events is unlikely to explain why event
spreads are high.

Of course, we can not rule out the hypothesis that
event-risk spreads are high not because of uncertainty
per se but because participants believe that the true
average probabilities of event occurrence are higher
than those put forth by third-party modelers. In oth-
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er words, the market believes that the typically measured event
probabilities are downward biased. While this hypothesis is
possible, it strikes us as unlikely to be true. It would be extra-
ordinary to claim that unsophisticated “gut” views of event prob-
abilities are able to avoid the biases that plague sophisticated
models that use historical data, simulation, and other tech-
niques. Thus, detectable bias is unlikely to be the reason that
event-risk yields are so far in excess of their associated event
probabilities.

Why, then, have yields exceeded actuarially fair levels? For
catastrophe event risks in particular, we argue that risk pricing
is currently determined by reinsurers. This is inefficient, since
reinsurers are equally as informed as modeling firms, yet they
hold large risk positions (positions that are not diversified, yet
benchmarked against absolute returns rather than against the
performance of aggregated event risks). As the market learns
that it can profitably underbid reinsurers for these risks, future
spreads are likely to decline. 

A Simple Model of Event Risk Pricing

A simple framework for pricing event risk must take parame-
ter uncertainty explicitly into account. Our approach assumes
there is a value-maximizing investor (or institution) that can
choose among risky assets, including event risk. We consider
how that investor values event risk under alternative assump-
tions about the distribution of that risk and the uncertainty as-
sociated with the distribution’s parameters. Our portfolio ap-
proach allows us to understand how a firm should either:
■ Price an event instrument in the marketplace, either as a buy-

er or as a seller
■ Decide if and how much of an offered event instrument

should be added to an existing portfolio.
Of course, the holder of a large portfolio of instruments must

view any alterations or additions to the portfolio in the larger
context of the entire portfolio. We focus on how event alloca-
tions affect the higher moments of that portfolio. We allow the
investor to choose among a portfolio of risky and riskless as-
sets, in addition to any exposure to event risk. This allows the
investor to allocate assets optimally at all times, and yet is flex-
ible enough to apply to investors who traditionally have had no
direct event exposure, as well as to others (e.g., reinsurers) whose
portfolios contain concentrated allocations to event risk.

Based on this analysis, we derive a series of optimal event-
risk demand curves. These show the optimal allocation for al-
ternative risk levels and given event yields (or, reciprocally, the
minimum yield required for any given size allocation to event
risk). 

Basic Assumptions and Notation

To keep things simple, our setup makes several basic assump-
tions. First, we assume the investor can choose among three as-
sets: a risky market portfolio, a risk-free asset, and catastrophe
exposure. We denote the end-of-year value of the market asset

by M, where M is assumed to be lognormally distributed:

In M ~ Normal(µ, σ)

as we normalize the initial value of the market to unity. The
market’s expected arithmetic return is therefore

E[M]=eµ+σ2/2≡1+r+E(Me)

where r is the annualized risk-free rate and 

Me=M–(l+r)

is the annual excess arithmetic return. This market portfolio
represents a preexisting, well-diversified portfolio held by the
investor.

The event risk is assumed to be held through a simple bi-
nary bond. One dollar invested in this bond has a one-year ex-
cess return of Ce. This takes the value s (the promised spread)
with probability 1–P or s–1 (a cat loss) with probability P. The
expected excess return is therefore given by E[Ce] = s–P. The
notation below can be simplified by defining a binary random
variable, B(P), which is equal to 0 with probability 1–P and 1
with probability P, such that:

B(P)=s–Ce

Second, we allow the investor to consider an allocation of wealth
among the market portfolio, the risk-free asset, and the event
exposure. The portfolio has a stochastic excess return of:

Re=w1Me+w2Ce EQUATION 1

where the weight allocated to the risk-free asset is given by
1–w1–w2. Below, we will make alternative assumptions about
the distributions of M and C risks. 

Third, we need some sort of penalty for bearing risk. One
way to think of this at a completely general level is that the in-
vestor wishes to maximize expected return, holding a function
of all the other moments of the portfolio return distribution to
be a constant:

max E[Re] subject to ƒ(E[Re]
2,E[Re]

3,E[Re]
4,K)=λ EQUATION 2w1,w2

where λ is a constant. A sufficient condition to solve equation
2 is to maximize return subject to holding each individual mo-
ment constant:

max E[Re] subject to E[Re]
2=λ2, E[Re]

3=λ3, E[Re]
4=λ4 EQUATION 3w1,w2

where each λi is a constant. The objective functions in equa-
tions 2 and 3 are very general. However, in some instances we
will want to provide explicit solutions and /or simulate the re-
sults. To do that, we will assume that only the first two mo-
ments matter, so we can maximize the portfolio’s Sharpe ratio,
i.e., the ratio of expected excess return divided by its standard
deviation.

Equilibrium Expected Excess Returns 

Our first, and very general, point concerns the pricing of event
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risk in equilibrium. We think of this as the reward in excess of
the risk-free rate that event risk would pay if all investors held
it equally in proportion to their wealth. We consider individ-
ual event risk exposures that are relatively small in comparison
with total financial wealth, so the fraction of overall wealth de-
voted to these exposures is near zero. 

In addition, we assume for the moment that individual event
exposures are independent of other risks. Under such idealized
circumstances, the equilibrium expected return on event risk
is the risk-free rate. In other words, the promised yields on event
exposures would equal the expected loss rate.

This conclusion follows from the fact that the value of the
objective function in equations 2 and 3 remains unchanged if
an investor adds a small amount of event risk at her reservation
return. If the investor has no preexisting allocation to event risk
and event risk is independent of other financial risks, then this
reservation expected return must be the risk-free rate. A proof
of this statement proceeds as follows.

First, if in equilibrium small changes in w3 are to have no ef-
fect on the moments in equations 2 and 3, then the excess re-
turn on event risk must be zero. To see this, note that the nth
moment of the portfolio is given by E[w1Me + w2Ce]

n. When the
event weight w3 changes, the change in the portfolio’s nth mo-
ment is nE[(w1Me + w2Ce)

n–1Ce]. Given that Ce is independent
of other portfolio returns, and that w2 is small in equilibrium
(i.e., w2 = 0), this expression simplifies to nE[w1Me]

n–1E[Ce],
which is zero only if the expected excess return on event risks
is zero, E[Ce]=0.3 Because this is true for all n, none of the mo-
ments change when the excess return on event risk is zero. And
if there is no change in any of the moments in equations 2 and
3, there can be no change in the objective function. Thus, re-
gardless of the shape of the event risk distribution, its indepen-
dence and small size imply that E[Ce]=0 is the equilibrium ex-
pected return on event risk.

Parameter Uncertainty

Independent events and independent parameter uncertainty
The second general point we can make concerns the conse-
quences of parameter uncertainty in event distributions. To gain
intuition, recall that for a simple binary event bond, the one-
year excess return, Ce, is either s with probability 1–P or s–1
with probability P, summarized by Ce = s–B(Pc). We now in-
troduce parameter uncertainty, in that the observed probabili-
ty, p, is itself a random variable modeled as p = P+�, where � is
an arbitrary zero mean distribution (of sufficient support to be
sensible). The mean of � is zero, so that p is an unbiased esti-
mator of P.

It’s easy to see that the moments of the event bond excess
return are independent of the distribution of �. The nth mo-
ment of the event bond excess return is unrelated to the distri-
bution of �, provided that its mean is zero:

E[Ce]
n=E{E[Ce

n/p]}=E{(1–p)sn +p(s-1)n}=(1–P)sn+P(s–1)n EQUATION 4

This simple logic—together with the assumption that event
risk is independent of market risk—shows that the variability
in the estimation of P is irrelevant for the pricing of binary event
bonds. That conclusion follows because, from equation 4, vari-
ability in P has no effect on any of the higher-order portfolio
moments in equations 2 and 3.

It’s important to note that this result holds for any allocation
to event risk (i.e., independently of w2). To see this, note that
each moment of the portfolio can be written as a set of terms
in the separate, lower-order moments of market and event risk:

E[wiMe+w2Ce]
n=

n
∑
i=0

ai,nE[w1Me]
n–1E[w2Ce]

i EQUATION  5

where ai,n = (n
i) . Since all portfolio moments can be expressed

as functions of event moments, and since parameter uncertainty
has no effect on event moments, parameter uncertainty has no
effect on the pricing of independent binary event risks, regard-
less of the importance of these risks in the portfolio. 

If there are multiple event risks, it’s easy to show that the
above logic will apply if each event is independent and has in-
dependent parameter uncertainty. To see this, suppose we split
the event return, Ce, into a portfolio of two event instruments
with returns, Ce,1 and Ce,2. Ce,ii=1,2 takes the value si with prob-
ability 1–p or worth si–1 with probability p. As before, we can
write this as

Ce,i=si–Bi(pi),i=1,2 EQUATION 6

where Bi(pi) is a binary random variable, equal to 1 with prob-
ability pi and 0 with probability 1–pi .

We assume, as before, that the true probabilities are not
known and that we observe pi, where pi = Pi+�i, i = 1, 2, where
�1 and �2 have zero mean and identical higher-order moments.
For simplicity, we assume that P1 = P2 = P. For the moment, we
treat �1 as indepdent of �2 (e.g., parameter uncertainties are un-
related) and Ce,1 as independent of Ce,2 (e.g., hurricane and
earthquake). Given this, the last expectation term of equation
5 can be written as:

E[w2Ce]
n=gn

n
∑
i=0

ai,n(–1)
n
∑
j=0

aj,iŵ21
i–jŵ22

jE[(B1(p1))i–j(B2(p2))j]

= gnE[B1(p1)B2(p2)]
n
∑
i=0

ai,n(–1)
n
∑
j=0

aj,iˆ̂w21
i–jŵ22

j EQUATION 7 

where w21 and w22 are weights given to the two event risks, 
g = w21s1+w22s2 and ŵ2i=ŵ2i/g. Equation 7 shows that the ex-
pected product of the binary event outcomes, E{B1B2}, is the
critical term. It is easy to show that this term is given by:

E{B1B2}=E{E[B1B2|p1,p2|}=
E{E[B1|p1,p2]E[B2|p1,p2]}=E[p1p2]=P2 EQUATION 8

This expression says that if the outcomes and parameter un-
certainties are independent, the moments of the event portion
of the portfolio can be written as functions of the true proba-
bilities but not as a function of the uncertainty of these proba-
bilities. As a result, parameter uncertainty again can have no
impact on the objective functions in equations 2 and 3. This is
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true regardless of the weight of the event risks in the portfolio
(i.e., w21 and w22 need not be small). Of course, an investor
will demand a higher spread to hold a large fraction of a port-
folio in a single event risk. But this additional charge is not af-
fected by uncertainty concerning the distribution of that risk.

Correlated events and correlated parameter uncertainty
Next, we relax the assumption that the event occurrences and
parameter uncertainties are all independent of one another. In
doing so, we want to allow for two types of correlation.

The first correlation is between the two event outcomes. An
example would be catastrophic hurricane losses in two adjacent
Florida ZIP codes. For such events, the probability of a hurri-
cane to one ZIP code is related to whether damage occurred in
the adjacent area. Mathematically, this means the covariance of
event outcomes, for given ex ante probabilities, is nonzero.

The second correlation is that between the two parameter
uncertainties. For example, the same model might be used to
evaluate the two Florida ZIP codes. Any modeling error in the
first ZIP code is likely to spill over into the second.

With these two types of correlation, the expected product
of event outcomes becomes:

E{B1B2}=E{E[B1B2|p1,p2|} = E{cov[B1,B2|p1,p2]+
E[B1|p1,p2]E[B2|p1,p2]} = E{cov[B1,B2|p1,p2]}+E{p1p2}=
E{cov[B1,B2|p1,p2]}+cov[p1,p2]+P2 EQUATION 9

Subtracting P2 from both sides, yields:

cov[B1,B2]=E{cov[B1,B2|p1,p2]}+cov[p1,p2] EQUATION 10

By using the assumption that the correlation coefficient, ρ, is a
fixed parameter independent of the p’s, the first term on the
right-hand side of equation 10 can be expressed as:

cov[B1,B2|p1,p2]=ρ p1(1–p1)p2(1-p2) EQUATION 11

Hence we have that

cov[B1,B2]=ρE p1(1–p1)p2(1-p2)+cov[p1,p2] EQUATION 12

The first term on the right-hand side of equation 12 can be
approximated to second order, yielding:

cov{B1,B2}=ρP(1–P)–ρσ2
p–ρ(σ2

p–σp1,p2
) 

(1–2P)2 
+σ12

4P(1–P)
where

P = E[p1]=E[p2]
σ12=cov[p1,p2]
σ2

p=σ2
p1

=σ2
p2

=var[p] EQUATION 13

where ρ is the conditional correlation of the outcomes of the two
bonds—conditional on the probabilities being known or inde-
pendent (so that cov|p1,p2|=0).

Since we have for simplicity set as equal the variances of the
parameter uncertainties, we can define the correlation of the
parameter uncertainties, u, to be 

σ12 = uσ2
p

Equation 13 can then be rewritten as

cov{B1,B2}=ρP(1–P)+{u–ρ}σ2
p–ρσ2

p(1–u)(1–2P)2

4P(1–P)

By recognizing that σ 2
B = P(1–P) we can then define the un-

conditional correlation between the bonds—the correlation in
payoffs allowing for correlated parameter uncertainties—as:

ρu =
cov{B1,B2}

=ρ+{u–ρ}
σ2

p –ρ σ
2
p (1–u)

1–4σ2
B

σ2
B                                 σ2

B         σ2
B               4σ2

B EQUATION 14

Note that for the special case of where the two bonds are
identical (which would imply that ρ = u = 1), we have that 
ρu = ρ, i.e., that parameter uncertainty is irrelevant. This is what
we would expect given the result for a single event bond above:
that regardless of the allocation to that bond, parameter uncer-
tainty is irrelevant for pricing.

Simplifying, we then have that

ρu = ρ+ 
σ2

p[u(1+ap)–p(1+a)]
(1–P)P EQUATION 15

where

a =      
1–2P    2( 2P(1–P))

This expression has some intuitive properties. First, the cor-
relation of the outcomes can either increase or decrease with de-
gree of parameter uncertainty (given by the variance of p, σ2

p).
A sufficient condition for greater parameter uncertainty to de-
crease the correlation of outcomes is that ρ > u, i.e., that the con-
ditional correlation of the events is higher than the correlation
of the parameter uncertainty. In this case, the parameter uncer-
tainty behaves like noise, reducing the correlation of the
outcomes.

Second, the greater the correlation of the parameter uncer-
tainties, the greater is the correlation of the observed outcomes
relative to the conditional correlation of the events.

Third, in the presence of parameter uncertainty (i.e., σ2
p >

0) a given increase in the conditional correlation of the events
increases by a smaller amount the correlation of observed
outcomes.

Numerical Examples

We next consider the impact that parameter uncertainty has on
spreads. Consider a holder of one unit of a cat bond C1. This
cat bond pays a premium with spread over short-term rates of
s1. The probability of this bond being triggered is assumed to
be P (in expectation).

This investor is now considering the acquisition of x units
(assumed to be positive, i.e., that he goes long the new bond)
of cat bond C2. This bond also has trigger probability P in ex-
pectation. The criterion by which the investor chooses a port-
folio allocation is that of Sharpe-ratio invariance. That is,
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s1–P
≤

s1–P+x(s2–P)

P(1–P)       (P(1–P)(1+x2+2xρ)) EQUATION 16

For now, we use ρ to denote correlation in the traditional sense—
this will be refined momentarily.

The inequality in equation 16 implies that

(s1–P)  
1+x2+2xρ–1 

+ P ≤ s2
x EQUATION 17

The left-hand side of equation 17 gives the minimum spread
on cat bond 2 required for a given allocation level x as a func-
tion of correlation. For sufficiently large negative correlations
the threshold may be negative, i.e., the investor would accept
a negative spread. This is intuitive since with sufficient nega-
tive correlation, the second bond is a natural hedge for the first
bond so the investor will in effect pay to hedge the first bond.

Now we use this setup to demonstrate the pricing impact of
parameter uncertainty. We compute the minimum spread re-
quired for the second bond under two cases: first where ρ rep-
resents the basic conditional correlation and where ρ represents
the unconditional correlation, ρu. 

In the example, we use equation 15 and assume that 
P = σp = 1.00%, x = 1 (so that the portfolio is initially entirely
invested in the first event bond), and s1 = 4.00% (which is a re-
alistic approximation of the spreads on 1 percent event bonds).
We vary below both ρ and u (the correlation of the parameter
uncertainty). The table displays the difference between the min-
imum spread required for the second cat bond using the un-
conditional correlation and that using the conditional correla-
tion. In other words, the table shows how much larger the
second spread must be in order to compensate for the presence
of parameter uncertainty.

There are several interesting observations to make about how
parameter uncertainty affects spreads. First, take the case in which
the basic events are independent (e.g., hurricane and earthquake),
so that ρ=0. The presence of parameter uncertainty can still af-
fect spreads, but only by inducing a correlation in the uncondi-
tional correlation of the outcomes. If, for example the correlation
between the ρ’s is zero, there is no effect on spreads, because in-
vestors recognize that the parameter uncertainty in one bond has
no implications for the outcomes of the other bond. 

However, if the correlation between the ρ’s is positive, in-
vestors recognize that the probabilities of the two independent

events tend to be overstated (or understated) at the same time.
With positive correlation of the ρ’s, the conditional probability
of an earthquake occurrence is rationally higher, given the oc-
currence of a hurricane. Thus, the correlation of the ρ’s actual-
ly induces a positive correlation in the bond outcomes, though
the increase in spreads is very small. Table 1 shows that the
spread increases by only as much as two basis points with 1
percent true event probabilities.

Table 2 shows the impact on the unconditional correlation
of the outcomes in this example. In the case with ρ = 0 and u
> 0 equation 15 shows that the correlation between outcomes
becomes

ρu =
uσ2

p > 0
(1–P)P

Note, however, that as Table 2 shows, this induced correlation
is very small, reaching a maximum of only 1 percent when u=1.
The intuition is from equation 15, which shows that what mat-
ters is the ratio of the variance of the parameter uncertainty to
the variance of the event outcome. This ratio becomes zero for
small event probabilities, given our assumption that distribu-
tion of the parameter uncertainty is more symmetric than are
binary event outcomes around their means.

In the case where the correlation between the events is pos-
itive, ρ > 0, but there is uncorrelated parameter uncertainty,
u = 0, the uncertainty actually lowers the spread on the second
bond by about 40 basis points compared to what it would have
been without parameter uncertainty (see Table 1). 

The reason is clear from Table 2, which shows that the cor-
relation of outcomes is lower than ρ unless u is sufficiently large.
Essentially, the presence of parameter uncertainty introduces
noise into what would otherwise be perfectly correlated out-
comes. Unless this noise is also highly correlated, the result is
a decline in the correlation of outcomes. 

Of course, if the parameter uncertainty is very highly corre-
lated (i.e., 100 percent), it can induce a slight increase in the
observed correlation, again only on the order of 1 percent. For
example, for ρ = 0.50 and u = 1.00, the observed correlation
becomes slightly higher, at ρu = 0.51.

In fact, the only instance where the spread of the second
bond is increased substantially by parameter uncertainty is the
case in which the conditional correlation, ρ, is negative (e.g.,
earthquake this year and next year). The result is that the spread

TABLE 1. Additional Event Bond Spread 
Induced by Parameter Uncertainty

(correlation between p’s) u
0% 25% 50% 75% 100%

–100% 2.14% 1.88% 1.57% 1.19% 0.60%
–75% 0.70% 0.55% 0.40% 0.25% 0.07%
–50% 0.36% 0.28% 0.21% 0.13% 0.05%
–25% 0.15% 0.12% 0.09% 0.06% 0.03%

0% 0.00% 0.01% 0.01% 0.02% 0.02%
25% –0.12% –0.09% –0.05% –0.02% –0.01%
50% –0.23% –0.17% –0.11% –0.05% 0.01%
75% –0.32% –0.23% –0.15% –0.07% 0.00%

100% –0.40% –0.29% –0.19% –0.10% 0.00%

● 

TABLE 2. Correlation of the Outcomes of Two Event
Bonds in the Presence of Parameter Uncertainty

(correlation between p’s) u
0% 25% 50% 75% 100%

–100% –74% –80% –86% –92% –98%
–75% –56% –60% –65% –69% –73%
–50% –37% –40% –43% –46% –48%
–25% –19% –20% –21% –22% –24%

0% 0% 0% 1% 1% 1%
25% 19% 20% 22% 24% 26%
50% 37% 41% 44% 47% 51%
75% 56% 61% 66% 70% 75%

100% 74% 81% 87% 94% 100%

ρ ρ
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on the second bond must be higher because investors can’t be
sure to receive as much diversification as they would hope to
if the probabilities were known. Thus, the spreads become high-
er, as does the correlation of the outcomes. This effect can be
large, as in the case where ρ = –100% and u = 0; the spread on
the second bond increases by 214 basis points over that of the
first bond, and the correlation between the bonds increases from
–100 percent to –74 percent.

The more plausible case is where the conditional events are
uncorrelated or somewhat positively correlated and the para-
meter uncertainty is more highly positive correlated. This is
likely to be the case, since model runs probably tend to have
similar biases from one exposure measurement to the next. In
that case, the basic effect of parameter uncertainty is not to raise
the spread on the second bond but actually to lower it. Thus,
in this sense, parameter uncertainty is not likely to provide a
satisfactory explanation for high event-risk spreads.

These numerical examples are, of course, special to all of the
assumptions we’ve made. Nevertheless, the qualitative results
are fairly robust. We’ve assumed that the initial portfolio is com-
posed completely of a single, preexisting event exposure. Port-
folios that contain less parameter uncertainty (say, because they
include exposures other than event risk) will be less sensitive

to the parameter uncertainty. Thus, the impact on the second
bond’s spreads will be even lower than shown in Table 1.

Summary

Parameter uncertainty is often alleged to be an important rea-
son why rational investors require high compensation for bear-
ing uncorrelated event risk. We’ve shown that while parameter
uncertainty can affect bond spreads, it doesn’t tend to increase
spreads by much. Indeed, the spread increases due to parame-
ter uncertainty that we’ve seen in our numerical examples are
on the order of only one basis point. Indeed, in many instances,
including those that have the most sensible correlation settings,
parameter uncertainty tends to decrease the size of bond spreads.
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