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INTRODUCTION

Many observers claim that new institutional trading practices have
fundamentally altered the behavior of stock prices. (Examples of such
practices include index arbitrage and other portfolio trading strate-
gies—strategies which involve simultaneous trades in many securities.)
Some argue that these practices have made market prices better, by
helping them more rapidly reflect market-wide information. Others hold
that the new practices have made the markets worse by increasing
volatility, particularly at short horizons. A third group—consisting pri-
marily of academic researchers—argues that there is little evidence of
an important shift in the statistical properties of stock returns.!

*This article is a much expanded version of a paper prepared for the NYSE's Market Volatility
and investor Confidence Panel, coauthored with Jim Gammill. We thank Larry Harris, Jim
Shapiro, Eric Sirri, and Jeremy Stein for helpful discussions, Phil Hamilton for efficient research
, and the Division of Research at Harvard Business School and the Q-Group for generous
research support.
Most attention to date has focused on the volatility of stock returns, But there is little evidence of
a recent upward shift in volatility. Harris (1989), for example, studies the recent short-run volatility
of the S&P 500, and finds a statistically significant, but economically trivial, rise in the conditional
volatility of returns. However, because there is no accepted equxhbnum model of volatility, it is
hard to know whether an increase—even if it could be convinci blished—is for better or
for worse. See Schwert (1989) for an investigation of the stahstlcal propemes of return volatilities
over longer sample periods.
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732 Froot and Perold

This article examines one particular property of stock-index
returns—short-run autocorrelation—and finds a dramatic decline
in recent years. For example, over the 1983-1989 period,
15-minute returns on the S&P 500 went from being highly positively
serially correlated (with an autocorrelation coefficient of about 0.4)
to practically uncorrelated.? Over the past 20 years, daily and weekly
autocorrelations on the Dow-Jones, S&P 500, and NYSE value-
weighted indices have fallen markedly also. (The autocorrelation of
equally weighted NYSE returns has fallen too, but not as dramatically.)
The data show that positive index autocorrelation found in earlier
studies [e.g., Lo and MacKinlay (1988), Poterba and Summers (1988)]
was a result of high autocorrelation during the 1960s and 1970s, and
that it had vanished completely by the late 1980s.

Several explanations for these declines in autocorrelation are con-
sidered:

. That the dissemination of market-wide information has im-
proved;
ii. That the tendency for stock prices to overreact has increased;

iii. That the bid—ask bounce component of the return index has
increased; and

-

iv. That staleness in prices due to nontrading has decreased.

To motivate the first hypothesis, a simple model is provided to show
that slow dissemination of market-wide information results in index
returns which are sluggish, in that they exhibit positive autocorrelation
and relatively low variance. This occurs even when information about
individual stocks is processed efficiently. It is shown that the index’s
theoretical autocorrelation falls and that its volatility (over short return
horizons) rises with an increase in the speed at which market-wide in-
formation is disseminated. Such increases in the speed of dissemination
are shown to alter cross-stock moments, but need have no effect on the
autocorrelation or variance of individual stock returns.

Hypothesis #i has different implications for own- versus cross-stock
autocorrelations. If overreaction has increased, one might expect to find
a decline in own- as well as cross-autocorrelation. The data suggest
that this is, in fact, not the case: while cross-autocorrelations have

2Consi with the decline in autocorrelation, it is found also that from 1983 to 1589 the
variance of short-run index returns rose steadily by almost 50% relative to the variance of longer-
horizon returns.
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declined, own-autocorrelations have actually risen during the 1980s.
This finding seems at odds with the argument that the new trading
practices have brought with them an increased tendency toward short-
run overreaction.’> The overreaction hypothesis is also inconsistent
with this finding that higher-order index autocorrelations, which were
formerly statistically negative, have risen to become indistinguishable
from zero. R

The decline in index autocorrelation could, in principle, be ex-
plained by measurement problems associated with increases in bid—ask
bounce or decreases in nontrading effects (hypotheses iii and #v, respec-
tively). Transactions data on individual NYSE stocks are used to estimate
the importance of these alternatives. Index returns, which are based
on last-trade prices, are decomposed into bid—ask bounce, nontrading,
and current midquote components. The data show that the first two of
these components explain very little of the decline in autocorrelation.
Moreover, increases in trading volume (i.e., decreases in nontrading
staleness) appear to have increased measured index autocorrelation.

This study concludes that the autocorrelation found in early short-
term index returns appears to have been due to inefficient processing of
market-wide information, and that recent technological and institutional
improvements in the processing of this information has removed much
of the autocorrelation.*

The rest of the article is organized as follows. The second section
provides a simple model which relates the speed of dissemination of
market-wide information to the autocorrelation and variance of returns.
The third section explores the decline in autocorrelation in 15-minute
returns on the S&P 500. The fourth section is denoted to interpreting
the findings by performing the decomposition mentioned above. The
fifth section then looks at the historical behavior of daily- and weekly-
return autocorrelations and reports evidence of a similar secular decline
in autocorrelation.

A SIMPLE MODEL

A simple model suffices to demonstrate how reductions in transaction
costs and improvements in information technology can affect the be-

3See Lo and MacKinlay (1990) for evidence of the importance of cross-stock effects in generating
predictable index returns.

4Cutler, Poterba, and Summers (1990), among others, have claimed that positive short-run
autocorrelations might result from time-varying required returns. The results of this study suggest
a very different interpretation.
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734 Froot and Perold

havior of index returns. Imagine that the market consists of N stocks,
each of which is managed by a risk-neutral specialist. Suppose that the
true value of the ith stock at time ¢t is given by V}, which is defined
as the sum of a market-wide “factor,” V,, plus an idiosyncratic value
term, &;: Vi =V, + £ For simplicity, assume that the components of
Vi follow independent random walks, and the mean-zero innovations
AV, = u,, and A¢} = &l are iid normal, with variance o2 and o2,
respectively.

To capture the notion that trading costs and technological delays
hamper the dissemination of information, assume that the specialist
cannot observe V} instantly, but must wait until time t + 1 to observe
Vi (and its components). In the spirit of Kyle (1985), assume that the
specialist also observes at time ¢ an order flow which is comprised of an
informed traders’ component, here given simply by the change in true
value, u; + e, plus a random component from “liquidity” traders, vi:

Fi=u, +é + v n

with v} iid normal (both across time and over stocks) and with zero
mean and variance ¢2.> Thus, at time i, the ith specialist observes
his own private order flow, F}, plus the components of true value
of the ith stock at time t — 1, Vi_,. Those informed traders who
observe u, (and therefore V,) contemporaneously are referred to as
index traders to distinguish them from traders who observe stock-specific
information, e;.

If specialists set time-t prices optimally, according to their current
conditional expectation of V/, it is easy to show that the price of the
ith stock at time t is just:

P = AF] + Vi, @

where A = (02 + 02)/(02 + 02 + 02).% The change in price between
times ¢t and t — 1 is then:

AP} = Mu, + &l + Avl) + (1 — A) (w1 + €l_)) ®3)

5The results below would continue to hold if one were to derive informed traders' optimal order
flow, rather than positing it exogenously. All that matters here is that current information about
value is not fully incorporated into prices, which is a general feature of equilibrium models of
informed trading.

$Given knowledge of V;_; and the fact that the random variables are normally and independently
distributed, the best unbiased predictor of current price has the linear form in eq. (2), with A set
to the OLS estimator in a regression of u, + ef (the portion of current value unknown to the
specialist) on Fj.
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Straightforward algebra yields that own-stock price changes are serially
uncorrelated, i.e., cov(AP}, AP}_}) = 0, a result that follows directly
from specialists’ optimal choice of the market-depth parameter, A.

Even though individual price changes are not predictable based on
their own past behavior, an index of stock prices is positively autocorre-
lated. This is because market-wide information is not simultaneously
incorporated into the prices of all stocks. To see this, define the
change in price of an equally weighted stock index from t — 1 to ¢ as
AP, = N~'3N | APi. The autocovariance in the index can be written
as the sum of the own-stock plus the cross-stock autocovariances:

N
cov(AP, AP,_y) = N‘2(Z cov(AP],AP}_))

i=1

N N .
+ > > cov(AP}, AP, )) (4)

i=1 j#i

As mentioned above, the own-covariance on the right-hand side of
eq. (4) is zero, and from eq. (3), the i, jth cross-covariance on the right-
hand side of eq. (4) is given by A(1 — A)o2. Index autocovariance is
therefore:

N-1

cov(AP,,AP,) = T(l — ANAc?

_ (N -1 (o2 + ad)olad

N (itotrop 0 O

Thus, even though specialists use all the information available to them
to set prices and individual stock returns are serially uncorrelated, an
index of returns exhibits positive autocorrelation.

What happens if market-wide information is disseminated more
rapidly, so that the lag in observing V, is reduced? To see this in
the model above, imagine that there is a change in market technology
such that V, is observable at time t to specialists. This would occur
if it becomes costless to trade V;, whereupon index traders would
earn positive net profits unless innovations in V, are fully incorporated
in current prices. Alternatively, a futures market for the index might
open and serve as a billboard, making the current value of the index
publicly observable.

For either of these reasons, once innovations in V, are fully
incorporated into current prices, the price of the ith stock is given
by Pi = M(F} — w,) + Vi_| + w:, and the new level of market-depth
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736 Froot and Perold

by A’ = 02/(62 + o2).7 By substitution, the change in the ith stock’s
price becomes:

AP} = (el + Av)) + (1 — N)el_y + u, (6)

As before, A’ is set such that the own-stock autocovariance is zero. Using
egs. (4) and (6), index autocovariance is now given by:

cov(AP;, AP,— ) = N"Y(N — 1) cov(uy, u;—1) = 0 (7)

i.e., the cross-stock autocovariance disappears and, hence, the index is
serially uncorrelated. Although this model is simple, it demonstrates a
very general point: more rapid dissemination of market-wide information
lowers the autocorrelation of index returns.?

Consider next how faster dissemination of market-wide information
affects the variance of index. Simple algebra yields that when market-
wide information is observed with a one-period lag, the variance of the
index is:

var(AP,) = N~ 1(o2 + 02 + a(N — 1)o?) (8)

with @ = (1 — 2A(1 — A)) < 1. Alternatively, if information is instantly
disseminated, variance increases to:

var(AP) = N Y o2 + 02 + (N — Do) = o2 + N"'aZ (9)

These formulas demonstrate that own-stock variances remain constant
at g2 + 02 under both regimes, while contemporaneous cross-stock
covariances rise from @02 to o2 when information is disseminated more
quickly. This makes intuitive sense, since the decline in autocovariance
is exclusively a cross-stock effect. Thus, index variance rises to reflect
the compression of market-wide movements.

AUTOCORRELATIONS IN HIGH-FREQUENCY
S&P 500 RETURNS

The actual behavior of the variance and serial correlation of short-term
returns are explored next. In this and the following sections, the behavior
of very short-run returns—15 minutes returns on the S&P 500 cash
index from February 1983 to December 1989, are examined.

“The specialist subtracts u;, which is now directly observable, out of the order flow to obtain the
best unbiased predictor of e} (the component of current value which he cannot observe).
8None of the results depend on the sy rical nature of the model. Similar conclusions would be

reached if, for example, one were to assume that some stock prices react more rapidly to aggregate
information than others.
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TABLE |
Measures of Variance of 15-Minute S&P 500 Returns (X 10%)

Year Intraday Variance Interday Variance
1983 1.194 1.216
1984 1.469 1.502
1985 0.907 0918
1986 2211 2216
1987 (precrash) 3.344 3.264
1987 (full year) 7.714 7.808
1988 2776 2.780
1989 1.751 . 1.727

Notes: Intraday variance measures the average 15-minute retum during the trading day, excluding close—open retums.
Interday variance includes the close—-open retum, treating it as though it were another 15-minute intesval.

Table I shows the average 15-minute variances for each year from
1983 to 1989.° Each meusure of variance is calculated in two ways:
the first column reports the average variance during each trading day
(beginning at the open and ending at the close), averaged across all
trading days in the period; the computation in the second column does
the same, but also includes the overnight return between the close and
open, treating the overnight as though it were just another 15-minute
interval.'®

The main result from Table I is that the level of variance moves
around so much year by year that it is difficult to discern an upward
trend over this seven-year span. While the variances for 1989 are about
50% above those for 1983, they remain about 25% below the average
variances during 1986. Similar results emerge when longer horizon
returns are used to compute measures of volatility. This is not strong
evidence of a sustained upward trend.!

Tables Il and IIb show average variances by year and by time of
day for both the cash and futures indexes.!? Table Ifa indicates that as
much as 25% of an average day’s cash-market volatility occurs during
the first half-hour of trading. Variances in each year are greatest in

9To clarify the effect of the October 1987 crash, two measures are calculated for1987. The first
includes only trading days up until the crash and the second includes the entire year.

10Note that the latter column is only slightly higher than the former. Indeed, the overnight variance
is not much larger than the variance for an average 15-minute interval during the day. If hourly
variances remained constant around the clock, the second column would be about three times as
large as the first. French and Roll (1986) document that variance per unit time is much lower when
the market is closed than when it is open. These data may even exaggerate this effect because, due
to nontrading, overnight price changes may get incorporated only slowly into the opening index.
HHarris (1989) studies conditional as well as unconditional variances of S&P returns, and finds
that there is an economically small (but statistically significant) increase in recent variance.
R2Variances are of log returns over each full year for each 15-minute interval of the trading day.
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TABLE Hla
Variances of 15-Minute S&P 500 Returns by Year and Time of Day (X 10%)

Year

Time of Day 1983 1984 1985 1986 1987:1 1987 1988 1989

9:45 13.29 23.18 51.59 22.05 10.89
10:00 4,222 6.838 27.92 3.730 2.677
10:15 8.761 9.856 5.667 1.990 3.897 10.46 3.137 1.733
10:30 2,699 2.602 1.422 1.885 2.867 5.160 1.761 4.351
10:45 1.048 1.626 0.947 1.149 2.183 6.069 1.937 1.767
11:00 0.955 0.966 0.598 1.440 2451 8.949 1.327 1.078
11:15 0.684 0.705 0.571 1.823 1.773 4.748 1.374 1.156
11:30 0.537 1.00 0.463 1.620 1.527 6.771 1.200 1.041
11:45 0.524 0.606 0.415 1.789 1.209 3.807 1.041 0.752
12:00 0.651 0.777 0.437 1.398 1.556 3.157 0.986 0.991
12:15 0.577 0.603 0.365 1.473 1.445 3.352 1.027 0.748
12:30 0.507 0.609 0.536 0.933 2.045 3.306 1.223 0.686
12:45 0.402 0.552 0.413 1.126 1.155 4.847 1.041 0.535

1:00 0.402 0.614 0.238 1.049 1.425 6.063 1.143 0.526

1:15 0.482 0.579 0.559 1.066 1.358 2.443 1.341 0.607

1:30 0.520 0.947 0.450 1.262 1.353 4.052 1.661 0.732

1:45 0.592 0.858 0.488 1.161 1.330 3.780 1.162 0.832

2:00 0.786 0.760 0.480 1.185 2.879 5.883 1.212 0.789

2:15 0.934 1.166 0.892 1.417 1.805 2.858 1.446 0.812

2:30 1.063 1.045 0.658 1.102 1.931 4.799 2375 1.203

2:45 1.028 1.167 0.855 1.212 3.212 5.736 2.240 1.482

3:00 1111 1.578 0.901 2.040 2.208 5.766 2.439 1.860

3:15 1.107 2.128 1.109 2.682 4.128 5.444 3.860 2.069

3:30 1.434 1.699 1.457 3.367 4.061 5.753 2.904 2.378

3:45 1.423 2.091 1.246 3.967 5.482 7.636 5.836 2.255

4:.00 1.579 1.780 1174 2.896 3.638 9.581 3.923 1.967

Ovemight 0.262 0.987 0.402 1.018 0.708 0.945 1.442 0.341

Notes: Opening times during 1985—1985 were at 10:00 am, so the first recorded 15-minute retum for each day is at 10:15.
Opening times were 30 minutes earlier for the rest of the sample. The column entitled 1987:1 includes only trading days
before the October crash; the column entitled 1987 includes trading days from the entire calendar year.

the early morning and near the end of the day, remaining uniformly
low in between. What is responsible for such large price movements
in the morning after the open? One possibility is that staleness in the
index results in information that has accumulated overnight to seep
only slowly into prices. In such a case, one would expect to see a very
different picture in the futures market, where sluggish trading at the
open should not be a problem. Thus, one would expect the overnight
return variance in the futures index to be greater and the early morning
variances smaller than in the cash market.

Table IIb shows that this is indeed the case. The table compares
the volatility of the cash and future S&P 500 indexes for 1988 and 1989
(the only years for which such high-frequency futures data were avail-
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TABLE IIb
Variances of 15-Minute Returns by Year and Time
of Day for Cash and Futures S&P 500 Indices (X 10°)

Cash Futures
Time of Day 1988 1989 1988 1989
9:45 15.32 11.35 3.806 4.068
10:00 2.239 2,761 3.539 2.805
10:15 2.658 1.778 3.686 4.093
10:30 1.192 4.662 2.623 4,337
10:45 1.738 1.828 2.896 2777
11:00 0.995 1.007 1241 1.486
11:15 0.824 1.206 1.435 2.393
11:30 0.930 1.059 1.640 1.142
11:45 0.964 0.721 2.107 1.182
12:00 1.023 1.034 1.606 1.336
12:15 1.009 0.700 1.970 1.207
12:30 0.961 0.641 1.318 1.367
12:45 0.642 0.518 1.343 0.9345
1:00 0.679 0.535 1.294 1.075
1:15 0.737 0.629 1.844 1.372
1:30 0.939 0.706 1.793 1.109
1:45 0.592 0.765 1.456 1.416
2:00 0.768 0.726 1.544 1.542
2:15 1.031 0.832 2.364 1.605
2:30 1.648 1.269 2.875 1.513
2:45 1.726 1473 2.694 1.824
3:.00 1.689 1.762 3.735 2616
3:15 1.882 2113 3.257 2.706
3:30 1.647 2.480 3.027 3.450
3:45 2.757 2375 4.808 14.24
4:00 3.105 2.087 3.736 1.921
4:15 0.289 0.196 2.375 1.225
Ovemight 0.255 0.506 16.72 10.85

Notes: The futures data cover only the period from April 1988 to November 1989. For comparability, the cash index
above are puted for the same sets of trading days.

able).!? As expected, the high early-morning variances evident in the
spot market index are conspicuously absent in the futures data, while the
overnight futures variances are about ten times as large as those during
the day. Interestingly, the variance of the futures index in the middle of
the day is consistently greater than that of the mid-day cash index.
The overall result evident from Tables I and 1II is not very exciting:
levels of index volatility are too variable to isolate with much confidence
any recent increase. However, if it were possible to scale volatility
properly, so that noise is eliminated, perhaps these observations would

13The data used to construct Table IIb run only from April 1988 until November 1989. As a
consequence, the cash-market estimates in Tables Ila and IIb are not identical.
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yield more information. One approach would be to scale 15-minute
volatility by volatility at some long horizon. To do so, the ratio of 15-
minute to weekly volatility is computed and is plotted in Figure 1. The
figure shows a definite increase in short-horizon volatility relative to that
at longer horizons. This finding is consistent with both the overreaction
hypothesis as well as the model of information dissemination in the
preceding section.

Has there been a decline in low-order autocorrelation alongside of
this increase in variance? To answer this, the intraday variance ratios
and first-order autocorrelations are examined further. Table Ilfa reports
variance ratios comparing the variance of 15-minute returns with the
variance of returns at 30, 60, 120, and 180 minutes. If the index follows
a random walk so that returns are completely random, each of the
variance ratios would be close to 1.0. Numbers higher than 1.0 indicate
positive serial correlation in returns.!* 15

Also, Table IIIb reports estimates of average first-order autocorrela-
tion coefficients from 15-minute returns. These should be (and indeed
are) similar to the 30- to 15-minute ratios in Table IIla, which are
approximately equal to 1 + p, where p is the first-order autocorrelation
coefficient. Differences between the two measures are due to the
different weighting of first and last returns on each day, and are small,
though detectable, for these data.!6

!4Table Il1a reports variance ratios measured in several different ways. In the top panel, the ratios
are computed for each trading day, and are then averaged over the year. In the second panel,
overnight price changes are once again included just as though they were 15-minute returns,
and the average across days is reported. The numbers in the top panel are generally lower than
those in the second panel, in part because of the behavior of prices at the beginning of each day.
Average daily variance ratios, such as those computed in the top panel, will generally be biased
downward when a dispropartionate share of the day’s variance occurs at the beginning of the day.
The third and fourth panels are logously to the first and second, except that they
omit the opemng-retum effect by leavmg out the first 30 minuted of each day’s trading. All of the
estimates are corrected for small sample biases. For details on this procedure, see, for example,
Cochrane (1988).

!5Standard errors from Monte Carlo simulations under the null hypothesis that returns are
independently and identically distributed are reported in each panel. Interestingly, conditional
heteroskedasticity does not appear to be a problem in returns over such short intervals. White tests
for conditional heteroskedasticity on the actual data are performed. These tests are unable to reject
the null hypothesis of no heteroskedasticity. This is in striking contrast to returns for daily intervals,
where there is strong evid of heteroskedasticity conditional on the prior day’s returns.

!61n calculating these coefficients and the variance ratios which precede them, expected returns are
allowed to vary freely across trading days. While this method imposes no restrictions on expected
returns, it does lead to some implausible results (for example, expected returns on some trading
days are calculated to be negative). An alternative, but equally extreme method would be to force
expected returns to be constant over the entire year. When this is done, the autocovariances are
higher by about 0.03, but the change from 1983 to 1988 remains essentially unaffected. Because
the return horizon is so short, when expected returns are fixed over the year, just which value is
chosen for expected returns makes little difference to the results.
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FIGURE 1
Ratio of annualized 15-minute to weekly volatility S&P 500, 1983—1989.

In spite of differences in computational technique, identical con-
clusions come consistently out of both tables: there has been a dramatic
decline in the high-frequency positive serial correlation present in the
index in the 1980s. Indeed the majority of the initial positive correlation

TABLE llla
Variance Ratios Based on 15-Minute S&P 500 Returns

Minutes of Longer Horizon
Year 30 60 120 ’ 180 1 Day
Panel 1: Averages of intraday ratios
1983 1375 1.490 1.574 1.726
1984 1.220 1.291 1.341 1.416
1985 1.150 1.216 1.362 1.470
1986 1.027 1.011 1.033 1.119
1987 (precrash) 0.956 0.908 0.938 1.046
1987 (full year) 0.957 0.908 0.946 1.061
1988 0.967 0.953 0.968 1.077
1989 0.970 0.966 0.986 1.090
Simulated standard errors 0.015 0.028 0.044 0.048
continued
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TABLE llla {continued)

Minutes of Longer Horizon
Year 30 60 120 180 1 Day
Panel 2: Interday ratios
1983 1.677 1.817 1.954 2.249 2.249
1984 1.465 1.638 1.782 2.081 2.081
1985 1.293 1.429 1.519 1.773 1.773
1986 1.127 1.228 1.295 1527 1.527
1987 (precrash) 1.103 1.182 1.235 1.338 1.338
1987 (full year) 1.413 1.389 1.459 1.817 1.817
1988 1.150 1.229 1.267 1.384 1.384
1989 1.130 1.260 1.285 1.344 1.344
Simulated standard errors 0.014 0.025 0.039 0.049
Panel 3: Averages of intraday ratios (exclusing first 30 minutes)
1983 1.463 1.768 1.904 1.979
1984 1.362 1.584 1.690 1.818
1985 1.193 1.295 1.382 1.374
1986 1.115 1.167 1.213 1.283
1987 (precrash) 1.081 1.114 1.168 1.282
1987 (full year) 1.085 1.120 1.172 1.285
1988 1.085 1.134 1173 1.322
1989 1.102 1.152 1.166 1.280
Simutated standard errors 0.015 0.028 0.044 0.048
Panel 4: Interday ratios (excluding first 30 minutes)
1983 1.237 1.375 1.476 1.588 1.787
1984 1.219 1.373 1.549 1.670 1.911
1985 1.116 1.228 1.360 1.451 1.565
1986 1.070 1.178 1.285 1.360 1.589
1987 (precrash) 1.059 1.134 1.234 1.283 1.379
1987 (full year) 1.161 1.248 1.284 1.354 1.639
1988 1.094 1.184 1.262 1.302 1.420
1989 1.077 1.156 1.274 1.293 1.352
Simulated standard errors 0.015 0.028 0.044 0.048

Notes: Panel 1 is the average across variance ratios computed for each day (and ignoring overight retums). Panel 2
treats the ovemignt retum as though it were another 15-minute return. Standard errors are from Monte Carlo experiments,
using the null hypothesis that returns are iid. Monte Carlo simulation are run also using several models of conditional
heteroskedasticity. Nane of these result in standard errors importantly different than those reported above. Panels 3 and
4 are comparable to Panels 1 and 2, except that the retums from the first 30 minutes of each day are omitted. Standard
errors are from Monte Carlo experiments, using the null hypothesis that retums are iid. Monte Caro simulations are
run also using several models of conditional heteroskedasticity estimated from the actual data. None of these result in
standard errors importantly different than those reported above.

has since disappeared. The estimated standard errors—which are less
than 0.02—indicate that these changes are highly statistically signifi-
cant. The largest declines appear to occur in 1985 and 1986, although
(with the exception of the crash of 1987) the point estimates have
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TABLE lib
First-Order Autocorrelation Coefficients based on 15-Minute S&P 500 Returns

Year p
Panel 1: Averages of intraday coefficients
1983 0.423
1984 0.264
1985 0.197
1986 0.073
1987 (precrash) 0.020
1987 (full year) 0.034
1988 0.038
1989 0.023
Simulated standard errors 0.015

Panel 2: Averages of intraday coefficients, excluding first 30 minutes

1983 0.446
1984 0.322
1985 0.154
1986 0.102
1987 (precrash) 0.068
1987 (fuil year) 0.077
1988 0.086
1989 0.088
Simulated standard errors 0.016

Notes: Panel 1 is the average across variance ratios computed for each day (and ignoring ovemnight returns). Panel 2
is comparable, except that the first 30 minutes of each trading day are omitted. p denotes the first-order autocorelation
coefficient of the index retumns. Standard errors are from Monte Carlo experiments, using the null hypothesis that retums
are conditionally heteroskedastic following a White (1980) mode! of heteroskedasticity.

continued falling since then. In some cases, there remains currently no
statistically significant autocorrelation in the index.!” Figure 2 graphs
the autocorrelations from the top panel of Table IIIb.

Tables Illa and IlIb may hide a great deal of information by
averaging autocorrelations over the day. To look beneath these numbers,
Table IV presents evidence on the predictability of consecutive 15-
minute returns, showing first-order autocorrelation coefficients by year
and time of day. The first two columns of Table IV show that the
predictability of upcoming 15-minute returns is very large during 1983
and 1984. The average correlation coefficient in those years is 0.44 and
0.33, respectively. In addition, the degree of predictability is basically
constant throughout the day, and not importantly different at the
beginning of each day when volatility is greatest.

7MacKinlay and Ramaswamy (1988) also report a recent decline in the first-order autocorrelation
of index returns.
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FIGURE 2
Average daily first-order autocorrelation in 15-minute returns on the S&P 500.

Table IV suggests that the reduction in the predictability of returns
is not restricted to some portion of daily trading: essentially all of the
daily correlation coefficients fall from their high levels at the beginning
of the sample. The steady reduction in autocorrelations appears to be a
fairly general feature of the market, and does not appear concentrated
in a portion of the trading day.!®

So far, the predictions of subsequent 15-minute returns by current
15-minute returns have been described. How well do current returns
forecast price changes which are further into the future? Tables Va
and Vb address this issue by reporting higher-order autocorrelation
coefficients. To read Table Va, note for example that —0.0122 in the
fourth line, first column, represents the autocorrelation between a
current 15-minute return and the 15-minute return one hour later.!®
The most readily obvious feature of Table Va is that none of the higher-
order autocorrelations are anywhere near as large as the first-order

18To save space, standard errors for the correlation coefficients in Table IV are not presented.
Generally, almost all of the coefficients in excess of 0.2 are statistically different from zero at the

1% level.
"9These autocorrelations treat the overnight return like any other 15-minute interval, and ignore

any time-of-day heterogeneity in autocorrelation coefficients.
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TABLE WV
Correlation Coefficients of Adjacent 15-Minute
S&P 500 Returns by Year and Time of Day

Year
Daily
Interval 1983 1984 1985 1986  1987:1 1987 1988 1989  Average

0.7317 04158 04229 0.0570 -—0.0552 0.3053 -0.1875 -0.1590 0.1914
0.1091 02346 0.0455 -0.0483 0.0137 0.5010 - 0.1059 0.0972 0.1323
04141 05112 02815 02928 0.0108 0.3009 0.0490 0.0255 0.2357
04720 0.4024 0.1907 0.2785 0.2374 0.2247 0.2447 -0.1082 0.2428
0.6262 0.4019 0.2897 0.1424 02670 05361 03734 0.1703 0.3507
04938 03988 03437 03769 0.1845 0.1129 0.1987 0.2365 0.2932-
0.5107 04357 04180 02640 02350 05632 0.0413 0.0935 0.3202
0.6118 04552 03022 02884 0.2299 04601 02138 0.2200 0.3477
06509 05485 04256 -0.1159 0.1384 03017 0.2018 0.1475 0.2873
10 05037 0.3999 0.3226 -0.0047 0.0265 0.2911 0.0946 0.0132 0.2059
1 04939 0.5020 0.2741 0.0827 0.1344 0.3687° 0.1344 0.0729 0.2579
12 05757 0.3054 03457 0.1319 0.1427 0.0501 0.1143 0.1050 0.2214
13 05920 0.4144 0.1842 0.0287 0.0559 0.6281 0.2748 0.1684 0.2933
14 05812 0.3434 0.1806 0.1220 0.1208 0.3052 0.1305 0.1792 0.2454
15 04599 02786 0.0729 0.1103 0.1102 -0.0645 0.3998 0.1701 0.1922
16 0.5624 0.3524 0.2358 0.2055 0.0943 0.3272 -0.0931 0.1543 0.2298
17 0.5817 0.3561 0.0741 0.0456 0.0181 0.3173 0.0387 0.1068 0.1923
18 05247 0.3653 0.2594 0.1650 —-0.1188 0.0467 0.1380 0.0223 0.1753
19 05145 05271 0.2456 -0.0590 -0.0634 -—0.0678 0.2542 0.1576 0.1886
20 0.35903 0.2342 0.1351 0.1333 0.1750 0.2198 0.1020 —0.0449 0.1642
21 0.5498 0.3434 0.0923 0.1913 0.2503 0.1774 0.0603 -0.1530 0.1890
22 03684 03133 02992 0.0701 -0.0683 0.2549 0.1666 0.3822 0.2233
23 0.5905 04243 0.2609 0.0391 -—-0.0194 02542 00653 0.1555 0.2213
24 0.0101 0.1347 0.2543 0.1746 -0.0238 0.1247
25 0.0891 02137 04167 02736 0.3958 0.1339
26 03591 0.1327 0.3151 02773 0.0981 0.3280 0.0599 0.1366 0.1126
27 0.1296 -0.0667 —0.2514 -0.2572 -0.0910 -~0.0632 0.2193 0.3241 0.0165

Average 04399 0.3344 02136 0.1080 0.0917 02723 0.1425 0.11238 02144

CONOUHON =

Notes: Line numbers 1-25 indicate the daily time interval of the regressor. For example, line 1 is the cormelation coefficient
between the second and first (or opening) retum on each trading day. In years 1983—1985 the market opened 30 minutes
later than in subsequent years; hence, there are two fewer comelation coefficients for 1983—1985. Line 26 is the corelation
between the ovemight retum (close to open) and the retum in the last 15 minutes of trading. Line 27 is the comrelation
between the ovemight retum and the retum in the first 15 minutes of the next day’s trading. The column entitied 1987:1
includes only trading days before the October crash; the column entitled 1987 includes trading days from the entire
calendar year.

autocorrelations. In 1983, for example, the second-order coefficient is
0.038, an order of magnitude lower than the first-order estimate (but
still statistically positive). The second-order autocorrelations have also
fallen over time. Indeed, all the estimates after 1984 (with the exception
of the subsample which includes the 1987 crash) are statistically
indistinguishable from zero.
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TABLE Va
Serial Correlation Coefficients of 15-Minute S&P 500 Returns at Longer Lags by Year

Year

Lag
Number 1983 1984 1985 1986  1987:1 1987 1988 1989

1 0.4327 0.2942 0.1884 0.0741 0.0558 0.2617 0.0842 0.0667

2 0.0381 0.0213  -0.0087 0.0006 —0.0026 0.0328 0.0010 0.0076

3 -0.0221 0.0025 0.0408 0.0370 0.0526 —0.0240 0.0281 0.0450

4 —0.0122 0.0247 0.0430 0.0326 0.0126 —0.0514 0.0342 0.0413

5 0.0178 0.0423 0.0129 0.0005 0.0128 —0.0498 0.0077 0.0251

6 0.0295 0.0434 0.0184 0.0327 0.0025 —0.0148 —0.0040 0.0267

7 0.0437 0.0266 0.0125 0.0172 0.0164 0.0267 0.0142 0.0096

8 0.0385 0.0385 0.0186 —0.0020 0.0242 0.0450 0.0040 -0.0417

9 0.0302 0.0326 0.0135 0.0117 -0.0157 0.0388 —0.0036 —0.0237
10 0.0251 0.0161 0.0156 0.0078 0.0126 0.0554 0.0145 0.0080
1 0.0278 0.0172 0.0216 0.0337 0.0102 0.0554 —0.0033 0.0001
12 0.0310 0.0390 0.0059 0.0158 —0.0167 0.0273 -0.0072 0.0046
13 0.0198 0.0586 0.0289 0.0215 —0.0062 0.0118 -0.0062 —0.0008
14 0.0165 0.0244 0.0253 0.0216 0.0000 0.0304 0.0079 -0.0029
15 0.0138 0.0199 0.0266 —0.0026 0.0105 0.0346 0.0219 0.0231
16 0.0165 0.0094 0.0088 0.0129 0.0121 0.0310 0.0152 0.0327
17 0.0017 —0.0048 0.0171 0.0032 0.0047 0.0052 0.0173 0.0320
18 —0.0291 -0.0034 0.0029 0.0219 0.0097 —0.0195 0.0083 -0.0173
19 —0.0280 -0.0302 -0.0013 0.0214 0.0154 0.0263 0.0403 -0.0212
20 0.0198 —0.0097 0.0048 0.0187 0.0021 0.1070 0.0042 —0.0362
21 0.0571 -0.0004 0.0024 0.0078 0.0401 0.0803 0.0079 0.0261
22 0.0484 -—0.0010 0.0058 0.0268 —0.0033 -—0.0014 0.0114 -0.0148
23 0.0446 —0.0207 0.0148 -0.0066 —0.0046 -—0.0621 0.0043 0.0011
24 0.0246 —0.0169 0.0132 -0.0106 0.0083 -0.0480 -0.0038 -—0.0287
25 -0.0289 -0.0152 -0.0007 00145 -0.0122 -0.0503 0.0121 0.0279
26 —0.0360 0.0141 -0.0072 -0.0051 -0.0053 -0.0186 -0.0102 -0.0105
27 —0.0338 0.0040 -0.0027 0.0015 -0.0028 -0.0086 -—0.0200 0.0106
28 -0.0436 -0.0244 -0.0251 -0.0065 -0.0200 -0.0062 -0.0277 —0.0100
29 —-0.0486 —0.0214 -0.0285 -—0.0060 0.0011 0.0110 0.0023 -0.0025
30 -0.0207 -0.0563 -—0.0089 —0.0094 -0.0292 0.0022 -0.0396 —0.0242
31 0.0049 —0.0294 0.0085 -—0.0228 -—0.0028 0.0293 -0.0022 -0.0271
32 -0.0153 -0.0174 -0.0038 -0.0046 -0.0223 0.0132 -0.0112 0.0137
33 -0.0367 -0.0224 -0.0130 -0.0119 -0.0196 -0.0070 -0.0081 0.0047
34 -0.0248 -0.0271 0.0269 -0.0158 -0.0222 -—0.0304 0.0081 0.0063
35 -~0.0206 -0.0128 -0.0197 0.0020 00142 -0.0152 -0.0128 -—0.0031
36 ~0.0101 -0.0006 -0.0248 -0.0145 -0.0060 —0.0203 -—0.0206 0.0062
37 —0.0206 —0.0227 -0.0297 -0.0007 0.0116
38 «—0.0306 0.0099 -0.0149 0.0123 0.0137
39 0.0100 -0.0023 -~0.0196 -—0.0068 0.0135

Notes: Standard errors of these coefficients are approximately 0.012. The column entitied 1987:1 includes only trading
days before the October crash; the column entitied 1987 includes trading days from the entire calendar year.

To help digest the information in Table Va, a summary of the
coefficients is presented in Table Vb. To do this, the coefficients are
averaged over half-day intervals. Thus, for example, the second line in
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TABLE Vb
Summary of S&P 500 Serial Correlation Coefficients at Longer Lags by Year

Year

Lag Numbers 1983 1984 1985 1986 1987:1 1987 1988 1989

1 04327 02942 0.1884  0.0741 0.0558 0.2617  0.0942 0.0667
First half-day 00225 0.0277 0.0177 0.0174 00085 0.0128 0.0066 0.0085
Second half-day 0.0171 0.0021 0.0124 0.0095 0.0060 0.0088 0.0105 0.0009
Third half-day —0.0262 -0.0174 -0.0083 -0.0099 -0.0096 -0.0074 -0.0098 0.0010

Notes: Standard errors of the last three rows are approximately 0.004. Half-days are equivalent to 12 15-minute retum
intervals during 1983—1985 and to 13 15-minute retum intervals during 1986-—1989. The column entitied 1987:1 includes
only trading days before the October crash; the column entitled 1987 includes trading days from the entire calendar year.

Table Vb represents the average of the second- to 12th-order correla-
tion coefficients from Table Va. Because the first-order coefficient is
distinctly large, it is not included in this average.2’

Focus first on the pattern of the estimates for 1983. The first—half-
day coefficient is smaller than the first-order coefficient, and the average
second—half-day coefficient is smaller still (although is it still statistically
significant). The third—half-day coefficient drops further and is actually
statistically negative. Next, notice that this pattern disappears slowly
over time. By 1988 and 1989, the average higher-order coefficients
show no real downward trend and none remain statistically different
from zero. Thus, the decline toward zero in first-order autocorrelations
seems to occur in higher-order autocorrelations as well. These results
are inconsistent with the view that new trading practices have led to
short-term overreactions.

INTERPRETING CHANGES IN THE
PREDICTABILITY OF THE CASH INDEX

So far, this study has concentrated on the decline in autocorrelation
in the reported index which is based on last-trade prices. However,
these prices include measurement errors due to bid—ask bounce and
nontrading effects, which could in principle account for the decline
in autocorrelation. In this section, an attempt is made to measure the
contribution of these two sources of measurement problems, and to
isolate the portion of the decline that is generated by more efficient

20For the years 1986—1989, there are 26 15-minute intervals in each trading day (as compared
with 24 intervals during 1983—1985), so that the half-day averages include an extra coefficient
during this period.
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processing of market-wide information. To do this, transactions data for
individual stocks are used which allow identification of own- and cross-
stock components of the decline and insight into how market-wide infor-
mation is actually disseminated. This is important for distinguishing the
overreaction hypothesis from the faster-dissemination-of-information
hypothesis.

Bid—Ask Bounce

The first source of measurement error is bid—ask bounce. When there
are discrete differences in the prices at which buys and sells are exe-
cuted, random buys and sells may lead to the appearance of upward and
downward movements in prices, even when quoted prices are constant
over time. This component of price changes will exhibit negative serial
correlation: when the index is at the ask, all else equal, it tends, on
average, to move down toward the bid.?! If bid—ask bounce is present
in the last-trade index, then the level of autocorrelation coefficients is
lower as a result. What is important for this analysis, however, is whether
the bounce can explain the change in autocorrelation through time.

There are at least two ways that the importance of bid—ask bounce
has increased in the 1980s. First, all else equal, bid—ask bounce is an
increasing function of the size of the bid—ask spread, so an increase
in the spread could produce a corresponding increase in bounce.
Second, if investors tend to trade more frequently in portfolios of stocks
rather than in individual stocks, then buys and sells will have greater
synchronousness and, all else equal, bid—ask bounce will increase.
Consider, as an example, the case in which buys and sells across stocks
are random, so that at any given time 50% of the stocks are at the bid
and 50% at the ask. In such a case, the index would contain only a
negligible bounce component, even though bounce may be important
for individual stocks. Compare this with the case where buys and sells
are perfectly synchronized as a result of portfolio trading, i.e., stocks are
simultaneously all at the bid or all at the ask. In this latter case, the
synchronousness of buys and sells would create bid—ask bounce and
reduce the serial correlation in the last-trade index.

The evidence from Table V suggests that these explanations are
unlikely to explain most of the decline in autocorrelation. If bid—ask
bounce is responsible for the change of —0.36 (0.07 in 1989 minus

21Roll (1984) presents a simple model of such bid—ask bounce, and shows that bounce induces
negative covariation between current and future returns.
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0.43 in 1983) in the first-order autocorrelation, one would expect
an equal-size reduction in all correlation coefficients, and not just
that of the first-order (see Roll, 1984). It is clear from Table V that
the change in the first-order coefficient is more than an order of
magnitude greater than changes in higher-order coefficients. However,
there is some evidence that bid~ask bounce has increased slightly. From
Table Va, it is evident that the second-order autocorrelation coefficient
falls by —0.030, from 0.038 in 1983 to 0.008 in 1989. Similarly, from
Table Vb, the average autocorrelation coefficient over the first 24 hours
falls by about —0.016 over the same period. Both of these changes
are statistically significant. But even if one supposes that they are due
entirely to increases in bid~ask bounce, they are clearly too small to
explain the overall change in autocorrelation of the index.

Transactions Data

A second, more direct, piece of evidence on bid—ask bounce can be
obtained by attempting to isolate the bid—ask component of the last-
trade index. To do this, data for all NYSE transactions for the years 1983
and 1988 are examined. Working with as large a subset of the S&P 500
as possible, an approximate S&P 500 last-trade index and corresponding
indexes of bid and ask prices prevailing just before the last trade are
constructed.??

Let L, be the index of last-trade prices and M, be the index of
extant midquotes for each last-trade price. The difference between the
two, L; — M,;, measures the distance between the last trade index and
the center of the then-prevailing spread. Now let I; = In(L;/L;—) be
the return index of last-trade prices, and m; = In(M,/M,—;) be the
last-trade—midquote return index. In principle, the last-trade—midquote
index is not contaminated by a Roll-type bid—ask spread. Therefore, the
importance of bounce can be learned by exploring the changes in serial
correlation of 1, and m;,.

22The intraday transactions database is from the Center for the Study of Security Prices. Only those
stocks in the S&P 500 whose primary market is the NYSE are included. Only those transactions
and specialist quotes which were reported on the NYSE are considered. This is done to minimize
complications arising from quotation and trade reporting standards that vary between markets.
Stocks are excluded on days when there are apparent data errors, or on days when quote and price
data are available only after the first 30 minutes. Certain whole days are excluded due to gaps in
the data. Indices are computed for 236 days in 1983 and for 252 days in 1988. The number of
stocks varies between 269 and 430 in 1983, and between 374 and 455 in 1988. By leaving out the
first hour of each day’s trading, the ber of includable stocks inc Hi , doing so has
no material effect on any of the estimates.
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TABLE VI
Decomposition of Last-Trade Index Returns

Variable 1983 1988 Change

Averages of intraday ratios, excluding first 30 minutes
1. cov{ly, h—1)/var(l) 0.422 0.090 -0.332
N 1 @'w’ cov(lf, I y)/var(h) —0.026 -0.011 0.015
TSNl covll, i yyvar(t 0.448 0.101 -0.347
2. cov(my, my—q)/var(l) 0.389 0.168 -0.221
T, wiw! covim}, m{_,)/var(l) -0.006 -0.003 0.003
Y SN wlwl covimf, m{ ) var(h) 0.395 0471 ~0.224
3. (cov(h, h-1) — cov(my, my—4))/var(h) 0.033 -0.078 -0.111
SN, olwicovi, iLy) - cov(m,,m,_1))/var(l,) —-0.020 —-0.009 0.011
SN =1 >N ¢ AT iwicov(l, I,_,) - cov(m,, m,_,))/var(l,) 0.053 -0.069 -0.122
4. cov(ey, er—1)/var(h) -0.035 -0.086 —0.051
¥4 wlw'covlel, ef_s)/varll) -0.040 -0.016 0.024
SN SN wlwicovel, el ) varlly 0.005 ~0.070 -0.075
5. cov(my, e1-1)/var(l) 0.146 0.126 —0.020
SN, wlw'covim], ]_,)/var(l) 0.017 0.006 -0.011
SN I wlwicov(mi, el yvar() 0.129 0.120 -0.009
6. cov(ey, my—1)/var(l} -0.077 ~0.118 —-0.041
SN, wiwlcov(el, m{_q)/varll) 0.003 0.002 -0.001
S TV wiwicov(el, mi_y)/var(i) —0.080 ~0.120 —0.040

Notes: Indexes are constructed 1o approximate the S&P 500, using NYSE stocks only. See footnote 21 in the text for
more details, /; represents the last-trade retum index, mm, the last-trade—midquote return index, cm, the current midquote
retum index, and € = & — m, is measurement error introduced by the bid-ask spread.

Table VI reports estimates of the first-order autocorrelations of the
indexes that are constructed from the transactions data: I; and m,.
Table VI provides average intraday autocorrelations excluding the first
30 minutes of each day’s trading. Estimates of the own-autocorrelation
of the total index are reported below each number. Since tctal covariance
is the sum of own-covariance plus cross-covariance, the own-covariances
allow assessment of the amount of the change in autocovariance that is
attributable to cross-stock effects. For example, the first line in Table VI
shows the change in the autocorrelation of the I, index from 1983 to
1988 of —0.332.23 Of this, the number beneath line 1 says that 0.015

23Note that this number is close (but not precisely equal) to the autocorrelations of the S&P 500
reported in Table ITIb. Discrepancies are due to the differences in the way the indexes are
calculated. See footnote 20 above.
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is attributable to a decline in own-autocovariance (i.e., an increase in
SN (wi)? cov(li, i )/var(l,), where ' is the weight of the ith stock in
the index) and that the remaining —0.347 is attributable to a decline
in cross-covariance ;-V=l ZFLJ wiw cov(l‘g',l;_l)/var(l,)). As discussed
earlier, if the decline in index autocorrelation is due predominantly to
better processing of market-wide information, one would expect changes
in cross-covariance to explain most of the decline.

The second line of Table VI reports the first-order autoco-
variance of m, divided by the variance of the last-trade index,
(cov(my, m—1))/(var(l)).2* This index explains a change of —0.221,
or two thirds of the decline in the autocorrelation of I;. On the third
line is the difference between the first two lines, which is an explicit
measure of bid—ask effects. It is clear from line 3 that the bid—ask
component has risen by more than estimated from Table V: the change
from 1983 to 1988 is —0.111. Nevertheless, this is still about one third
of the change in the autocorrelation of the last trade index.

It would be wrong, however, to interpret differences between the
autocovariances of the last-trade and last-trade—midquote indices on
line three as pure measures of bounce. To see why, define the bid—ask
error as the difference between the last-trade and last-trade—midquote
return indices: € =1, — m,;, which is approximately the change in
L, — M, (expressed as a percent of M,).2* If ¢ > 0, then, loosely
speaking, there is a greater fraction of buys at time ¢ than at time ¢t — 1.
Then rewrite the third line of Table VI as:

cov(ly, Li1) _ cov(my, mi—1) _ cov(e, €-1) | cov(m,, €-1)
var(ls) var(l,)  var(l) var(l;)
cov(e;, my—1)
var(l,)
Equation (10) indicates that the difference between the autocorrelations
can be subdivided into three parts. Each of these turns out to have a
distinct interpretation.

(10)

23Note that this is just the first-order autocorrelation of m, multiplied by (var(ns,))/(var(l)). This
expression is used rather than the simple autocorrelation of m; because it has the same denominator
as the autocorrelation of I;, and is, therefore, amenable to additive decomposition. These ratios are
all calculated daily, then averaged over the year.

25Using the notation from above, the relationship between € and deviations from the bid—ask

midpoint are:

1+ &

"Tz‘_—l) =& — &1

& = In(Li/Li1) ~ In(My/My-1) = In

where & = (L, — M,)/M,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



752 Froot and Perold

The first term on the right-hand side of eq. (10) is a direct
measure of the serial correlation induced by synchronized buy and
sell orders. That is, it is a pure measure of Roll-type bounce. The
fourth line in Table VI reports that the change from 1983 to 1988
in (cov(e;, €-1))/(var(l;)) over time is negative, but relatively small at
—0.051. Notice, however, that the move in the own-autocovariance
in line 4 is actually positive, with an increase of about 0.024. This
indicates that bid—ask bounce in individual stocks has become less
important (rising over time toward zero), which suggests that the average
stock’s bid—ask spread has narrowed. This implication is checked by
computing the average bid—ask spread, and it is found that the average
spread indeed fell from 1983 to 1988 from 19.5 basis points to 17.1
basis points.

These facts also imply that cross-correlation in bid—ask bounce has
become (more) negative (falling by —0.051 — 0.024 = —0.075). Such
a decline would follow from an increase in the synchronousness of buy
and sell transactions across stocks. Note that this is exactly what one
would expect if portfolio trading has increased over time. In any case,
the own- and cross-components of bid—ask bounce are small in size,
and, moreover, tend to cancel. Overall, bid—ask bounce is, therefore,
responsible for only a tiny part of the change in the correlation of the
last-trade index.

The second term on the right-hand side of eq. (10) is slightly more
complex. It measures the correlation between past increases in buys
(sells) and current increases (decreases) in the midquote index. Table VI
reports this term in line 5. The correlation is clearly large and positive.
In addition, these estimates move toward zero over time, and account
for 20% of the unexplained change reported in the last column of line 3.
There are two possible explanations for such behavior. One is termed
the eating-through-the-order-book (ETOB) and the other is called the
sluggish-response-to-order-flow (SRFI) hypothesis.

The ETOB hypothesis describes a market where order flow is
positively autocorrelated and limit orders are sticky. Suppose, for ex-
ample, that the specialist has a limit order at the ask price, with
more limit orders at prices above that. Suppose also that as buy
orders come in and the specialist executes and (eventually) exhausts
the current limit order, he simply moves the ask price up to the
next limit order. When order flow is positively autocorrelated (which
might occur if big trades are broken up and executed sequentially), an
increase in buy orders tends to forecast an increase in the ask price,
and, therefore, an increase in the future midquote index. The ETOB
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hypothesis would, therefore, predict that the covariance between €,—;
and m, is positive.26

The other possibility to explain line 5 is the SRFI hypothesis. This
posits that order-flow information for a given stock is incorporated into
quotes for other stocks slowly over time. For example, suppose that at
time t — 1, the GM specialist executes a buy order at the ask (which
increases €,—1). This buy order might provide incremental information
about the value of Ford, and, therefore, might be associated with an
increase in the Ford specialist’s quotes. The SRFI hypothesis says that
the full increase happens not instantaneously, but slowly through time.
Thus, the positive covariance between €-) and m;.

The important difference between these two hypotheses is that
SRFI is a measure of how rapidly market-wide information is dissem-
inated, and is, therefore, central to the point of this study. How can
one distinguish between these two hypotheses? One way is to observe
that SRFI is clearly a statement about correlation of €,~; and m, across
stocks, while ETOB is an own-stock effect. Using the own-covariance
numbers in Table VI, one can separate out the cross-stock component
in the last columns of line 5. The estimates imply that of the change
in line 5 of —0.020, about —0.009 (—0.020 + 0.011) is attributable to
cross-stock effects.

This result suggests that, by trying to cleanse the last-trade
price index, l;, of bid—ask bounce, one loses some evidence that the
processing of market-wide information has improved. Since the last-
trade—midquote index, m; does not use transactions prices, it ignores
the fact that deviations from midquotes may be a form of market-wide
information, and that this form of improved information dissemination
helps explain the reduction in autocorrelation of I,. This reasoning
implies that if SRFI is correct, as it appears to be, one should not
attribute the decline in line 5 to an increase in bid—ask bounce, but to
improved processing of market-wide information.

Finally, consider the last term on the right-hand side of eq. (10),
(cov(e;, m;—1))/ (var(l,)). This term measures the covariance between past
increases (decreases) in the midquote index and current buys (sells).
Table VI presents the estimates of this term on line 6. The covariance
is negative and decreasing over time, accounting for a fall in the auto-
covariance of the last-trade index of about —0.041. As with the previous

26Gee also Glosten and Milgrom (1985), who present a model with the same prediction. In their
model, bid and ask rates readjust upward after buys and downward after sells. This creates positive
correlation between €,—) and m, for individual stocks.
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term, there are two potential explanations: the “see-'em-coming” (SEC)
and “slow-response-to-price-information” (SRPI) hypotheses.

Under the SEC hypothesis, the specialist appears able to anticipate
the upcoming order flow, tending to raise (reduce) prices just as buy
(sell) orders arrive. This would lead one to expect that bid—ask prices rise
as buy orders (locally) peak, and, therefore, that the covariance between
m;—y and € is negative. Clearly, specialist anticipation of future order
flows is not in itself bad for other investors. If specialists are responding
to the same information that generates trading in the first place, then
SEC may result in better information being incorporated into current
prices.?’ .

The alternative—the SRPI hypothesis—holds that some stocks’
quoted prices respond slowly to information, making it attractive to buy
or sell them when the index changes. To see this more clearly, suppose
that the index is comprised of two stocks: GM, whose quoted prices
respond immediately to information, and Ford, whose quoted prices are
sticky.?® When positive market-wide information is released, GM trades
immediately at higher quoted prices, while Ford’s quoted prices remain
the same. If there are a few smart traders observing this, they will profit if
they buy Ford as the price of GM rises. The buying of Ford subsequently
subsides as its price slowly rises. Thus, a current increase in the index
of GM and Ford quotes predicts that the index of GM and Ford buys
is currently high (and falling).

The SEC hypothesis is an own-stock effect, while the SRPI hypoth-
esis is a cross-stock effect. To see this in the example above, note that
the price increase in GM is not associated with current buys of GM,
and that the current buying of Ford is assumed not to drive up current
Ford quotes. Once again, the estimates show that the own-stock change
is essentially zero (—0.005 from the last column of line 6). Thus, the
cross-stock effect accounts for most of the change of —0.041 from 1983
to 1988 in line 6. The SRPI hypothesis seems to be the right explanation
for the decline in the covariance of ny -1 and €.

There are several interesting implications of this last set of findings.
First, they suggest that, conditional on some prices changing in response
to news, trades do not cause price changes, but that the lack of price
changes does cause trades. To see this, note that if in these circum-
stances, trades cause price changes, then there would be buying of GM

27For evidence that specialists are able to anticipate order flows, see Sirri (1990).

28Quoted prices would be sticky if the specialist could adjust them, but does not; or, if investors
place on the specialist’s book limit orders which are not immediately revised when information is
released.
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when its price rises. This, however, should lead to a negative own-stock
correlation of m,—; and ¢, which is not found. To generate negative
cross-stock effects and zero own-stock effects, it must be that when
some prices rise and others do not, outside investors predominantly buy
the laggards.

Second, this cross-stock effect is once again closely related to
the processing of market-wide information. It is shown above that the
covariance between m;—) and ¢ is falling because of more aggressive
trading of stocks whose quotes are slow to respond to market-wide news.
Such trading is clearly helpful in eliminating positive correlation in last-
trade quotes. OF course, if the processing of market-wide information
were completely efficient, all stock prices would respond instantly, and
this would tend to choke off such cross-stock trading in the first place.
But, in such a world one would observe zero autocorrelation in an index
of current midquotes, which, as shown in the following subsection, is
not yet the case. In sum, the negative cross-stock covariance of m,;—)
and ¢, suggests that trading pressures are working toward enhancing the
efficiency of the market index. Therefore, it may be desirable to include
line 6 of Table VI in the portion of the decline in autocorrelation due
to improved market efficiency.

This subsection has shown that, after purging the last-trade index of
bid—ask effects, the decline in the first-order autocorrelation from 1983
to 1988 is about —0.221, or about two thirds of the —0.332 decline in
the autocorrelation of the last-trade index. Of the remaining ~0.111,
—0.045 might be attributed to the slow-response-to-information hy-
potheses (—0.009 to SRFI and —0.036 to SRPI), which is felt to reflect
better processing of market-wide information. Thus, only —0.051 of
the —0.332 decline in the autocorrelation of I, can be attributed to
measurement error induced by classic bid—ask bounce.

Nontrading Effects

The more frequently mentioned—and potentially more serious—form
of measurement error comes from nontrading. Because the m; index
is computed from last-trade quotes, some fraction of individual stock
quotes will always be stale. As trades occur in these stocks, any apparent
staleness will disappear, creating the impression that information seeps
slowly into the index. Thus, the last-trade index appears positively
correlated, even if the prices at which these stocks would trade (if they
were to trade) might respond instantaneously to information.
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The size of this nontrading correlation depends on two factors: the
frequency with which stocks trade, and the degree to which trades are
synchronized across stocks. Clearly, greater trading volume works to
reduce nontrading and, hence, to reduce the serial correlation in returns.
Alternatively, greater synchronization in trades across stocks can affect
index correlation, even holding fixed the volume of trade. Common
models of nontrading, such as that of Scholes and Williams (1977),
are not easily able to capture the importance of the latter effect. Rather
than try to test a particular model of nontrading, the transactions data
are used in an attempt to purge the index of the effects of nontrading.?°

Transactions Data

The 1983 and 1988 transaction data discussed above are used to
calculate explicitly a measure of staleness. Following Harris, Sofianos,
and Shapiro (1990), the last-trade—midquote index, m;, can be thought
of as equal to the current midquote index plus a staleness term—the
difference between the last-trade midquote and the current midquote:

my =cmy, + s, = cm, + (m; — cm,) (11)

To understand eq. (11), think of the true underlying index as
equaling the average of current bid and ask prices. The return on this
current midquote index, which is free of staleness and bid—ask bounce,
is given by c¢m,. Then the error in measuring returns using information
available at the times when stocks last traded (as opposed to using
current information) is given by s, = m; — e¢m;. By examining s;’s role
in the decline in the autocorrelation of m;, more direct evidence on the
importance of nontrading is gained. Note that the autocorrelation of cm,
has real economic implications. Positive autocorrelation in cm; would,
for example, say that it is better not to sell after an up-tic in the market,
but to wait until after a down-tic.

Table VII begins the decomposition by comparing the first-order
autocovariances of m, and cm;, in the first two lines. For purposes of
comparability with the previous table, these are scaled by the variance
of 1,.3% In the first line of Table VII is the autocovariance of m, from
Table VI.

29 Atchison, Butler, and Simonds (1987) use actual transaction arrival rates to estimate the Scholes
and Williams (1977) model for daily returns on the NYSE. They find that the model can explain
only 10-15% of the observed correlation in this index.

30The variances of these variables are broadly similar. For example, in 1983 the average daily return
variances (X 10%) were: I, = 0.8310, m, = 0.6622, and cm, = 0.7535.
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TABLE Vil
Decomposition of Last-Trade—Midquote Index Returns

Variable 1983 1988 Change
Averages of intraday ratios, excluding first 30 minutes

1. cov(my, m,_1)/var(l,) 0.389 0.168 -0.221
SN, wlwf covim], mi_,)/vas(h) —0.006 —0.003 0.003
SN 3N 0l covimf, miLq)var(l) 0.395 0.171 -0.224

2. cov(crmy, cmy—+)/var(l) 0.412 0.142 -0.270
TN, wlo! coviem], eml_,)/var(l) -0.007 ~0.003 0.004
S 3 00! coviem],eml ) var() 0.419 0.145 -0.274

3. (cov(my, m—) — cov(cmy, cm,_1))/var(h) -0.023 0.026 0.049
> o'wlcovimf, m{_,) — coviem{, cm{_,))/var(l) 0.001 -0.000 -0.001
ShiZhie lwicov(m}, ml.4) — coviem], cml)/var(t) -0.024 0.026 0.050
4. cov(sy, 5-1)/varll) -0.014 ~0.020 -0.006
S wlwlcovls], sl_y)/varlh) -0.017 -0.005 0.012
Ty S, 0l lcov(s), sl-a)var(l) 0003  -0015  -0018
5. cov(sy, cmyp-1)/ var(l,) 0.087 0.094 0.007
N, wlwlcov(s!, eml )var(l) 0.016 0.005 -0.011
NN Fiw w'cov(s,,cm,l_1)/var(l,) 0.071 0.089 0.018
6. cov(cmy, si-1)/var(l) -0.097 -0.048 0.048
SV, olwlcov(cm, si_y)/var(h) 0.002 0.000 -0.002
SN, S, wiwleoviem, sy )yvar(hy -0.099 ~0.048 0.050

Notes: Indexes are constructed to approximate the S&P 500, using NYSE stocks only. See footnote 21 in the text for
more details. /; represents the last-trade retum index, m, the last-trade—midquote return index, cm, the current midquote
return index, and s; = m; — cm, is measurement error in the last-trade—midquote index due to nontrading staleness.

The second line reports estimates of the autocovariance of the
current midquote index, cm;. Most striking is that its decline of —0.270
is greater than that for my. In other words, nontrading staleness does not
explain a positive portion of the reduction in the autocorrelation of I;—it
actually makes the decline in index autocorrelation even more striking.
How could it be that, all else equal, as staleness due to nontrading is
reduced, the autocorrelation of I, actually rises?

The answer lies in the elimination of strong cross-stock covaria-
tion in quoted prices. For example, suppose that the current quotes
are set somewhat inefficiently, in that price changes for GM, while
being serially uncorrelated, always lead by one day those of Ford. In
this case, an index of current quotes will show positive autocorrela-
tion. However, now add the assumption that GM trades continuously,
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but that Ford happens to have traded only very early in the trading
day. In that case, Ford’s last-trade quotes lag behind current Ford
quotes by almost one day (and behind current GM quotes by al-
most two days). Because of this asymmetry, the resulting last-trade
index is less positively autocorrelated than the current midquote in-
dex. Therefore, when trading volume picks up, the autocorrelation
in the last-trade index rises. This cross-stock asymmetry can explain
the results in the first two lines of Table VII for 1983, and the fact
that the decline in the autocovaraince of cm,; is larger than that
of m,.

To further explore this notion of asymmetric predictive power
across stocks, another version of the value-weighted ¢, index is com-
puted—this time using equal weights. Defining the equally-weighted
- current midquote index as eq; and z; = cmy — eq;, the autocovariance
of ¢m; can be decomposed into four terms:

coviemy, cmy—1) _ covleqs, eqi-1) | covieqs,z-1)  cov(zy, eqi-1)

var(l,) var(ly) var(l,) var(l,)

cov(z,, Z-1)
var(l,) 4 (12)

Loosely speaking, the terms on the right-hand side of eq. (12) can be
interpreted as follows: the first is a measure of small stocks’ ability to
predict the return on other small stocks; the second is a measure of
large stocks’ ability to predict returns on small stocks; the third is a
measure of small stocks’ ability to predict returns on large stocks; and
the fourth is a measure of large stocks’ ability to predict returns on other
large stocks. If stocks respond symmerically to market-wide information,
one would expect that the —0.27 decline in the autocorrelation of cm,
would be distributed equally across these four components. In fact,
the change of —0.27 is made up of declines of —0.12, ~0.11, —0.01,
and —0.04, respectively, of these four terms. It follows that the overall
decline in autocorrelation has come mostly (and about equally) from
a fall in the ability of small stocks to predict returns on other small
stocks and a fall in the ability of large stocks to predict returns on small
stocks.3!

The fourth, fifth, and sixth lines of Table VII decompose the
difference between the autocovariances of m; and cm; into three

31Lo and MacKinlay (1990) show that the predictability of small stock returns accounts for a large
portion of index autocorrelation.
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components, similar to those in eq. (10):

cov(my, my—1) _ covlems, cm—1) _ covlss, si-1) | covls:, cms—1)
var(l,) var(l,) var(l;) var(l,)
cov(cmy, s;—1)

var(l,)

The changes in lines 4 and 5 are negligible, so that the only
important source of net change is measured by the last term on the right-
hand side of eq. (13), which is reported on line 6. This term measures
the covariance of the new information in quotes beyond that reflected
in the last trade, s,—y = m;—; — c¢my_), and the return on the current
midquote index, cm,. One might expect this covariance to be negative
and rising over time because the autocovariance of cm; is positive and
declining over time. Line 6 of Table VII shows that the covariance
between s;—1 and cm, indeed increases from 1983 to 1988 by 0.048, with
own- and cross-components of —0.002 and 0.050, respectively. This
cross-covariance can be interpreted as a measure of the responsiveness
of current quotes to information which comes out between time ¢t — 1
and the last trade as of time t — 1. It is in this sense that a decline in the
cross-covariance of s;—; and cm; is evidence of more rapid dissemination
of market-wide information.

Note that this effect suggests a more rapid response of quotes to
other stocks’ quote revisions, not necessarily triggered by trading. This
complements both the SRFI hypothesis above (which suggests more
rapid response of quotes to other stocks’ order flows) and the SRPI
hypothesis (which suggests more rapid response of order flows to changes
in other stocks’ quotes).

In sum, when a current midquote index, ¢m,;, which has been
purged of the effects of both the bid—ask spread and staleness is com-
puted, it accounts for about —0.270 of the —0.332 decline from 1983 to
1988 in the first-order autocorrelation of the last-trade index, I,. If one
adds the —0.045 decline due to slow response to information (the SRFI
and SRPI hypotheses given above), the result is —0.315 of the —0.332
change in the autocorrelation of I;. Tables VI and VII also show that this
decline is entirely due to cross-stock effects. This means that the results
are best explained by more rapid processing of market-wide information.

(13)

DAILY AND WEEKLY AUTOCORRELATIONS

The focus to this point has been on returns over holding periods of
15 minutes for as long at 15-minute data are available. This section
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looks at the first-order autocorrelation of daily and weekly returns to
determine whether the decline in autocorrelation also applies to longer
horizon returns and whether it is part of a longer-term trend.

Figure 3 shows the first-order autocorrelation of daily returns in
each year since 1926. Three different indices are used: Dow-Jones
Industrials, the S&P 500, and the NYSE value-weighted index (the
last being available through CRSP only since 1962).3% Several striking
observations come out of Figure 3.

First, it is clear that the decline in autocorrelation documented in
the foregoing sections is evident in daily returns, and that the 1980s
are part of a longer-term secular decline in serial correlation which
began around 1969. At that time, the daily autocorrelation coefficients
were between 0.3 and 0.4—very high when compared to the more
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FIGURE 3

Autocorrelation of daily returns on stack indices.

32The unusual observation for 1963 seems related to the ion of President John F.
Kennedy on Friday, November 22, 1963. On that day the market fell by almost 3%, then rebounded
upward on the next trading day (Tuesday) by 3%. When those days are removed from the data the
autocorrelation coefficients jump up to about 0.1.
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recent years, when daily autocorrelations have, on average, been slightly
negative.33

Second, the three indices tell essentially the same story. Their
parallel behavior is important because it indicate that nontrading is
unlikely to explain much of the variation in autocorrelations. To see
this, note that the Dow-Jones Industrials includes only 30 stocks, all of
which are traded very frequently, in contrast with the broader S&P 500
and NYSE indices. Because the Dow-Jones is more actively traded,
its serial correlation is expected to be lower, which is indeed the
case during the postwar period. Note, however, that the differential
between the Dow-Jones and other indices has not changed much during
the recent period. It does not appear to have increased—indeed, it
has decreased—between 1969 and 1990, a period during which index
autocorrelations fell by almost 0.4.

Third, there seem to be three distinct regimes since 1926. The first,
which corresponds roughly to the interwar period, shows autocorrela-
tions to be about zero. The second, beginning with the war and lasting
until the late 1960s, seems (with the exception of 1963) to be constant
at about 0.15. The most recent period is associated with a large, but
remarkably steady, decline from 0.4 to zero.

Finally, note that the variation in autocorrelations is not predom-
inantly due to changes in the average autocorrelation of individual
stock returns. To demonstrate this, Figure 4 graphs the first-order
autocorrelation on the NYSE value-weighted index along with the
average own-stock autocorrelation—the first term on the right-hand side
of eq. (4).3* The figure clearly shows that the decline in autocorrelation
that began in 1969 is due to cross-stock returns.

The last piece of evidence comes from Figures 5 and 6. They
show autocorrelations of weekly returns for the S&P 500, Dow Jones,
and value- and equally-weighted NYSE indices, respectively. Because
the standard error of each year’s autocorrelation coefficient is large,
the figures include seven-year moving averages of the coefficients. The
hump in autocorrelation beginning in the early 1960s remains evident
in these graphs. It is also clear that the positive autocorrelation often
found in weekly returns comes primarily from this hump, and that the

33Monte Carlo simulations suggest that standard errors for these coefficients (allowing for
heteroskedasticity) are about 0.12.

34The average own-autocorrelation is estimated by taking the simple average autocorrelation of
returns on the 150 largest capitalization stocks for each year and dividing by 150. Since these
stocks represent only a fraction of the NYSE's capitalization, this estimate is likely to overstate the
magnitude of the own-stock contribution to autocorrelation.
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FIGURE 4

First-order autocorrelation of daily NYSE returns.

autocorrelation has not been strongly positive since the mid-1970s. The
exception to this is the equally weighted NYSE index return in Figure 6.
Its autocorrelation has fallen the least remaining relatively high. This
suggests that high-frequency portfolio trading does not yet include
a large number of small stocks and therefore cannot fully discipline
their prices.

What could explain the episodic behavior of serial correlation seen
in Figures 3, 5, and 6? Could the trading practices of the day explain
why autocorrelations were so high in the late 1960s and early 1970s,
and so low in the 1930s? One possibility is that the relative importance
of institutional versus investors has changed over time, and that these
investors exhibit very different trading behavior. This is clearly a question
for future research.

CONCLUSIONS

The main empirical finding is that the predictability of short-term stock
returns has declined markedly in 15-minute data, and somewhat less
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FIGURE 5
First-order autocorrelations of weekly returns.

markedly in daily and weekly data. These changes seem concurrent
with rapid growth in new institutional trading practices like portfolio
and index futures trading. The possibility that technical explanations,
such as increases in bid—ask bounce and decreases in nontrading, are
responsible for the decline in autocorrelation of 15-minute returns is
examined, but the data do not support such explanations. In addition,
little evidence is found to support the overreaction hypothesis, which
would suggest decreases in both own- autocorrelations and higher-
order index autocorrelations, neither of which is found. It is argued,
therefore, that the reduction in autocorrelation, which are overwhelm-
ingly due to cross-stock effects, are a result of improved efficiency
with which market-wide information is impounded into the prices of
individual stocks.

Of course, these results do not imply that new trading practices
are beneficial, nor that prices are now closer to the present value of
dividends. Futures markets could still produce negative externalities if,
in the process of making the index more efficient, futuzes siphon off
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FIGURE &
First-order autocorrelations of weekly returns.

order flow from individual stocks, and thereby lead to greater inefficiency
with respect to stock-specific information.33
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