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Abstract

We model the equilibrium price and quantity of risk transfer between firms and financial intermediaries. Value-maximizing firms have
downward sloping demands to cede risk, while intermediaries, who assume risk, provide less-than-fully-elastic supply. We show that
equilibrium required returns will be ‘‘high’’ in the presence of financing imperfections that make intermediary capital costly. Moreover,
financing imperfections can give rise to intermediary market power, so that small changes in financial imperfections can give rise to large
changes in price.

We develop tests of this alternative against the null that the supply of intermediary capital is perfectly elastic. We take the US catas-
trophe reinsurance market as an example, using detailed data from Guy Carpenter & Co., covering a large fraction of the catastrophe
risks exchanged during 1970–94. Our results suggest that the price of reinsurance generally exceeds ‘‘fair’’ values, particularly in the after-
math of large events, that market power of reinsurers is not a complete explanation for such pricing, and that reinsurers’ high costs of
capital appear to play an important role.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

What drives the prices of intermediated risk transfers? If
capital markets were perfect, risks would flow costlessly
from corporate hedgers to investors, and required returns
would be ‘‘fair’’ in the sense that they would be determined
0378-4266/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.jbankfin.2007.09.008

q An earlier version of this paper was prepared for the NBER
Conference on The Financing of Property/Casualty Risks, Palm Beach
FL, November 21–23, 1996. We are grateful to Peter Diamond, Chris
Milton, Julio Rotemberg, Jeremy Stein, Rene Stulz and conference
participants for helpful comments, to David Govrin, Chris McGhee,
Denis Medvedsek, Brian Murphy, and Barney Schauble for help in
obtaining and understanding reinsurance data, and to the NBER, the
Global Financial Systems Project, and Division of Research at Harvard
Business School for generous research support. All errors are our own.

* Corresponding author. Tel.: +1 617 495 6677; fax: +1 617 496 7357.
E-mail addresses: kfroot@hbs.edu (K.A. Froot), poconnel@fdopart-

ners.com (P.G.J. O’Connell).
entirely by investor preferences. For example, in a perfect
market, firms would pay the riskfree rate to cede risks that
are independent of aggregate wealth. In such a world, there
would be no need for financial intermediation. Intermedi-
aries, whose job is to distribute, transform, and inventory
risk, could add no value. And under perfect markets there
would be no rationale for corporate hedging in the first
place. As Modigliani-Miller argued, firms would be indif-
ferent between ceding risk (e.g., hedging) and financing risk
(e.g., raising equity) at fair prices. So, for example, firms
would never cede risks that were independent of aggregate
wealth at a rate greater than the riskfree rate.

In practice, of course, markets are far from perfect.
These imperfections at once give rise to firms’ desire to cede
risk and intermediaries’ ability to profitably assume risk.
For example, investors may be at a competitive disadvan-
tage when it comes to evaluating and monitoring risks that
are non-standardized and informationally opaque. If
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forced to finance such risks directly, investors would charge
a high rate. A cheaper solution might be for intermediaries
to warehouse these risks, with investors financing the inter-
mediaries. Intermediaries can do this and still add value
because they provide evaluation and monitoring services.
However, although intermediaries may reduce deadweight
financing costs, they are unlikely to eliminate them entirely
in their own financing needs. Lack of standardization and
opacity will continue to be present. As a result, financial
intermediation may occur, but the required return on
non-standard and opaque intermediated risks will be high.
Moreover, intermediaries’ capacity for these risks will be
less-than-perfectly elastic. In other words, the required
return on non-standard and opaque risks that are indepen-
dent of aggregate wealth will be greater than the riskfree
rate and intermediaries will require successively greater
returns for bearing additional quantities of such risk.

The industrial structure of intermediation may also be
affected by financial imperfections. Bigger intermediaries
may conserve on costly external finance because they are
better able to diversify risks and fund investment opportu-
nities of a given size. If so, then financing imperfections
become a source of increasing returns to scale for interme-
diaries. Although small financing imperfections can gener-
ate only small returns to scale, they can nevertheless
generate large increases in market power. The implication
is that, under imperfect competition, even small financing
imperfections can have large impacts on the equilibrium
price of intermediated risk.

In this paper, we model the equilibrium pricing of risks
that are non-standardized and opaque. In our view, firms
wish to cede risks to economize on financing/investment
costs. Because intermediaries specialize in bearing these
risks, they can assume them at lower cost than investors,
albeit at higher cost than ‘‘fair’’ value. The higher required
returns paid by firms ceding these risks are a result of the
costs intermediaries bear in funding themselves and the
barriers to entry created by the financial imperfections
intermediaries face.1

Based on these ideas, the model derives a firm’s down-
ward-sloping demand for hedging. This demand for hedging
is a function of the financing imperfections facing the firm,
the amount of financial slack the firm has initially, and the
volatility of the risks facing the firm. The model is then used
to derive an intermediary’s upward-sloping supply of hedg-
ing capacity. The intersection of demand and supply is the
equilibrium transaction price of intermediated risk. We show
that the financing imperfections make the required return on
this risk high. It is also clear how the risk profile and financial
slack of firms and intermediaries affect conditions equilib-
rium price and quantity. Finally, we demonstrate how mar-
1 Investors more readily bear standardized, transparent exposures, such
as major currencies or stock indexes. This reduces the marginal cost of
intermediation and the resulting potential for intermediary market power.
Consequently, the supply of intermediary capacity will be highly elastic
with respect to such risks.
ket power of intermediaries can interact with firms’ and
intermediaries’ financing imperfections to raise the cost of
hedging intermediated risk even further.

To motivate empirically our model of these issues, we
examine one particular market for intermediated risk – that
of catastrophe reinsurance. In this market, insurers pur-
chase reinsurance contracts from reinsurers. Under these
contracts, reinsurers agree to pay insurer damages resulting
from natural perils such as hurricanes and earthquakes.
Reinsurers pool these risks in and across their portfolios,
but are unable to diversify them fully. This is because
potential cat losses are large relative to reinsurer capital.2

Given the magnitude of potential cat losses, one would
expect insurers and reinsurers to hedge cat risk by finding
investors with whom to share it. Yet, in fact, insurers and
reinsurers tend to retain cat risks. Perhaps because catas-
trophe risks are neither standardized nor transparent,
investors have historically been unwilling to share them
directly. As a result, these risks yield high returns and are
financed exclusively by insurers and reinsurers – both inter-
mediaries who must find their own costly financing. In
other words, the market for catastrophe reinsurance is an
intermediated market in which the required return appears
high, yet little direct risk transfer to investors occurs.

The market for catastrophe risk is particularly well suited
to our analysis because catastrophe exposures are (arguably)
independent of the risks on financial assets and because they
can be measured using objective scientific models. If cat risks
are diversifiable with respect to aggregate wealth, their ‘‘fair’’
required excess return is equal equivalent to the rate of actu-
arially expected loss. In other words, the total return for
bearing diversifiable cat risk exposure should be the riskfree
rate. Furthermore, quantitative and objective modeling of
the probabilities of catastrophic losses is possible. This
means that we can actually calculate the ‘‘fair’’ price of catas-
trophe reinsurance contracts, and use this to benchmark
observed transaction prices. This is the exercise we undertake
in the empirical section of this paper. Our benchmark prices
come from an extensive set of reinsurance contract data from
Guy Carpenter & Co., the largest broker of catastrophe rein-
surance worldwide. These transactions data cover a signifi-
cant fraction of the US catastrophe reinsurance market
over the period 1970–1994 and allow us to explore the prop-
erties of equilibrium prices and quantities of cat risk transfer.

To preview our empirical findings, the average premi-
ums (i.e., prices) on catastrophe reinsurance are consider-
ably above our estimate of actuarial value. Cat risk,
therefore, yields an expected return well in excess of the
riskfree rate. Furthermore, we show that prices and quan-
tities are negatively correlated. Both facts suggest that the
2 A single catastrophic event (such as a large hurricane or damaging
earthquake) can generate potential insured losses of up to $100 billion in
the US. Estimates of total capital and surplus of all US insurers is
approximately $239 billion; the capital for reinsurers worldwide is
estimated at $57 billion. See Froot (1999) for an overview of the market
for catastrophe reinsurance.
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supply of capital to bear cat risk is not perfectly elastic.
Naturally, these results depend on our ability to model
accurately the ex ante distribution of catastrophe losses.
However, even if our empirical approximation of this dis-
tribution is flawed, the results from our analysis agree with
the distribution of losses that comes out of commercially
available models. These more sophisticated models, pro-
duced by specialized cat-modeling firms, suggest that cur-
rent prices of catastrophe reinsurance are well in excess
actuarial loss estimates.

Indeed, prices are particularly high in the aftermath of
major catastrophic events. We find evidence that such price
increases are driven by decreases in the supply of reinsur-
ance as well as increases in demand.3 The price impact of
a shift outward in demand could be attributable to a com-
bination of enhanced reinsurer market power and increased
reinsurers’ cost of capital. But part of the price impact is
also driven by a shift backward in supply, suggesting that
increases in reinsurers’ costs of capital must be an impor-
tant element.

We estimate the elasticity of demand to be between �0.2
and �0.3, while the elasticity of supply is approximately 7.
The latter figure suggests that a 1% increase in premium
above actuarially expected losses leads to a 7% increase in
reinsurance capacity supplied. This response seems small rel-
ative to what capital markets could be expected to provide
for liquid instruments. For example, a similar 10% increase
in the interest rate on several billion dollars of one year risky
corporate debt (equivalent to an increase in yield of about 50
basis points when interest rates are 5%), with no change in
riskless rates or credit quality would presumably increase
the supply of investors by more than 70%.4,5

We also present evidence that changes in reinsurers’ cap-
ital costs affect supply. Specifically, we find that the supply
for a given contract is reduced (i.e., the reinsurance pre-
mium is increased) when: (i) variance of losses under that
contract is greater; and (ii) the covariance of losses under
that contract with the loss distribution of reinsurer portfo-
lios is greater. (In both cases, we hold constant demand fac-
tors such as the variance of insurer exposures and recent
insurer losses, as well as reinsurer losses). These effects
would have no impact on supply if financial markets were
perfect. Because reinsurer financing imperfections may pro-
mote market power, it is difficult to disentangle the relative
importance of financing imperfections versus market power
in these results.
3 Doherty and Smith (1993) present evidence that insurance markets are
less competitive when prices are high.

4 Note that it is appropriate to hold riskless interest rates constant in this
example to the extent that changes in catastrophe prices appear indepen-
dent of other financial market returns (including interest rates). As one
might guess, actual correlations are neither statistically nor economically
different from zero. See Froot et al. (1995).

5 Indeed, an adjustment for credit quality would, if anything, make this
investment even more attractive. That is, after a catastrophic event,
reinsurers may receive, say, 10% higher premiums even though their credit
quality has probably declined.
The rest of the paper is structured as follows. Section 2
lays out the model of supply and demand in an intermedi-
ated market for risk. Section 3 describes our strategy for
implementing this model. Section 4 describes the data. Sec-
tions 5 and 6 then present estimation methodology and
results. Section 7 concludes.

2. A model of hedging demand and supply

In this section, we model the price and quantity of risk
transfer in an intermediated market. Our basic rationale
for corporate hedging demand is that of Froot et al.
(1993): hedging increases firm value by reducing costly fluc-
tuations in investment spending and external fund raising.6

Here, however, we model equilibrium risk transfer. The
equilibrium is interesting because intermediaries have lim-
ited capital and face costs of adding more, as in Froot
and Stein (1998). Intermediary costs of external finance
would seem natural since intermediaries are themselves
corporations, subject to the same kinds of frictions that
make corporate hedging desirable in the first place. We
show below how these financial imperfections interact with
market power to magnify the increase in the equilibrium
price of intermediated risk.

The model has two time periods: present and future. In
the present period, insurers (‘‘firms’’) and reinsurers
(‘‘intermediaries’’) make insurance and reinsurance (‘‘hedg-
ing’’) decisions. In the future period, catastrophe losses and
firms’ and intermediaries’ stock prices are realized. Firms
and intermediaries also make present-period hedging deci-
sions with an eye toward their overall goal – maximization
of shareholder value.

2.1. Firms’ demand for hedging

In the present period, the ith firm begins with an inher-
ited level of net internal assets, wi;0. These net assets are
exposed to uncertain shocks (e.g., catastrophe losses) given
by ei. For simplicity, we assume ei is normally distributed,
ei � Nð1; r2

i Þ.
7 The firm’s exposure to this shock can be

managed by hedging an amount qi. We assume that the
hedging contract is linear, so that the contract has a payoff
of qiei.

8 Net assets in the future period are therefore

wi ¼ wi;0½ð1� qiÞei þ qið1� piÞ�; ð1Þ
6 A similar motivation for hedging can be found in Stulz (1984) and
Diamond (1984) (which deals specifically with the role of diversification in
reducing firm-wide risks).

7 This distributional assumption is made for the sake of simplicity and
has no effect on the basic results. Of course, normality is unlikely to be a
good assumption for the distribution of catastrophe losses. In the
empirical section below, we more accurately model the empirical distri-
bution of catastrophe losses.

8 This assumption does not affect the qualitative nature of the results but
simplifies the analysis considerably. In practice, of course, most reinsur-
ance contracts are excess-of-loss treaties (which are nonlinear in insurer
losses – see Footnote 25 below). In the empirical section, we model the
distribution of the nonlinear excess-of-loss contract payoffs.



72 K.A. Froot, P.G.J. O’Connell / Journal of Banking & Finance 32 (2008) 69–85
where qi can be interpreted as the hedge ratio, and pi is the
unit cost of the hedge contract in excess of fair value. Intu-
itively (and as we show below), pi ¼ 0 in a market with no
costs of financial intermediation. In other words, fair value
is defined as the price that would prevail in a perfect market
with costless access to investors.

If risk management is to matter to a firm, the distribu-
tion of net internal assets across future outcomes of ei must
affect stock prices today. To establish this linkage, we use
the FSS formulation, which assumes that in the future,
the firm has positive-NPV investment opportunities it
wishes to protect.9 The investment requires an expenditure
of I i (to be determined in the future period after wi is real-
ized). It provides a net return of F ðI iÞ ¼ f ðI iÞ � I i, where
f ð:Þ is an increasing, concave function. Clearly, the funds
for this investment must come from some combination of
external sources, ei, and internal sources, wi; so that
I i ¼ ei þ wi. The problem for the firm is that external funds
cannot be costlessly tapped – raising external funding gen-
erates convex costs, given by CðeiÞ.10

If managers maximize firm value, then the value of the
firm in the future is the solution to the investment/financ-
ing problem:

P ðwiÞ ¼ max
I i

FtðI iÞ � CðeiÞ;

subject to I i ¼ ei þ wi:
ð2Þ

FSS show that, under these conditions, P ðwiÞ is an increas-
ing concave function with 1 6 P w and P ww 6 0.11 Intui-
tively, low levels of internal assets cause the firm to
experience costly cuts in investment and/or costly attempts
to raise external funding. If fluctuations in the value of
internal net assets can be avoided through hedging, then
the prospect of experiencing such costs is reduced. Thus,
it is the concavity of the value function, P ðwiÞ; that makes
risk management value-enhancing for the firm.12

From the perspective of the present period, the firm
chooses its hedging policy so as to maximize expected
future value of the company – maxqiV i ¼ E½PðwiÞ�, where
the expectation is taken with respect to ei. (For simplicity,
9 For an insurer, these investment opportunities might involve the
competitive pricing of insurance policies to gain or protect market share,
upfront funding of brokerage expenses, purchases of property, etc.
10 FSS show how a convex cost function arises in the standard optimal

contracting setting introduced by Townsend (1979) and Gale and Hellwig
(1985). Other applications include Stein (1998) and Froot and Stein
(1998). FSS also provide arguments as to why corporate agency and
information problems result in the kind of convex cost function of external
finance assumed here.
11 Our notation for derivatives is P w ¼ dP=dw, and P ww ¼ d2P=dw2.
12 In the FSS formulation, a firm that inherited a capital structure with

lower leverage, would have greater internal net assets, all else equal. It
would therefore be able to mitigate future costs of external finance. Thus
low leverage would seem to be an inexpensive means of avoiding costly
external finance. Froot and Stein (1998) remedy this imperfection by
incorporating carry costs for net internal assets. These costs (which result
from factors such as foregone interest tax shields and agency costs), make
it expensive for the firm to solve its risk management problem through
underleveraging.
we ignore discounting.) The first-order condition for this
problem defines the optimal amount of hedging, q�i :

E P w
dwi

dqi

� �
¼ E½P wð1� ei � piÞ�

¼ �cov½P w; ei� � pE½P w� ¼ 0: ð3Þ

Using the assumption that ei is distributed normally, we
can solve this equation explicitly for the hedge quantity
demanded:13

q�i ¼ 1� pi

hi
; ð4Þ

where hi � wi;0Gir2
i represents the strength of demand – it

is literally the insurer’s marginal financing cost of retaining
an additional unit of risk – and Gi ¼ GðwiÞ ¼
�E½P ww�=E½P w�P 0 is effectively a firm-specific measure
of risk aversion to fluctuations in wi. It is easy to show that
Gi is monotonically decreasing in wi, Gw 6 0, and that
Gð1Þ ¼ 0. The better capitalized the firm, the lower its risk
aversion and the less there is to be gained from hedging.14

Eq. (4) is our hedging demand equation. It shows that
the optimal hedge ratio, q�i , is a decreasing function of
price, pi, an increasing function of the variability of the
underlying exposures, r2

i , and a decreasing function of
internal funds, wi ðthrough Gð:ÞÞ.

The term pi=hi is the product of the expected excess
return-to-variance ratio, pi=r

2
i – essentially, the ‘‘alpha’’

on ei risk – multiplied by the level of firm risk tolerance,
1=wi;0Gi. This term can be interpreted as the firm’s desired
or ‘‘target’’ exposure to ei risk.15 If pi > 0, the firm should
optimally retain some of its own exposures as a value-max-
imizing investment decision. If pi ¼ 0 the firm will opti-
mally cede all its ei risk and hedge completely.

2.2. Intermediaries’ supply of hedge capacity

As with a firm, an intermediary (i.e., reinsurer) begins
with an inherited level of net internal assets, wR;0. For sim-
plicity, we assume that there is a single intermediary, but
that this intermediary nonetheless prices competitively. If
the intermediary exchanges risks with firms, its net assets
will be exposed to a portfolio of ei’s from cedents; from
Eq. (1) above, the intermediary will assume from the ith
cedent risk given by qR;iðei þ pi � 1Þ. The intermediary’s
future-period net internal assets are therefore given by:
13 If x and y are normally distributed and að:Þ and bð:Þ are differentiable
functions, then covðaðxÞ; bðyÞÞ ¼ Ex½ax�Ey ½by �cov(x,y). In the absence of
normality, there is no convenient closed-form solution. Furthermore, the
qualitative aspects of that hedge ratio will be the same as derived in the
simple case of normality.
14 Investors as a group represent the deep capital markets, and as such

have elastic demand, so that for investors Gi ¼ 0.
15 That is, the unhedged fraction of exposure (i.e., retention) is

1� q�i ¼ pi=hi. Froot and Perold (1996) define target exposure, and show
that, in general, it is given by the ratio of excess return to total variance
times the level of investor risk tolerance.
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wR ¼
X

i

qR;iðei � 1þ piÞ þ 1; ð5Þ

where for simplicity we have normalized initial intermedi-
ary wealth to one, wR;0 ¼ 1.

2.2.1. Supply with financing imperfections

In this subsection, we assume that intermediaries face
the same sorts of financial-market imperfections that firms
face. Thus, intermediaries have profitable internal uses of
funds and costs of raising external funds, just as firms have.
Intermediaries are also value maximizers, just as firms are.
They therefore also solve the maximization problem given
in Eq. (2), using wR (5) in place of wi (1).

The intermediary’s present-period decision to supply
hedge capacity is therefore the solution to the problem,
maxqiV R ¼ E½P ðwRÞ�, where P ðwRÞ ¼ maxIR F ðIRÞ � CðeRÞ,
subject to IR ¼ eR þ wR. The resulting first-order condition
of V R for the ith exposure is just the negative of Eq. (3).
Solving this we have

q�R;i ¼
pi � GRcov½ei; eR;i�

GRr2
i

¼ pi

GRr2
i
� bi; ð6Þ

where GR ¼ GðwRÞ ¼ �E½P ww�=E½P w� where w ¼ wR is the
risk aversion of the intermediary, and where
bi ¼ cov½ei; eR;i�=r2

i ðwith eR;i ¼ Rj 6¼iqR;jejÞ is the covariance
between a unit of the ith risk and the weighted average of
the other K � 1 risks in the intermediary’s portfolio, where
K is the number of insurers. Note that Eq. (6) indicates that
the optimal capacity provided for the ith risk, q�R;i, depends
on the capacities provided for all other risks, qR;j 6¼i. Follow-
ing Froot and Stein (1998), we can solve the K equations rep-
resented by (6) for the K � 1 vector of optimal supplies

q�R ¼ X�1 p
GR

; ð7Þ

where q�R is the N � 1 vector of optimal supplies, X is
the K � K covariance matrix of the ei shocks, and p is the
K � 1 vector of per unit prices. Eq. (7) just says that the
optimal allocation of intermediary capacity is mean-vari-
ance efficient – increasing in return, and decreasing in
covariance. Note that the optimal allocation for each q�R;i
depends on the entire vector of prices, p.

Rather than work with the full solution to the interme-
diary’s portfolio problem in Eq. (7), however, we use the
partial solution in Eq. (6). This latter condition is prefera-
ble since it does not impose full optimality, although it is
consistent with it. Our interest here is not really whether
intermediaries form mean-variance efficient portfolios,
but whether internal funds, variance, and covariance
importantly influence market prices.

Eq. (6) is the supply-curve analog of Eq. (4). It says that
the optimal amount of exposure to a given risk is equal to
the difference between the intermediary’s ‘‘target’’ exposure,
pi=GRr2

i , and the ‘‘pre-existing’’ exposure to that risk already
in the portfolio, bi. This latter term is just the coefficient in a
regression of the portfolio return (excluding the ith expo-
sure) on the ith risk factor. It therefore conveys how much
exposure to the ith factor is contained in the preexisting port-
folio. All else equal, the higher the preexisting exposure, the
lower the willingness to supply additional capacity. If preex-
isting exposure equals target exposure, then it is optimal nei-
ther to assume – nor cede – any of the ith risk.16

Note that Eq. (6) says that if GR > 0, intermediaries will
supply positive capacity only if the ith risk is negatively
correlated with the rest of the portfolio. Clearly, if interme-
diaries have plenty of internal funds, GR ¼ 0, and risks are
priced at fair value, pi ¼ 0.

2.2.2. Supply with imperfect competition

Financing imperfections may have other, more indirect
effects on the supply of intermediary capacity. Most impor-
tantly, these imperfections generate increasing returns to
scale: the larger is intermediary size, the better it can con-
serve on costly external funds. This occurs because the
investment opportunity set (given by F ðI iÞ ¼ f ðI iÞ � I i)
remains constant when the size of the intermediary (repre-
sented by wR;0) grows. Indivisibilities in the size of risky
positions will also create increasing returns, because larger
intermediaries will be better able to diversify their invest-
ments into many risky exposures. Both of these arguments
suggest that market power will be increasing in the size of
intermediary financing imperfections.

It is straightforward to extend the model to allow for mar-
ket power. To do this, we employ a simple model of Cournot
competition among N symmetric intermediaries. Each
chooses an amount of capacity to provide to the ith firm,
qi;n (where Rnqi;n ¼ qi) to maximize value, maxq;i;nV n ¼
E½P ðwnÞ�, given internal wealth in Eq. (5). The first-order
condition for the nth intermediary is similar to (3):

E P w
dwn

dqi

� �
¼ cov½P w; ei� þ pi þ qi;n

dpi

dqi;n

 !
E½P w� ¼ 0; ð8Þ

except that now we account for the infra-marginal decline
in price resulting from an increase in quantity supplied,
qi;ndpi=dqi;n. Note that with such strategic intermediary
behavior, there is no supply curve per se: the intermediary
merely chooses the profit-maximizing place along each of
the K demand curves, and charges accordingly.

2.3. Equilibrium

In the equilibria with financing imperfections and/or
with imperfect competition, total demand will equal sup-
ply, so that

q�i;R ¼
X

n

q�i;n ¼ q�i wi;0: ð9Þ

However, the equilibrium prices and quantities will differ
depending on the extent of financing imperfections and
market power.
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2.3.1. Equilibrium with financing imperfections

Using (9) along with Eqs. (4) and (6), the simplest solu-
tion for equilibrium price and quantity is

p�i ¼ ciGRr
2
i ;

q�i ¼ 1� ciGRr2
i

hi
;

ð10Þ
where ci is the exposure of the entire intermediary portfolio
to the ith risk factor, ci ¼ cov½ei; eR�=r2

i , and eR ¼ RiqR;iei.
Note that this total exposure equals the preexisting expo-
sure to i, plus the size of the position in the ith risk,
ci ¼ bi þ qR;i. For given bi, equilibrium prices are increasing
in the quantity of the ith exposure intermediary portfolios
have to absorb. Here, because we have competitive behav-
ior, price is equal to intermediary marginal cost,
p�i ¼ ciGRr2

i � mci.
The results in Eq. (10) have intuitive properties. First, if

intermediaries have effectively no exposure to the ith risk
factor, then: ci � 0; fair prices prevail, p�i ¼ 0; and the ith
firm hedges fully, q�i ¼ 1. The ith firm effectively absorbs
no intermediary capacity, so it is as though intermediation
is costless. Also, high levels of intermediary capital imply
that GR ¼ 0, again making intermediation effectively
costless.

Second, if firms have ample internal funds, they face
small costs of external finance, i.e., Gi ¼ 0. In this case,
demand is perfectly elastic at p�i ¼ 0. Intermediaries will
be able to supply capacity only to the extent ci is zero.
Otherwise, no risk will be exchanged, q�i ¼ 0, since it is
cheaper for firms to retain exposures. To buffer their risks,
firms would either prefund with large amounts of equity or
issue equity contingent on catastrophes. In practice of
course, either strategy will be costly: large equity buffers
are tax-inefficient and promote agency problems and take-
over pressures, while issuing equity in bad times is difficult
and costly due to heightened informational asymmetries.
This is just another way of saying that internal funds are
scarce in practice.

Finally, the equilibrium has the property that as GR and
Gi converge to zero, price also goes to zero, but quantity
becomes indeterminate. This is just the limiting case of
Modigliani-Miller: if capital markets are perfect, the struc-
ture of financing does not matter.
2.3.2. Equilibrium with both imperfect competition and

financing imperfections

Using the demand curve in Eq. (4), the equilibrium con-
dition in (9), and the fact that the N intermediaries are sym-
metric, the solution to the imperfectly-competitive
intermediary’s problem in (8) is just:

p�i ¼ khi þ ð1� kÞmci;

q�i ¼ ð1� kÞ 1� mci

hi

� �
;

ð11Þ
where k � 1=N þ 1 is an increasing measure of market
power, and mci � ciGRr2

i is the (symmetric) marginal cost
for the nth intermediary’s investment in the ith firm’s risk.

Eq. (11) is the standard solution to the Cournot problem
with linear demand. Note that k ¼ 0 under perfect compe-
tition. In this case, the equilibrium in (11) converges to the
perfectly competitive outcome in (10). With nonzero mar-
ket power, k > 0, price will be above intermediaries’ mar-
ginal cost.

Eq. (11) is interesting in this context for several reasons.
First, the greater is market power, k, gives demand (given
by hi) more scope to raise price and reduce quantity. Sec-
ond, if market power is enhanced by greater intermediary
financing imperfections, we have that kG > 0, where
k � kðGRÞ. Third, by definition, demand and marginal
costs are increasing functions of insurer and intermediary
financing imperfections, respectively. That is, dhi=dGi > 0
since hi � wi;0Gir2

i , and dmci=dGR > 0 since mci � ciGRr2
i .

This implies that the impact on price of an increase in
financing imperfections is

dpi

dG
¼ kwi;0r

2
i þ ð1� kÞcir

2
i þ ðhi � mciÞ

dk
dG

: ð12Þ

An increase in financing imperfections has three distinct ef-
fects, given by the terms in Eq. (12). The first term shows
that the demand for hedging by firms increases with finan-
cial imperfections. This is a substitution effect – the costs of
direct firm financing rise. The second term shows the com-
ponent of price due to the decline in the supply of interme-
diary capacity as a result of more costly intermediary
finance. The third term is the magnification effect of financ-
ing imperfections. That is, all else equal, prices are most
sensitive to changes in imperfections when demand is rela-
tively high ðhi largeÞ and when intermediary financing
imperfections are small ðmci ¼ 0Þ.

2.4. Discussion

The model is intended to motivate the empirical section
below where we attempt to estimate the slope of the short-
run supply curve for catastrophic risk taking. However,
our analysis raises a number of important issues which
deserve separate mention.

The first point – one that is directly relevant to the
empirical work – is that we have modeled the short-run
equilibrium only. Capacity and institutional structure are
taken as constant, fixed factors. Positive shocks to demand
may raise price in the short run, but over time, this price
increase stimulates investment in intermediary capacity.
Subsequent price declines are likely to follow. Loosely
speaking, the long-run supply curve will be more elastic
than the short-run supply curve because short-run mar-
ginal costs exceed long-run marginal costs. We provide
loose evidence of these elasticities for catastrophe-risk
intermediation below.

The second point is that our model is incomplete, in that
it begs the question of why intermediation in sectors such
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as insurance is structured the (costly) way it is, even if we
take as given the existence of financing imperfections. High
equilibrium prices are partly a result of intermediaries fail-
ing to fully pool firm exposures. This lack of complete
diversification is inefficient and expensive, so our model
produces only a second-best outcome. Are there arrange-
ments that might generate a constrained first-best outcome
in which all risks are pooled?

One way to avoid costly intermediation is through an
industry-wide merger of firms. This would be more efficient
in that it would better spread firms’ deadweight costs of
external finance. However, standard monopoly arguments
suggest that such a merger might generate enough market
power among firms to reduce social welfare below where
it is in our model. Besides (and partly as a result), such
mergers are generally illegal.

Another way to avoid costly intermediation would be
through the use of inter-firm exchanges of risk. Indeed,
the unconstrained first-best outcome would have firms
costlessly transferring their risks directly to investors. How-
ever, given the informational intensity and non-standard-
ized nature of insurance risks, adverse-selection, moral
hazard and agency problems make such an equilibrium
potentially very costly. In the absence of standardized
packages of risk, firms (or investors who may wish to fund
these exposures directly) would want a monitor to evaluate
risks and verify outcomes. The monitoring function may be
most efficiently housed in a small number of organizations
specializing in these activities. And, of course, this is the
spirit of the multi-firm/single-intermediary structure of
our model.

The third and most important point is that the source of
high prices has important consequences for policy. If the
story we tell is correct, then innovation in insurer/interme-
diary financing has very potent effects on the price of inter-
mediated risk, as demonstrated in Eq. (12). In the
insurance and reinsurance sectors, for example, use of
catastrophe bonds and indexes of insurer losses might
enhance standardization and transparency. This would
reduce both insurer and reinsurer costs of capital and,
simultaneously, cut reinsurer market power, further lower-
ing the costs intermediated risk transfer.

If, on the other hand, market power is high for other
reasons (e.g., barriers to entry due to reputation, etc.),
there may be gains to encouraging competition among
intermediaries. Note, however, that no matter how impor-
tant these other sources of market power, they have little
effect on equilibrium prices in the absence of financial
imperfections. To see this, note that without financial
imperfections, both hi and mci are zero in Eq. (11). The
existence of low-cost substitutes to firm/intermediary hedg-
ing transactions limits intermediary market power and the
distortion in prices.

Finally, we have ignored transactions costs as a poten-
tial explanation of high hedging costs. In some cases, such
as reinsurance, transactions costs are likely to be impor-
tant. However, transactions costs cannot easily explain
the variation in prices over time nor high prices levels
(transactions costs increase bid/ask spreads around fair
value).

3. Testing the model

From Eq. (4) above, the quantity of reinsurance
demanded is a decreasing function of price, increasing
function of variance, and a decreasing function of internal
funds. For purposes of estimation, we represent the
demand for reinsurance by insurer i at time t by the simple
quasi-log linear form

lnð1þ pi;tÞ ¼ a1;i þ a11 lnðqi;tÞ þ a12 lnðr2
i;tÞ þ a13wi;t þ mi;t;

ð13Þ

where pi;t and qi;t are, respectively, the price and quantity
measures defined earlier, r2

i;t is the per unit variance of
the insurer’s exposure, wi;t is the level of internal funds
available to insurer i, and the a’s are coefficients to be esti-
mated. The coefficient a1;i represents an insurer-specific
fixed effect, attributable to unobserved differences in in-
surer-specific willingness to bear catastrophe exposure.
The elasticity of demand is given by the inverse of coeffi-
cient a11.

If insurer capital markets were perfect, so that Gi ¼ 0,
then risk management policies would be independent of
the level of internal funds, wi;t, implying a13 ¼ 0. Perfect
markets would also imply that the variance of individual
company exposures, r2

i;t, would have no influence on the
demand for hedging, a12 ¼ 0. Furthermore with perfect
financial markets, demand is perfectly elastic, so a11 ¼ 0.

On the supply side, Eq. (6) tells us that capacity supplied
is an increasing function of variance and portfolio covari-
ance relative to variance and a decreasing function of rein-
surer internal funds. Linearized, this equation takes the
form

lnð1þ pi;tÞ ¼ a2 þ a21 lnðqi;tÞ þ a22 lnðr2
R;i;tÞ

þ a23bi;t þ a24wR;t þ gi;t; ð14Þ

where qR;i;t is the absolute quantity of reinsurance supplied
to reinsurer i, r2

R;i;t is the per-unit variance of the claims
ceded by insurers to reinsurers, bi;t ¼ cov½ei;t; eR;i;t�=r2

R;i;t is
the intermediary’s preexisting portfolio covariance with re-
spect to the ith firm’s ceded risks, and wR;t is the industry-
wide level of financial slack in the reinsurance sector. There
are no insurer-specific intercepts in the supply function.
Note that the unit variance of the ith exposure assumed
by the reinsurer, r2

R;i;t, is not the same as the variance of
the ith insurer’s exposures, r2

i;t. This distinction is necessary
because the contracts in our data transfer exposures which
are nonlinear functions of underlying insurer portfolios.
The covariances in bi;t capture the fact that, all else equal,
an increase in the correlation of risks across insurers re-
duces effective reinsurer capacity.

The elasticity of supply in Eq. (14) is the inverse of a21. If
there were no financial-market imperfections impeding the



18 If losses are given by the random variable l, retentions by R, and the
l i m i t b y L i m , t h e n t h e e x c e s s - o f - l o s s c o n t r a c t p a y s
maxð0;minðLim; l� RÞÞ, where Lim and R are known at the time the
contract is struck. This contract is equivalent to a call portfolio – the
combination of a purchase of a call struck at R (with payoff linked to
maxð0; l� RÞ), and the sale of a call struck at Lim+R (with payoff linked
to maxð0; l� Lim� RÞ).
19 Seven very small regional insurers were dropped from the original Guy

Carpenter & Co. data. In some of the computations below, we focus in on
a smaller number of national reinsurers, for whom data are available in
every year.
20 The reinstatement provision stipulates that, conditional on an event

which triggers losses on the contract, the limit is to mandatorily reinstated
(one time only) by the reinsurer after payment of a reinstatement premium
by the cedent. It appears that this provision has had only a modest effect
on prices, and we ignore its effects. Conversations with brokers suggest
that observed prices are approximately 10% lower than they would have
been without the reinstatement premium. This seems surprising (forward
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flow of capital into catastrophic risk bearing, then the
properties of intermediary portfolios would have no impact
on supply, so that a23 ¼ a24 ¼ 0. Note, however that under
this null hypothesis, a22 would be expected to be nonzero if
intermediaries are imperfectly competitive. Only under the
hypothesis that both financial markets and competition are
perfect would supply be perfectly elastic, a21 ¼ 0. This
implies that an incipient increase in pi;t above zero would
result in an infinite amount of capacity becoming available.

To construct the variables for these regressions, we used
data on the pricing and risk exposure of a panel of reinsur-
ance contracts brokered between 1970 and 1994. In the sec-
tions that follow, we describe our basic data sources, our
methodology for measuring risk exposure, and the precise
construction of our regression variables.

4. Data

Our data is built up from four sources. The basic infor-
mation on catastrophe reinsurance pricing is provided by
Guy Carpenter & Co. Information on the regional market
share of insurers is developed from A.M. Best data on
insurance premiums written by company. Our estimates
of catastrophe frequency and severity are based on Prop-
erty Claims Services (PCS) data on US catastrophe losses
since 1949. Finally, interest rate and CPI data are collected
from Ibbotson and Associates and the IMF respectively.

4.1. Guy Carpenter catastrophe treaty data

Our basic data come from Guy Carpenter’s proprietary
database of catastrophe reinsurance contracts. Guy Car-
penter & Co. is by far the largest US catastrophe reinsur-
ance broker, with a market share of between 30% and
80% during our sample. The contracts brokered by Guy
Carpenter cover a variety of natural perils, including earth-
quake, fire, hurricane, winter storm and windstorm.

From these data we extract transaction prices and quan-
tities of ‘‘excess-of-loss’’ reinsurance contracts. Excess-of-
loss contracts are defined by a deductible (‘‘retention’’)
and a maximum possible loss (‘‘limit’’). To understand
how such contracts work, consider an insurer which pur-
chases a layer of reinsurance covering $100 million in cat
losses ‘‘in excess of $200 million’’. These terms imply that
if the insurer’s losses from a single catastrophic event dur-
ing the contract year exceed $200 million retention, the
layer is triggered. The reinsurer pays the insurer the
amount of any losses in excess of $200 million, with the loss
capped at a limit of $100 million.17 By purchasing this con-
tract, the insurer cedes its exposure to single-event catastro-
phe losses in the $200–$300 million range. In return for
assuming this exposure, the reinsurer receives a premium
payment. If the insurer wishes to cede a broader band of
17 To help guard against moral hazard, excess-of-loss reinsurance
contract typically require coinsurance. In practice, this effectively means
that the insurer provides 5–10% of the reinsurance itself.
exposure, it could purchase additional layers – $100 million
in excess of $300 million, $100 million in excess of $400 mil-
lion, and so on.18

We examine a total of 489 contracts brokered for 18
national and 19 regional insurers over the period 1970–
1994.19 These reinsurance contracts cover insurer losses
sustained as the result of a single catastrophe events. The
duration of coverage for each contract is one year. Data
on contract inception date, retention, limit, losses, and pre-
miums, company purchasing coverage, are employed. All
of the contract inception dates are at the start of a quarter.
Most contracts have a single mandatory reinstatement
provision.20
4.2. A.M. Best market share data

To determine the catastrophe exposure of each contract,
we must calculate the distribution of contract losses, a ran-
dom variable for each contract. To do this, we assume that,
within each region, each company’s exposure is propor-
tional to insurance industry exposure within the region.
We therefore first determine a distribution for insurance
industry losses for each region (by event type), and second
multiply this aggregate distribution by an individual
insurer’s market share to determine the distribution of
insurer-specific faced by that company. Using this informa-
tion, we can calculate the company-specific distribution of
losses under each contract.

Our estimates of insurer market shares are developed
using data from A.M. Best on insurance premiums written
by company, by line-of-business, by state, and by year. We
reduce these multiline market shares to regional catastro-
phe market shares by applying a modified Kiln Formula,
which assigns regional weights to premiums in each line
of business based on exposure to catastrophes of that line
in that region.21 For example, depending on the region,
contracts are usually priced at zero), but if anything leads us to
underestimate what premia would be in the absence of reinstatement
provision.
21 This is a common industry practice. The specific weights used in our

Kiln formula are from Guy Carpenter & Co.
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anywhere between 50% and 95% of homeowners premiums
are considered as funding catastrophe exposure. The five
US regions used for insurer market shares are the North-
east, Southeast, Texas, the Midwest, and California.22

We apply this market share data to all 489 reinsurance con-
tracts selected from the Guy Carpenter & Co. treaty
database.
4.3. Historic catastrophe loss data from Property Claims

Services

As mentioned above, we need to determine the distribu-
tion of industry-wide losses to calculate the catastrophe
exposure of each contract. To do this, we estimate the dis-
tributions of catastrophe frequency and severity using data
from Property Claims Services (PCS). PCS has catalogued
all catastrophe losses on an industry-wide basis since 1949
by type and US region. The PCS data are widely used as an
industry standard.

Prior to estimating the parameters of the frequency and
severity distributions, two adjustments are made to the
PCS data. First, the losses are converted to 1994 dollars
using the CPI. Second, they are modified to take into
account shifts in the portfolios of property exposed to loss
over the period. A key component of the latter adjustment
is the demographic shift towards California, Florida, and
Texas that has characterized recent decades. These two
adjustments are carried out by Guy Carpenter & Co. Both
adjustments are important. Indeed, the second adjustment
implies that the same size event in real dollars causes dam-
ages which have grown on average by 5% per year over the
sample period.
4.4. Interest rate and CPI data

For the purposes of calculating the net present value of
payment flows, we use Ibbotson and Associate’s index of
the return on 30-day US Treasuries. This is collected
monthly from 1970:1 to 1995:4. The US CPI is taken from
the IMF’s, International Financial Statistics. The frequency
is monthly, from 1970:1 to 1995:3.
23 PCS classifies many events into more than one category. For instance,
winter storms in New England, which have on occasion caused substantial
damage, are classified first as windstorms, and second as hail, freeze or
snowstorm.
24 During the 1949–1994 sample period, there were no floods, snow-

storms or thunderstorms with losses in excess of $100 million. Only one
freeze had losses in excess of $100 million, a $307 million freeze in Texas in
5. Calculation of exposure and price

5.1. Exposure

In this section, we describe our method of estimating the
catastrophe exposure embodied in each excess-of-loss con-
tract. The estimation is carried out in three stages. First,
the frequency and severity of each type of event and region
22 The regions are comprised as follows: Northeast – Connecticut,
Delaware, Maine, Maryland, Massachusetts, New Hampshire, New
Jersey, New York, Pennsylvania, Rhode Island, Vermont; Southeast –
Florida, Georgia, Mississippi, North Carolina, South Carolina, Virginia,
West Virginia; Texas – Texas; Midwest – Illinois, Indiana, Kentucky,
Missouri, Tennessee; California – California.
are estimated by maximum likelihood for particular fami-
lies of distributions. Second, a simulated event history is
generated by repeatedly drawing from the fitted frequency
and severity distributions. Finally, the payouts under each
contract in each year of event history are calculated. The
mean of the distribution of these payouts is our estimate
of the ‘‘quantity’’ of reinsurance, qi;k;t, embedded in that
particular contract.

5.1.1. The frequency and severity of catastrophes

The first step towards calculating contract exposure is to
estimate the frequency and severity of catastrophes using
the adjusted PCS loss data. Altogether there are over
1100 catastrophes recorded by PCS. These events are clas-
sified into 10 categories: earthquake, fire, flood, freeze, hail,
hurricane, snowstorm, tornado, thunderstorm and wind-
storm.23 Many of these events are relatively minor: only
557 have adjusted losses in excess of $15 million, and only
107 have losses in excess of $100 million. Four categories of
losses are well-represented in the set of large losses: earth-
quake, fire, hurricane and windstorm.24 As our primary
interest is in exposure to large losses, we confine attention
to these types. Examination of the data reveals that there is
some heterogeneity in the losses that arise from wind-
storms. In particular, a number of the windstorms refer
to winter storms (‘‘Nor’easters’’) in New England. Accord-
ingly, we split the windstorm category into two subcatego-
ries: winter storm, defined to be a windstorm in New
England in either the first or fourth quarter, and wind-
storm, defined to be all other occurrences of a windstorm.25

Having defined these five categories of events, we need
to make some assumption about regional effects before
we can estimate frequency and severity distributions. The
simplest assumption would be that, for each catastrophe
type, event occurrences are drawn from a single nationwide
frequency distribution while loss sizes are drawn from a
single nationwide severity distribution. Given the relative
paucity of loss information, this approach helps by pooling
the available data. However, the assumption of equal
regional distributions is likely to be incorrect. For instance,
hurricanes are much less likely to occur in California than
in Florida, and the majority of earthquakes occur in
California.
1989. Three hailstorms and three tornadoes did produce losses in excess of
$100 million, but these are all dated prior to 1970, and so do not appear in
our regression analysis below.
25 The assumption that winter storms do not afflict the Midwest may

seem strange. The reason is that our regional market share data is
calculated for the Midwest using only five states: Illinois, Indiana,
Kentucky, Missouri, Tennessee. The Dakotas, Michigan, Minnesota,
Wisconsin and other characteristically Midwestern states are excluded.



Table 1
Frequency and severity assumptions by catastrophe type

Type Description of PCS data Assumptions

Regions Frequency
(# of regional
distributions)

Severity
(# of regional
distributions)

Earthquake 10 events, all in CA. Frequency appears throughout year CA 1: Uniform across quarters 1
Fire 19 events, 12 in CA, 2 in MW, 3 in NE, 2 in SE. Frequency higher in

fourth quarter, and different for CA. Severity comparable across events.
NE, MW,
CA

2: CA and NE/SE/MW/ TX.
Both uniform across quarters

1

Hurricane 48 events, 26 in SE, 22 in NE and TX. Most in third quarter. More severe
in Southeast

NE, SE,
TX

8: SE (4 quarterly) and NE/
TX (4 quarterly)

2: Southeast,
Northeast/
Texas

Winter
storm

35 events, in NE in quarters 1 or 4 NE 1: uniform across quarters 1
and 4

1

Windstorm 352 events, all regions. Frequency differs across regions, but severity is
comparable

NE, SE,
TX, MW,
CA

20: one for each region and
quarter

1

Assumptions for catastrophe frequency and severity distributions, based on catastrophe experience 1949–1994. A catastrophe is defined as an event that
gives rise to $15 million or more in insured losses. Column 2 gives a description of catastrophe occurrence by type, 1949–1994. NE denotes northeast, SE
southeast, TX Texas, MW Midwest and CA California. Columns 3, 4, and 5 give the assumptions concerning the frequency and severity distributions. The
number in the frequency and severity columns represents the number of separately-estimated distributions for that type. For example, the number ‘‘1’’
implies that all regions are pooled, and that a single, nationwide distribution is estimated.

26 Using PCS data, Cummins et al. (1999) argue that the Pareto
distribution tends to overestimate the probability in the tail of catastrophe
severity distributions, and that the lognormal fit is to be preferred on these
grounds.
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As a result, we make specific assumptions regarding fre-
quency and severity on the basis of a careful examination
of the 1949–1994 catastrophe data. These assumptions
are summarized in Table 1. A catastrophe is defined as
an event that gives rise to $15 million or more in insured
losses. Column 2 summarizes the event history for each
type. Column 3 reports the regions in which each event
type is assumed to occur. Columns 4 and 5 indicate the
number of regional frequency and severity distributions
estimated for each type. Some of the constraints, such as
the assumption that winter storms do not strike California,
seem entirely reasonable. Others, such as the assumption
that earthquakes do not strike outside California or that
winter storms do not hit the Midwest, are less tenable
(though see Footnote 25), and are dictated largely by data
availability.

With the assumptions described in Table 1, there are 33
frequency distributions to estimate. We assume that the
frequencies are Poisson distributed, and estimate the Pois-
son parameters by maximum likelihood (the estimates are
equal to the mean number of events that occur per quar-
ter). Table 2 presents the frequency results in four quarterly
arrays, by type and region. The estimated frequencies
accord with what one might expect. For example, hurri-
canes are most likely to occur in the third quarter.

Next we consider severity. There are six severity distri-
butions, one for each of the catastrophe types identified
in Table 1. We fit two alternative density functions to the
empirical severity distribution of each type. The first is a
lognormal distribution, with density function for losses l

given by f ðlÞ ¼ expf�½lnðlÞ � l�2=2r2g=½lrpð2pÞ�; l > 0.
The second is a Pareto distribution, with density function
f ðlÞ ¼ aba=lð1þaÞ; l > b. Once again, the estimation is car-
ried out by maximum likelihood. The fitted distributions
are reported in Table 3. For earthquake, winter storm
and windstorm events, the likelihood ratio test selects the
Pareto distribution as the better fit, while for fire and hur-
ricane events, the lognormal distribution is preferred. How-
ever, because the Pareto distribution tends to place a large
amount of probability in the right-hand tail of the distribu-
tion, it does not perform well in attaching reasonable prob-
abilities to large losses. For example, using the estimated
Pareto density, the probability that a hurricane in the
Southeast generates $15 billion in losses (given that a hur-
ricane occurs) is almost 10%, which appears somewhat
high.26 It might be preferable, therefore, to use the lognor-
mal fit as the baseline severity distribution for all event
types. This is the strategy we adopt.
5.1.2. Simulated event history

Using these frequency and severity distributions, we are
able to simulate an ‘‘event history’’ of catastrophes. From
this event history the distribution of payments under each
excess-of-loss contract can be obtained.

If all events were drawn from the same distribution, the
distribution of aggregate losses could be estimated para-
metrically, so that payments under any contract could be
analytically derived. However, with different event types,
each with a different even distribution, this approach One
complicating aspect of the simulation is that a contract’s
payment is triggered by only a single event, even though
that event could be one of five different peril types. The sin-
gle-event clause is in effect a knockout provision, allowing
the contract to mature following the first event that gener-
ates losses in excess of the retention. For example, it may
be that earthquakes are the major large risk for a contract
to trigger, but a large freeze in the Northeast in early Jan-



Table 2
Frequency of catastrophes, measured by their Poisson parameters, by quarter, type and region, 1949–1994

NE SE TX MW CA NE SE TX MW CA

January–March April–June

Earthquake 0.054 0.054
Fire 0.031 0.031 0.031 0.031 0.125 0.031 0.031 0.031 0.031 0.125
Hurricane (SE) 0.000 0.043
Hurricane (NE/TX) 0.000 0.000 0.033 0.033
Winter storm 0.380
Windstorm 0.652 0.326 0.500 0.304 0.196 0.457 1.109 0.935 0.000

July–September October–December

Earthquake 0.054 0.054
Fire 0.031 0.031 0.031 0.031 0.125 0.031 0.031 0.031 0.031 0.125
Hurricane (SE) 0.370 0.130
Hurricane (NE/TX) 0.283 0.283 0.033 0.033
Winter storm 0.380
Windstorm 0.174 0.065 0.152 0.326 0.000 0.283 0.326 0.370 0.130

Poisson parameter is equivalent to the mean number of catastrophe occurrences per quarter by type and region. If the frequency of each catastrophe type
in each region is Poisson distributed – f ðnÞ ¼ e�kkn=n!, where n is the number of events that occur – then the numbers in the table are the maximum
likelihood estimates of k. NE denotes Northeast, SE Southeast, TX Texas, MW Midwest and CA California. Blank elements of the arrays are 0 by
assumption (see Table 1).

Table 3
Fitted severity distributions by catastrophe type, 1949–1994

Distribution Parameter Earth quake Fire Hurricane (SE) Hurricane (NE/TX) Winter storm Wind storm

n 10 19 26 22 35 352

Lognormal l �2.100 �2.350 �1.233 �1.454 �2.440 �3.039
r 1.964 1.196 1.610 1.454 1.166 0.859
Mean log–L 0.006 0.752 �0.662 �0.340 0.867 1.772
Prðl > $5bnÞ% 2.915 0.046 3.870 1.760 0.025 0.000
Prðl > $15bnÞ% 0.684 0.001 0.718 0.211 0.000 0.000

Pareto a 0.476 0.541 0.337 0.364 0.568 0.862
b 0.015 0.015 0.015 0.015 0.015 0.015
Mean log–L 0.358 0.735 �0.854 �0.556 0.875 1.891
Prðl > $5bnÞ% 6.288 4.327 14.110 12.057 3.684 0.670
Prðl > $15bnÞ% 3.727 2.389 9.743 8.082 1.973 0.260

Results from fitting of lognormal and Pareto distributions to PCS event losses. PCS losses have been adjusted for inflation and population movements by
Guy Carpenter & Co. A catastrophe event is defined giving rise to insured losses in excess of $15 million. The density function for the lognormal is
f ðlÞ ¼ expf�½lnðlÞ � l�2=2r2g=½lrpð2pÞ�, l > 0, while the density function for the Pareto is f ðlÞ ¼ aba=lð1þaÞ, l > b. The parameters l, r, and a (not b,
which is a fixed scale parameter set equal to $15,000,000) are estimated by maximum likelihood. For a given catastrophe type, estimated mean log-
likelihoods for the two distributions are comparable, and provide a means for choosing between them. The table also shows the probability that an event
produces insured losses in excess of $5 billion and $15 billion respectively.
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uary could trigger the contract, thereby knocking out the
earthquake risk for the remainder of the year.

This knockout provision gives the contract a payment
distribution that is very different from that which would
apply if the contracts were instead written to cover aggre-
gate losses (i.e., the sum of losses across events). It can also
give rise to some paradoxical effects. For example, an
increase in the frequency of winter storms may actually
reduce the total exposure embodied in a single-event con-
tract, since it may increase the probability that it matures
following a winter storm rather than a devastating
hurricane.27
27 An appendix examining the value of the knockout provision is
available from the authors on request.
We simulate a 1250-year event history. For each quar-
ter, the following steps are followed.

1. The number of events of each type that occur in each
region is randomly drawn from the relevant Poisson fre-
quency distribution (Table 2).

2. For each event that occurs, a loss amount is randomly
drawn from the relevant severity distribution (Table 3).

3. All the events that occur in the quarter are randomly
sequenced in time.

The random sequencing of the events throughout the
quarter is an approximation, at best. It is likely, for
example, that winter storms occur more frequently in
January than March. While it would be preferable to
sequence the events on a time scale finer than quarterly,
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too few events that have occurred since 1949 to allow
estimation of this.
5.1.3. Contract exposure

The exposure of each excess-of-loss contract in our data
can be calculated by examining its loss experience in each
year of the simulated event history. To take an example,
suppose we are considering a contract purchased by a
national insurer with an April 1 inception date. Let L

and R be the contract’s limit and retention, and let mi;k,
k 2 fNE SE TX MW CAg be the ith insurer’s market
share in each of the five regions. The contract’s exposure
is measured as follows:

1. Split the event history into 1249 year-long periods mea-
sured from April 1 to March 31.

2. Consider each period in turn. If no event occurs in a per-
iod, move to the next period. Otherwise consider each
event in sequence.
(a) Let the first event be in region k, and let insured

losses from this event be l.
(b) If mi;kl > R, the contract is triggered. Measure the

reinsurance payment for this period as min
ðL;mi;kl� RÞ, and move on to the next period. The
contract is no longer in force.

(c) If mi;kl < R, no payment takes place, and the con-
tract remains in force. Move on to the next event,
or the next period if there are no more events.
This algorithm generates 1249 observations on the dis-
tribution of payments under the contract. The first moment
of this distribution is the expected exposure to catastrophe
losses. It is easy to derive various conditional loss distribu-
tions from the unconditional distribution, such as the dis-
tribution of hurricane losses, or the distribution of losses
from events in the Northeast.

We label the expectation of the unconditional distribu-
tion qi;t, the exposure embodied in company i’s contract
at time t. Thus, qi;t is the actuarially expected loss covered
by contract i. We use qi;t to represent the quantity of rein-
surance purchased.
5.2. Other variables

To calculate contract price, we begin with the premium
paid for each contract. This is simply measured as the sum
of the premiums paid for each layer. Typically, the premi-
ums are paid on a quarterly basis over the duration of the
contract. We discount these premium flows back to the
contract inception date using the three-month Treasury Bill
rate.

Once the NPV of the premiums is calculated, it is con-
verted to 1994 dollars using the CPI deflator. Our measure
of price is the net present value (NPV) of premiums divided
by contract exposure. Thus the price of company i’s con-
tract at time t is
pi;t ¼
NPVðPremiumsÞ

qi;t

� 1 ð15Þ

Given our definition of quantity, the price of the contract is
expressed as a unit increment to actuarially fair value.

r2
i;t is the variance of underlying insurer portfolios. We

calculate it using the simulated event history and the regio-
nal market share information for each insurer. Specifically,
in each year of the event history, we estimate insurer i’s
losses by multiplying the simulated losses in each region
by i’s regional market shares. This generates 1249 observa-
tions on the distribution of insurer i’s losses, from which we
calculate first and second moments. r2

i;t is the variance of
the simulated distribution (in millions of 1994 dollars).

wi;t is the level of insurer internal funds. This is generally a
difficult variable to measure. Even if one could accurately
measure corporate net internal assets, their endogeneity
makes them behave in ways that are difficult to interpret.
For example, if a firm anticipates hard times, it may raise
outside funds early, leading to the appearance that internal
funds are plentiful, instead of scarce. Our solution is to use
(the negative of) catastrophe losses by firm year as an instru-
mental variable for changes in net internal funds. This mea-
sure is particularly useful because cat losses are both strongly
exogenous and correlated with changes in total internal
assets. Unfortunately, we do not actually observe each
insurer’s catastrophe losses. Instead we infer their loss expe-
rience by combining actual catastrophe loss history, as mea-
sured by PCS, with insurer i’s regional market shares. For
each event, the loss amount recorded by PCS (in billions of
1994 dollars) is multiplied by the insurer’s market share in
the loss region to generate that insurer’s losses. Internal
funds wi;t are assumed to be depleted by the full amount of
a loss for 8 quarters following the loss, after which time the
impact of the loss on internal funds is zero.

r2
R;i;t captures the variance of claims ceded by insurers to

reinsurers. It is calculated in a manner similar to r2
i;t. The

distribution of the payments under each contract is tabu-
lated by examining the claims in each year of the simulated
event history. As already discussed, qi;t is the first moment
of this distribution. r2

R;t is its variance, scaled by q2
i;t.

Turning to bi;t, its numerator is the covariance between
per-unit claims under company i’s contract, and the quan-
tity-weighted sum of per-unit claims under all other out-
standing contracts (i.e. with all insurers other than i). Its
denominator is the variance of per-unit claims under com-
pany i’s contract. The fact that bi;t is constructed using per-
unit moments is important – it is intended to capture the
covariation in contract returns, rather than total contract
payouts. Accordingly, we scale payouts by their first
moment prior to calculating bi;t. Thus the numerator is
obtained by calculating the covariance between contract
i’s payout and the sum of payouts on all contracts other
than i from the simulated event history, and then dividing
by qi;tRjqj;t, j 6¼ i. The denominator is simply r2

R;i;t. We also
consider a second measure of covariation, ci;t, which is cal-
culated in a similar fashion to bi;t, except that the covari-
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ance in the numerator is between contract i and a portfolio
consisting of all contracts, including i.

Finally, wR;t is the level of internal funds available to the
reinsurance industry. As with wi;t, this is generally a diffi-
cult variable to measure. We use the total of reinsurance
payments as reported by Guy Carpenter, scaled by Guy
Carpenter’s market share, as our measure of industry-wide
reinsurance losses. Industry funds are assumed to be
depleted by the full amount of any claims for 8 quarters
following the claim, after which time the impact of the loss
on industry funds is zero. The negative of this quantity,
expressed in 1994 dollars, is wR;t.
Fig. 1. Real quantity of catastrophe

Fig. 2. Industry price per unit of c
6. Estimation

6.1. Graphical analysis

It is useful to look first at the amount of catastrophe risk
ceded by insurers during the sample period, and the aver-
age per-unit price at which this risk was ceded. Figs. 1
and 2 plot indices of industry price and quantity on a quar-
terly frequency from 1975:1 to 1993:4. The quantity series
is the sum of the exposure ceded by four national insurers
in each quarter for which data are available during
the full sample, scaled by the total market share of these
exposure ceded, 1975:1–1993:4.

eded exposure, 1975:1–1993:4.



Fig. 3. Industry price-quantity pairs, 1975:1–1993:4.
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four insurers.28 The price series is the quantity-weighted
average of the prices paid by these four insurers in each
quarter. Fig. 3 shows a scatter plot of price and quantity.

A number of features of these figures are noteworthy.
First, it appears that quantities rose and prices fell for
much of the late 1970s and 1980s. Second, a startling rise
in prices and decline in quantities took place beginning in
the mid-1980s through the end of the sample. Indeed, in
1993, price was between 5 and 7 times its historical average.
This will come as no surprise to industry observers. It is
common to relate this price rise to the occurrence of a num-
ber of large events during this period, notably hurricane
Andrew ($20 billion in losses) in August 1992, hurricane
Hugo in 1989 and several windstorms in 1985–1986.

Fig. 4, which plots total catastrophe losses by quarter
from 1970:1 to 1994:4 as measured by Property Claims Ser-
vices, lends support to this view. In the period since 1994 (a
period not covered by our data), the price of reinsurance
has declined and quantity increased somewhat, notwith-
standing the occurrence of the Northridge earthquake in
January 1994.29 From these observations, it is clear that
there is considerable negative correlation between prices
and quantities at frequencies of several years.

Hurricane Andrew is responsible for the largest catas-
trophe loss during our sample period. In light of this, it
is of interest to look at the time series of prices around
the time of this event. In particular, we can differentiate
between the price-quantity reactions of those contracts
heavily exposed to hurricane risk/Southeast risk and those
28 The four insurers included in the industry indices purchased reinsur-
ance through Guy Carpenter & Co. in each year from 1975:1 to 1993:4.
They represent about 10% of the total market.
29 Paragon Inc. produces a catastrophe price index shows the following

prices since peaking in late 1994 at 2.47 (and beginning in 1/84 at 1.00): 1/
1/95, 2.32; 7/1/95, 2.16; 1/1/96, 2.14; 7/1/96, 2.06.
with relatively less exposure. Table 4 contrasts the price
and quantity responses. From Panel (a), we see that even
those contracts with zero market share in the Southeast
show large increases in price in the wake of Andrew. Panel
(b) sorts contracts according to their hurricane exposure
instead of by region. Contracts least exposed to hurricane
losses that exhibit the largest increase in price. The results
again suggest a negative correlation between prices and
quantities.30

6.2. Estimation of supply and demand

Let yi;t by the 2 · 1 vector of endogenous variables
½pi;t qi;t�, and let xi;t be the 5 · 1 vector of predetermined
variables ½r2

i;twi;tr2
RitwRtbi;t�. The structural Eqs. (13) and

(14) above can be rewritten as

Byi;t þ Cxi;t ¼ ai þ ui;t; ð16Þ

where

B ¼
1 �a11

1 �a21

� �

C ¼
�a12 �a13 0 0 0

0 0 �a22 �a23 �a24

� �

ai ¼ a1;i a2½ �

and ui;t is a 2 · 1 vector of disturbances, distributed bivar-
iate normally, with Eðui;tu

0
i;tÞ ¼ D, a diagonal matrix.

The reduced form of this system is obtained by premul-
tiplying (16) by B�1, which yields
30 This negative correlation could be the result of our assumption that the
distribution of losses is time invariant. Froot and O’Connell (1999)
examine the hypothesis that the loss distribution may shift as a result of
losses, but find little evidence that changing loss distributions explain the
behavior of prices and quantities.



Fig. 4. Total adjusted PCS losses by quarter, 1970:1–1994:4.
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yi;t ¼ P0xi;t þ pi þ vi;t; ð17Þ

where P0 ¼ �B�1C is a 2 · 5 matrix of reduced form
parameters common to all companies, pi ¼ �B�1ai is a
2 · 1 vector of reduced form intercepts for company i,
and vi;t ¼ B�1ut. We estimate this reduced form by full-
information maximum likelihood (FIML). The conditional
log-likelihood for company i is

LðB;C; ai;DÞ

¼ � T
2

 
lnð2pÞ � ln jBj2 þ ln jDj

þ
XT

t¼1

½Byi;t þ Cxi;t � ai�0D�1½Byi;t þ Cxi;t � ai�
!

The log-likelihood for the full sample of 37 companies is
therefore LðB;C; a1; . . . ; a37;DÞ ¼ RiLi.

The FIML estimates are the values of B, C, a1; . . . ; a37

and D for which L is maximized.31

6.3. Results

Table 5 reports the FIML estimates of the structural
coefficients, along with the estimated variances of the struc-
tural disturbance. The regressions are carried out both with
and without company-specific intercepts. A likelihood ratio
31 We do not have a balanced panel of data, in the sense that at time t, yi;t

and xi;t are observed over a (possibly empty) subset of the 37 sample
companies. This does not present a problem for identification or
estimation, as the simultaneity we are concerned with is within companies
rather than across companies. The purpose of pooling the data is to obtain
more efficient estimates of the structural parameters by imposing the
constraint that they be equal (except for ai) across companies. Note that
we assume the disturbance terms are i.i.d. The rationale is that any
contemporaneous and serial correlation in pi and qi ought to be captured
in the predetermined variables.
test easily rejects the common intercepts model, but never-
theless it is of interest to compare estimates across the two
specifications. Standard errors for each coefficient are
shown in parentheses.

Looking first at the demand specification, the elasticity
of demand is estimated between �0.2 and �0.3, suggest-
ing that, other things equal, a 1% increase in pi;t leads to
a 0.25% reduction in quantity demanded. Lagged insurer
losses exert an ambiguous effect on demand. The coeffi-
cient on wi;t is expected to be negative since lower inter-
nal funds implies higher reinsurance reservation prices. It
is positive in the specifications without fixed effects and
negative (the expected sign) when firm-specific fixed
effects are included. To get a sense of magnitude, the
coefficient in the first regression indicates that a reported
loss of $10 million by a company (any time over the pre-
ceding 8 quarters) decreases the price the insurer is will-
ing to pay by 3.0%.

Increases in the variance of own-company exposure,
captured by changes in r2

it, lead to significant increases
in demand in all specifications. The point estimate in
the first regression indicates that a 10% increase in the
variance of a firm’s risk exposure produces an increase
in reservation price of 29.6%.32 This number falls by a
factor of two when company-specific intercepts are added
in the latter specifications, yet it remains statistically sig-
nificant. This is consistent with the hypothesis that
financing imperfections play a role in the demand for
catastrophe reinsurance.

Turning to supply, the elasticity is estimated to be on
the order of 7 – ceteris paribus, a 1% increase in price
produces a 7% point increase in quantity supplied. This
32 It should be noted, however, that there is no evidence of this effect in
specifications 5 and 6, which are favored by the likelihood ratio test as the
best characterizations of the data.



Table 4
Event study of hurricane Andrew

(a) Southeast exposure (b) Hurricane exposure

Mean exposure Mean D lnðpj;tÞ Mean D lnðqj;tÞ Mean exposure Mean D lnðpj;tÞ Mean D lnðqj;tÞ
5 Most-exposed insurers 0.707 0.310 0.085 0.654 0.270 �0.030
5 Least-exposed insurers 0.000 0.334 �0.011 0.218 0.557 �0.138

Comparison of price responses in the year after hurricane Andrew (8/20/92–8/19/93) for different insurers. Panel (a) contrasts insurers which have high
and low exposure to the Southeast (as measured by market share). Panel (b) contrasts insurers which have high and low exposure to hurricanes. The table
shows the mean exposure and the mean price change of the 5 most extreme contracts in each case. The mean price change for the insurers with lesser
exposure to the Southeast is calculated using all 14 of the insurers that have zero market share in that region.

Table 5
Estimates of structural model parameters

Demand No fixed effects Demand-equation fixed effects

lnðqi;tÞ �4.856 �4.821 �3.420 �3.409
(0.763) (0.750) (0.420) (0.412)

lnðr2
i;tÞ 2.956 2.935 1.437 1.432

(0.475) (0.466) (0.261) (0.257)
wi;t 3.017 2.978 �0.617 �0.624

(1.728) (1.710) (0.809) (0.801)
r2

m 5.769 5.689 1.197 1.190
(1.807) (1.762) (0.293) (0.287)

Supply

lnðqi;tÞ 0.130 0.134 0.144 0.145
(0.019) (0.018) (0.020) (0.018)

lnðr2
R;i;tÞ 0.679 0.682 0.692 0.693

(0.030) (0.030) (0.030) (0.030)
bi;t 0.523 0.396

(0.261) (0.264)
ci;t 0.414 0.329

(0.204) (0.205)
wR;t �0.227 �0.226 �0.226 �0.224

(0.020) (0.020) (0.020) (0.020)
r2

g 0.214 0.214 0.215 0.215
(0.014) (0.014) (0.014) (0.014)

No. parameters 11 11 44 44
Mean log-L 0.502 0.503 0.950 0.950
No. observations 466 466 466 466

Estimated parameters of the demand and supply equations. See text for a
complete description of the parameters and variables. Estimation is by
full-information maximum likelihood (FIML). Standard errors in
parentheses.

84 K.A. Froot, P.G.J. O’Connell / Journal of Banking & Finance 32 (2008) 69–85
suggests that the marginal cost of reinsurer capital is
upwardly sloped (though not strongly so). The coefficient
on the variance of reinsurer-assumed exposure scaled by
squared expected losses, r2

R;i;t, is positive and statistically
significant. It indicates that, for a given assumed expo-
sure, a 10% increase in the squared coefficient of varia-
tion increases prices by about 6.8%. In addition, the
covariance term, bi;t, is positive in all cases (and margin-
ally statistically significant), so that exposures that are
more correlated with reinsurance portfolios are priced
higher. A 0.1 increase in the portfolio beta raises prices
by 5.2%. Finally, reinsurer losses measured by wR;t enter
negatively and significantly. A $100 million loss increases
reinsurers reservation price by 2.3%. These coefficients
seem of reasonable magnitude and are consistent with
the capital market imperfections story.
7. Conclusions

We have traced out the implications of financing
imperfections for equilibrium in markets for intermedi-
ated risks. Our results suggest that even small imperfec-
tions can lead to large deviations from fair pricing,
particularly if these imperfections interact with intermedi-
ary market power.

In the case of catastrophe reinsurance, we used observed
transactions to estimate reinsurer supply curves and insurer
demand curves. These curves appear to shift in response to
recent catastrophe losses, and to changes in the variance of
insurer and reinsurer exposures. Furthermore, there is some
evidence that reinsurers price both own variance and covari-
ance of the risks they assume. This is consistent with the pres-
ence of capital-market imperfections. It does not rule out
market power explanations, but suggests that market power
cannot be the full explanation for high reinsurance prices.
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