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STOCHASTIC PROCESS SWITCHING: SOME SIMPLE SOLUTIONS

By KENNETH A. FROOT AND MAURICE OBSTFELD !

1. INTRODUCTION

EconoMisTs HAVE RECENTLY begun to explore the effects of prospective regime changes
on forward-looking variables. In an example inspired by Britain’s return to the gold
standard in 1925, Flood and Garber (1983) study the case in which an asset price
(specifically, the exchange rate) floats freely until it reaches a pre-announced level, at
which time the government intervenes to keep it fixed thereafter. They show how a
first-stopping time methodology can be applied to their problem, but are unable to derive
a closed-form solution using that mathematically cumbersome technique.

In this paper we apply techniques of regulated Brownian motion to derive easy
solutions for a large class of regime-switching problems, including the one posed by
Flood and Garber (1983).2 The technical approach we use has several advantages over
the alternatives. First, and most important, the method is both simple and helpful for
understanding the intuition behind the mathematics. Second, it clarifies the economic
similarities between Flood-Garber process switches and other types of stochastic regime
change. Finally, the approach allows us to be precise about potential indeterminacies in
asset prices that can crop up when policy makers do not fully specify how they intend to
achieve their economic targets.?

The rest of the paper is structured as follows. In Section 2 below, we lay out a very
general exchange-rate model. Section 3 contains solutions to several specific process-
switching examples, and it also discusses how some formulations of future policy
intentions may leave asset prices under-determined.

2. THE MODEL

To keep the analysis simple, we use the standard flexible-price monetary model of the
exchange rate.* In this framework, the (log) spot exchange rate at time ¢, x(¢), is the sum
of a scalar indicator of macroeconomic fundamentals, k(¢), plus a speculative term
proportional to the expected percentage change in the exchange rate:

M x(t) =k(t) + aE(dx(1)l¢(1)) /at.

! The authors are grateful to Bob Flood, an anonymous referee, and an editor of this journal for
helpful comments, and to the John M. Olin, Henry Ford, and National Science Foundations for
generous financial support.

Smith (1991) has shown how to derive an explicit solution to the Flood-Garber problem using
the methods they suggested. Naturally, our solution agrees with that found by Smith. Smith and
Smith (1990) apply this result to the 1925 British episode.

*Froot and Obstfeld (1989) present a detailed discussion of the relationship between the
process-switching examples in this paper and some others, including systems of exchange-rate
“target zones.” Under a target zone, the policy maker keeps an asset price from moving out of some
predetermined range, but he does not intervene when the price is within the range. The original
target-zone solution is due to Krugman (1990); see Miller and Weller (1988), Flood and Garber
(1989), and Klein (1990) for other studies of exchange-rate zones.

The single-equation formulation assumed below is derived from underlying behavioral relation-
ships by Flood and Garber (1983). We assume continuous trading, but a discrete-time binomial
setup yields comparable results.
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Above, the parameter « can be interpreted as the semi-elasticity of money demand with
respect to the interest rate, E is the expectations operator, and ¢(¢) is the time-
information set, which includes the current value of fundamentals, k(¢), as well as any
explicit or implicit restrictions the authorities have placed on the future evolution of
fundamentals. For example, if the authorities have announced that they will fix the
exchange rate once it reaches a certain level, this information would be incorporated into
¢(2). Included among the fundamental factors that affect k(¢z) is a variable measuring
relative national money supplies, which are assumed to be controlled directly by
monetary authorities. Included as well are other, exogenous determinants of exchange
rates-that the authorities cannot influence.

The monetary authorities may intervene to influence exchange rates by altering the
stochastic process governing (relative) money-supply growth. This in turn will alter the
process driving the fundamentals, k(¢). A regime of freely floating exchange rates is said
to be in effect when the authorities refrain from intervening to offset shocks to
fundamentals. Under a free float, we assume that the fundamentals evolve according to
the process:

) dk(t) =mdt+odz(t),

where 7 is the (constant) predictable change in &, dz is a standard Wiener process, and
o is a constant.’ As noted above, the authorities can control £ through intervention, so k&
need not follow (2) under regimes other than a free float.

In a rational-expectations equilibrium with no speculative bubbles, there is a unique
exchange-rate path that satisfies (1). This path has the integral representation:

3) x(1) =a_lj;me('_‘)/"E(k(s)I(b(t)) ds,

a representation valid under any policy regime or sequence of policy regimes. In words,
(3) equates the current exchange rate to the present discounted value of expected future
fundamentals (the discount rate is 1/a). We refer to the equilibrium exchange rate,
given by the present-value formula (3), as the saddlepath exchange rate.®

Given (2) and the types of regime change we will consider, it is reasonable to suppose
that the saddlepath exchange rate can be written as a twice continuously differentiable
function of a single variable, the current fundamental:

4) x(t) = S(k(1)).

Naturally, the precise form of the function S(k) depends (as is demonstrated below) on
the nature of the regime shifts that the market thinks are possible.

A well-known special case is the one in which the authorities are committed to a
permanent exchange-rate float, so that fundamentals are expected to follow process (2)
forever. In this case, the conditional expectations in (3) are easy to evaluate, since they
depend exclusively on current fundamentals, and not on possible future regime shifts.
The saddlepath exchange rate S(k(¢)) is given by:

(5) a [ Te =V E(k(s)lk(1)) ds

=a_1];we(tAs)/a(k([) +(s=t)n)ds=k(t)+an.

5 Propositions 1 and 2 below can be rederived using more complex forcing processes. See Section
3.3.

% This terminology is meant to differentiate the present-value exchange rate from other solutions
to (1), which include extraneous bubble components driven by self-fulfilling expectations. We
assume that such bubble solutions are ruled out by market forces.
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If, however, the market expects the authorities to alter (2) in the future, the exchange
rate need not satisfy (5), even while allowed to float. In such cases, direct computation of
the sequence of conditional expectations in the present-value formula (3) is likely to be
burdensome. We therefore follow an alternative, two-step approach to determine S(k)
when a regime switch from (2) to some other process is possible. First, we characterize
the family of functions of form x = G(k) that satisfy the equilibrium condition (1) so long
as fundamentals evolve according to (2). Second, we find the member of this family that
satisfies boundary conditions appropriate to the stochastic regime switch under consider-
ation. This last function is the saddlepath solution, S(k).

To implement step one of the procedure outlined above—finding the general solution
x = G(k)—use Itd’s Lemma and equation (1) to express expected depreciation during
the float as:’

2

(6)  E(drld)/dt=E(dG(K)Id) /dt =nG'(k) + Z-G"(k),

where we have assumed G(k) is twice continuously differentiable. Combining (1) and (6)
yields a second-order differential equation that the exchange rate in (1) and (3) must
satisfy:

aoc 2
@) G(k)=k+anG’(k)+TG"(k).

The general solution to (7) is:

(8) G(k) =k +an +A,eM* + A,e**,

where A; > 0 and A, <0 are the roots of the quadratic equation in A,
9) Nao?/2+ran—1=0,

and A,, A, are constants of integration. Equation (8) forms the basis of our analysis
below. As just discussed, a lone member of the family defined by (8) will turn out to be
equivalent tc the present-value formula for x in (3), and this function is just the
saddlepath function, S(k).

Notice that the general solution (8) consists of two components: one is linear, and the
other is nonlinear, in k. The linear part, k + an, would be the standard linear sad-
dlepath solution if no change in the fundamentals process (2) were possible, so that a
free float were permanently in effect (see equation (5)). When there is a possibility of
regime switching, however, fundamentals may not remain permanently a random walk
with trend, and the present-value formula (3) therefore need not equal (5). Under
prospective regime switches, the exchange rate’s saddlepath value will generally depend
on the nonlinear terms in (8). Just which initial conditions 4, and A4, are appropriate
depends on the boundary conditions associated with the regime switch, conditions to be
determined in step two of the two-step solution procedure outlined above.

3. STOCHASTIC PROCESS SWITCHING

This section carries out the second step of the solution method outlined in the last
section. As an example of the simplicity of the technique, we solve the problem posed by

" Where it does not create confusion, we drop the time-dependence notation. It is worth noting
that while we refer to G(k) as a “general” solution, it is general only if attention is restricted to
solutions that depend on current fundamentals alone. In fact, (1) has even more general solutions,
for example, solutions that are functions not only of current fundamentals, but also of variables
extraneous to the model. Such solutions are not considered in this paper. This exclusion is not
restrictive given the economic problem we are considering.



244 KENNETH A. FROOT AND MAURICE OBSTFELD

Flood and Garber (1983). In terms of the mathematics, all that is involved is the
appropriate choice of the two arbitrary constants in (8), 4, and A4,.

3.1. Deriving a Closed-Form Solution

Suppose that the authorities wish to let the exchange rate float until it reaches a lower
or an upper level x or x, at which time they plan to fix x permanently. How does the
rate behave prior to pegging? This class of problems is a generalization of that posed by
Flood and Garber (1983), who are concerned with the behavior of a floating exchange
rate when the authorities plan to switch to a fixed-rate regime at a single, predetermined
level of the exchange rate, x. We return to a more detailed discussion of their
formulation at the end of this subsection. Our rationale for looking at a more general
problem first is that its solution will clarify the economics of more specialized (and
realistic) cases.

One way for the authorities to enforce their policy is to place lower and upper limits,
k and k, on the fundamentals, and to freeze fundamentals when one of these bounds is
reached. This policy implies that £ and k& must be absorbing barriers on the fundamen-
tals. Thus, if S(k) is monotonically increasing in k (as turns out to be the case in
equilibrium), then as long as k moves between the absorbing barriers k and k, the
exchange rate will float between the lower and upper values x = S(k) and X = S(k) until
it reaches one of them.

Expectations about the way future regime shifts will be implemented are actually quite
important in determining the exchange rate’s saddlepath. For now we stay with the
formulation of the previous paragraph, which is the same as the one used by Flood and
Garber in their calculations. In particular, the assumption that the absorbing barriers are
set as just described implies that the fundamentals will not jump at the moment of
transition. As the next subsection shows, this restriction may be relaxed, but doing so will
change the equilibrium exchange-rate path.

To determine exchange-rate behavior during the initial float, we solve for the ex-
change-rate path that satisfies (1), given that (2) holds for k € (k, k) and that k and k
are absorbing barriers. The saddlepath solution is a special case of (3):

(10) x(t) =S(k(t)) =a‘lj;we““)/"E(k(s)lk(t),k(s) €k, k,])ds,

where the a subscript denotes that the barriers on fundamentals are absorbing. As noted
in Section 2, direct evaluation of the conditional expectation in (10) is much more
difficult than for the permanent free float (equation (5)): the bounds on fundamentals
imply that the saddlepath exchange rate S(k) generally is no longer a purely linear
function of k.

We have already taken the first step toward solving the problem by deriving the
general nonlinear solution x = G(k) given by (8). Some member of this family of
solutions must characterize exchange-rate behavior when k is in the interior of 1k, k],
where (1) and (2) simultaneously hold. A nontrivial logical gap must be bridged, however,
before concluding that equation (8) is also relevant at the boundary of this interval, that
is, at the barriers k = k and k = k. The needed bridge is supplied by the fact that the
saddlepath solution S(k) is continuous on the entire interval [k, k]. Continuity of S(k)
ensures that if that function coincides with a continuous function of form G(k) on the
interior of an interval, it coincides with the same function at the edges.®

All that remains, then, is to determine the boundary conditions on G(k), which deliver
unique values for the undetermined coefficients 4; and A4, in (8), and therefore tie

8 Formally, taking limits as (say) k approaches k from below, continuity implies that S(k)=
lim, _, £ S(k) = lim, _,  G(k) = G(k).
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down uniquely the member of the class G(k) that coincides with S(k). But the boundary
values of integral (10) are easily found; by our choice of the barriers, they are:®

(1) S =a ! [T E(k(s)k(1) =k,) ds=a”' [ e/ kds =k =x,
t t

(12) S(k) =a_lfme(’_x)/“E(k(s)lk(t) =k,)ds=a"" Tt/ ds =k = x.
t

t

Combining (8) with (11) and (12) leads to the desired equations for 4; and A4,:
(13) an +AeME + 4,6tk =0,
(14) an +A,eMF + 4,6 =0,
These two expressions lead to the following proposition:
ProposiTiON 1: When fundamentals follow (2) within the absorbing barriers k and k, the
saddlepath solution (10) is:

eAzl?Hlk — ekt Nk o oMkt Aok _e/\112+/\2k

(15) x=S(k)=k+an|1+

Aok +ME _ LA k+Ak

e e

If we let the lower bound, k go to minus infinity, (15) simplifies to:

(16) x=k+an(l—eM*-0),

If in addition the upper bound, k, goes to infinity, we get the familiar linear solution (5):
(17) x=k+an.

When both boundaries are infinitely distant the exchange rate is linear in fundamentals.

The saddlepath solution given in the proposition is of the form hypothesized earlier: it
is a function of the current state k and the two barriers. It is also straightforward to
verify that S(k) is monotonically increasing over its domain, as claimed earlier.

To understand the economics of the proposition, consider first the simple case in
which fundamentals have no trend, n = 0. The exchange rate then is simply equal to
current fundamentals: x = k. To understand why, notice that when n = 0, the expected
growth of fundamentals always is zero—at as well as within the absorbing barriers. Thus,
the best forecast of all future fundamentals is just today’s value of k; and the conditional
expectations in (3), as well as the exchange rate, all equal current k.

Matters are more complicated when n > 0, so we use Figure 1 to illustrate. The line
labelled FF indicates the linear solution given by (5), which corresponds to the case
A, =A,=0.(FF is also the saddlepath under a permanent free-float regime.) The figure
shows two exchange rate paths with the same upper bound, but different lower bounds.
Path 1 depicts the behavior of x when the absorbing barriers are the points k and k.

° The boundary conditions used here generalize easily to other types of regime change. For
example, suppose that the authorities announce that at k =k, the stochastic process driving
fundamentals will switch permanently to dk =n'dt + o' dz. Then condition (12) becomes S(k) =k
+an'=X%. As another example, suppose that the authorities wish to implement a target-zone
exchange-rate regime by keeping fundamentals within reflecting barriers k and k. Then if policy
interventions are infinitesimal, the boundary conditions (11) and (12) above would be replaced by
G'(k) = G'(k) = 0. The saddlepath solution for the exchange rate combines these new boundary
conditions with (8).
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Path 2 is drawn to correspond to the extreme case in (16), where the lower bound is at
minus infinity. It is clear from (11) and (12) that the exchange rate must lie on the
45-degree line through the origin at both absorbing barriers. The free-float saddlepath,
FF, is relevant when both boundaries are infinitely distant.

The intuition behind the bent curves in Figure 1 is as follows. On the saddlepath, the
exchange rate is the present discounted value of fundamentals, and the evolution of
fundamentals is governed in part by their deterministic trend growth rate, which depends
on 7. Suppose that n > 0 (the case shown in the figure). As k approaches either k or k,
the probability that the exchange rate will still be floating on any given future date
declines; and since 7 is set permanently to zero at the moment of pegging, the expected
rate of fundamentals growth on any future date also declines as either absorbing barrier
is approached. As a result, there is a progressive currency appreciation (fall in x) relative
to FF as k moves towards a barrier. For n <0, FF would lie below the 45-degree line
and the saddlepath solution would be the mirror image of the one in Figure 1. As we
have seen, when n =0 the bending effects are absent because absorption of £ has no
effect on the expected change in fundamentals. Think of the saddlepath as being trapped
between FF and the 45-degree line, which collapse into a single line when 7 shrinks to
ZET0.

The path given by (16), whose derivation implies setting A4, =0 in (8), is the unique
path for the stochastic-process-switching problem of Flood and Garber (1983). They
attempt to solve directly the integral representation for the exchange rate when pegging
occurs at x =X with no jump in fundamentals at the moment of pegging:

(18)  x(t)=a~" [ e~V E(k(s)Ik(t), k(s) <R, =) ds.

Equation (16) is the unique solution to this integral.'’

10gee also Smith (1991).
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3.2. Policy Announcements and Exchange-Rate Indeterminacy

In the foregoing discussion, we assumed that the authorities announced bounds on the
fundamentals, and that their policy was a passive one until one of the bounds was
reached. In practice, policy makers are unlikely to make future policy contingent on the
level of a policy instrument such as the money supply. They are more likely to announce
bounds on the exchange rate itself. Indeed, in their verbal description of the process-
switching problem, Flood and Garber (1983) assumed that the authorities committed
themselves simply to peg the exchange rate once it reached a target level X. Only in their
calculations did they add the supplementary—but crucial—assumption that fundamen-
tals cannot jump at the instant of pegging. In the last section, we solved the Flood-Garber
problem assuming explicitly that this additional information had been conveyed to the
market.

If policy makers are less explicit in their announcements than we have assumed so far,
however, the market may have too little information to calculate an equilibrium ex-
change rate. We now show that a unique equilibrium will exist if the authorities
announce both a future exchange-rate peg and the size of the intervention they will
undertake at the moment of transition. But prospective interventions of different size
give rise to different exchange-rate paths. It follows that exchange-rate information alone
does not generally suffice to determine an equilibrium. Our basic point is a familiar one:
a determinate market outcome requires that different expectations not be validated by
accommodating official behavior.!!

We can see how a prospective transitional intervention affects the equilibrium by
imagining that the authorities make the following announcement: “When the exchange
rate reaches X, we will peg it by means of an intervention that instantaneously raises the
fundamental k by the amount /. From then on, we will do whatever is necessary to hold
the exchange rate at ¥.” To solve, it is best to work backwards from the moment after
the intervention, when the exchange rate has already been fixed. At this time, and
forever after, it must be the case that k =k =x. The intervention that brings k to k
occurs at the moment x reaches X, so at that moment, fundamentals move discontinu-
ously from k£ — I to k. Note that investors fully anticipate this large change in fundamen-
tals when x reaches its boundary level; but, if there are to be no riskless profit
opportunities, the exchange rate must remain steady at ¥ as the anticipated intervention
is carried out. This condition is another application of asset-price continuity. In terms of
our earlier notation, it can be written as:

(19) S(k—I)=k=x.

As before, the appropriate boundary conditions, applied to (8), yield a closed-form
solution. Since the barrier is one-sided, one condition is A4, =0, which forces the
saddlepath to approximate the linear solution for k far below k — I. Given that 4, =0,
continuity condition (19) is:

(20) k—I+an+Aem*D=f=x

This second boundary condition leads to the following proposition.

ProrosiTION 2: Assume that fundamentals are expected to rise discontinuously by the
amount I at the moment the exchange rate is pegged at X. While floating, the equilibrium
exchange rate is given by:

(21) x=k+an+ (I-an)ehk-k+D,
1 Obstfeld (1984, p. 209), points out this indeterminacy. Flood and Garber (1989) use a boundary

condition identical to the one invoked below to study target zones with discrete interventions at the
margins.
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Figure 2 illustrates how the prospect of a discrete intervention alters the equilibrium.
Path 1 depicts the equilibrium with =0 described by (16) and shown previously in
Figure 1. Path 2, by contrast, graphs the relationship described by (21), where the
authorities undertake an intervention of />0 at x =X. Path 2 is steeper than path 1:
near the upper bound, where a large positive intervention is imminent, the greater
discounted value of expected future fundamentals increases the exchange rate.'?

Equation (21) underscores the main point: when the authorities commit themselves
only to peg the spot rate once it reaches X, they are implicitly committing themselves to
perform whatever intervention the market happens to conjecture will occur at that
moment. Indeed, in the extreme case, suppose that when the policy is first announced at
t =0, with k(0) <k =X, the market immediately pushes the exchange rate to ¥. If the
authorities are to fuifill their commitment, they would be forced to adjust fundamentals
instantly by the amount k — k(0).

To rule out multiple equilibria, the authorities can announce both the size of the
intervention they are willing to undertake as well as the exchange-rate peg. Alternatively,
as was assumed in the previous subsection, they can announce that they will remain
passive while fundamentals follow (2), until absorption occurs at the fundamental k =X.

3.3. More Complex Forcing Processes

The techniques above are practical only when the driving process in (2) is relatively
simple; it is usually impossible to find closed-form general solutions to the analogues of
(7) when k follows a more complicated forcing process. Nonetheless, some special cases
do have solutions. Suppose, for example, that fundamentals are mean reverting, follow-

12 1f we think of the authorities as intervening by a sharp increase in the money supply when x
reaches % along path 2, then equilibrium is maintained by a discontinuous fall in the nominal
interest rate. The counterpart of this fall in the interest rate is a fall to zero in the expected rate of

currency depreciation, which depends on the curvature of path 2. In general, the exchange-rate path

(21) can be either convex or concave, depending on whether I is greater or less than an,
respectively.
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ing the Ornstein-Uhlenbeck process:
(22) dk(t) =(n —0k(t))dt+odz(t),

where 7, 0, and o are known constants. Use of (1) and application of It6’s Lemma lead
to the differential equation:

(23) G(k)=k+a(n—0k)G’(k)+%G”(k).

The following proposition gives the general solution to (23):

ProrosiTioN 3: When fundamentals follow (22), any solution to equation (1) must
satisfy:

k+
(24) x=G(k)=

1+6

an 1 1 2(n—0k)?
! 20’ 2’ 0o

1+6a 3 (n—-0k)\ (n—0k)
200 2’ 002 Voo
where A, and A, are arbitrary constants and M(.,.,.) is the confluent hypergeometric
function.’

+A2M(

Using the procedures discussed above, it is straightforward to rederive all the proposi-
tions when fundamentals evolve according to (22). Naturally, for values of k such that
0k =~n the mean-reversion component of (22) is unimportant, so that the solutions
appear qualitatively very similar to those shown in the graphs. For values of k& where
mean reversion is important, the mean reversion introduces a new source of bending
(toward the unconditional mean of k, n/8) into the paths above.
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