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Summary

1. Host–parasite models are typically constructed under either a microparasite or macroparasite paradigm.

However, this has long been recognized as a false dichotomy because many infectious disease agents, including

most fungal pathogens, have attributes of bothmicroparasites andmacroparasites.

2. We illustrate how Integral ProjectionModels (IPMs) provide a novel modelling framework to represent both

types of pathogens.We build a simple host–parasite IPM that tracks both the number of susceptible and infected

hosts and the distribution of parasite burdens in infected hosts.

3. The vital rate functions necessary to build IPMs for disease dynamics share many commonalities with classic

micro and macroparasite models and we discuss how these functions can be parameterized to build a host–para-
site IPM. We illustrate the utility of this IPM approach by modelling the temperature-dependent epizootic

dynamics of amphibian chytrid fungus inMountain yellow-legged frogs (Ranamuscosa).

4. The host–parasite IPM can be applied to other diseases such as facial tumour disease in Tasmanian devils

and white-nose syndrome in bats.Moreover, the host–parasite IPM can be easily extended to capture more com-

plex disease dynamics and provides an exciting new frontier inmodelling wildlife disease.

Key-words: Batrachochytrium dendrobatidis, devil facial tumour disease, fungal disease, macropar-

asite models, microparasite models, parasite aggregation,Ranamuscosa, white-nose syndrome

Introduction

Following the influential papers by Anderson and May

(Anderson & May 1979; May & Anderson 1979), host–para-
site models have usually been constructed within one of two

model structures. In their simplest form, microparasite models

classify individuals as susceptible, infected or recovered, with

the implicit assumption that all infected hosts can be consid-

ered similar because once a host is infected, microparasites can

rapidly multiply within the host. Under this simple structure,

prevalence, the proportion of infected individuals, is therefore

adequate to characterize the level of infection within a host

population. In contrast, macroparasite models generally

assume that parasites cannot complete their entire life cycle

within an individual host. Therefore, infection levels within a

host are strongly influenced by the number of infective stages

the host has encountered, and parasite burden influences host

survival, reproduction and the transmission of infective stages.

As a result, in macroparasite models, the proportion of indi-

viduals infected is not adequate to characterize the level of

infection within a host population, and therefore, it is neces-

sary to model the frequency distributions of parasites among

individuals. In standard macroparasite models, the distribu-

tion of parasites among hosts is often modelled using a nega-

tive binomial distribution with a fixed aggregation parameter

(Dobson&Hudson 1992).

In some pathogens traditionally categorized as micropara-

sites, pathogen within-host reproduction occurs at a slow

enough rate that it can be tracked from one time point to the

next (Briggs, Knapp & Vredenburg 2010; Langwig et al.

2015a). In these instances, it is useful to take a macroparasite

approach and model the distribution of loads across hosts as

this measure is both more consistent with the type of data col-

lected on these diseases and allows for the prediction of addi-

tional epidemiological patterns such as the patterns and

dynamics of parasite aggregation (Scott 1987; Shaw&Dobson

1995). For example, fungal pathogens are increasingly recog-

nized as important threats to biodiversity, agricultural produc-

tion and human health (Fisher et al. 2012) and may exhibit

this relatively slow, measurable on-host reproduction. A mod-

elling framework that accounts for the microparasite and

macroparasite characteristics of fungal pathogens is critical for

understanding their dynamics.

To this end, Briggs, Knapp & Vredenburg (2010) developed

an individual-based model for the fungal pathogen Batra-

chochytrium dendrobatidis in frog populations and were able to

predict the biological criteria necessary for population persis-

tence as well as the efficacy of different treatment strategies*Correspondence author. E-mail: mark.wilber@lifesci.ucsb.edu
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during epizootics (C.J. Briggs, unpublished data). However,

this model required a separate equation for the fungal load on

each individual and was difficult to parameterize from field or

experimental data. In general, there is a need for an intermedi-

ate modelling framework for ‘slow’ microparasites that

accounts for heterogeneity in the distribution of parasites

across hosts (and how host distributional patterns change over

time), while allowing for straightforward parameterization

from laboratory or field data.

In this paper, we illustrate the potential for Integral Projec-

tionModels (IPMs) to address this need. Several recent papers

have provided excellent overviews of the construction and use

of IPMs (Rees & Ellner 2009; Coulson 2012; Metcalf et al.

2013;Merow et al. 2014a; Rees, Childs & Ellner 2014;Metcalf

et al. 2016). In very general terms, IPMs assume that demo-

graphic parameters of individuals are affected by one or more

continuous variables that describe some property of those indi-

viduals. The models then iterate population dynamics in dis-

crete time with state variables of the formN(x, t), representing

the frequency of individuals with continuous property x at the

time t.

The models can be readily parameterized from data using

linear or nonlinear regression-based approaches. For popu-

lation models, the continuous variable x is often the size,

such as body mass (Coulson 2012), or age of an organism,

but in principle any continuous variable or variables could

be used. Here, we illustrate their use, using a measure of

parasite load. It has been pointed out that this approach

may be suitable for modelling host–parasite interactions

(Cooch et al. 2012; Metcalf et al. 2016), but we know of

only one application of these models for wildlife pathogens:

a model of the fungal infection aspergillosis in sea fans

(Bruno et al. 2011). The model in that study categorized

sea fans into either infected or uninfected categories, and

the continuous variable modelled by the integral projection

approach was the size of the sea fan, and not the parasite

load itself. Recently, Metcalf et al. (2016) have proposed a

general framework for using IPM models for disease in

which they highlight some of the benefits and challenges of

fitting disease data to these models. Here, we build on the

ideas proposed by Metcalf et al. by providing a detailed

case study and other examples of how these methods could

be used to address key questions in disease ecology and

evolution. Where possible, we try to use similar notation as

Metcalf et al.

Materials andmethods

The basic model we examine is a modification of a susceptible-

infected-susceptible model. In our model, individuals that clear the

infection immediately re-enter the susceptible class, with no immunity.

Including a recovered class simply requires adding an additional dis-

crete stage to the IPM (Metcalf et al. 2016). The model has the follow-

ing state variables:

S(t): Number of susceptible/uninfected hosts at time t

I(x, t): Frequency of infected hosts with load x at time t (where x 6¼ 0);

That is, the number of hosts at time t with a load between lower

bound (L) and upper bound (U) is
RU

L Iðx; tÞdx
In a traditional macroparasite model x is an integer, so the integral

could be replaced with a summation. However, for most fungal infec-

tions andmany other parasites, data on infection intensity are generally

measured using quantitative PCR (Boyle et al. 2004) so that continu-

ous measures of infection load are more appropriate than discrete

counts.

Following Rees, Childs & Ellner (2014), the system can be repre-

sented by the life history flow chart in Fig. 1. This can be written as the

following equation for susceptible/uninfected hosts at time t + 1.

Sðtþ 1Þ ¼SðtÞs0ð1� /ðIðx; tÞÞ þ
Z U

L

Iðx; tÞsðxÞlðxÞdx

þ f0SðtÞ þ
Z U

L

fðxÞIðx; tÞdx
� �

:

eqn 1

Susceptible, S(t)

Infected, I(x, t)

Susceptible, S(t + 1)

Infected, I(x′, t + 1)

Reproduces

f0

f(x)

Survives, s(x)

Survives, s0

Doesn’t lose infection
1 - l(x)

Loses infection
l(x)

Growth, G(x′, x)

Not infected
1 - φ(I(x, t))

Infected
φ(I(x, t))

Initial infection
G0(x′)

Fig. 1. Life history flow chart for the host–parasite Integral ProjectionModel. The chart shows how an infected host with a parasite load of x at time

t can transition to an infected host or susceptible/uninfected host with a parasite load of x0 or 0, respectively, at time t + 1. The chart also shows how

a susceptible/uninfected host at time t can transition to an infected host or susceptible/uninfected host with a parasite load of x0 or 0, respectively, at
time t + 1.
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The first term in this equation gives the number of hosts who remain

uninfected in a time step. The second term gives the number of infected

hosts who lose an infection and enter the uninfected class in a time step.

The third and fourth terms give the number of uninfected hosts who

are born from uninfected and infected hosts in a time step.

The equation for infected hosts with load x0 at time t + 1 is given by

Iðx0; tþ 1Þ ¼
Z U

L

Iðx; tÞsðxÞð1� lðxÞÞGðx0;xÞdx
þ SðtÞs0/ðIðx; tÞÞG0ðx0Þ:

eqn 2

The first term in this equation gives the number of infected individu-

als with load x that transition to load x0 in a time step. The second term

gives the number of uninfected individuals that transition to an infected

individual with load x0 in a time step. Below we more thoroughly dis-

cuss the terms in eqns (1) and (2), how they relate to classic macropara-

site and microparasite models, and how they can be parameterized.

When parameterizing the functions below, we assume that each process

obeys the Markov property such that only the load at time t predicts

the event at time t + 1 (e.g. growth of the parasite, host survival, loss of

infection, etc.; Easterling, Ellner&Dixon 2000).

THE GROWTH FUNCTION: Gðx0; xÞ

For continuous measures of parasite load, the growth function

Gðx0; xÞ specifies the probability density of transitioning to load x0 at
time t + 1, dependent on having a load of x at time t. In comparison

with standard macroparasite and microparasite models, this function

allows for pathogen growth on a host to be driven by both within-host

pathogen birth/rapid self-reinfection (e.g. microparasites and some

macroparasites) and from acquiring additional parasites from the envi-

ronment or other infected hosts. The dependence of Gðx0; xÞ on the

free-living stages of the parasites can be made explicit by writing

Gðx0; xÞ as dependent on the number of free-living parasites at time t.

This function can be estimated with data on the parasite load of indi-

vidual hosts at time t and time t + 1. Using standard regression tech-

niques, load at time t, the number of free-living parasites at time t and/

or the density and abundance of other infected hosts can be regressed

against load at time t + 1 and the resulting model can be used to para-

metrize the growth function Gðx0; xÞ (Easterling, Ellner & Dixon

2000). For continuous parasite loads, the load at time t + 1 could be

described by a log-normal or gamma distribution, while discrete disease

loads could be fit by a negative binomial distribution (Anderson &

May 1978; Shaw, Grenfell & Dobson 1998). The growth of a parasite

on a host will often depend on other abiotic variables that can be

accounted for as additional fixed or random effects in the regression

model (Rees&Ellner 2009).

THE SURVIVAL FUNCTION: s0 AND s (x )

s0 specifies the survival probability of uninfected hosts. 1� s0 gives the

probability of a host dying without any infection, which parallels the

death rate of uninfected hosts in classic micro and macroparasite mod-

els. s0 can be estimated by the proportion of uninfected hosts that sur-

vive from t to t + 1.

The survival function s(x) specifies the probability of a host with a

parasite load x surviving from time t to time t + 1. In classic macropar-

asite models, it is assumed that parasite-induced host mortality

increases linearly with load at rate a, where a specifies the pathogenicity
of the parasite (Anderson & May 1978). In the IPM framework, a

commonly used function to measure survival probability is the logistic

function given by

sðxÞ ¼ expðb0 � b1xÞ
1þ expðb0 � b1xÞ ; eqn 3

where b1 is similar to the pathogenicity parameter a (Anderson &May

1978; Wilber, Weinstein & Briggs 2016). When b1 is held constant, b0

dictates the parasite load at which substantial parasite-induced host

mortality begins to occur (Wilber,Weinstein &Briggs 2016). The logis-

tic function could be replaced by other functions, as dictated by the

data (Dahlgren, Garc�ıa &Ehrl�en 2011).

The survival function s(x) can be estimated with logistic regression

using host survival and load data from laboratory or mark–recapture

studies conducted at the appropriate time-scale. If other biotic or abi-

otic factors are also thought to contribute to the survival probability of

a host from t to t + 1, they can be included as additional predictor vari-

ables in the survival function.

THE LOSS OF INFECTION FUNCTION: l (x )

The loss of infection function l(x) specifies the probability of a host

having a parasite load of x at time t and losing the infection by

time t + 1. In comparison with classic microparasite susceptible-

infected models, this function is analogous to the rate at which

infected individuals recover from infection and reenter the suscepti-

ble/uninfected class. We similarly assume that individuals that lose

an infection immediately reenter the susceptible/uninfected class,

though a resistant class could easily be included in this modelling

framework (Metcalf et al. 2016).

A logistic function (eqn 3) could also be used for the loss of infection

function and could be parameterized using parasite load data at time t

and t + 1 and fitting a logistic regression where the response variable is

whether or not a host lost an infection by time t + 1 and the predictor

variable is the infection intensity x at time t. As with the survival func-

tion, if other biotic or abiotic factors also contributed to l(x) they could

be included as additional predictor variables in the logistic regression.

THE TRANSMISSION FUNCTION: / ( I (x , t ) )

The transmission function /(I(x,t)) specifies the probability of transi-

tioning from the uninfected class to the infected class. The transmission

function is critically important for the dynamics of a disease and can

take a variety of different functional forms. Some common examples

include the density-dependent or mass action transmission function

bIS and the frequency-dependent transmission function bSI/N
(McCallum, Barlow&Hone 2001).

Over a unit time interval, a density-dependent, mass action transmis-

sion function results in the following probability of an individual host

not being infected: exp �b
RU

L Iðx; tÞdx
� �

, where
RU

L Iðx; tÞdx gives the

total number of infected individuals. Allowingb to be a function of par-
asite load,/(I(x,t)) can be written as

/ðIðx; tÞÞ ¼ 1� exp �
Z U

L

bðxÞIðx; tÞdx
� �

; eqn 4

where
RU

L bðxÞIðx; tÞdx is the force of infection and b(x) specifies the
effect of an individual with an infection load of x on the infection prob-

ability of an uninfected individual. This formulation assumes that new

infections occur following a Poisson process with rateRU

L bðxÞIðx; tÞdx.
While this functional formmay be appropriate for many micropara-

sites in which direct transmission among hosts is the primary mode of

acquiring infection, the transmission of some pathogens depends on

the number of free-living parasites in a system as well as the number of

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution

Host–parasite Integral Projection Models 3



infected hosts (Briggs, Knapp & Vredenburg 2010). If we assume that

number of free-living parasites is proportional to the total number of

parasites in all infected hosts in the system at time t, thenwe canmodify

b(x)I(x, t) to b(x)xI(x, t) to capture this biology.

Finally, some pathogens have an environmental reservoir such that

the probability of infection is nonzero even when no infected hosts are

present. This could be captured by rewriting eqn (4) as

/ðIðx; tÞÞ ¼ 1� exp � aþ
Z U

L

bðxÞIðx; tÞdx
� �� �

; eqn 5

where 1� exp (�a) defines the probability of infection when no

infected hosts are present (e.g. from an environmental reservoir). This

environmental reservoir could be more explicitly accounted for by

including an additional state variable in the IPM that tracks how the

number of parasites in the environment grows and decays in a time step

(Rohani et al. 2009).

Methods for estimating the transmission function and/or its corre-

sponding parameters are well-described in the host–pathogen literature

(McCallum 2000; Smith et al. 2009), though choosing between trans-

mission functions is typically a data-intensive procedure (Rachowicz &

Briggs 2007; Smith et al. 2009).

THE INIT IAL INFECTION BURDEN FUNCTION: G0ðx0Þ

The function G0ðx0Þ specifies the probability density of the infection

intensity of a host when it first becomes infected and can be a function

of the total number of infected hosts in the population, the total num-

ber of infectious agents in the population and/or various other host or

abiotic covariates. This function can be estimated by fitting a regression

model where the response variable is the pathogen load of infected

hosts at time t + 1 that were uninfected at time t. For continuous dis-

ease loads, a variety of different distributions such as gamma, log-nor-

mal and normal could be explored.

In comparison with standard stochastic macroparasite models, this

function is analogous to clumped infection distributions inwhich a host

can acquire a random number of free-living parasites in a small time

step (Isham 1995; Pugliese, Ros�a & Damaggio 1998). However,

depending on the time step used to parameterize the IPM, G0ðx0Þ will
also be influenced by the growth of the parasite on the host as a ‘clump’

of parasites can infect a host and then grow in the time interval t to

t + 1.

Moreover, the above host–parasite IPMassumes that after acquiring

an initial infection burden the growth of the parasite on a host is then

driven by Gðx0; xÞ and is independent of the density of infected hosts.

If one has reason to believe that transmission and the function G0ðx0Þ
are important drivers of disease dynamics on hosts after the initial

infection, the growth functionmay be redefined as

G0ðx0; x; Iðx; tÞÞ ¼ ð1� /ðIðx; tÞÞGðx0; xÞ þ /ðIðx; tÞ
h
G0ðx0 � xÞ

þ higher order terms
i
;

eqn 6

where an increase in load from x to x0 in a time step could be because of

(i) no transmission occurring and parasite load increasing due to

within-host pathogen growth (first term) or (ii) transmission occurring

and a host acquiring a ‘clump’ of infections of size y such that

y ¼ x0 � x (second term) or (iii) some combination of both within-

host growth and transmission occurring such that parasite load

increases from x to x0 in a time step. This is given by higher order terms

and will depend on the length of the time step t to t + 1 relative to the

dynamics of the pathogen.

In Appendix S1, Supporting information, we derive R0, a canonical

epidemiological measure of the ability of a parasite to invade a fully

susceptible host population (Diekmann, Heesterbeek & Metz 1990),

for the host–parasite IPM and show how it depends on the vital rate

functionsGðx0;xÞ, s(x), l(x),/(I(x,t)), andG0ðx0Þ.

THE FECUNDITY FUNCTION: f0 AND f (x )

The fecundity function f(x) specifies themean number of offspring pro-

duced by individuals with a parasite load of x (or by susceptible/unin-

fected individuals f0) and the host–parasite IPM assumes that all

offspring enter the uninfected class. It is easy to relax this assumption

and include vertical transmission into the host–parasite IPM by allow-

ing newly born hosts to enter the infected class with a parasite load

specified by some probability density function. Standardmacroparasite

models assume that host reproduction decreases linearly with increas-

ing parasite load (May &Anderson 1978). However, as pointed out by

May & Anderson, this is an over simplification as the response of host

reproductive effort to parasitism is often nonlinear (e.g. Weatherly

1971) and reproduction itself can never take on a negative value

(Roberts, Smith & Grenfell 1995). Alternative formulations of para-

site-induced reduction in host fertility that account for this nonlinear

relationship have been discussed (Roberts, Smith&Grenfell 1995).

In the IPM framework, the fecundity function can be fit using Pois-

son or negative binomial regression where the predictor variable is par-

asite load and the response variable is the number of offspring

produced by a host with that parasite load (Easterling, Ellner & Dixon

2000). If the response variable is a non-integer value, a continuous dis-

tribution such as gamma or log-normal could be used. Depending on

the link function, these regressions can produce nonlinear fecundity

functions that are always positive. Similar to the other vital functions

discussed above, other factors that affect mean reproductive output

can be included in the regression.

For many host–parasite systems, host reproduction occurs on a

much longer time-scale than the dynamics of the parasite and it may

not be biologically realistic to include host reproduction at each time

step in the IPMmodel as is done in eqn (1). For example, if host repro-

duction occurs at a particular time during the year it may be useful to

break the year into separate IPMs (e.g. an IPM for summer, fall, winter

and spring; Caswell 2001) such that load-dependent host reproduction

only occurs in a particular season or as a discrete pulse at the beginning

of a particular season (e.g. host reproduction is only nonzero in the

spring and fall). Onemay also want to include host age as an additional

discrete or continuous host attribute (Childs et al. 2003) to account for

reproductive differences among hosts of different ages. On the other

hand, if one is particularly interested in the fate of a host population

over a single seasonal epizootic where host reproduction does not

occur, the fecundity function may be excluded from the host–parasite

IPM as it will not affect host population persistence during the epi-

zootic. In this case, appropriately modelling vital rates such as the sur-

vival function s(x) and the growth function Gðx0; xÞ will be critically
important for understanding host–parasite dynamics. In general, how

to include host reproduction into the host–parasite IPMwill depend on

the questions that are being addressed.

APPLICATION OF MODEL TO AMPHIB IAN CHYTRID

FUNGUS: LABORATORY EXPERIMENT

We use the above IPM framework to examine the population

dynamics of amphibian hosts infected with the fungal pathogen

Batrachochytrium dendrobatidis (Bd). Bd is a devastating amphibian

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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pathogen that has led to declines in many amphibian populations

around the globe (Skerratt et al. 2007; Kilpatrick, Briggs & Daszak

2010). Bd is a cutaneous fungus that disrupts the osmoregulatory

ability of amphibian skin, eventually leading to chytridiomycosis

and amphibian mortality (Voyles, et al. 2007, 2009). In contrast to

traditional macroparasites, Bd reinfects an infected host (Rollins-

Smith 2009). The generation time of Bd is between 4–10 days

depending on temperature (Woodhams et al. 2008), such that the

on-host Bd growth dynamics can be captured via repeated swabbing

of an animal every few days, with the fungal load on the frog esti-

mated as the number of copies of Bd DNA detected on the skin

swabs via quantitative PCR (Boyle et al. 2004). Quantitative PCR

provides a continuous measure of infection intensity between 0 (un-

infected) and an arbitrarily large Bd infection. These characteristics

of Bd make it an ideal candidate for applying the host–parasite

IPM described above.

We use the IPM framework to gain insight into how tempera-

ture affects the epizootic dynamics of Bd in populations of the

Mountain yellow-legged frog complex (Rana muscosa and Rana

sierrae, henceforth R. muscosa). Rana muscosa are native to the

California Sierra Nevada mountains and have suffered severe Bd-

induced population declines (Briggs, Knapp & Vredenburg 2010;

Vredenburg et al. 2010). The severity of Bd infection is highly tem-

perature-dependent (Berger et al. 2004; Andre, Parker & Briggs

2008), with optimal Bd growth occurring between 17–25 �C in lab-

oratory conditions (Piotrowski, Annis & Longcore 2004), but

depending on-host Bd interactions (Piotrowski, Annis & Longcore

2004; Raffel et al. 2012). While these are the temperatures at which

amphibians often suffer more severe chytridiomycosis and

mortality, this pathology is species-dependent (Kilpatrick, Briggs &

Daszak 2010).

We use data from a laboratory experiment in which 20 adult R.

muscosa were housed separately at three different temperatures

(4 �C, 12 �C, 20 �C; 5 frogs per temperature), exposed to c. 106

zoospores of Bd and then monitored for 119 days. Every 3 days

starting 8 days after exposing the frogs to Bd, the frogs were

swabbed and Bd zoospore load was estimated using quantitative

PCR. Mortality that occurred between swabbing events was

recorded at the next swabbing event.

MODEL DESCRIPTION

To fit the IPM to Bd load data from laboratory experiments, we made

two simplifying assumptions. First, we excluded reproduction/recruitment

because we lack data on the effect of infection on reproduction. As a result,

we used this model to address questions regarding epizootic dynamics of

Bd and R. muscosa over the course of a single summer season, rather than

to examine long-term population persistence with disease.

Secondly, we assumed the probability of infection/(T) was tempera-

ture (T)-dependent, but independent of the density of infected hosts

(i.e. I(x,t) does not affect the probability of infection). In our experi-

ments, individual animals were housed in separate containers and ini-

tial infection was solely due to an amphibian acquiring Bd zoospores

from the environment. We subsequently explore different transmission

functions that do include I(x,t) to understand their implications on Bd

epizootic dynamics. With these assumptions, the modified IPM is

given by

Sðtþ 1Þ ¼ SðtÞs0ðTÞð1� /ðTÞÞ þ
Z U

L

Iðx; tÞsðx;TÞlðx;TÞdx;
eqn 7

Iðx0; tþ 1Þ ¼
Z U

L

Iðx; tÞsðx;TÞð1� lðx;TÞÞGðx0;x;TÞdx
þ SðtÞs0ðTÞ/ðTÞG0ðx0;TÞ;

eqn 8

where the various vital functions are now dependent on temperatureT.

Note that x refers to ln (x) (log zoospore load) when x 6¼ 0. In this

case, susceptible/uninfected represents a discrete state of the frog and is

not equivalent to ln (x)=0. In this model, a single time step represents

3 days, which was the time between swabbing events in the laboratory

experiment.

VITAL RATE FUNCTIONS

We modelled the survival function s(x) of a frog with a log zoospore

load of x as a logistic regressionwith the link function given by

logitðsðxÞÞ ¼ b0;0 þ b1;0x; eqn 9

where b0;0 is the intercept of the link function on the logit scale, and b1;0

is the effect of log zoospore load on the logit-transformed probability

of survival.We could not estimate the effect of temperature on this vital

rate function because no individuals died at 4 or 12 �C (Fig. 2a). This

result was surprising because individuals at 12 �C had loads as high or

higher than individuals at 20 �C and did not experience mortality.

Based on previous results in the field which show thatR.muscosa suffer

a roughly consistent Bd-induced mortality across a variable lake tem-

peratures in the field (i.e. the� 10,000 zoospore threshold, Vredenburg

et al. 2010), additional results in the laboratory that show that frogs

experience significant Bd-induced mortality at temperatures below

20 �C (17 �C, Andre, Parker & Briggs 2008), and extensive field obser-

vations that decreased temperature does not have a large protective

effect on R. muscosa in the field (Knapp et al. 2011), we think there is

very little evidence that the survival curve of R. muscosa and Bd-load

interacts with temperature. Therefore, we assumed that Bd-induced

mortality is dependent only on load and not on temperature directly.

We parameterized the survival function using only individuals at 20 �C
(Fig. 2a, see Appendix S2 for a comparison with a survival function fit-

ted with all of the temperature data) and assumed a temperature-inde-

pendent survival function. However, temperature influenced fungal

growth, as detailed next.

We modelled the growth function Gðx0;xÞ as a normal distribution

X�Nðlðx;TÞ;r2ðxÞÞ where T is temperature. Mean fungal loads

weremodelled as

lðx;TÞ ¼ b0;1 þ b1;1xþ b2;1T; eqn 10

where b0;1 is the intercept and b1;1 and b2;1 give the effect of a unit

change in log zoospore load and temperature on the log zoospore load

at time t + 1, respectively. We also allowed the variance of Gðx0; xÞ to
be an exponential function of log zoospore load at time t

r2ðxÞ ¼ m0;1 expð2c0;1xÞ; eqn 11

where m0;1 is a constant and c0;1 dictates the effect of log zoospore load

on the variance.

Wemodelled the loss of infection function l(x) as a logistic regression

with the link function

logitðlðx;TÞÞ ¼ b0;2 þ b1;2xþ b2;2T; eqn 12

where b0;2 is the intercept and b1;2 and b2;2 are the coefficients giving

the effect of a unit change in log zoospore load and temperature on the

logit-transformed probability of losing an infection in a single time step,

respectively.
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Wemodelled the initial infection burden functionG0ðx0Þ as a normal

distribution X�NðlðTÞ;r2ðTÞÞ because infection burden was mod-

elled on the log scale, which allowed for negative values.We defined the

mean of the distribution as lðTÞ ¼ b0;3 þ b1;3T where b0;3 and b1;3 are

defined similarly to the growth function. We modelled the variance as

r2ðTÞ ¼ m0;3 expð2c0;3TÞ where m0;3 and c0;3 are defined similarly as in

the growth function.

Finally, we modelled the probability of an individual becoming

infected /(T) in a time step as a function of temperature T using a

logistic model logit½/ðTÞ� ¼ b0;4 þ b1;4T where b0;4 and b1;4 are

defined similar to the recovery function. We performed model selec-

tion and validation for each vital rate function described above and

these results are given in Appendix S2. We fit the vital rate functions

in R version 3.1.2 (R Foundation for Statistical Computing, Vienna,

Austria) and all code used for this analysis can be found at

http://github.com/mqwilber/ipm_for_parasites.

ANALYSING THE IPM

After fitting the parameters of the vital rate functions, we analysed the

resulting IPM (eqns 7 and 8) by discretizing the continuous variableBd

load and using the mid-point rule to evaluate the IPM at each time step

(Rees, Childs & Ellner 2014). For the infected portion of the host–

parasite IPM, we used 100 discretized bins (i.e. a mesh size of 100) and

lower and upper bounds of �5 and 18 log zoospore load, which we

chose tominimize the effects of eviction on the IPMpredictions (loss of

individuals from themodel because their predicted future loads are out-

side the model range, Appendix S3; Williams, Miller & Ellner 2012).

To put these bounds in context, the log zoospore range from our exper-

iment was (�1�14, 13�15) and the approximate log zoospore load at

whichR. muscosa begin experiencing substantial die-off in the field is at

or above a log zoospore load of 9�21 (Vredenburg et al. 2010). To

incorporate the discrete, uninfected stage into the IPM, we appended

an extra row giving transitions of various infected individuals to an

uninfected state (top-most row) and an extra column specifying the

transition of uninfected individuals into various infected states (left-

most column) to the 100 9 100 parasite load transition matrix

described above (Merow et al. 2014a).

We calculated the local elasticity of the population growth rate (k) to
the lower-level regression parameters bi;j of the vital functions defined

above by perturbing each regression parameter by d = 0�001 and calcu-
lating the elasticity as ei;j ¼ ðkperturbed � kfittedÞ=d� bi;j

� �� ðbi;j=kfittedÞ
(Merow et al. 2014b). To propagate the uncertainty in our estimates of

the lower-level vital rate parameters through to our estimates of the

population growth rate and lower-level parameter elasticity, we took

the following parametric bootstrap approach. Using standard asymp-

totic likelihood results (McCullagh & Nelder 1989), we assumed that

each parameter set from a vital rate function followed a multivariate

normal distribution with amean and variance–covariancematrix equal

to the values given by the regression procedure used to fit the vital rate
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Fig. 2. (a) The laboratory data used to estimate the survival function s(x). Each panel gives a different temperature, and each point gives the load of

an individual frog at time t andwhether it survived to time t + 1. A value of 1 indicates that a frog survived and a value of 0 indicates that it died. No

frogs died in temperature treatments 4 and 12 �C. The black line in the 20 �Cplot gives the fit of the temperature-independent survival function used

in the analysis, plus orminus the standard error about the prediction. (b) The laboratoryBd growth data and corresponding temperature-dependent

growth function Gðx0; xÞ from the Bd–Rana muscosa laboratory experiment. Each point gives the log zoospore load on an individual at time t and

time t + 1. The different colours show different temperatures. The corresponding lines give the predicted growth function for a given temperature

along with the standard error about the predicted mean. Growth of Bd on an individual frog increases with both temperature and the number of

zoospores at time t. Alternativemodels for this growth function are discussed in theAppendix S2.
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function. Next, we ran 1000 simulations in which we randomly drew

the lower-level regression parameters from their respective multivariate

normal distributions and parameterized the IPM using these parame-

ters.We then calculated either the population growth rate or the elastic-

ity of a given lower-level parameter with these randomly drawn values

and stored the result. This provided us with estimates of the population

growth rate and lower-level parameter elasticity while accounting for

the uncertainty in the lower-level parameters used to build the IPM.

We note that this approach likely underestimates the uncertainty as it

does not account for the uncertainty in the variance estimates, does not

account for covariance of parameters between vital rate functions, and

assumesmultivariate normality.

EXPLORING DENSITY-DEPENDENT TRANSMISSION

DYNAMICS

In eqn (7), in order to match the conditions of our laboratory experi-

ment in which animals were housed singly, we assumed transmission of

Bd did not depend on the density or frequency of infected hosts. Here,

we explored how a mass action, density-dependent transmission func-

tion affects the epizootic dynamics ofBd. In particular, we assumed the

following transmission function

/ðIðx; tÞÞ ¼ 1� exp � aþ b
Z U

L

xIðx; tÞdx
� �� �

; eqn 13

which specifies that the probability of infection at time t is depen-

dent on the total number of zoospores present in the host popula-

tion (
RU

L xIðx; tÞdx) at time t as well as a constant probability of

infection from an environmental reservoir x = 1� exp (�a). We

followed the example of previous Bd modelling work and assumed

that the Bd epizootic dynamics depend on the number zoospores

in the aquatic environment rather than just the number of infected

amphibians in a population (Briggs, Knapp & Vredenburg 2010).

The term ‘
RU

L xIðx; tÞdx’ reflects this assumption, albeit ignoring

potential dynamics of free-living zoospores. Moreover, we assumed

that density dependence affects only the probability of transitioning

from uninfected to infected, such that once an amphibian is

infected the increase in Bd is independent of infected host density.

This assumption is realistic if the parasite reproduction on the host

swamps out the effects of reinfection from other individuals or the

environment.

To explore the effects of this transmission function on epizootic

dynamics, we first parameterized the density-independent portion of

the IPM model using the maximum likelihood estimates of the vital

rate function parameters discussed above. Because we could not esti-

mate the density-dependent transmission function from the data we

collected, we explored the effect of this function on population dynam-

ics by choosing (x, b) pairs on a grid and using these values to parame-

terize the density-dependent transmission function. The estimated

values of the environmental infection probability x used in the density-

independent model suggested that xwas between 0�22 and 0�6 depend-
ing on the temperature, so we explored values of x between 0�01 and

0�6. We did not have a good a priori estimate of b, so we explored b
within the range 0 to 1�179 10�3, where this upper bound was chosen

arbitrarily after preliminary simulations showed that larger values of b
had little effect on the population dynamics. For every (x, b) pair, we
iterated the density-dependent IPM for 120 days, which is the approxi-

mate length of the summer in the Sierra Nevada during which Bd epi-

zootics tend to occur (Briggs et al. 2005; Briggs, Knapp & Vredenburg

2010). We initialized each population with 100 uninfected individuals,

and for each combination of (x, b), we calculated the proportion of sur-

viving amphibians and the prevalence of Bd infection at the end of the

epizootic.

Results

VITAL RATE FUNCTIONS

Increasing log zoospore load x significantly decreased the sur-

vival probability of amphibians (Fig. 2a; v2d:f:¼ 1 ¼ 12�197,
P = 0�0005; Table 1).
Both temperature and log zoospore load at time t signifi-

cantly increased log zoospore load at time t + 1 (Likelihood

ratio test (LRT) for load at time t: v2d:f:¼ 1 ¼ 196�36,
P < 0�0001; LRT for temperature: v2d:f:¼ 1 ¼ 13�56,
P = 0�0002).Moreover, log zoospore load at time twas impor-

tant for describing the variance structure of the growth func-

tion, as compared to a model with constant variance structure

(LRT comparing full model to model with constant variance:

v2d:f:¼ 1 ¼ 9�8,P = 0�0017; Table 1; Figs 2b and 3).
Temperature and log zoospore loadwere both highly signifi-

cant predictors of whether an amphibian would clear Bd infec-

tion in a given time step (temperature: v2d:f:¼ 1 ¼ 14�555,
P = 0�0001; log zoospore load: v2d:f:¼ 1 ¼ 23�701, P < 0�0001;
Fig. 3). Amphibians weremore likely to clear infection at lower

temperatures andwhen the load at time twas smaller.

Increasing temperature significantly increased the mean and

variance of the initial infection load distribution G0ðx0Þ (tem-

perature effect on mean: td:f:¼ 41 ¼ 2�53, P = 0�015; tempera-

ture effect on variance: LRT comparing model with variance

structure to without: v2d:f:¼ 1 ¼ 6�00,P = 0�0143; Fig. 3).
Finally, increasing temperature significantly increased the

probability of infection / (v2d:f:¼ 1 ¼ 6�0361, P = 0�014;
Table 1).

LABORATORY DYNAMICS OF AMPHIBIANS AND BD

The parameterized IPM model predicted that individual

amphibians at low temperatures would survive significantly

longer than amphibians at high temperatures, with the largest

difference being when log zoospore loads were low (Fig. 4a).

Over a summer epizootic, amphibian populations at low tem-

peratures experienced a minimal effect of Bd-induced popula-

tion declines (k � 1), while amphibians at higher temperatures

experience substantially more rapid declines, with large uncer-

tainty around these estimates (Fig. 4b). Elasticity analysis on

the lower-level parameters used in the vital rate functions

showed that overall population growth rate was most sensitive

to proportional changes in the growth rate of Bd (the parame-

ters of the growth function; Fig. S5) as well as the pathogenic-

ity of Bd and the threshold at which Bd-induced mortality

began to occur (the parameters of the survival function;

Fig. S5).

The IPM model also allowed us to examine how the stable

log zoospore distribution of Bd on surviving hosts changed

with temperature. For surviving, infected amphibians, the

mean infection intensity increased with temperature, but the

variance to mean ratio decreased with temperature (Fig. 5),
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consistent with experimental and model results showing that

hosts experienced greater Bd-induced mortality at higher

temperatures. This is also consistent with previous theoretical

results from macroparasite models which predict that

increased parasite-induced host mortality generally decreases

the variance tomean ratio (Barbour& Pugliese 2000).

EFFECTS OF DENSITY-DEPENDENT TRANSMISSION ON

EPIZOOTIC DYNAMICS

The effect of density-dependent transmission on Bd-R. mus-

cosa population dynamics varied with temperature, the prob-

ability of infection from the environmental reservoir (x) and
the transmission coefficient (b). In general, over the range of

density-dependent transmission values we examined, density-

dependent transmission had little effect on prevalence and the

proportion of population decline over the course of a summer

epizootic (Figs S7 and S8). In contrast, the probability of

infection from the environment had a large effect on both

prevalence patterns and population decline (Figs S7 and S8).

Given a probability of infection from the environment above

approximately 0�15, increasing density-dependent transmis-

sion had very little effect on Bd prevalence or R. muscosa pop-

ulation decline. Over the parameter space we examined, the

density-dependent transmission model predicted that popula-

tions at 12 �C will experience a maximum of a 20% popula-

tion decline over the course of an epizootic with 70%

prevalence, while populations at 20 �C will experience a

>80% population decline with close to 100% prevalence (Figs

S7 and S8).

Discussion

Integral Projection Models provide an ideal framework to

model diseases that do not fall neatly into the micropara-

site/macroparasite dichotomy and a way to explicitly model

heterogeneity and changes in the pathogen load distribution in

the host population. By taking an intermediate approach

between individual-based diseasemodels which explicitly track

the parasite load on every individual in a population (Briggs,

Knapp & Vredenburg 2010) and classic macroparasite/mi-

croparasite models which only track the total number of hosts

and parasites in a population (Anderson & May 1978), IPMs

can elegantly investigate population outcomes of infectious

diseases while still incorporating critical information about dis-

ease dynamics at the individual-level (Metcalf et al. 2016).

While the IPM approach can theoretically be used to explore

the dynamics in any macroparasite or microparasite system,

we believe it will be especially useful in host–parasite systems

where the growth rate of a parasite is slow enough that mea-

surements of parasite load at time t and t + 1 are on the same

time-scale as the growth rate of the parasite. This allows for

empirical estimation of the vital rate functions and an investi-

gation regarding how these vital rate functions vary with envi-

ronmental factors such as temperature and/or differ between

host populations in which a disease is established or invading.

This approach could also be used to explore how the distribu-

tion of parasite load among individuals changes over time,

without the constraints imposed by choosing a fixed distribu-

tion and/or aggregation parameter.

We used the host–parasite IPMmodel to explore the conse-

quences of different temperatures on R. muscosa–Bd dynamics

over the course of an epizootic. The effect of temperature on

Bd growth is well-known both in culture and on amphibian

hosts (Longcore et al. 1999; Berger et al. 2004; Piotrowski,

Annis & Longcore 2004; Andre, Parker & Briggs 2008; Raffel

et al. 2012) and previous work has estimated the expected time

to death of amphibians infected with Bd over various different

temperatures (Berger et al. 2004; Andre, Parker & Briggs

2008). However, the effect of temperature-Bd interactions on

amphibians at the population level is much less clear (Rohr &

Raffel 2010; Knapp et al. 2011). Using an IPMmodel, we were

Table 1. Vital rate parameters used to parameterize the density-independent Integral Projection Model. logit specifies a logistic link, x is log

zoospore load, andT is temperature

Description Functional form Parameters Details of parameterization

Infected survival function s(x) logit[s(x)] = b0;0 þ b1;0x b0;0 ¼ 11�824
b1;0 ¼ �0�8605

logistic regression

Uninfected survival probability, s0 Constant s0 ¼ 1 Briggs et al. (2005)

Growth function,Gðx0;xÞ lðx;TÞ ¼ b0;1 þ b1;1xþ b2;1T

r2ðxÞ ¼ m0;1 expð2c0;1xÞ
b0;1 ¼ 0�012
b1;1 ¼ 0�799
b2;1 ¼ 0�092
m0;1 ¼ 5�92
c0;1 ¼ �0�049

Generalized least squares

Loss of infection function, l(x) logit½lðx;TÞ� ¼ b0;2 þ b1;2xþ b2;2T b0;2 ¼ 1�213
b1;2 ¼ �0�472
b2;2 ¼ �0�151

Logistic regression

Initial infection burden function,G0ðx0Þ lðTÞ ¼ b0;3 þ b1;3T

r2ðTÞ ¼ m0;3 expð2c0;3TÞ
b0;3 ¼ 0�642
b1;3 ¼ 0�137
m0;3 ¼ 0�59
c0;3 ¼ 0�063

Generalized least squares

Transmission function,/ logit½/ðTÞ� ¼ b0;4 þ b1;4T b0;4 ¼ �1�66
b1;4 ¼ 0�102

Logistic regression
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8 M. Q. Wilber et al.



able to make specific, quantitative predictions about how tem-

perature and transmission dynamics affected population

growth rates ofRanamuscosa.

The density-independent IPM model predicted that popu-

lation-level growth rate decreased with increasing tempera-

ture and naive populations at or above about 18 �C had a

50% chance of experiencing an 80% decline or greater over

the course of a summer epizootic. This result likely repre-

sents a best case scenario for Rana muscosa as this density-

independent model does not account for Bd transmission

dynamics (Rachowicz & Briggs 2007) or additional factors

leading to increased frog mortality or Bd-susceptibility in the

field. Our elasticity analysis showed that the population-level

growth rate was most sensitive to proportional changes in

parameters relating to the Bd growth function and the sur-

vival function. If in situ factors slightly reduced the Bd-load

at which frogs began experiencing disease-induced mortality,

for example, R. muscosa populations could experience extir-

pation during a summer epizootic for a wide range of tem-

peratures, which would be consistent with the patterns

observed in the field (Knapp et al. 2011). In particular, we

assumed a temperature-independent survival function in the

IPM model (described in ‘Vital Rate Functions’) and includ-

ing temperature dependence into this function would have

significant impacts on the ability of R. muscosa populations

to persist through an epizootic.

We extended this density-independent IPM to explore how

density-dependent transmission and transmission from an

environmental reservoir affected population dynamics. Our

results suggest that density-dependent transmission had a

small effect on the population dynamics of Bd epizootics, par-

ticularly when an environmental reservoir was present. While

this result is largely due to our assumption that density-depen-

dent transmission does not affect the growth of Bd on an
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Fig. 3. The growth function Gðx0; xÞ, loss of infection function l(x), initial infection burden function G0ðx0Þ and the survival/growth kernel

(Gðx0; xÞsðxÞ) used to parameterize the Bd-Rana muscosa Integral Projection Model for temperatures between 4 and 20 �C. The four temperatures

shownwere chosen to illustrate how the various vital rate functions change with temperature. Because each vital rate function shown is a linear func-

tion of temperature (see ‘Vital Rate Functions’), we were not restricted to choosing the three temperatures used to fit the vital rate functions (4, 12

and 20 �C) and could chose any temperature between 4 and 20 �C. The black line on the survival/growth kernel plots is a one to one line representing
stasis: above this line theBd load on a host gets larger in a time step and below this line theBd load on a host gets smaller in a time step.
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already infected frog, it is consistent with predictions from a

fully individual-basedmodel that predicts that densitymanipu-

lations (i.e. culling infected frogs) will likely have little effect on

mitigating population outcomes during Bd epizootics in this

system (C.J. Briggs, unpublished data). A natural next step will

be to use this IPM to investigate how varying temperature

regimes and R. muscosa demography affect the persistence of

R. muscosa populations infected with Bd over longer time-

scales. In general, the question of how temperature interacts

withBd and in turn affects amphibian host persistence is a criti-

cal question in amphibian conservation (Rohr & Raffel 2010)

and IPMs provide a novel means by which this question can be

quantitatively addressed.

In addition to these population-level predictions, host–para-
site IPMs also allow for explicit predictions about how the dis-

tribution of parasites loads over hosts changes with different

vital parameters and/or over the course of an epizootic or

enzootic. Macroparasite models have long recognized the

importance of the distribution of parasite loads over hosts for

determining the dynamics of host–parasite interactions

(Anderson & May 1978; Tompkins et al. 2002), and classic

macroparasite models addressed this by using a statistical dis-

tribution (often negative binomial, Shaw, Grenfell & Dobson

1998) and then looking at how different levels of parasite

aggregation affected host–parasite dynamics (Anderson &

May 1978; Kretzschmar & Alder 1993). These approaches

have been extended to include fluctuating aggregation (Ros�a &

Pugliese 2002; Ros�a et al. 2003), but still rely on explicitly

defining the shape of the host–parasite distribution. In con-

trast, IPMs do not assume a host–parasite distribution, rather
one emerges as a result of the vital functions specified when

parameterizing themodel and the transmission and population

dynamics over time. Therefore, one can explore how sensitive

the aggregation of the host–parasite distribution is to different

vital function parameters, providing an intriguing way to parse

the contribution of different processes to parasite aggregation.

Moreover, as it is straightforward to include seasonal fluctua-

tions and/or environmental stochasticity into the IPM frame-

work (Rees & Ellner 2009; Eager et al. 2013), more complex

predictions of aggregation patterns, such as the fluctuation of

parasite aggregation over time (Scott 1987; Ros�a & Pugliese

2002), could be explored.

Using the parameterized IPM for Bd-R. muscosa, we exam-

ined how the distribution of Bd-loads changed with tempera-

ture. The IPM showed that fundamental insight from
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macroparasite distributions also applies toBd.For example, as

predicted bymacroparasite models (Barbour & Pugliese 2000),

increasing Bd-induced host mortality with increasing tempera-

ture decreased the aggregation of Bd across hosts and reduced

positive skew as individuals with high Bd loads were removed

from the population through mortality. In fact, a sensitivity

analysis of the variance to mean ratio of the Bd-load distribu-

tions showed that this measure of aggregation became progres-

sively more sensitive to the survival function as temperature

increased andmore frogs experienced Bd load-dependent mor-

tality (Fig. S6). In addition, the variance to mean ratio was

more sensitive to the variance in the growth function (m0;1 and
c0;1) than the variance in the initial infection burden function

(m0;3 and c0;3, Fig. S6), suggesting that explaining the individ-

ual-level heterogeneity in Bd growth rate may be more impor-

tant for understanding the shape of the Bd-load distribution

than explaining the individual-level heterogeneity in the load

of Bd at initial infection. The IPM approach highlights the

importance of this unexplained variance in theBd growth func-

tion, and future studies could identify whether this heterogene-

ity is due to biological factors such as differences in immune

responses among hosts or methodological factors such as

quantitative PCR error whenmeasuringBd load.

In addition to allowing for a more rigorous analysis of para-

site aggregation, an IPM approach can be used to examine a

variety of different classic patterns in host–parasite systems.

For example, host age can easily be included as an additional

host attribute (Childs et al. 2003; Childs et al. 2004), such that

IPMs could then be used to examine observed patterns

between parasite intensity and host age (i.e. age-intensity pro-

files, Duerr, Dietz &Eichner 2003). Similarly, host-heterogene-

ity in susceptibility could be included as an additional host

attribute such that IPMs could be used to explore nonlinear

dose–response relationships (Dwyer, Elkinton & Buonaccorsi

1997; Gomes et al. 2014). We also discuss in Appendix S1 how

R0 can be calculated from the host–parasite IPM. While these

are just a few examples, the theoretical application of IPMs for

exploring observed host–parasite patterns is extensive.
While this study focused on using IPMs to describe epizootic

dynamics of amphibian chytrid fungus, there are a variety of

other wildlife diseases in which host–parasite IPMs could be

applicable to explore the population and evolutionary out-

comes of infection. For example, Tasmanian devils Sarcophilus

harrisii are threatened with extinction by an infectious cancer,

Tasmanian devil facial tumour disease (McCallum et al.

2009). A critical question for management is to predict the

impact of the disease as it enters currently uninfected popula-

tions and to investigate evidence of selection for increased

resistance to infection or reduced tumour growth rates. Inten-

sive mark–recapture data are available, enabling the estima-

tion of survival rates of infected and uninfected animals,

together with transition rates from uninfected to infected states

(Hamede et al. 2012). In addition, measurements of tumour

size are taken from all infected animals at every capture oppor-

tunity and repeated tumour measurements are available for a

substantial number of individuals, which could be used to esti-

mate the tumour growth function. One could examine whether

the death rate of infected devils is related to the size of the

tumour and then use the IPMs to examine how differences in

tumour growth among populations or over time might alter

the dynamics of devil populations. It is highly likely that the

death rate of infected devils is related to the size of the tumour.

This problem may therefore be well-suited for an IPM

approach, permitting more accurate modelling of the impact

of the tumour on devil population dynamics.

Similarly, an IPM approach could also be taken to explore

various aspects of the ecology and evolution of bats affected by

white-nose syndrome, an emerging fungal disease of North

American bats (Blehert et al. 2008). White-nose syndrome is

characterized by intense transmission, such that nearly 100%

of bats of multiple species often become infected during the

first winter after the fungus reaches a site (Langwig et al.

2015b).Mortality, which occurs 70–100 days after initial infec-

tion in laboratory studies (Warnecke et al. 2012), usually

occurs in mid to late winter when fungal loads are highest

(Langwig et al. 2015a). IPMs could be fit to pathogen loads

and population dynamics of bats to explore how temperature

and humidity influence pathogen growth and disease impacts

(Langwig et al. 2012). Through modification of the growth

function and survival function, IPMs could be used to deter-

minewhether persistence of some stabilizing populations could

be explained by resistance or tolerance, or other factors affect-

ing host–parasite interactions. For example, resistance could

be described by a reduction or saturation in the growth func-

tionGðx; x0Þ, whereas tolerance could be described by a higher

probability of survival s(x) for the same fungal load, x.

In conclusion, IPMs can be used to answer important

questions regarding host–pathogen interactions in wildlife

and plant disease. Moreover, IPMs can provide new

insight into many classic micro- and macroparasite patterns

such as the distribution of parasites across hosts, age-inten-

sity profiles and the dynamics of infection prevalence. By

bridging the gap between micro- and macroparasites, IPMs

provide an exciting new frontier in modelling wildlife

disease
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