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Abstract

This paper studies the question of when we can eliminate investment inefficiency

in a general mechanism design model with transferable utility. We show that when

agents make investments only before participating in the mechanism, inefficient in-

vestment equilibria cannot be ruled out whenever an allocatively efficient social choice

function is implemented. We then allow agents to make investments before and after

participating in the mechanism. When ex post investments are possible and an alloca-

tively constrained-efficient social choice function is implemented, efficient investments

can be fully implemented in perfect Bayesian Nash equilibria if and only if the social

choice function is commitment-proof (a weaker requirement than strategy-proofness).

Commitment-proofness ensures the efficiency of investments by suppressing the agents’

incentives to make costly ex ante investments which may work as a commitment device.

Our result implies that in the provision of public goods, implementation of efficient in-

vestments and efficient allocations is possible even given a budget-balance requirement.
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1 Introduction

Can an auction, like the spectrum auction, be designed to induce efficient investments as

well as efficient allocations? A standard assumption in the mechanism design literature

is that the values that the participants get out of the possible outcomes are exogenously

given. In many real-life applications however, there are opportunities to invest in the values

of the outcomes outside of the mechanism. In the spectrum auction, telecom companies

make investments in new technologies or build base stations in anticipation of winning the

spectrum licenses. In a procurement auction, participating firms make efforts to reduce

the cost of production in preparation for bidding (Tan, 1992; Bag, 1997; Arozamena and

Cantillon, 2004). Moreover, the firms in these auctions not only make ex ante investments

but also make further investments if they win the auction (Piccione and Tan, 1996). These

investments endogenously form the valuations of the allocations that are determined by the

auction. At the same time, the incentives of both ex ante and ex post investments are affected

by the structure of the allocation mechanism. Therefore, to seek an efficient mechanism, we

should take account of the efficiency of the outside investments it induces, in addition to its

standard efficiency within the mechanism.

The goal of this paper is to analyze when we can fully implement efficient investments,

i.e., under what mechanisms every equilibrium of the investment game will be efficient.1

To do this, we consider a general mechanism design model with transferable utility. This

includes several important applications such as auctions, matching with transfers and the

provision of public goods. The valuation functions of agents at the market clearing stage

are endogenously determined. We examine the following two environments: (i) agents make

investments only before the mechanism, and (ii) they make investments before and after the

mechanism. In either environment, we analyze the implementability of full efficiency, which

requires that given that an allocatively efficient social choice function is implemented, every

equilibrium of the investment game should maximize the total expected utility of agents

inclusive of the cost of investments. In particular, we characterize the social choice functions

for which efficient investments are implementable in every equilibrium. The main results are

summarized as follows: first, with only ex ante investments, we show that efficient invest-

ments are not implementable for any allocatively efficient social choice function (Theorem 1).

Next, allowing for ex post investments, we show that a new concept of commitment-proofness

is sufficient and necessary for implementing efficient investments when an allocatively effi-

1When we simply say “implementation” in this paper, this refers to full implementation. See Definition

3 and 6 for the mathematical expressions.
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cient social choice function is implemented (Theorem 2).

Furthermore, as a variant of the main model, we consider the provision of public goods

with budget balance. In this environment, we show that there exists a commitment-proof,

allocatively efficient and budget-balanced social choice function (Proposition 1). This im-

plies that even with budget-balance requirement, it is always possible to implement efficient

investments and efficient allocations at the same time.

The investigation of full implementation advances the traditional question asked in the

literature: under what mechanisms does there exist an efficient pre-mechanism investment

equilibrium? Rogerson (1992) initiated this field by showing that when agents make invest-

ments prior to the mechanism, there is a socially efficient Nash equilibrium investment profile

for any strategy-proof and allocatively efficient mechanisms. Hatfield, Kojima and Komin-

ers (2015) complemented Rogerson (1992)’s findings to show that strategy-proofness is also

necessary for the existence of an efficient investment equilibrium when the mechanism is al-

locatively efficient. In the context of information acquisition (Milgrom, 1981; Obara, 2008),

Bergemann and Välimäki (2002) indicate the link between ex ante efficiency and strategy-

proofness; the VCG mechanism ensures ex ante efficiency under private values. Overall, in

order to induce efficient ex ante investment incentives, strategy-proofness is essential because

the privately optimal investment choice always becomes socially optimal given other agents’

investment choices.

With only ex ante investments, however, there may exist another inefficient equilibrium

even under strategy-proof mechanisms. Many authors in the literature pointed out this prob-

lem in a particular example, but they have not developed a general result.2 The multiplicity

of equilibria is not a trivial problem because an inefficient equilibrium may not be eliminated

by employing stronger equilibrium concepts such as trempling-hand perfection. Consider an

example where telecom firms are competing for a spectrum license, and suppose they know

the competitors’ cost functions for investments. When investments are observable, the ex

ante investment may work as a commitment device even for a firm whose investment is more

costly than other firms. If it is the only firm that makes an investment, at the market clear-

ing stage, the value of the license can be higher than the values for any other firms because

the cost of investment has been sunk. Therefore, there is an equilibrium at which the firm

makes a lot of costly ex ante investments and deters its competitors from investing. This

role of ex ante investment has also been studied as an entry-deterring behavior for an in-

2For example, see Example 4 of Hatfield, Kojima and Kominers (2015). This motivated the spectrum

auction example which will be introduced in the next section.
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cumbent firm in an oligopolistic market (Spence, 1977, 1979; Salop 1979; Dixit, 1980). This

intuition is generalized by our first result; when agents invest only before the mechanism,

inefficient investment equilibria cannot be ruled out whenever an allocatively efficient social

choice function is implemented (Theorem 1).

In order to eliminate such investment inefficiency while securing allocative efficiency, we

consider a setting where agents can invest before and after participating in the mechanism.

In many applications, agents make further investments after the market clearing stage to

maximize the value of the outcome realized in the mechanism. In the context of bidding for

government contracts, firms invest in cost reduction once they are selected by the govern-

ment to perform the task (McAfee and McMillan, 1986; Laffont and Tirole, 1986, 1987). For

simplicity, we model investments as an explicit choice of valuation functions. Ex ante and ex

post investments are modeled in the following way. First, agents choose their own valuation

functions over the outcomes prior to the mechanism. The cost of each valuation function

is determined by each agent’s cost type. Each agent knows her own cost type, but does

not know the realization of the cost types of other agents. These ex ante investments are

irreversible, but after participating in the mechanism, agents may make further investments

by revising their valuations to more costly ones. Note that equilibrium ex post investments

are always socially optimal given the outcome of the mechanism as we assume no externality

of investments. Therefore, if agents could not make any ex ante investments, the problem of

implementing efficient investments falls within the scope of the classical mechanism design

theory. However, this is not the case when ex ante investments are possible. Our main

theorem characterizes allocatively efficient social choice functions for which investment ef-

ficiency is guaranteed in every equilibrium; given that an allocatively constrained-efficient

social choice function is implemented, commitment-proofness of the social choice function is

sufficient and necessary for implementing efficient investments in any perfect Bayesian Nash

equilibrium (Theorem 2).

We introduce a novel concept called commitment-proofness which is illustrated in the

following (hypothetical) scenario. Suppose that a participant in a mechanism makes a con-

tract with a third party, in which the agent pays some amount to the third party before

the mechanism, and then the third party returns some or all of the payment to the agent

contingent on the outcome of the mechanism. Since this contract manipulates the value of

each outcome (based on the amount of money returned to the agent), it allows the agent

to commit to behaving as a different type in the mechanism. Commitment-proofness of a

social choice function requires that no agent be able to benefit from making such a commit-
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ment.3 This is a natural requirement since the third party would always be (weakly) better

off from entering this contract. The concept thus precludes an important class of ex ante

commitments which can potentially be made in a wide range of environments.

Then, how does the possibility of ex post investment help us obtain a positive result

together with commitment-proofness? First, as we discussed above, investment efficiency

is achieved by any allocatively efficient mechanism if no agent makes ex ante investments.

Therefore, we need to find out under what conditions no agent will have the incentive to

make positive ex ante investments for any cost type.4 Consider a firm whose investment

is more costly than other firms in the spectrum auction explained above. Suppose that no

other firms make any ex ante investments. The values of the spectrum license for these

firms would be low if there were no ex post investment opportunities. But now the value

for each firm should be equal to the maximum net profit from the license inclusive of the

cost of investment because any firm would make the optimal investment ex post if it wins

the auction. Thus, in order for the firm with costly investment to win, it needs to beat

its competitors who value the license more than the costly firm’s potential profit from the

license. To completely suppress the incentive of this firm to win out by investing ex ante,

there must be a sufficient amount of payment for the license. Commitment-proofness of

social choice functions characterizes such transfer payments that are sufficient and necessary

for suppressing the incentives to invest ex ante in a general environment. In this way, the

information of firms’ cost types are revealed by the presence of ex post investment, and

commitment-proofness eliminates the incentives for making ex ante investment which works

as a commitment device.

In our model, the difficulty of implementing efficient investments stems from the com-

bination of the following assumptions: (i) investments are not verifiable, (ii) investments

are irreversible, and (iii) the agents’ cost types are not known to the mechanism designer.

First, if investments were verifiable to a third party, they could just be part of the outcome

of mechanisms and the standard implementation theory applies. However, investment be-

haviors are usually difficult to describe; they are multi dimensional and they involve the

expenditure of time and effort as well as the expenditure of money (Hart, 1995). These non-

contractible investments have also been a central concern in the hold-up problems (Klein,

Crawford, and Alchian, 1978; Williamson, 1979, 1983; Hart and Moore, 1988). Second, if

3As we will show in Section 4, this property is weaker than the well-known strategy-proofness condition.
4In the main model, we introduce a (slight) time discounting between two investment stages so that given

that the allocation rule is efficient, investment efficiency is achieved only when no agents make costly ex ante

investments.
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investments were reversible, the efficiency of allocations would not be affected by the choice

of ex ante investments. Therefore, we could apply mechanisms proposed by the standard

implementation theory and (virtually) implement efficient allocations. Finally, it is obvious

that investments would be efficient if the mechanism designer knew the agents’ cost types

and specified the first-best allocation because investments do not have any externalities.

Unlike related papers that analyze specific mechanisms such as the first-price auction and

the second-price auction (Tan, 1992; Piccione and Tan, 1996; Stegeman, 1996; Bag, 1997;

Arozamena and Cantillon, 2004), we consider the entire space of social choice functions.

Also, we focus on the equilibrium analysis of the investment game outside of the mechanism.

That is, the analysis of the game within the mechanism to implement a social choice function

is set apart from the discussion. This is because we know that a large class of social choice

functions are implementable both under complete and incomplete information. For example,

any social choice function can be implemented by an extensive form mechanism in subgame-

perfect equilibria under quasi-linear utility and complete information environments (Moore

and Repullo, 1988; Maskin and Tirole, 1999). For incomplete information cases, it is known

that a large class of social choice functions are virtually implementable by a static mechanism

(Abreu and Matsushima, 1992). Therefore, most of the social choice rules considered here can

be (virtually) implemented by some mechanism. Hence, our theorem gives a general guideline

to distinguish whether an allocatively efficient mechanism, which may have not been analyzed

well, implements efficient investments. In order to detect whether a specific mechanism

(which has a non-truth-telling equilibrium) implements efficient investments from our results,

we need one more step to check if it implements a commitment-proof and allocatively efficient

social choice function.

There is also large literature on investment incentives before competition or two-sided

matching (Gul, 2001; Cole, Mailath and Postlewaite, 2001a, 2001b; Felli and Roberts, 2002;

De Meza and Lockwood, 2010; Mailath, Postlewaite and Samuelson, 2013; Nöldeke and

Samuelson, 2015). Although these papers have a common interest with ours, there are two

major differences in the modeling choices. First, they often assume that the investments of

the two sides of agents have externalilties. Therefore, it is difficult to eliminate inefficient

investment equilibria in their framework due to coordination failure. Moreover, they often

consider situations where trade takes place in the market clearing stage. In such contexts, it

is not plausible to consider the possibility of ex post investments. In short, our positive result

may not be directly applied to their models because of these differences in the assumptions.

The rest of the paper is organized as follows. In Section 2, we explain a numerical example
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of the spectrum auction to provide intuition for the results. Section 3 introduces the formal

model and defines implementability of efficient investments. In Section 4, commitment-

proofness is introduced, and the impossibility results without ex post investments and the

possibility results with ex post investments are presented. Provision of public goods is dis-

cussed as an application of our model in Section 5. Section 6 concludes. All proofs are in

the appendix.

2 Example: Spectrum Auction

Before introducing the general model, we provide intuition for our main theorems (Theorem

1 and 2) using a simple example of an auction. Consider a situation where two firms, A

and B, are competing for a single spectrum license. The spectrum license is sold in the

English auction, in which the price rises continuously from zero and each firm can drop out

of the bidding. (We also consider another mechanism in the last part of the section.) The

potential value of the spectrum license is in [0, 10]. Each firm i = A, B makes investments

to increase its own value ai of the license outside the auction mechanism. Here, we model

the investment behavior as the explicit choice of a value from the interval [0, 10].5 In order

to realize aA, aB ∈ [0, 10], each firm incurs the cost of investment which is represented by the

following cost functions:

cA(aA) =
1

6
(aA)2,

cB(aB) =
1

4
(aB)2.

For simplicity, we assume that there is only one cost type for each agent. We alo assume that

cost functions are common knowledge between firms and investments are observable (but

not verifiable). Therefore, the information is complete between firms in the games which

will be defined below.6 The mechanism designer does not observe either their investments

or cost types.

First, consider efficient investments and allocation which maximize the sum of each firm’s

profit from the license inclusive of the cost of investments (i.e., the social welfare). If firm A

obtains the license, the optimal investment would be

arg max
aA∈[0,10]

{
− 1

6
(aA)2 + aA

}
= 3.

5This means that we are assuming no externality for investments.
6In the general model, the complete information assumption of the cost types will be relaxed. But we

still assume that investments are observable among agents.
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The maximum net profit for firm A in this case is

max
aA∈[0,10]

{
− 1

6
(aA)2 + aA

}
=

3

2
.

Similarly, for firm B, the optimal investment would be

arg max
aB∈[0,10]

{
− 1

4
(aB)2 + aB

}
= 2.

The maximum net profit for firm A in this case is

max
aB∈[0,10]

{
− 1

4
(aB)2 + aB

}
= 1.

Since there is a single license, it is clear that only one of the firms should make a positive

investment to achieve investment efficiency. Therefore, the unique profile of efficient invest-

ments is (a∗A, a∗B) = (3, 0) and we should allocate the license to firm A. The maximum

social welfare is 3
2
.

Now we define the investment stage as a game between these two firms, and examine

whether every equilibrium of the investment game achieves efficiency. The following two

settings are considered: [1] firms make investments only before the mechanism, and [2] they

make investments before and after the mechanism. We analyze the English auction in both

cases, and also analyze another mechanism in the second setting. We consider trembling-

hand perfect equilibrium (in the agent-normal form) in this section to exclude unintuitive

equilibria of the English auction.7

[1] Investments only before the English auction.

In this case, we model the ex ante investment stage as a simultaneous move game where

each firm chooses its own valuation.8 The timeline of the investment and the auction is as

follows:

1. Each firm i = A, B chooses its own valuation ai from [0, 10] simultaneously. The cost

of investment ci(ai) is paid.

2. They participate in the English auction given the valuations (aA, aB).

7In the next section, we employ perfect Bayesian Nash equilibria for the analysis of the investment game.
8My main results do not heavily rely on the simultaneity of investments. For example, the inefficient

equilibrium in the first setting is also achieved when firm B moves first. In addition, the efficiency result

in the second setting under the English auction is robust to the sequential moves of firms because firm B

would not want to invest whatever the sequence of the move is.
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First, consider the English auction stage. The unique trembling-hand perfect equilibrium is

that each firm drops out when its value is reached.9 Since the valuations of the license for

firms are (aA, aB), firm i ∈ {A,B} whose valuation is higher than the other, i.e., ai ≥ aj

where j ̸= i, wins the license and pays aj in the unique equilibrium. Therefore, given the

equilibrium of the English auction, for any choice of investments (aA, aB) ∈ [0, 10]2, the net

profit of firm i = A, B is written as

−ci(ai) + (ai − aj)1l{ai≥aj}

where j is the other firm.10

Next, analyze the equilibrium of the investment stage. First, it is easy to see that the

socially efficient investments (a∗A, a∗B) = (3, 0) are achieved in equilibrium. Consider another

investment profile (aA, aB) = (0, 2) where firm A makes no investment and firm B chooses 2

ex ante. Consider firm A’s incentive given aB = 2. If firm A wins the auction, the payment

in the English auction would be 2, which exceeds the maximum net profit of 3
2
for firm A;

−1

6
(aA)2 + (aA − 2)1l{aA≥2} ≤

3

2
− 2 < 0

for any aA ∈ [0, 10]. Thus, firm A does not have the incentive to win the auction by

making a positive investment. For firm B, it is clear that choosing 2 is optimal given that

firm A does not make any investments because B will obtain the license in the auction.

Therefore, this profile (aA, aB) = (0, 2) is an equilibrium of the ex ante investment game.

However, this is not an efficient investment profile because it gives less social welfare than

(a∗A, a∗B) = (3, 0). Thus, we can conclude that there is a socially inefficient trembling-hand

perfect equilibrium.

This is an example where the English auction failed to fully implement efficient invest-

ments. Unfortunately, we show that not only the English auction but any other mechanism

9Under complete information, there are other subgame-perfect equilibria. For example, a firm whose

valuation is lower than the other drops out at price zero in a subgame-perfect equilibrium because dropping

out at any low price is indifferent for the losing firm with complete information. However, it is not a

trembling-hand perfect equilibrium because dropping out at its own valuation is strictly better when every

action of the other firm is taken with a positive probability.
101l is an indicator function. For any proposition p, 1l{p} is defined by

1l =

1 if p is true,

0 otherwise.
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fails to implement efficient investments in the general model when there are no ex post in-

vestment opportunities and the allocation is selected efficiently (Theorem 1). Next, let’s

consider what will happen with ex post investments when the same English auction is used.

[2-1] Investments before and after the English auction.

When ex post investments are possible, another investment stage for revising their own

valuations is added after the mechanism. The timeline of the investment and the auction in

this case is:

1. Each firm i = A, B chooses its own valuation ai from [0, 10] simultaneously. The cost

of investment ci(ai) is paid.

2. They participate in the English auction.

3. Each firm i = A, B again chooses its own valuation āi from [ai, 10]. The cost of

additional investment ci(āi)− ci(ai) is paid.

As we discuss in the next section, we assume the irreversibility of investments; āi can be only

chosen from [ai, 10]. Also, the cost function is assumed to be unchanged over time so that

for a fixed total amount āi, the total cost of investment is ci(āi) and choosing any ex ante

investments ai ∈ [0, āi] is indifferent if the allocation is fixed. However, since we consider an

auction mechanism to determine the allocation, ex ante choices matter as they change the

outcome of the auction. The net profit of firm i = A, B is written as

−ci(ai) + (āi − p)1l{i wins the auction} − (ci(āi)− ci(ai))

where p is the payment in the auction, whose equilibrium value will be computed below.

Although the investment game is different from the first setting, efficient investments

and allocation are unchanged; firm A should obtain the license and it makes investments

(a∗A, ā∗A) ∈ [0, 10]2 such that a∗A ≤ ā∗A = 3. Firm B should not make any investment, i.e.,

(a∗B, ā∗B) = (0, 0).

The equilibrium is solved by backward induction. Consider firm A’s optimal strategy in

the ex post investment stage. Given any ex ante valuation choice aA ∈ [0, 10], the profit from

the license in the last stage is

āA −
(
cA(āA)− cA(aA)

)
.
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Thus, it makes further investment only when it obtains the license and aA is less than 3.

The optimal ex post investment strategy given aA is

āA =

max{3, aA} if firm A obtains the license,

aA otherwise.

Similarly, firm B’s optimal ex post investment strategy given aB is

āB =

max{2, aB} if firm B obtains the license,

aB otherwise.

Next, analyze the English auction. Again, in the unique trembling-hand perfect equilib-

rium, the firm with the higher willingness to pay should win and it pays the other firm’s

valuation. Let bi(ai) be the value of the license in the auction stage when firm i chooses ai

ex ante. The following two things should be noted in calculating it; (i) bi(ai) takes account

of the optimal strategy in the ex post stage, and (ii) the cost of ex ante investment is sunk.

For each aA ∈ [0, 10], it is

bA(aA) = max
āA∈[aA,10]

{
āA −

(
cA(āA)− cA(aA)

)}
=

3
2
+ 1

6
(aA)2 if aA ∈ [0, 3) and

aA if aA ∈ [3, 10],

and for each aB ∈ [0, 10],

bB(aB) = max
āB∈[aB,10]

{
āB −

(
cB(āB)− cB(aB)

)}
=

1 + 1
4
(aB)2 if aB ∈ [0, 2) and

aB if aB ∈ [2, 10].

Intuitively, when firm i’s initial investment ai is more than the optimal value 3, bi(ai) is

equal to ai as there is no further investment. If ai is less than the optimal value 3, bi(ai)

is increasing in ai exactly by the amount of ci(ai) because more ex ante investment means

less cost of additional investment when the license is awarded to the firm. Under the unique

equilibrium of the English auction, if firm A wins the license, the payment will be bB(aB)

and vice versa.

Given these equilibrium strategies, we can analyze the first investment stage. Consider

firm B’s incentive. If it wins the license in the English auction, the payment is at least 3
2

because bA(aA) ≥ 3
2
holds for any aA ∈ [0, 10]. However, since the maximum net profit from

the spectrum license is 1 for firm B, it does not have the incentive to win by choosing aB > 3
2
;

max{2, aB} − bA(aA)− 1

4

(
max{2, aB}

)2 ≤ 1− 3

2
< 0.
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Therefore, firm B refrains from making investments in equilibrium, and chooses a∗B = 0.

Since firm A always wins the auction with the payment bB(0) = 1, it is indifferent to choose

any investments (a∗A, ā∗A) such that a∗A ≤ ā∗A = 3.11 Therefore, investment efficiency is

achieved in any trembling-hand perfect equilibrium.

Now allowing for ex post investments, any trembling-hand perfect equilibrium achieves

investment efficiency in the English auction. Why did this become possible? Intuitively, with

only ex ante investments, if firm A has not made any investment, it will drop out at price

zero in the English auction and firm B will choose an investment aB = 2 to maximize its

profit. Furthermore, firm A will optimally choose not to make any investment given aB = 2

because firm B will stay too long in the English auction for firm A to make a profit from

any positive investment. On the other hand, with ex post investments, firm A will stay in

the English auction until the price reaches 3
2
because firm A can make a profit when firm B

drops out before 3
2
. Now, since firm B’s payment exceeds 3

2
if it wins the auction, it cannot

make a profit from any positive investment.

However, when we consider other mechanisms, allowing ex post investment does not

always solve the problem. More importantly, this is not because the mechanism fails to

allocate the license efficiently, but because an inefficient investment equilibrium exists even

though the mechanism always selects an efficient allocation (according to the valuations in

the auction stage).

To introduce such an example of a mechanism, we review the literature of (subgame-

perfect) implementation. A seminal paper by Moore and Repullo (1988) showed that un-

der complete information and quasi-linear utility functions, any social choice function is

subgame-perfect implementable. This implies that by their mechanism, we can implement an

efficient allocation rule with any transfer rule. Consider here one such mechanism: a Moore-

Repullo mechanism which always chooses an efficient allocation according to (bA(aA), bB(aB))

and does not impose any transfers.12

[2-2] Investments before and after the efficient Moore-Repullo mechanism with no transfers.

The timeline of the investment game is the same as in the previous case [2-1]. The English

11When there is a strict time discounting as we consider in the general model, the unique optimal invest-

ment is (a∗A, ā∗A) = (0, 3).
12In some countries such as Japan, spectrum licenses are still allocated to firms for free once they are

screened by the government. Although this process is not a mechanism, if the government correctly observes

the valuations (bA(aA), bB(aB)), it is exactly the social choice function implemented by this Moore-Repullo

mechanism.
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auction is replaced by the following mechanism.

Stage 1:

1-1. Firm A announces its own valuation b̄A.

1-2. Firm B decides whether to challenge firm A’s announcement b̄A.

If firm B does not challenge it, go to stage 2.

If firm B challenges, firm A pays 20 to the mechanism designer. Firm B receives 20 if

the challenge is successful, but pays 20 to the mechanism designer if it is a failure. Whether

it is a success or a failure is determined by the following game: The license is sold in the

second-price auction. Firm B chooses some b̄B to submit to the auction and a positive value

η > 0, and asks firm A to choose one of them:

(i) submitting any value,

(ii) submitting b̄A and receiving an additional transfer η.

The challenge is successful only if firm A picks (i). Stop.

Stage 2: Same as stage 1, but the roles of A and B are switched.

Stage 3: If there are no challenges in stage 1 and 2, the license is given for free to firm i such

that b̄i ≥ b̄j where j is the other firm.

Given the optimal strategies in the ex post investment stage, for any profile of ex ante

investments (aA, aB), it is shown that the unique subgame-perfect (and also trembling-hand

perfect) equilibrium of this mechanism is such that each firm i = A, B announces its true

valuation bi(ai), and no firm challenges the other firm’s claim (Moore and Repullo, 1988).

The intuitive reason is that in the challenge phase, the other firm j can choose some b̄j

and η > 0 so that the challenge is successful (firm i optimally chooses (i)) whenever the

announcement b̄i of firm i is different from bi(ai). Also, the other firm’s challenge would

never be successful when the announcement is truthful since (ii) is always chosen by a

truthful firm. Therefore, the allocation is always determined efficiently and no transfer is

imposed in equilibrium.

Consider firm B’s incentive in the first investment stage. Now firm B has the incentive

to invest more than firm A as long as A’s investment is socially efficient, i.e., aA ≤ 3. This

is because the price of the license is zero in the mechanism and firm B would still earn a

positive profit by winning the auction: for some aB ∈ (3, 4),

max{2, aB} − 0− 1

4

(
max{2, aB}

)2
> 0.

Actually, there is a mixed strategy equilibrium in which aB > 0 occurs with a positive
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probability. Thus, efficient investments are not implemented by this allocatively efficient

Moore-Repullo mechanism with no transfers.

In the English auction with ex post investments, firm B could not make a profit by

investing aB = 2 because the price of the license was greater than 3
2
. However, in this zero-

payment mechanism, aB = 2 remains profitable because firm B does not pay anything in

the auction. This shows that the range of the price of the license is critical for inducing the

right incentive for firm B. Suppose that the allocation is always efficiently determined, and

that firm A does not make any ex ante investment, i.e., aA = 0. Then, firm B would lose the

auction when choosing aB = 0, but would win the auction if it chooses aB = 2. In order to

prevent firm B from choosing 2, the price p of the license when firms choose (aA, aB) = (0, 2)

ex ante should satisfy

0 ≥ bB(2)− cB(2)− p ⇔ p ≥ 1.

Obviously, the English auction satisfied this condition, but the Moore-Repullo mechanism

with no transfers violated it. This idea of disincentivizing ex ante investment with a right

transfer rule can be applied to more general environments. Our main contribution is to

discover a property of a social choice function, which we call commitment-proofness, in the

general model and to show that it is sufficient and necessary for implementing efficient

investments.

3 General Model

There is a finite set I of agents and a finite set Ω of alternatives. A valuation function of

agent i ∈ I is vi : Ω → R. The valuation function is endogenously determined by each

agent’s investment decision as described below. The set of possible valuation functions is

V i ⊆ RΩ. Assume that V i is a compact set. Denote the profile of the sets of valuations by

V ≡ ×i∈IV
i. We assume that investments are not verifiable to a third party. Therefore,

a mechanism chooses an alternative and transfers, but does not choose agents’ investment

behaviors. We discuss the relationship between social choice rules and mechanisms later in

this section.

Each agent makes an investment decision to determine her own valuation over alterna-

tives. The investment is modeled as an explicit choice of a valuation function with the cost

of investment determined by a cost function ci : V i × Θi → Ci ⊆ R+ where Θi is a finite

set of cost types of agent i. Each agent i knows her own cost type θi ∈ Θi, but may be

14



unsure about θ−i ≡ (θj)j∈I\{i}. There is a common prior distribution on Θ ≡ ×i∈IΘ
i, de-

noted p. Conditional on knowing her own cost type θi, agent i’s posterior distribution over

Θ−i ≡ ×j∈I\{i}Θ
j is denoted p(·|θi). p(·|θi) is computed by Bayes rule whenever θi occurs

with a positive probability, i.e.,
∑

θ−i∈Θ−i p(θi, θ−i) > 0.13 Assume that Ci is a compact set

and 0 ∈ Ci. Denote the profile of the sets of possible costs by C ≡ ×i∈IC
i. Without loss of

generality, the cost of investment is assumed to be non-negative, and we also assume that

for each θi ∈ Θi, there is vi ∈ V i such that ci(vi, θi) = 0. There are two investment stages;

before and after participating in the mechanism. We model each of the investment stages as

a simultaneous move game by all agents. Assume that the investment is irreversible; if agent

i with cost type θi chooses vi ∈ V i before the mechanism, she can only choose a valuation

function from the set {v̄i ∈ V i|ci(v̄i, θi) ≥ ci(vi, θi)} in the second investment stage.14 To

clarify, the timeline of the investment game induced by a mechanism is:

0. Each agent i observes her own cost type θi ∈ Θi.

1. Each agent makes a prior investment by choosing a valuation function vi ∈ V i simul-

taneously.

2. Agents participate in a mechanism.

3. After the mechanism is run, each agent can make an additional investment, i.e., each

agent chooses a valuation function from {v̄i ∈ V i|ci(v̄i, θi) ≥ ci(vi, θi)}.

We assume that chosen valuation functions are observable among agents (but not verifiable).

Also, assume that cost functions are common knowledge among agents and the mechanism

designer. However, each agent only knows her own cost type and the distribution of other

agents’ cost types. The mechanism designer does not know the realized cost type vector

θ or the common prior distribution p. The investment game is an incomplete information

game if p is a non-degenerate distribution. We allow for the complete information case where

p(θ) = 1 for some θ ∈ Θ. Throughout the analyses in this paper, we fix the set I of agents,

the set Ω of alternatives, the set Θ of cost types and the common prior distribution p.

The ex ante utility function of an agent has the following three components: the valuation

functions she chooses in the first and the second investment stages, the cost function and a

13If
∑

θ−i∈Θ−i p(θi, θ−i) = 0, we assign any arbitrary posterior distribution p(·|θi).
14The essential assumption is actually that the cost of ex ante investment is sunk, rather than the (physical)

irreversibility of an investment itself. However, we maintain the assumption of irreversibility since it keeps

the analysis simple and easy to understand.
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discount factor. Let β ∈ (0, 1] be a discount factor which discounts the utility realized in

the second stage and later.15 For an alternative ω ∈ Ω, a transfer vector t ≡ (ti)i∈I ∈ RI

and an investment schedule (vi, v̄i) ∈ (V i)2 where vi is the valuation function chosen before

the mechanism and v̄i is the final valuation function, the ex ante utility of agent i with cost

type θi is defined by

−ci(vi, θi) + β
[
v̄i(ω)− ti −

(
ci(v̄i, θi)− ci(vi, θi)

)]
.16 (1)

In the first stage, only the cost ci(vi, θi) of ex ante investment is paid. In the second stage,

the outcome (ω, t) of the mechanism is evaluated by the final valuation function v̄i. And in

the last stage, the additional cost ci(v̄i, θi)− ci(vi, θi) ≥ 0 of revising the valuation function

is paid. Throughout the paper, we consider this quasi-linear utility function, i.e., utility to

be perfectly transferable.

When agents face the mechanism in the second stage, the cost of investment made in the

first stage is already sunk. Moreover, in any equilibrium, an alternative ω ∈ Ω is evaluated

by a valuation function which is the optimal choice of the ex post investment. Therefore,

we can define the valuations of agents at the time of the mechanism as follows using the

notation bc
i,θi,vi for any cost function ci : V i × Θi → Ci, cost type θi ∈ Θi and the prior

investment vi ∈ V i.

Definition 1. The valuation function bc
i,θi,vi : Ω → R at the time of the mechanism given

a cost function ci : V i × Θi → Ci, a cost type θi ∈ Θi and a valuation function vi ∈ V i is

defined by

bc
i,θi,vi(ω) = max

v̄i∈{ṽi∈V i|ci(ṽi,θi)≥ci(vi,θi)}

{
v̄i(ω)− ci(v̄i, θi)

}
+ ci(vi, θi)

for each ω ∈ Ω. Let bc,θ,v ≡ (bc
i,θi,vi)i∈I .

The equation is taken from the second term of equation (1), and takes account of each

agent’s optimal ex post investment choice given the cost type. Given a prior investment

vi ∈ V i and an alternative ω ∈ Ω, the optimal choice of the ex post investment should be

15There is no time discounting between the mechanism stage and the ex post investment stage, but this is

without loss of generality.
16Here, we assume that the same cost function is used for both investment stages. Some of the main

results, however, still hold when the cost functions differ across time. For example, the sufficiency part of

our possibility theorem (Theorem 2) holds as long as the ex post cost function is weakly lower than the ex

ante cost function.
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v̄i ∈ V i which maximizes the net value v̄i(ω)− ci(v̄i, θi) among the set of feasible valuation

functions, which is {ṽi ∈ V i|ci(ṽi, θi) ≥ ci(vi, θi)}.17

A social choice function h : RΩ×I → Ω × RI is defined as a mapping from the potential

set RΩ×I of valuation functions at the time of the mechanism to the set Ω of alternatives

and the set RI of transfer vectors. A social choice function h ≡ (hω, ht) has the following

two components; hω : RΩ×I → Ω is called an allocation rule and ht : RΩ×I → RI is called

a transfer rule. The transfer rule for each agent is denoted by hi
t : RΩ×I → R and ht(b) =

(hi
t(b))i∈I holds for any b ∈ RΩ×I . Note that the domain RΩ×I of social choice functions is

not restricted by V , but defined to include any potential valuation functions at the time of

the mechanism. Therefore, a social choice function is defined only for a tuple (I,Ω). As we

see below, when we define the implementability of efficient investments given a social choice

function, we consider any possible set V ⊆ RΩ×I of valuation functions and a profile of cost

functions c : V ×Θ → C.

We are interested in whether efficient investments are fully implementable in perfect

Bayesian Nash equilibria when an allocatively efficient social choice function is implemented.

In this paper, we focus on the analysis of an investment game induced by a social choice

function, and do not explicitly consider mechanisms to implement the social choice function.

Although we do not discuss whether a specific social choice function is implementable, the

literature has shown several positive results under both complete and incomplete information.

For example, Moore and Repullo (1988) showed that any social choice function is subgame-

perfect implementable by their extensive form mechanism under transferable utility and

complete information environments.18 Their extensive form mechanism only works under

complete information, but even under incomplete information, Abreu and Matsushima (1992)

showed that a large class of social choice functions are virtually implementable. Therefore,

we take these positive theorems as given, and simply consider the entire space of social choice

functions in this paper. We leave the equilibrium analysis within a mechanism outside the

scope of the paper, and concentrate on finding out the properties of social choice functions

17If the cost of ex ante investments is refundable, the valuation function at the time of the mechanism

only shifts by a constant for any choice of ex ante investment (since the first term of bc
i,θi,vi

(ω) would then

be fixed). This means that concepts such as allocative efficiency (defined shortly) are not essentially affected

by the ex ante investment behaviors. Therefore, we focus on the non-trivial cases where ex ante investment

is irreversible.
18To make use of the Moore-Repullo mechanism, the utility of agents must be uniformly bounded. Thus,

the amount of penalty used in this mechanism needs to depend on (V,C), but it can be appropriately chosen

in this setting because V and C are both bounded.

17



which enable us to implement efficient investments.

RΩ×I

Ω×RI ×V 2

h
Ω×RI

Mechanism�

choose�
v ∈V

choose�
s.t.�
v ∈V

c(v,θ ) ≥ c(v,θ )

Θ

Figure 1. The structure of a social choice function and the investment game.

To introduce the implementability of efficient investments, we first define a perfect

Bayesian Nash equilibrium of an investment game induced by a given social choice func-

tion. For the set of strategies in the first investment stage, we denote the set of all mappings

from Θi to V i by Σi. For the set of strategies in the last investment stage, we denote the set

of all mappings from V i × Ω×Θi to V i as Mi. Let Σ ≡ ×i∈IΣ
i and M ≡ ×i∈IMi.

Definition 2. For any V ⊆ RΩ×I and any profile of cost functions c : V ×Θ → C, a profile

of investment strategies (σ∗, µ∗) ∈ Σ×M is a perfect Bayesian Nash equilibrium (PBNE) of

the investment game given a social choice function h : RΩ×I → Ω×RI and a discount factor

β ∈ (0, 1] if for each i ∈ I and θi ∈ Θi,

1. µ∗i(vi, ω, θi) ∈ arg max
v̄i∈{ṽi∈V i|ci(ṽi,θi)≥ci(vi,θi)}

{
v̄i(ω)− ci(v̄i, θi)

}
for any vi ∈ V i and ω ∈ Ω, and

2. σ∗i(θi) ∈ arg max
vi∈V i

{
− ci(vi, θi) + β

∑
θ−i∈Θ−i p(θ−i|θi)[

µ∗i(vi, hω(b
ci,θi,vi , b−i), θi)(hω(b

ci,θi,vi , b−i))− hi
t(b

ci,θi,vi , b−i)

−ci(µ∗i(vi, hω(b
ci,θi,vi , b−i), θi), θi) + ci(vi, θi)

]}
where b−i ≡ bc

−i,θ−i,σ∗−i(θ−i)

hold.
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The first condition of a PBNE is the optimality in the ex post investment stage. Since the

investment does not have an externality, this is simply an individual maximization problem.

Therefore, it is defined for each information set in the last stage, which is characterized by

the choice of the first stage investment, the realized alternative and the cost type of the

agent. The second condition requires that σ∗ forms a Bayesian Nash equilibrium of the

first stage investment game, given the optimal ex post investment strategy µ∗ and the social

choice function h.

Full implementation of efficient investments requires that any PBNE of the investment

game should be socially efficient. More precisely, given that a social choice function h is

implemented, efficient investments are said to be implementable in PBNE if for any profile

of the sets of valuations and cost functions, any PBNE of the investment game given h and

a discount factor β maximizes the sum of expected utility of agents inclusive of the cost of

investments given h and β.

Definition 3. Given a social choice function h : RΩ×I → Ω × RI and a discount factor

β ∈ (0, 1], efficient investments are implementable in perfect Bayesian Nash equilibria if for

any V ⊆ RΩ×I and any profile of cost functions c : V × Θ → C, any perfect Bayesian Nash

equilibrium (σ∗, µ∗) ∈ Σ×M satisfies the following equation:

(σ∗, µ∗) ∈ arg max
(σ,µ)∈Σ×M

∑
θ∈Θ

p(θ)
∑
i∈I

{
− ci(σi(θi), θi)

+ β
[
µi(σi(θi), hω(b

c,θ,σ(θ)), θi)(hω(b
c,θ,σ(θ)))− ci(µi(σi(θi), hω(b

c,θ,σ(θ)), θi), θi) + ci(σi(θi), θi)
]}

.

Next, we define the properties of social choice functions. There are two versions of

allocative efficiency. The first definition of allocative efficiency is standard; the allocation

rule chooses an alternative to maximize the sum of the valuation of agents. A social choice

function h : RΩ×I → Ω× RI is allocatively efficient if for any b ∈ RΩ×I ,

hω(b) ∈ arg max
ω∈Ω

∑
i∈I

bi(ω).

Our main theorem (Theorem 2) holds for a weaker notion of allocative efficiency, which is

called allocative constrained-efficiency. This guarantees allocative efficiency within a certain

subset of alternatives.

Definition 4. A social choice function h : RΩ×I → Ω×RI is allocatively constrained-efficient

for Ω′ ⊆ Ω with Ω′ ̸= ∅ if for any b ∈ RΩ×I , the allocation rule satisfies

hω(b) ∈ arg max
ω∈Ω′

∑
i∈I

bi(ω).
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Note that Ω′ in the definition above can be a singleton set. Thus a constant social choice

function h̄ : RΩ×I → Ω×RI such that h̄ω(b) = ω̄ ∈ Ω for any b ∈ RΩ×I also satisfies allocative

constrained-efficiency for Ω′ ≡ {ω̄}. We also say that an allocation rule hω : RΩ×I → Ω is

allocatively (constrained-) efficient if a social choice function h ≡ (hω, ht) is allocatively

(constrained-) efficient.

As mentioned in the introduction, a new concept called commitment-proofness plays a

crucial role in our possibility theorem (Theorem 2). Since it will need a careful explanation,

we will defer the definition of commitment-proofness to subsection 4.2 where we begin to

discuss the possibility of implementing efficient investments.

4 Implementation of Efficient Investments

4.1 Impossibility without Ex Post Investments

In the literature, it is often assumed that investments are made only before the mechanism.

In such a situation, Rogerson (1992) and Hatfield, Kojima and Kominers (2015) showed

that we can find an efficient equilibrium of the investment game given allocatively efficient

and strategy-proof social choice functions. But at the same time, another inefficient equi-

librium exists in many examples. This is due to the fact that the ex ante investment stage

incentivizes some agents to make more investments than at the efficient level and generates

a multiplicity of equilibria. To see if this observation can be generalized, we consider the

implementability of efficient investments without the post-mechanism investments in our

model. For this purpose, we need to redefine the implementability of efficient investments

for this environment accordingly.

When ex post investments are not allowed, the investment game induced by a social choice

function is a one-shot game which takes place before the mechanism. Thus, the equilibrium

concept we employ in the investment game reduces to a Bayesian Nash equilibrium in this

case.

Definition 5. For any V ⊆ RΩ×I and any profile of cost functions c : V ×Θ → C, a profile

of investment strategies σ∗ ∈ Σ is a Bayesian Nash equilibrium of the ex ante investment

game given a social choice function h : RΩ×I → Ω×RI and a discount factor β ∈ (0, 1] if for

each i ∈ I and θi ∈ Θi,

σ∗i(θi) ∈ arg max
vi∈V i

{
− ci(vi, θi)+β

∑
θ−i∈Θ−i

p(θ−i|θi)
[
vi(hω(v

i, σ∗−i(θ−i)))−hi
t(v

i, σ∗−i(θ−i))
]}
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holds.

Implementability of efficient investments is redefined in the following way. In this environ-

ment, investment efficiency requires that the total expected utility of agents be maximized

given that agents cannot revise their original choices of valuation functions after the mech-

anism.

Definition 6. Given a social choice function h : RΩ×I → Ω × RI and a discount factor

β ∈ (0, 1], efficient ex ante investments are Bayesian Nash implementable if for any V ⊆ RΩ×I

and any profile of cost functions c : V × Θ → C, any Bayesian Nash equilibrium σ∗ ∈ Σ

satisfies the following equation:

σ∗ ∈ arg max
σ∈Σ

∑
θ∈Θ

p(θ)
∑
i∈I

{
− ci(σi(θi), θi) + βσi(θi)(hω(σ(θ)))

}
.

The question is whether efficient ex ante investments are Bayesian Nash implementable

given certain social choice functions. Unfortunately, the result is negative when we require

allocative efficiency; for any allocatively efficient social choice function, there is a profile of

the sets of valuations and cost functions under which there exists an inefficient equilibrium

of the ex ante investment game.

Theorem 1. Suppose |I| ≥ 2 and |Ω| ≥ 2. Given any allocatively efficient social choice

function h : RΩ×I → Ω×RI and any discount factor β ∈ (0, 1], there exists V ⊆ RΩ×I and a

profile of cost functions c : V ×Θ → C such that an inefficient Bayesian Nash equilibrium of

the ex ante investment game exists, which means that efficient ex ante investments are not

Bayesian Nash implementable.

We show Theorem 1 by considering the following two cases: when the social choice

function h is strategy-proof and when it is not. Here strategy-proofness plays a key role

because ex post investments are not allowed and hence the model has the same structure as

those considered by Rogerson (1992) and Hatfield, Kojima and Kominers (2015). Therefore,

there exists an efficient Bayesian Nash equilibrium of the ex ante investment game if h is

strategy-proof, and there may not if it is not strategy-proof. In both cases, we construct an

example where the cost functions are constant across any type profile θ ∈ Θ of agents, so

that the investment game is under complete information.

When h is not strategy-proof, the logic follows Theorem 1 and 2 of Hatfield, Kojima

and Kominers (2015) who show that for an allocatively efficient social choice function h, if
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agent i’s ex ante choice of a valuation that maximizes her own utility always maximizes the

social welfare given other agents’ valuations, then h must be strategy-proof for i. Therefore,

when it is not strategy-proof, we can construct a profile of cost functions under which, given

other agents’ valuations, the privately optimal ex ante investment choice for agent i does not

achieve investment efficiency.19

On the other hand, for any strategy-proof social choice function, the logic of the English

auction example in the previous section applies. Thus, we can always construct a case where

an inefficient investment equilibrium exists in addition to the efficient one. This is because

the ex ante investment stage gives commitment power to more than one agents although their

cost functions are different. Once some agent makes a large investment, then other more

efficient agents may refrain from making investments as it is costly to compete with them in

the mechanism. Hence, the mechanism allows them to achieve a socially inefficient outcome

in equilibrium. In the next subsection, we introduce commitment-proofness to eliminate such

incentives when further investments are possible after the mechanism.

4.2 Commitment-proofness

The previous subsection demonstrated that inefficient equilibria cannot be ruled out if there

are no ex post investment opportunities. In this paper, we seek the possibility of implemen-

tation by allowing the ex post investment opportunities. When investments are possible both

ex ante and ex post, there are two opposing forces which influence the implementability of

efficient investments. The ex post investment stage helps to achieve it by allowing agents

to reflect the information of their cost types onto the valuations at the time of the mech-

anism. As we saw in Theorem 1 however, the ex ante investment stage does the opposite

by preventing us from extracting the information of their cost types. Which of these two

forces dominates the other depends on the characteristics of the social choice function to

be implemented. To answer this question, we introduce a new concept of a social choice

function called commitment-proofness.

Definition 7. A social choice function h : RΩ×I → Ω × RI is commitment-proof if for any

i ∈ I, b ∈ RΩ×I , b̃i ∈ RΩ and x ≥ 0 such that b̃i(ω) ≤ bi(ω) + x for all ω ∈ Ω,

b̃i(hω(b̃
i, b−i))− hi

t(b̃
i, b−i)− x ≤ bi(hω(b))− hi

t(b). (2)

19Note that the construction of cost functions is slightly different from Hatfield, Kojima and Kominers

(2015) because the cost of investment in our model is non-negative whereas it is not assumed as such in their

paper.
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The concept of commitment-proofness involves a manipulation of an agent’s true valu-

ation through a certain commitment behavior given that the social choice function is im-

plemented. Conceptually, this is distinct from a misreport of valuations when the social

choice function is regarded as a direct mechanism, but there is indeed a close relationship

with the strategy-proofness condition. This point will be demonstrated shortly. In equation

(2), the non-negative value x can be interpreted as the cost of commitment. Consider a

situation where each agent can make a contract with a third party that the agent will pay x

to the third party in advance, and x or less will be paid back to the agent depending on the

alternative chosen by the social choice function (the payback can be negative). We argue

that the supposition of this situation (or other situations which bring about the same effect)

is not demanding because the third party wouldn’t lose anything from this contract. By

making this agreement, the agent can commit to having a different valuation in the mech-

anism because the value from each realization of ω ∈ Ω has been manipulated even though

the genuine value of ω is unchanged. When agent i’s original valuation function is bi, her

new valuation function given this contract will be b̃i which satisfies b̃i(ω) ≤ bi(ω) + x for

all ω ∈ Ω. Equation (2) requires that no agent be able to benefit from such a commitment

under h.

The following example gives a numerical illustration of a commitment (b̃i, x) for a given

bi, and shows how we detect commitment-proofness of social choice functions.

Example 1. Consider an auction with a single item and two bidders. Let I = {i, j} and

Ω = {ωi, ωj} where ωi and ωj each represent the alternatives where i and j obtain the item

respectively. Suppose that the original valuation function (at the time of the mechanism) of

agent i is bi : Ω → R such that

bi(ωi) = 10,

bi(ωj) = 0.

Consider x = 5 and another valuation function (at the time of the mechanism) b̃i : Ω → R
such that

b̃i(ωi) = 15,

b̃i(ωj) = 0.

These x and b̃i satisfy the condition that b̃i(ω) ≤ bi(ω) + x for all ω ∈ Ω. Thus, (b̃i, x) is one

of the commitments given bi.
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Suppose agent j’s valuation function is fixed to bj : Ω → R such that

bj(ωi) = 0,

bj(ωj) = 11.

Consider the following two social choice functions:20

1. The second-price auction hSPA which gives the item to who values it most and has the

winner pay the other agent’s value, and

2. The half-price auction hhalf which gives the item to who values it most and has the

winner pay the half of her own value.

We examine whether the equation (2) holds for the example of valuation functions bi, b̃i and

bj above.

[1] Under hSPA, the RHS of equation (2) is 0 because agent i loses the auction. On the

LHS, i wins the auction when her true valuation is b̃i, and the utility from the auction is

b̃i(hSPA
ω (b̃i, bj)) − hSPA,i

t (b̃i, bj) = 15 − 11 = 4. However, including the cost of commitment

x = 5, we have

b̃i(hSPA
ω (b̃i, bj))− hSPA,i

t (b̃i, bj)− x = −1 < 0 = bi(hSPA
ω (b))− hSPA,i

t (b).

Thus, equation (2) holds for this example of valuation functions.21

[2] Under hhalf , the RHS of equation (2) is again 0 for the same reason. On the LHS, i wins

the auction when her true valuation is b̃i, and the utility from the auction is b̃i(hhalf
ω (b̃i, bj))−

hhalf,i
t (b̃i, bj) = 15− 7.5 = 7.5. Then, even with the cost of commitment x = 5, we have

b̃i(hhalf
ω (b̃i, bj))− hhalf,i

t (b̃i, bj)− x = 2.5 > 0 = bi(hhalf
ω (b))− hhalf,i

t (b).

Therefore, we know that the half-price auction hhalf is not commitment-proof.

Commitment-proofness is defined as a property of a social choice function and is not

directly related to the structure of the investment game. Our main theorem establishes a

strong connection between this concept and the implementability of efficient investments;

20The social choice function should be defined for RΩ×I in general in this paper, but for this example we

only consider the following domains, Bi = {a1l{ω=ωi}|a ∈ R+} and Bj = {a1l{ω=ωj}|a ∈ R+}, to simplify the

exposition of auction rules.
21Indeed, it is shown that this holds for any other valuation functions concerned in the definition of

commitment-proofness, and that the second-price auction is commitment-proof.
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commitment-proofness is sufficient and necessary for implementing efficient investments in

PBNE. Intuitively, for any sets of valuation functions and cost functions, it will be shown

that the cost of any costly ex ante investment corresponds to the cost of commitment (x) in

the definition of commitment-proofness. Thus, no agent has the incentive to make a costly

investment before the mechanism is run, and investment efficiency is achieved. As we will

see in more detail in the next subsection, commitment-proofness works as a dividing ridge

for understanding the interaction of two investment stages; (only) when commitment-proof

social choice functions are implemented, the role of the ex post investment stage outweighs

that of the ex ante investment stage.

As mentioned above, commitment-proofness has an interesting relationship with the more

well-known strategy-proofness; any strategy-proof social choice function is commitment-

proof. To see this, we first define strategy-proofness. A social choice function h : RΩ×I →
Ω× RI is strategy-proof if for any i ∈ I, b ∈ RΩ×I and b̃i ∈ RΩ,

bi(hω(b̃
i, b−i))− hi

t(b̃
i, b−i) ≤ bi(hω(b))− hi

t(b)

Showing that commitment-proofness is implied by strategy-proofness is straightforward: for

any i ∈ I, b ∈ RΩ×I , b̃i ∈ RΩ and x ≥ 0 such that b̃i(ω) ≤ bi(ω) + x for all ω ∈ Ω,

b̃i(hω(b̃
i, b−i))− hi

t(b̃
i, b−i)− x ≤ bi(hω(b̃

i, b−i))− hi
t(b̃

i, b−i) ≤ bi(hω(b))− hi
t(b),

where the first inequality follows from the definition of b̃i, and the second inequality holds

from the strategy-proofness of h. Commitment-proofness concerns behaviors to manipulate

the agents’ true types outside the mechanism, rather than their misreports in the mechanism.

Nonetheless, the fact that commitment-proofness is weaker than strategy-proofness implies

that the consequence of commitments considered in this definition is translated into a type

of misreports when the social choice function is regarded as a direct mechanism.

From this relationship, we know that the VCG auction, which is known to be strategy-

proof, satisfies commitment-proofness. The VCG social choice function hV CG is defined as

follows: for any b ∈ RΩ×I ,

hV CG
ω (b) ∈ arg max

ω∈Ω

∑
i∈I

bi(ω),

hV CG,i
t (b) = max

ω∈Ω

∑
j∈I\{i}

bj(ω)−
∑

j∈I\{i}

bj(hV CG
ω (b)) for any i ∈ I.

The second-price auction is a special case of the VCG auction, so it is also commitment-proof.

Since commitment-proofness is weaker than strategy-proofness, there exists a non-strategy-

proof social choice function which is commitment-proof. Consider a class of social choice
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functions hα : RΩ×I → Ω × RI parameterized by α ∈ [0, 1) such that the alternative is

efficiently chosen and the payment is a convex combination of the VCG payment and each

agent’s own valuation from the alternative itself: for any b ∈ RΩ×I ,

hα
ω(b) ∈ arg max

ω∈Ω

∑
i∈I

bi(ω),

hα,i
t (b) = α

{
max
ω∈Ω

∑
j∈I\{i}

bj(ω)−
∑

j∈I\{i}

bj(hα
ω(b))

}
+ (1− α)bi(hα

ω(b)) for any i ∈ I

for some α ∈ [0, 1). This hα is not strategy-proof because for some valuations of other agents,

an agent will be strictly better off by decreasing her report of valuation without changing

the alternative chosen by hα. However, this is shown to be commitment-proof. The first

part of the payment is exactly the VCG payment, and we know that the VCG social choice

function satisfies equation (2). Regarding the second part of the payment, it is easy to see

that for any i ∈ I, b ∈ RΩ×I , b̃i ∈ RΩ and x ≥ 0 such that b̃i(ω) ≤ bi(ω) + x for all ω ∈ Ω,

b̃i(hω(b̃
i, b−i))− hi

t(b̃
i, b−i)− x = −x ≤ 0 = bi(hω(b))− hi

t(b)

holds. Therefore, equation (2) is satisfied when the transfer rule is a convex combination of

these two, and hence hα is commitment-proof.

4.3 Possibility with Ex Ante and Ex Post Investments

Now we formally present the possibility theorem in our original model. In what follows, we

demonstrate how commitment-proofness makes it possible to implement efficient investments

when ex post investments are allowed.

First, for the purpose of the main theorem, we prove the following lemma.

Lemma 1. For any agent i ∈ I, V i ⊆ RΩ×I and a cost function ci : V i ×Θi → C i,

ci(vi, θi) ≥ max
ω∈Ω

{
bc

i,θi,vi(ω)− bc
i,θi,v0i(ω)

}
holds for any θi ∈ Θi, vi ∈ V i, and v0i ∈ V i such that ci(v0i) = 0.

Proof: From the definition of the valuation at the time of the mechanism,

bc
i,θi,v0i(ω) = max

v̄i∈V i

{
v̄i(ω)− ci(v̄i, θi)

}
≥ max

v̄i∈{ṽi∈V i|ci(ṽi,θi)≥ci(vi,θi)}

{
v̄i(ω)− ci(v̄i, θi)

}
= bc

i,θi,vi(ω)− ci(vi, θi)
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holds for any ω ∈ Ω. Thus, we have ci(vi, θi) ≥ maxω∈Ω

{
bc

i,θi,vi(ω)− bc
i,θi,v0i(ω)

}
.

This lemma shows that the cost of changing the original valuation bc
i,θi,v0i with least

costly ex ante investment v0i to another valuation bc
i,θi,vi with some ex ante investment vi

is at least as large as the maximum element of the difference between bc
i,θi,v0i and bc

i,θi,vi .

This is useful when we connect the definition of commitment-proofness to the structure of

the investment game in the following theorem.

The next result is the main theorem of this paper which identifies when efficient in-

vestments are implementable; for allocatively constrained-efficient social choice functions,

commitment-proofness is sufficient and necessary for implementing efficient investments in

PBNE for any discount factor β ∈ (0, 1).

Theorem 2. Consider any I, Ω and any social choice function h : RΩ×I → Ω × RI which

is allocatively constrained-efficient for some Ω′ ⊆ Ω with Ω′ ̸= ∅. Given the social choice

function h, efficient investments are implementable in PBNE for any discount factor β ∈
(0, 1) if and only if h is commitment-proof.

The proof consists of the following two parts; (i) commitment-proofness of h as sufficient

for implementing efficient investments, and (ii) it also being necessary. First, we characterize

the set of PBNE when h is commitment-proof. We show that under commitment-proof

social choice functions, no agent has the incentive to make a costly investment ex ante for

any cost type. This is because the cost of any (costly) investment corresponds to x in the

definition of commitment-proofness as shown in Lemma 1, and every agent i prefers to have

the valuation bc
i,θi,v0i with least costly ex ante investment at the mechanism stage. And

we show that any such PBNE maximizes the expected social welfare when the social choice

function h is allocatively constrained-efficient. For the necessity part, we show that if h is

not commitment-proof for agent i, there is a set of valuations and a profile of cost functions

under which agent i has the incentive to make a costly investment ex ante, which is socially

inefficient. Therefore, we conclude that only under commitment-proof social choice functions,

the incentive for making a commitment through ex ante investment is completely suppressed

by the presence of the ex post investment stage, and efficient investments are implemented.

Regarding the two distinct features of our main result that (i) inefficient investment

equilibria are eliminated when (ii) post-mechanism investments are allowed, Piccione and

Tan (1996) provided a closely related result in the literature. They analyze a procurement

auction in which firms make R&D investments prior to the auction and the firm that wins

the procurement contract exerts an additional effort to reduce costs. One of the main results
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of their paper is that the full-information solution (in which investments and alternative

are efficient) can be uniquely implemented by the first-price and second-price auctions when

the R&D technology exhibits decreasing returns to scale. Although the model is similar

to ours, the focus of their theorem is different. Their result determines the structure of

cost functions which enable unique implementation under those two common auction rules.

On the other hand, we characterize the set of social choice functions for which efficient

investments are implementable. Also, our cost functions allow any arbitrary heterogeneity

among agents, which is not allowed in Piccione and Tan (1996), but we assume a certain

relationship between ex ante and ex post cost functions. (See footnote 16.) Since we do not

analyze the equilibrium of specific mechanisms such as the first-price auction, it would be an

interesting direction to analyze such mechanisms and see how the result relates to Piccione

and Tan (1996).

In the rest of the section, we provide two examples to show the importance of (i) β being

strictly less than one and (ii) the allocative constrained-efficiency of h in Theorem 2.

First, a strict time discounting plays an important role. Although commitment-proofness

implies implementability of efficient investments for any β which is arbitrarily close to one,

it does not when β is exactly one. Intuitively, this is because when β is one, there are

cases where the choice between investing ex ante and ex post is indifferent and there exists

an equilibrium in which more than one agents chooses costly ex ante investments, which

is socially inefficient. We provide an example where given β = 1 and a VCG social choice

function (see subsection 4.2 for the definition), which is allocatively efficient and strategy-

proof, efficient investments are not implementable in PBNE.

Observation 1. Suppose |I| ≥ 2, |Ω| ≥ 2. Given a VCG social choice function hV CG :

RΩ×I → Ω×RI and β = 1, efficient investments are not implementable in perfect Bayesian

Nash equilibria.

Example 2. Let {i, j} ⊆ I and {ω1, ω2} ⊆ Ω. Consider the following sets of valuations:

V i = {bi, b̃i},

V j = {bj, b̃j},

V k = {0} for any k ∈ I \ {i, j}

where

bi(ω1) = bj(ω1) = 5, bi(ω2) = bj(ω2) = 4, bi(ω) = bj(ω) = 0 for any ω ∈ Ω \ {ω1, ω2}

b̃i(ω1) = b̃j(ω1) = 0, b̃i(ω2) = b̃j(ω2) = 6, b̃i(ω) = b̃j(ω) = 0 for any ω ∈ Ω \ {ω1, ω2}.
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Consider the following cost functions: for any θ ∈ Θ with p(θ) > 0,

ci(bi, θi) = cj(bj, θj) = 0,

ci(b̃i, θi) = cj(b̃j, θj) = 2,

ck(0, θk) = 0 for any k ∈ I \ {i, j}.

Since the only choice of valuation is 0 for any k ∈ I \{i, j}, we can ignore these agents. Given

a VCG social choice function hV CG, the most efficient investment schedules of agents i and j is

((bi, bj), (bi, bj)). This is because it achieves the maximum social welfare β(5+5) = β10 = 10

as hV CG chooses ω1 for (bi, bj), and the cost of (bi, bj) is zero for any θ ∈ Θ which occurs

with a positive probability.

Next, consider an investment strategy (σ̃l, µl) ∈ Σl × Ml for each agent l = i, j where

σ̃l(θl) = b̃l and µl is the optimal ex post investment strategy. First, because cl(b̃l, θl) >

cl(bl, θl) for each agent l = i, j,

µl(b̃l, ω, θl) = b̃l

holds for any ω ∈ Ω and θl ∈ Θl. Thus, for the ex ante investment strategy σ̃l(θl) = b̃l, the

valuation at the time of the mechanism is b̃l.

Suppose that agent j takes this investment strategy (σ̃j, µj) ∈ Σj × Mj, and consider

agent i’s incentive. When she chooses bi in the first stage, since bi(ω) ≥ b̃i(ω)− ci(b̃i) holds

for any ω ∈ Ω, the valuation at the time of the mechanism is

bc
i,bi(ω) = max

v̄i∈{bi,b̃i}

{
v̄i(ω)− ci(v̄i)

}
= bi(ω)

for each ω ∈ Ω. In this case, the outcome of the social choice function should be

hV CG
ω (bi, b̃j, 0) = ω2, and

hV CG,i
t (bi, b̃j, 0) = 0.

The total utility of agent i would be 4β = 4. On the other hand, when she chooses b̃j in the

first stage, the outcome of the social choice function will be

hV CG
ω (b̃i, b̃j, 0) = ω2, and

hV CG,i
t (b̃i, b̃j, 0) = 0.

The total utility of agent i would be 6β−2 = 4. Since these choices are indifferent, choosing

b̃i in the first stage can be a best response for agent i. Therefore, the same logic applies

to agent j, and {(σ̃l, µl) ∈ Σl ×Ml}l=i,j constitutes a PBNE of the investment game. But
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{(σ̃l, µl) ∈ Σl ×Ml}l=i,j gives the social welfare of 8, which is less than that of {(σl, µl) ∈
Σl×Ml}l=i,j such that σl(θl) = bl for any θl ∈ Θl, which gives the social welfare of 10. Thus,

efficient investments are not implementable in PBNE given hV CG and β = 1.

As a second observation, the sufficiency of commitment-proofness in Theorem 2 no longer

holds if the social choice function is not allocatively constrained-efficient for any Ω′ ⊆ Ω.

The next example demonstrates that efficient investments are not implementable given a

strategy-proof (and hence, commitment-proof) social choice function which is not allocatively

constrained-efficient.

Observation 2. Suppose |I| ≥ 2 and |Ω| ≥ 2. There is a strategy-proof social choice function

h : RΩ×I → Ω × RI which is not allocatively constrained-efficient for any Ω′ ⊆ Ω such that

efficient investments are not implementable in perfect Bayesian Nash equilibria given h and

some β ∈ (0, 1).

Example 3. Let {i, j} ⊆ I and {ω1, ω2} ⊆ Ω. Consider a social choice function h : RΩ×I →
Ω× RI such that for any b ∈ RΩ×I ,

hω(b) ∈ arg max
ω∈Ω

{
bi(ω)

}
,

hk
t (b) = 0 for any k ∈ I.

This means that the best alternative for agent i is always chosen and no transfer is made

under h. This h is strategy-proof because i does not have the incentive to manipulate

her type and j’s report does not affect the outcome. It is clear that h is not allocatively

constrained-efficient because other agents’ valuations are not taken into account. Consider

the following sets of valuations:

V i = {bi, b̃i},

V j = {bj},

V k = {0} for any k ∈ I \ {i, j}

where

bi(ω1) = 5, bi(ω2) = 4, bi(ω) = 0 for any ω ∈ Ω \ {ω1, ω2}

b̃i(ω1) = 5, b̃i(ω2) = 6, b̃i(ω) = 0 for any ω ∈ Ω \ {ω1, ω2}

bj(ω1) = 0, bj(ω2) = 3, bj(ω) = 0 for any ω ∈ Ω \ {ω1, ω2}.
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Also consider the following cost functions: for any θ ∈ Θ with p(θ) > 0,

ci(bi, θi) = 0, ci(b̃i, θi) = 3,

cj(bj, θj) = 0,

ck(0, θk) = 0 for any k ∈ I \ {i, j}.

Since the only choice of valuation is 0 for any k ∈ I \ {i, j}, we can ignore these agents. For

j, the only choice of valuation is bj.

Consider the optimal choice for agent i in the second investment stage for any θi ∈ Θi

which occurs with a positive probability. If i chooses bi before the mechanism, since bi(ω) >

b̃i(ω) − ci(b̃i, θi) holds for any ω ∈ Ω, her optimal valuation after the mechanism is bi. If i

chooses b̃i before the mechanism, then the only valuation she can choose after the mechanism

is b̃i because ci(b̃i, θi) > ci(bi, θi). In either case, when the same valuation is taken ex ante

and ex post, the valuation at the time of the mechanism is also that valuation. To summarize,

agent i’s optimal ex post investment strategy and the valuation at the time of the mechanism

is as follows:

Ex Ante Valuation Valuation at the Mechanism Optimal Ex Post Valuation

bi bi
ω1: b

i

ω2: b
i

b̃i b̃i
ω1: b̃

i

ω2: b̃
i

Thus, we can compare two investment choices bi and b̃i of agent i in the first stage to analyze

the investment efficiency and the equilibrium.

First, we show that b̃i gives higher social welfare than bi for sufficiently large β ∈ (0, 1).

Given j’s valuation bj, the social welfare when i chooses b̃i is

−3 + β(6 + 3) = 9β − 3.

The social welfare when i chooses bi is

0 + β(5 + 0) = 5β.

Since the former is larger for β > 3
4
, choosing b̃i is socially efficient, and choosing bi is not

for such β.

Next, consider the incentive of agent i. Given j’s valuation bj, compare the utility of i

when she chooses b̃i and bi in the first stage. When i chooses b̃i, her utility is 6β− 3 whereas

it is 5β when i chooses bi. Since

6β − 3 < 5β for any β ∈ (0, 1),
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agent i chooses bi in a PBNE. Thus, agent i chooses bi in a PBNE of the investment game,

but it does not maximize the social welfare for β > 3
4
. Therefore, efficient investments are

not implementable in PBNE given h and such β.

5 Provision of Public Goods

In this section, we consider a variant of the original problem; providing public goods through

the finances of agents. The provision of public goods is represented by a choice of an

alternative ω ∈ Ω in our model. We still assume perfectly transferable utility and allow

for transfers (ti)i∈I in the mechanism. The only difference from the original model is that

we require a budget balance for social choice functions, i.e., the sum of the transfers must

be equal to zero.

Definition 8. A social choice function h is budget-balanced if∑
i∈I

hi
t(b) = 0

for any b ∈ RΩ×I .

Budget balance is considered to be part of allocative efficiency because the transfer col-

lected by the mechanism designer is regarded as the loss of welfare in this problem. In this

environment, it is known that there is no social choice function that is strategy-proof, al-

locatively efficient and budget-balanced (Green and Laffont, 1977; Hölmstrom, 1979; Walker,

1980). Therefore, when there is only an ex ante investment stage, it is impossible to even

ensure the existence of efficient investment equilibria if we require budget balance and al-

locatively efficiency of the social choice function (Hatfield, Kojima and Kominers, 2015).

However, we can show that commitment-proofness is compatible with these two proper-

ties; there is a social choice function which is commitment-proof, allocatively efficient and

budget-balanced.

Proposition 1. For any I, Ω and an efficient allocation rule hω : RΩ×I → Ω, there exists

a transfer rule ht : RΩ×I → RI with which h = (hω, ht) is commitment-proof and budget-

balanced.

Proposition 1 is shown by proposing a specific transfer rule ht: for any agent i ∈ I, hi
t is

defined by

hi
t(b) = bi(hω(b))−

1

n

∑
i∈I

bi(hω(b)).
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By this transfer rule, the maximized social welfare is equally divided to all agents. Consider

the definition of commitment-proofness. Under this transfer rule, the value b̃i(hω(b̃
i, b−i))−

hi
t(b̃

i, b−i) from the social choice function h under type b̃i increases from the original value

bi(hω(b))−hi
t(b) under type b

i by only 1
n
of the increment of the social welfare. On the other

hand, since x satisfies x ≥ maxω∈Ω{b̃i(ω) − bi(ω)}, x should be larger than the increment

of social welfare. Therefore, the equation of commitment-proofness is satisfied under this

transfer rule. It is easy to see that this h is not strategy-proof because agents have the

incentive to underreport their valuations to reduce the payment.

By the result of Theorem 2, we obtain the following corollary; with the ex post invest-

ments, budget balance does not preclude the implementation of efficient investments.

Corollary 1. For any I and Ω, there exists an allocatively efficient and budget-balanced

social choice function h : RΩ×I → Ω× RI such that efficient investments are implementable

in perfect Bayesian Nash equilibria given h and any discount factor β ∈ (0, 1).

6 Concluding Remarks

Our main result shows that allowing for ex post investments, commitment-proofness is equiv-

alent to the implementability of efficient investments for allocatively efficient social choice

functions. This has the following two implications. First, whenever it is possible, the mech-

anism should be run sufficiently before the actual production or consumption is carried out.

This allows agents to reflect the information of their cost types onto their valuations at the

mechanism stage through the optimal behavior in the ex post investment stage. Otherwise,

according to Theorem 1, we cannot eliminate the possibility of inefficient equilibria. Sec-

ond, commitment-proofness of the mechanism is essential. This ensures that no agent has

the incentive to commit to having a different valuation in the mechanism by making prior

investments. Moreover, this is not a restrictive concept since it is much weaker than the

strategy-proofness condition.

In this paper, we allow for incomplete information about the cost types of other agents,

but we assume that every agent knows her own cost function and it is unchanged over time.

This assumption allows us to characterize the set of PBNE, in which no agent makes a

costly ex ante investment. Although out result still holds for some systematic changes of

cost functions after the mechanism (see footnote 16), we do not know what will happen if

the ex post cost function is uncertain ex ante. When agents are unsure about thier own ex

post cost functions, they may need to make some investments ex ante to improve their own
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ex post cost functions. This uncertain investment model will be related to Piccione and Tan

(1996) and other papers on information acquisition (Bergemann and Välimäki, 2002; Obara,

2008). Under this uncertain investment setting, we hope to obtain conditions on social choice

functions or cost structures which make the implementation of investment efficiency possible.
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Appendix A Proofs of Main Results

A.1 Proof of Theorem 1

Consider any I and Ω with |I| ≥ 2 and |Ω| ≥ 2. Consider any arbitrary allocatively efficient

social choice function h : RΩ×I → Ω×RI . We will examine two cases where h is not strategy-

proof and h is strategy-proof. In the former case, we construct the sets of valuations and

cost functions under which an inefficient Bayesian Nash equilibrium exists in the investment

game, exploiting the equation that strategy-proofness of h is violated. In the latter case, we

show that a simple auction has multiple equilibria in the investment game and one of them

is less efficient than the other for any strategy-proof h.

[1] When h is not strategy-proof. Since the social choice function h is not strategy-proof,

there are i ∈ I, v ∈ RΩ×I and ṽi ∈ RΩ such that

vi(hω(ṽ
i, v−i))− hi

t(ṽ
i, v−i) > vi(hω(v))− hi

t(v). (3)

Consider the sets of valuations V ⊆ RΩ×I such that

V i = {vi, ṽi} and

V j = {vj} for all j ∈ I \ {i}.

Consider a profile of cost functions c : V ×Θ → C such that for any θ ∈ Θ with p(θ) > 0,

ci(vi, θi) = max
{
0, β

[
vi(hω(v))− hi

t(v)−
(
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)
)]}

,

ci(ṽi, θi) = max
{
0, β

[
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)−
(
vi(hω(v))− hi

t(v)
)]}

and

cj(vj, θj) = 0 for all j ∈ I \ {i}.

Note that

ci(vi, θi)− ci(ṽi, θi) = β
[
vi(hω(v))− hi

t(v)−
(
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)
)]

always holds. Here, the only choice of valuations for each j ∈ I \ {i} is vj. Also, since the

cost of investment is constant across any type θ ∈ Θ with p(θ) > 0, we can concentrate on

the types which occur with a positive probability, and a Bayesian Nash equilibrium reduces

to a Nash equilibrium in this case. Thus, we only need to analyze the choice of agent i’s

valuation for Nash equilibria and efficient choices.

First, consider i’s incentive for choosing between vi and ṽi. For any cost type θi ∈ Θi

which occurs with a positive probability, the total utility from choosing vi when the valuations
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of other agents are v−i is

−ci(vi, θi) + β
[
vi(hω(v))− hi

t(v)
]
,

and that from choosing ṽi is

−ci(ṽi, θi) + β
[
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)
]
.

The difference is

−ci(vi, θi) + β
[
vi(hω(v))− hi

t(v)
]
−
{
− ci(ṽi, θi) + β

[
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)
]}

= β
[
vi(hω(v))− hi

t(v)−
(
ṽi(hω(ṽ

i, v−i))− hi
t(ṽ

i, v−i)
)]

−
(
ci(vi, θi)− ci(ṽi, θi)

)
= 0.

Therefore, vi and ṽi are indifferent for agent i, and both v and (ṽi, v−i) are Nash equilibria

of the investment game.

Next, compare the social welfare between v and (ṽi, v−i). For v, the sum of utility of all

agents is ∑
j∈I

{
− cj(vj, θj) + βvj(hω(v))

}
= −ci(vi, θi) + β

∑
j∈I

vj(hω(v)).

And for (ṽi, v−i), the sum of utility of all agents is

−ci(ṽi, θi) + β
[
ṽi(hω(ṽ

i, v−i)) +
∑

j∈I\{i}

vj(hω(ṽ
i, v−i))

]
.

The difference of these two is:

−ci(vi, θi) + β
∑
j∈I

vj(hω(v)) + ci(ṽi, θi)− β
[
ṽi(hω(ṽ

i, v−i)) +
∑

j∈I\{i}

vj(hω(ṽ
i, v−i))

]
(4)

≥ β
[∑

j∈I

vj(hω(ṽ
i, v−i))− ṽi(hω(ṽ

i, v−i))−
∑

j∈I\{i}

vj(hω(ṽ
i, v−i))

]
(5)

−(ci(vi, θi)− ci(ṽi, θi)) (6)

= β
[
vi(hω(ṽ

i, v−i))− ṽi(hω(ṽ
i, v−i))

]
− (ci(vi, θi)− ci(ṽi, θi)) (7)

> β
[
vi(hω(v))− hi

t(v) + hi
t(ṽ

i, v−i)− ṽi(hω(ṽ
i, v−i))

]
− (ci(vi, θi)− ci(ṽi, θi)) (8)

= 0, (9)

in which the inequality in (5) follows from the allocative efficiency of h; the inequality in (8)

follows from equation (3). Therefore, (ṽi, v−i) is not an efficient investment profile although
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it is supported by a Nash equilibrium. Hence, there is an inefficient equilibrium of the

investment game, and efficient ex ante investments are not Bayesian Nash implementable

given h.

[2] When h is strategy-proof. We consider a slight modification of Example 4 of Hatfield,

Kojima and Kominers (2015); an auction where two agents bid for a single good. Con-

sider any social choice function h which is allocatively efficient and strategy-proof. Suppose

{i, j} ⊆ I and {ωi, ωj} ⊆ Ω. Since |I| and |Ω| may be more than two, we choose the sets of

valuation functions in the following way:

V i = {a1l{ω=ωi} : a ∈ [0, 10]},

V j = {a1l{ω=ωj} : a ∈ [0, 10]},

V k = {0} for any k ∈ I \ {i, j}.

Here ωi and ωj each represent the alternatives where i and j obtain the item respectively.

Consider the following cost functions: for any θ ∈ Θ with p(θ) > 0,

ci(a1l{ω=ωi}, θ
i) =

1

6
βa2,

cj(a1l{ω=ωj}, θ
j) =

1

4
βa2,

ck(0, θk) = 0 for any k ∈ I \ {i, j}.

Since the utility of agents other than i and j is always zero, focus on the investment choices

of agents i and j. Also, since they have the same cost of investment for any cost types which

occur with a positive probability, we can concentrate on such types, and a Bayesian Nash

equilibrium reduces to a Nash equilibrium.

First, consider efficient investment profiles under this allocatively efficient h. It is clear

that only one of agents i and j should make a positive investment. If agent i obtains the

item, the optimal choice of valuation should be

arg max
a∈[0,10]

β
{
− 1

6
a2 + a

}
= 3.

If agent j obtains it, the optimal choice of valuation should be

arg max
a∈[0,10]

β
{
− 1

4
a2 + a

}
= 2.

The social welfare achieved by (31l{ω=ωi}, 0) is

β
{
− 3

2
+ 3

}
=

3

2
β
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and the social welfare achieved by (0, 21l{ω=ωi}) is

β
{
− 1 + 2

}
= β.

Thus, (31l{ω=ωi}, 0) is the unique investment profile of i and j which maximizes the social

welfare.

Then consider the other investment profile (0, 21l{ω=ωj}), and show that it is a Nash

equilibrium of the investment game. First, it is clear that the valuation of agent j is a best

response to i’s choice 0 because it maximizes the value of the item. Next, given v̄j ≡ 21l{ω=ωj},

arg max
vi∈V i

{
− ci(vi, θi) + βvi(hω(v

i, v̄j)) + βv̄j(hω(v
i, v̄j))

}
= arg max

vi∈V i

{
− 1

β
ci(vi, θi) + vi(hω(v

i, v̄j)) + v̄j(hω(v
i, v̄j))

}
= 0

holds. This is because given agent j’s valuation v̄j = 21l{ω=ωj}, the equation is maximized

when agent j obtains the item and agent i does not make any investments (the value of the

second equation becomes 2, which cannot be achieved by any positive valuation of agent i

since the sum of the first two terms do not exceed 3
2
). Since h is allocatively efficient and

strategy-proof, hi
t(·, v̄j) is written as a Groves function (Green and Laffont, 1977):

hi
t(v

i, v̄j) = g(v̄j)− v̄j(hω(v
i, v̄j)).

Hence,

arg max
vi∈V i

{
− c̄i(vi, θi) + vi(hω(v

i, v̄j))− hi
t(v

i, v̄j)
}

= arg max
vi∈V i

{
− c̄i(vi, θi) + vi(hω(v

i, v̄j))− g(v̄j) + v̄j(hω(v
i, v̄j))

}
= arg max

vi∈V i

{
− c̄i(vi, θi) + vi(hω(v

i, v̄j)) + v̄j(hω(v
i, v̄j))

}
should hold for any cost function c̄i : V i ×Θi → C i. Thus, we have

arg max
vi∈V i

{
− ci(vi, θi) + βvi(hω(v

i, v̄j))− βhi
t(v

i, v̄j)
}

= arg max
vi∈V i

{
− 1

β
ci(vi, θi) + vi(hω(v

i, v̄j))− hi
t(v

i, v̄j)
}

= arg max
vi∈V i

{
− 1

β
ci(vi, θi) + vi(hω(v

i, v̄j)) + v̄j(hω(v
i, v̄j))

}
= 0.
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This means that 0 is the best response for agent i, and hence (0, 21l{ω=ωj}) is a Nash equilib-

rium of the investment game. However, this does not achieve investment efficiency given h

because it is less efficient than (31l{ω=ωi}, 0). Therefore, there is an inefficient equilibrium of

the investment game, which means that efficient ex ante investments are not Bayesian Nash

implementable given h.

A.2 Proof of Theorem 2

For the sufficiency of commitment-proofness, first we characterize the set of PBNE of the in-

vestment game given a commitment-proof social choice function h. Whenever h is commitment-

proof, the set of PBNE is characterized by the following two properties: (i) no agent chooses

a costly ex ante investment given her cost type, and (ii) the ex post investment is optimal for

any information set. Next, we show that any PBNE maximizes the expected social welfare

when h is allocatively constrained-efficient for some Ω′ ⊆ Ω with Ω′ ̸= ∅.
For the necessity of commitment-proofness, we show that whenever h is allocatively

constrained-efficient but is not commitment-proof, we can construct a profile of the sets of

valuations and associated cost functions for which there exists a PBNE of the investment

game that does not maximize the expected social welfare.

[1] Sufficiency of commitment-proofness. Take any β ∈ (0, 1), V ⊆ RΩ×I and c : V ×Θ → C,

and fix them. We show that when h is commitment-proof, the set of PBNE of the investment

game given h and β is characterized by Σ∗ ×M∗ such that

Σ∗ ≡
{
σ ∈ Σ

∣∣∣ for each i ∈ I, ci(σi(θi), θi) = 0 for any θi ∈ Θi
}
, and

M∗ ≡
{
µ ∈ M

∣∣∣ for each i ∈ I,

µi(vi, ω, θi) ∈ arg max
v̄i∈{ṽi∈V i|ci(ṽi,θi)≥ci(vi,θi)}

{
v̄i(ω)− ci(v̄i, θi)

}
for any (vi, ω, θi) ∈ V i × Ω×Θi,

}
.

First, by the definition of a PBNE of the investment game, it is obvious that the equilibrium

ex post investment strategies are written as M∗.

Next, we analyze the ex ante investment game given the optimal ex post investment

strategies µ∗ ∈ M∗. Take any agent i ∈ I, and consider i’s incentive for the ex ante

investment when her cost type is θi ∈ Θi. Consider two arbitrary ex ante investments

with the following properties: v0i ∈ V i such that ci(v0i, θi) = 0, and vi ∈ V i such that

ci(vi, θi) > 0.

We can show that for any strategies σ−i ∈ Σ−i of other agents, v0i gives a strictly higher

expected utility than vi for agent i. To see this, take any cost types θ−i ∈ Θ−i of other
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agents and let b−i ≡ bc
−i,θ−i,σ−i(θ−i). Agent i’s ex ante utility from choosing vi for θ−i ∈ Θ−i

is written as:

−ci(vi, θi) + β
[
µ∗i(vi, hω(b

ci,θi,vi , b−i), θi)(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i) (10)

−ci(µ∗i(vi, hω(b
ci,θi,vi , b−i), θi), θi) + ci(vi, θi)

]
(11)

= β
[
µ∗i(vi, hω(b

ci,θi,vi , b−i), θi)(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i) (12)

−ci(µ∗i(vi, hω(b
ci,θi,vi , b−i), θi), θi)

]
− (1− β)ci(vi, θi) (13)

< β
[
µ∗i(vi, hω(b

ci,θi,vi , b−i), θi)(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i) (14)

−ci(µ∗i(vi, hω(b
ci,θi,vi , b−i), θi), θi)

]
(15)

= β
[
bc

i,θi,vi(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i)− ci(vi, θi)

]
(16)

≤ β
[
bc

i,θi,vi(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i) (17)

−max
{
0,max

ω∈Ω

{
bc

i,θi,vi(ω)− bc
i,θi,v0i(ω)

}}]
(18)

≤ β
[
bc

i,θi,v0i(hω(b
ci,θi,v0i , b−i))− hi

t(b
ci,θi,v0i , b−i)

]
(19)

= β
[
µ∗i(v0i, hω(b

ci,θi,v0i , b−i), θi)(hω(b
ci,θi,v0i , b−i))− hi

t(b
ci,θi,v0i , b−i) (20)

−ci(µ∗i(v0i, hω(b
ci,θi,v0i , b−i), θi))

]
, (21)

in which the last equation (20)-(21) is agent i’s ex ante utility from choosing v0i for θ−i ∈ Θ−i.

The inequality in (14) holds because ci(vi, θi) > 0 and β < 1; the equality in (16) follows

from the definition of bc
i,θi,vi ; the inequality in (17) follows from Lemma 1; the inequality in

(19) follows from the fact that h is commitment-proof; and the equality in (20) follows from

the definition of bc
i,θi,v0i . Note that when there are more than one valuations v0i, ṽ0i ∈ V i

such that ci(v0i, θi) = ci(ṽ0i, θi) = 0, they give exactly the same utility. Since the above

inequality holds for any cost types θ−i ∈ Θ−i of other agents, taking the expectation over

Θ−i, we have

v0i ∈ arg max
vi∈V i

{
− ci(vi, θi) + β

∑
θ−i∈Θ−i

p(θ−i|θi)[
µ∗i(vi, hω(b

ci,θi,vi , b−i), θi)(hω(b
ci,θi,vi , b−i))− hi

t(b
ci,θi,vi , b−i)

− ci(µ∗i(vi, hω(b
ci,θi,vi , b−i), θi), θi) + ci(vi, θi)

]}
.

Thus, for any strategies σ−i ∈ Σ−i of other agents, the best response for agent i with cost

type θi is to choose a least costly investment v0i ∈ V i such that ci(v0i, θi) = 0. As this is true
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for any cost type and any other agent, the set of equilibrium ex ante investment strategies

is represented by Σ∗. Therefore, we can characterize the set of PBNE by Σ∗ ×M∗.

Finally, we show that the expected social welfare given h is maximized under any PBNE

(σ∗, µ∗) ∈ Σ∗ ×M∗. For any cost type profile θ ∈ Θ, the social welfare given h under any

investment strategies (σ, µ) ∈ Σ×M is written as:∑
i∈I

{
− ci(σi(θi), θi) + β

[
µi(σi(θi), hω(b

c,θ,σ(θ)), θi)(hω(b
c,θ,σ(θ))) (22)

−ci(µi(σi(θi), hω(b
c,θ,σ(θ)), θi) + ci(σi(θi), θi)

]}
(23)

=
∑
i∈I

{
β
[
µi(σi(θi), hω(b

c,θ,σ(θ)), θi)(hω(b
c,θ,σ(θ)))− ci(µi(σi(θi), hω(b

c,θ,σ(θ)), θi), θi)
]
(24)

−(1− β)ci(σi(θi), θi)
}

(25)

≤
∑
i∈I

β
[
µi(σi(θi), hω(b

c,θ,σ(θ)), θi)(hω(b
c,θ,σ(θ)))− ci(µi(σi(θi), hω(b

c,θ,σ(θ)), θi), θi)
]
(26)

≤
∑
i∈I

βbc
i,θi,σ∗i(θi)(hω(b

c,θ,σ(θ))) (27)

≤
∑
i∈I

βbc
i,θi,σ∗i(θi)(hω(b

c,θ,σ∗(θ))) (28)

=
∑
i∈I

β
[
µ∗i(σ∗i(θi), hω(b

c,θ,σ∗(θ)), θi)(hω(b
c,θ,σ∗(θ))) (29)

−ci(µ∗i(σ∗i(θi), hω(b
c,θ,σ∗(θ)), θi), θi)

]
. (30)

The last equation (29)-(30) is the social welfare given h and θ under strategies (σ∗, µ∗).

The inequality in (26) holds because ci(σi(θi), θi) ≥ 0 and β < 1; the inequality in (27)

follows from the definition of bc
i,θi,σ∗i(θi); the inequality in (28) follows from the fact that

h is allocatively constrained-efficient; the equality of (29) follows from the definitions of

bc
i,θi,σ∗i(θi) and µ∗i. Since this holds for any cost type profile θ ∈ Θ, taking the expectation

over Θ, a PBNE (σ∗, µ∗) maximizes the expected social welfare.

Therefore, for any V ⊆ RΩ×I and c : V × Θ → C, any PBNE of the investment game

given h and β ∈ (0, 1) maximizes the expected social welfare, and hence efficient investments

are implemented in PBNE.

[2] Necessity of commitment-proofness. Consider a social choice function h which is alloca-

tively constrained-efficient for some Ω′ ⊆ Ω with Ω′ ̸= ∅ but is not commitment-proof. We

show that for some V ⊆ RΩ×I , c : V × Θ → C and β ∈ (0, 1), there is a PBNE which does

not maximize the expected social welfare.
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First, since h is not commitment-proof, there are i ∈ I, b ∈ RΩ×I and b̃i ∈ RΩ such that

b̃i(hω(b̃
i, b−i))− hi

t(b̃
i, b−i)−

(
bi(hω(b))− hi

t(b)
)
> max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
. (31)

Consider the following profile of the set of valuations:

V i = {bi, b̃i},

V j = {bj} for all j ∈ I \ {i}.

Consider a profile of cost functions c : V ×Θ → C such that for any θ ∈ Θ with p(θ) > 0,

ci(bi, θi) = 0,

ci(b̃i, θi) =

maxω∈Ω

{
b̃i(ω)− bi(ω)

}
if maxω∈Ω

{
b̃i(ω)− bi(ω)

}
> 0,

δ otherwise,

cj(bj, θj) = 0 for all j ∈ I \ {i},

where δ > 0. Any agent j ∈ I \ {i} always chooses bj ∈ V j in the investment game because

there is only one choice in V j.

First, let’s find a PBNE of this investment game. Agent i has two choices bi and b̃i.

Consider her optimal choice in the second investment stage. When i chooses b̃i prior to the

mechanism, since ci(b̃i, θi) > ci(bi, θi) for any cost type θi ∈ Θi which occurs with a positive

probability, the optimal choice of a valuation function in the ex post stage is b̃i for any ω ∈ Ω

because it is the unique choice for her. Thus, the valuation at the time of the mechanism is

bc
i,θi,b̃i(ω) =

{
b̃i(ω)− ci(b̃i, θi)

}
+ ci(b̃i, θi) = b̃i(ω)

for each ω ∈ Ω. On the other hand, when i chooses bi prior to the mechanism, in the ex post

stage, she can still choose from {bi, b̃i} because bi is a costless valuation. However, by the

construction of the cost function, we can see that

bi(ω) ≥ b̃i(ω)− ci(b̃i, θi)

for any ω ∈ Ω and θi ∈ Θi which occurs with a positive probability. Thus, the valuation at

the time of the mechanism is

bc
i,θi,bi(ω) = max

v̄i∈{bi,b̃i}

{
v̄i(ω)− ci(v̄i, θi)

}
= bi(ω)

for each ω ∈ Ω. To summarize, for any θi ∈ Θi which occurs with a positive probability,

agent i’s optimal investment strategy and the valuation at the time of the mechanism is as

follows:

44



Ex Ante Valuation Valuation at the Mechanism Optimal Ex Post Valuation

bi bi for any ω: bi (or b̃i if bi(ω) = b̃i(ω)− ci(b̃i))

b̃i b̃i for any ω: b̃i

Given this optimal strategy in the second stage, we consider the choice of agent i in the

first investment stage. Other agents’ choices are fixed to b−i. For any θi ∈ Θi which occurs

with a positive probability, the utility of agent i when choosing an investment b̃i is

−ci(b̃i, θi) + β
[
b̃i(hω(b̃

i, b−i))− hi
t(b̃

i, b−i)
]

and when choosing an investment bi, it is

β
[
bi(hω(b))− hi

t(b)
]
.

The difference of these two is calculated as:

−ci(b̃i, θi) + β
[
b̃i(hω(b̃

i, b−i))− hi
t(b̃

i, b−i)
]
− β

[
bi(hω(b))− hi

t(b)
]

= −(1− β)ci(b̃i, θi) + β
[
b̃i(hω(b̃

i, b−i))− hi
t(b̃

i, b−i)− ci(b̃i, θi)
]
− β

[
bi(hω(b))− hi

t(b)
]

= −(1− β)ci(b̃i, θi)

+β
[
b̃i(hω(b̃

i, b−i))− hi
t(b̃

i, b−i)−
(
bi(hω(b))− hi

t(b)
)
−max

{
δ,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}]
> 0,

in which ci(b̃i, θi) = max
{
δ,maxω∈Ω

{
b̃i(ω)− bi(ω)

}}
holds for sufficiently small δ > 0, and

the final inequality holds from equation (31) when we take β sufficiently close to 1 and δ > 0

sufficiently small. Therefore, for any θi ∈ Θi which occurs with a positive probability, agent

i chooses b̃i in a PBNE, i.e., there is a PBNE (σ∗, µ∗) ∈ Σ × M such that for any θ ∈ Θ

with p(θ) > 0,

σ∗i(θi) = b̃i,

σ∗j(θj) = bj for any j ∈ I \ {i},

µ∗i(bi, ω, θi) = bi for any ω ∈ Ω,

µ∗i(b̃i, ω, θi) = b̃i for any ω ∈ Ω, and

µ∗j(bj, ω, θj) = bj for any ω ∈ Ω.

However, this PBNE (σ∗, µ∗) does not maximize the expected social welfare. Consider
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another profile of strategies (σ, µ∗) ∈ Σ×M such that for any θ ∈ Θ with p(θ) > 0,

σi(θi) = bi,

σj(θj) = bj for any j ∈ I \ {i},

µ∗i(bi, ω, θi) = bi for any ω ∈ Ω,

µ∗i(b̃i, ω, θi) = b̃i for any ω ∈ Ω, and

µ∗j(bj, ω, θj) = bj for any ω ∈ Ω.

The only difference between σ∗ and σ is that agent i chooses b̃i under σ∗i, but she chooses

bi under σi. For any θ ∈ Θ with p(θ) > 0, the social welfare from (σ∗, µ∗) is written as:

−ci(b̃i, θi) + βb̃i(hω(b̃
i, b−i)) +

∑
j∈I\{i}

β
{
bj(hω(b̃

i, b−i))
}

(32)

< β
{
b̃i(hω(b̃

i, b−i))− ci(b̃i, θi) +
∑

j∈I\{i}

bj(hω(b̃
i, b−i))

}
(33)

≤ β
{
bi(hω(b̃

i, b−i)) +
∑

j∈I\{i}

bj(hω(b̃
i, b−i))

}
(34)

≤ β
∑
j∈I

bj(hω(b)) (35)

in which the last equation (35) is the social welfare from strategies (σ, µ∗). The inequality

in (33) holds because ci(b̃i, θi) > 0 and β < 1; the inequality in (34) holds because bi(ω) ≥
b̃i(ω)−ci(b̃i, θi) for any ω ∈ Ω; the inequality in (35) follows from the fact that h is allocatively

constrained-efficient. Therefore, there is a PBNE (σ∗, µ∗) which does not maximize the

expected social welfare, and hence efficient investments are not implementable in PBNE

given this h and β.

A.3 Proof of Proposition 1

For any efficient allocation rule hω, consider the following transfer rule ht which divides the

maximum sum of valuations equally among all agents:

hi
t(b) = bi(hω(b))−

1

n

∑
i∈I

bi(hω(b)). (36)

It is clear that h is budget-balanced. It suffices to show that h is commitment-proof. Consider

any i ∈ I, b ∈ RΩ×I , b̃i ∈ RΩ and x ≥ 0 such that b̃i(ω) ≤ bi(ω) + x for all ω ∈ Ω. We will

show:

b̃i(hω(b̃
i, b−i))− hi

t(b̃
i, b−i)− x ≤ bi(hω(b))− hi

t(b)
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for this transfer rule (24). Since x ≥ max
{
0,maxω∈Ω

{
b̃i(ω)− bi(ω)

}}
holds,

(RHS) - (LHS)

≥
[
bi(hω(b))− hi

t(b)
]
−

[
b̃i(hω(b̃

i, b−i))− hi
t(b̃

i, b−i)
]
+max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
=

1

n

∑
i∈I

bi(hω(b))−
1

n

{
b̃i(hω(b̃

i, b−i)) +
∑

j∈I\{i}

bj(hω(b̃
i, b−i))

}
+max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
= − 1

n

{
b̃i(hω(b̃

i, b−i)) +
∑

j∈I\{i}

bj(hω(b̃
i, b−i))−

∑
i∈I

bi(hω(b))
}
+max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
= − 1

n

{
b̃i(hω(b̃

i, b−i))− bi(hω(b̃
i, b−i)) +

∑
i∈I

bi(hω(b̃
i, b−i))−

∑
i∈I

bi(hω(b))
}

+max
{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
≥ − 1

n

{
b̃i(hω(b̃

i, b−i))− bi(hω(b̃
i, b−i))

}
+max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
≥ − 1

n
max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
+max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
=

n− 1

n
max

{
0,max

ω∈Ω

{
b̃i(ω)− bi(ω)

}}
≥ 0.

The second inequality holds from the allocative efficiency of h. Therefore, this h is commitment-

proof and the proof is done.
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