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Abstract: Previous research has shown that some people voluntarily use commitment contracts 
that restrict their own choice sets. We study how people divide money between two accounts: a 
liquid account that permits unrestricted withdrawals and a commitment account that is randomly 
assigned in a between-subject design to have either a 10% early withdrawal penalty, or a 20% 
early withdrawal penalty, or not to allow early withdrawals at all (i.e., an infinite penalty). When 
the liquid account and the commitment account pay the same interest rate, higher early-
withdrawal penalties attract more commitment account deposits. This pattern is predicted by the 
hypothesis that some participants are partially- or fully-sophisticated present-biased agents. Such 
agents perceive that higher penalties generate greater scope for commitment by disincentivizing 
(penalized) early withdrawals. The experiment also shows that when the commitment account 
pays a higher interest rate than the liquid account, the positive empirical slope relating penalties 
and commitment deposits is flattened, suggesting that naïve present-biased agents or agents with 
standard exponential discounting are also in our sample.  Across all of our experimental 
treatments, higher early withdrawal penalties on the commitment account sometimes increase 
and never reduce allocations to the commitment account. 
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In 2018, U.S. households held $16.3 trillion in employer-sponsored defined contribution 

savings plans and IRAs (Investment Company Institute, 2019). These retirement savings 

accounts are partially illiquid: withdrawals before age 59½ incur an early withdrawal penalty 

equal to 10% of the withdrawal (in addition to any income taxes that are owed).1 There are at 

least two mutually compatible arguments for why early withdrawal penalties are socially 

desirable. First, the penalties may address moral hazard problems (discouraging mid-life 

spending reduces the social burden of supporting retirees). Second, the penalties may help agents 

with self-control problems commit not to prematurely spend their savings.2 Despite the 10% 

penalty and other tax inducements to let balances accumulate in these accounts,  early 

withdrawals from retirement accounts are substantial. For every dollar that households younger 

than age 55 in the U.S. contributed to retirement accounts in 2010, those same households had 

$0.20 of penalized early withdrawals and $0.21 of early withdrawals for which the penalty is 

waived (Argento, Bryant, and Sabelhaus, 2015).3 Retirement savings plan managers assert that 

this “leakage” is socially sub-optimal (Steyer, 2011). One potential solution to this perceived 

problem is to increase the penalty on early withdrawals to make retirement savings accounts 

more illiquid, as they are in several other developed countries (Beshears et al., 2015). How 

would households respond if the early withdrawal penalty in the U.S. were higher than 10%? 

The answer to this question is unclear from a theoretical perspective. Although higher 

penalties will reduce early withdrawals, higher penalties will also discourage initial deposits for 

neoclassical economic agents who prefer liquidity, undermining the goal of raising net savings. 

On the other hand, some savers may believe that penalties help them partially overcome self-

control problems. These households will perceive that higher penalties have both costs and 

benefits, so the impact of higher early withdrawal penalties on their deposits is ambiguous. 

                                                
1 However, it is often possible to access 401(k) account balances by taking a penalty-free loan. In addition, the 
penalty on withdrawals is sometimes waived. For example, no penalty is charged for IRA accounts when the 
account holder (i) is permanently or totally disabled; (ii) has medical expenses exceeding 7.5% of her adjusted gross 
income; (iii) uses the withdrawal to buy, build, or rebuild a home if the withdrawal is no more than $10,000 and she 
has not owned a home in the previous two years; (iv) uses the withdrawal to pay higher education costs; (v) uses the 
withdrawal to make a back tax payment to the IRS as the result of an IRS levy; (vi) uses the withdrawal to pay 
health insurance premiums (if unemployed for more than 12 weeks); (vii) receives distributions in the form of an 
annuity; (viii) uses the withdrawal to make a distribution to an alternate payee under a QDRO (Qualified Domestic 
Relation Order); or (ix) has been affected by certain natural disasters (e.g., Hurricanes Katrina and Sandy). Finally, 
Roth IRAs have low (or even zero) penalties for withdrawals. 
2 There are of course other reasons for government intervention in retirement savings systems, such as adverse 
selection (Finkelstein and Poterba, 2004; Einav, Finkelstein, and Schrimpf, 2010). 
3 See footnote 1 for instances in which the penalty is waived. 
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It is challenging to identify natural experiments that would permit an analysis of 

behavioral responses to variation in early withdrawal penalties, so in this paper, we use an 

experimental approach to shed light on the issue. The results of our experiments cannot be 

applied directly to predict how individuals would respond to a change in U.S. policy regarding 

early withdrawal penalties, but the primary contribution of this paper is to use the control 

available in an experimental setting to study the underlying economic forces at play. In our 

experiments, a higher early withdrawal penalty does not discourage average deposits to an 

illiquid account. Indeed, under some conditions, a higher early withdrawal penalty increases 

deposits to the illiquid account, suggesting that sophisticated present-biased individuals are 

present in the population. However, we also find empirical evidence of heterogeneity in present 

bias, implying that policy makers must take multiple subpopulations into account when 

designing an optimal savings system. 

The 1,045 participants in our two online experiments are drawn from the American Life 

Panel, a sample of U.S. adults who regularly take part in online research studies. Each participant 

is given $50, $100, or $500. Participants are asked to allocate this endowment between a liquid 

account, which does not limit withdrawals in any way, and one or more commitment accounts. 

All participants have access to the same type of liquid account (in particular, every participant 

receives the same interest rate from the liquid account), but the characteristics of the 

commitment accounts vary across participants. Each commitment account has a commitment 

date that is selected by the participant at the start of the experiment and may be up to one year in 

the future. The commitment account either penalizes withdrawals before the commitment date or 

prohibits such early withdrawals altogether; these penalties/prohibitions are randomly assigned 

in the experiment. The interest rates on the commitment accounts also vary randomly across 

participants. 

When we offer participants only one commitment account and set its interest rate equal to 

the interest rate on the liquid account, allocations to the commitment account increase as its early 

withdrawal penalty rises (across subjects) from 10% to 20% to not allowing any early 

withdrawals (which is like an infinite penalty). In another arm of the study, we give participants 

simultaneous access to a liquid account and two types of commitment accounts, one with a 10% 

early withdrawal penalty and one that does not allow early withdrawals. The commitment 

account with the 10% early withdrawal penalty receives half as much money as the commitment 
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account that prohibits early withdrawals. 

These experimental results are consistent with the presence of fully or partially 

sophisticated present-biased agents in the sample. Individuals without present bias and naïve 

present-biased individuals (those who are present-biased but do not anticipate their present bias) 

would not allocate balances to a commitment account. Moreover, if they were to allocate 

balances to a commitment account due only to an experimenter demand effect, there is no reason 

to anticipate that they would have higher commitment account allocations in treatment arms with 

higher early withdrawal penalties (in our between-subject design). Economic agents with 

exponential discounting or naïve agents with present-bias agents do not perceive a benefit from 

higher penalties, as they believe that they have no need for commitment. They only perceive the 

cost of greater financial losses if early withdrawals become necessary.  

Partially or fully sophisticated present-biased agents (agents who are at least somewhat 

aware of their self-control problems), perceive both costs and benefits of illiquidity. Not having 

access to assets when a legitimate liquidity need might occur is a cost of illiquidity.  On the other 

hand, stronger commitment is afforded by higher early withdrawal penalties (Laibson, 1997). 

Indeed, in the absence of uncertainty, or under particular regularity conditions that we provide in 

the on-line appendix, sophisticated present-biased agents will allocate more assets to illiquid 

accounts the higher the early withdrawal penalties associated with those accounts. When there is 

no uncertainty (e.g., no taste shocks) the logic for this effect is easy to summarize.  Sophisticated 

agents will not allocate funds to accounts where they expect to withdraw those funds and pay a 

penalty. So higher penalties enable sophisticated agents to more intensively use illiquid accounts.  

The higher the penalty, the more wealth early selves can store in the illiquid asset without 

generating gratuitous penalties from early withdrawals. The higher penalty is protective with 

respect to early withdrawals. It turns out that this logic for the case with no uncertainty extends 

to a wide range of leading cases with stochastic taste shocks (see appendices B and C).4  

Thus, our empirically observed increase in commitment account deposits in treatment 

                                                
4 In Online Appendix B, we extend the theoretical analysis of Amador, Werning, and Angeletos (2006) and show 
that the benefit of the stronger commitment afforded by higher early withdrawal penalties tends to outweigh the cost 
when it comes to determining the relationship between higher penalties and commitment account allocations. In the 
model, fully or partially sophisticated present-biased agents are subject to stochastic, uninsurable taste shocks drawn 
from a broad class of distributions that affect future marginal utility and create a motive to provide spending 
flexibility to the future self. We provide conditions under which the desire for commitment outweighs the desire for 
flexibility in the sense that commitment account deposits increase with the commitment accounts’ early withdrawal 
penalty. 
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arms that have higher early withdrawal penalties suggests the presence of fully or partially 

sophisticated present-biased agents.5 Importantly, in this analysis we identify the presence of 

sophistication by the slope of take-up with respect to commitment penalties, not just the level of 

take-up. While the level of take-up might partially reflect experimenter demand effects or 

participant indifference, the change in take-up as the commitment penalty grows suggests that 

increased contributions are driven by the increase in commitment penalties themselves.  

However, in our experiments, higher early withdrawal penalties do not always increase 

deposits to commitment accounts. We find that when we offer participants only one commitment 

account and set its interest rate to be slightly higher than the interest rate on the liquid account—

as is the case with 401(k) accounts and IRAs, which both have tax-preferred status—deposits to 

the commitment account essentially do not respond to rising early withdrawal penalties. This 

result is consistent with the U.S. adult population containing not only sophisticated present-

biased individuals, but also individuals without present bias or naïve present-biased individuals. 

When the commitment account pays an interest rate premium, these latter two groups make 

deposits to commitment accounts that are positive but diminishing with the commitment 

account’s early withdrawal penalty. This decrease offsets the increase in commitment account 

deposits by sophisticated present-biased individuals as the early withdrawal penalty rises. 

Therefore, the aggregate relationship between commitment deposits and the early withdrawal 

penalty can take any sign, including the roughly flat relationship we observe in our data. 

Demand for commitment devices has been documented in many different domains of 

behavior: completing homework assignments for university courses (Ariely and Wertenbroch, 

2002), cigarette smoking cessation (Giné, Karlan, and Zinman, 2010), avoiding distractions in a 

computer-based task (Houser et al., 2018), reducing time spent playing online games (Acland 

and Chow, 2018), going to the gym (Milkman, Minson, and Volpp, 2013; Royer, Stehr, and 

Sydnor, 2015), performing an unpleasant task (Augenblick, Niederle, and Sprenger, 2015), 

achieving workplace goals (Kaur, Kremer, and Mullainathan, 2015), selecting food items 

(Sadoff, Samek, and Sprenger, 2015), reducing alcohol consumption (Schilbach, 2018), and 

repaying debt (Cho and Rust, 2017). Our paper is most closely related to previous work on 

commitment savings accounts. Ashraf, Karlan, and Yin (2006) offered Filipino households a 

                                                
5 Our results are also consistent with models of costly self-control (Gul and Pesendorfer, 2001), which imply 
demand for commitment among time-consistent agents.  For experimental support for these models, see Sadoff, 
Samek, and Sprenger (2015) and Toussaert (2018).  
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savings account that did not allow withdrawals until a certain date had passed or a certain goal 

amount had been deposited. This illiquid account was taken up by 28% of households and 

increased savings among households that were offered the account.6 While Ashraf et. al (2006) 

relied on participants to make future deposits, Brune Giné, Goldberg, and Yang (2016) offered 

Malawian tobacco crop farmers the opportunity to allocate their existing harvest proceeds into 

both a liquid savings account and a commitment savings account. They find that participants 

offered both accounts saved more than either control group participants or participants offered 

only the liquid savings account. Further research on this topic has examined how deposits to 

commitment savings accounts vary according to the features of those accounts, including the 

presence of restrictions on the types of items that can be purchased with the money in the 

accounts (Dupas and Robinson, 2013; Karlan and Linden, 2014), the existence of physical 

barriers to accessing account balances, such as lockboxes for which a third party and not the 

saver has the key (Dupas and Robinson, 2013), and the imposition of psychological barriers to 

early withdrawals (Burke, Luoto, and Perez-Arce, forthcoming). 

Our paper is distinct from these prior studies because we take inspiration from the 

structure of 401(k) accounts and IRAs and focus on the effect of varying the financial penalty for 

early withdrawals, conditional on offering a commitment savings account in the first place.7 

Financial penalties may have effects that are different from the effects of the other barriers to 

early withdrawals studied previously because, for example, people value commitment but dislike 

restrictions on the types of items they can purchase when they make withdrawals. Indeed, we 

find that increasing the early withdrawal penalty can lead to higher commitment savings account 

deposits, while other researchers have found that imposing restrictions on the items that can be 

purchased using account balances can reduce deposits (Dupas and Robinson, 2013; Karlan and 

Linden, 2014). 

While our evidence is consistent with the presence of fully or partially sophisticated 

present-biased individuals who recognize the commitment benefits of higher early withdrawal 

penalties, the data also points to heterogeneity in sophistication/naiveté. Our results therefore 

                                                
6 Kast, Meier, and Pomeranz (2018) also studiy take-up of commitment savings accounts and finds similar results. 
7 Our second experiment does have one treatment arm that imposes a psychological barrier to early withdrawals. 
Participants must declare that they have a financial emergency if they wish to make early withdrawals from this 
account. If there is a psychological cost to lying, this account imposes a psychological penalty on early withdrawals 
that are not triggered by an emergency. We are primarily interested in this arm because it mimics the fact that IRAs 
and many 401(k) plans permit penalty-free withdrawals when the account holder is facing a financial hardship. 
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accord with previous work documenting present bias heterogeneity (Augenblick, Niederle, and 

Sprenger, 2015), and a contribution of our paper is to draw out the implications of this 

heterogeneity for the relationship between commitment account deposits and the level of early 

withdrawal penalties. In a complementary experiment, John (2018) allows individuals to select 

their own financial penalties for failing to follow through on their savings plans, and more than 

half of the participants end up paying the self-chosen penalty. Her results suggest that many 

participants in the experiment are partially but not fully sophisticated regarding their self-control 

problems. Thus, the welfare implications of increasing early withdrawal penalties for 

commitment savings accounts are far from clear. The current paper focuses on the descriptive 

question of how individuals respond to higher early withdrawal penalties, while Amador, 

Werning, and Angeletos (2006), Galperti (2015), Beshears et al. (2019), and Moser and Olea de 

Souza e Silva (2017) analyze the question of optimal commitment account design from a social 

welfare perspective. 

This paper proceeds as follows. Section I describes our experimental participant 

recruitment. Section II discusses the design of our first experiment, and Section III presents the 

first experiment’s results. Sections IV and V respectively describe the design and results of our 

second experiment. Section VI concludes and discusses policy implications. 

 

I. Participant recruitment 

We conducted our two experiments using participants from the RAND American Life 

Panel (ALP), a panel of respondents at least 18 years old who are selected to be representative of 

the U.S. adult population. ALP respondents participate in approximately two half-hour surveys 

per month over the Internet, and respondents who do not have their own Internet access have it 

provided to them by RAND.8 

Conducting the experiments through the ALP offers several advantages. First, because 

ALP members have an ongoing relationship with RAND, they are likely to trust that the 

                                                
8 The following paragraph from the RAND website contains information on how the ALP forms its sample: 
“ALP members have been recruited from multiple sources over the years. Many ALP members were recruited from 
other completed surveys. The original ALP cohort, for example, was initially recruited for a RAND-University of 
Michigan collaboration on the Health and Retirement Survey. Since then, ALP members have been recruited from 
several other surveys and directly for the panel using multiple modes (in-person/face-to-face, telephone, and mail) 
and probability-based sampling methods, including address-based samples and telephone (random-digit dial) 
samples.” - https://www.rand.org/research/data/alp/panel/recruitment.html 
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experimental procedures described to them, especially regarding the detailed rules of the 

financial accounts, will be carried out as promised. Second, ALP members are accustomed to 

reading experimental instructions, so they are likely to understand the nature of the decisions that 

they are asked to make. Indeed, responses to our debriefing questionnaire suggest that 

participants did not find our instructions confusing. Third, the private nature of an ALP 

member’s participation in the study over the Internet casts doubt on some alternative 

interpretations of the demand for commitment savings accounts. For example, some individuals 

may make deposits to commitment accounts not because they have self-control problems but 

instead because commitment accounts protect financial resources from family members’ and 

friends’ requests for money. It is unlikely that participants in our experiments would make 

deposits to our commitment accounts for this reason, as even the liquid account that we offer to 

participants is difficult for others to observe and hence largely protected from others’ requests. A 

small number of individuals in our experiments are in the same household as other participants 

and may therefore have their experimental participation observed, but these individuals do not 

drive our results—our conclusions do not change if these individuals are dropped from the 

analysis. 

For the first experiment, RAND sent an email in early 2010 to 750 ALP members 

inviting them to participate in a year-long experiment on financial decision-making that would 

provide at least $40 in compensation. 495 members consented to participate, and all of them 

completed the study. Forty-one participants in the first experiment are in the same household as 

at least one other participant in the first experiment. 

The recruitment procedure for the second experiment mirrored the procedure for the first 

experiment. In early 2011, RAND emailed 737 ALP members inviting them to participate in an 

experiment that would provide approximately $100 in compensation. 550 of the invited members 

completed the study. There is no overlap between the participants in the first experiment and the 

participants in the second experiment. Furthermore, no participant in the second experiment is in 

the same household as another participant in the second experiment, although 23 participants in 

the second experiment are in the same household as a participant in the first experiment. 

The Harvard University Institutional Review Board approved both experiments, and 

informed consent was obtained from all participants in both experiments. 
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In both experiments, some ALP members who were invited to participate did not enroll 

in the study, so our experimental samples may not be representative of the U.S. adult population. 

However, while the lack of representativeness implies that the magnitudes of the effects 

observed in the experiments may not generalize to the U.S. adult population, it should not affect 

our main qualitative conclusions regarding the existence of individuals who, when asked to 

allocate resources between a liquid account and a commitment account with the same interest 

rate, respond to an increase in the early withdrawal penalty by increasing their commitment 

account deposits. 

The demographic characteristics of the participants, which were collected by RAND in 

other surveys, are summarized in Table 1. In both experiments, 43% of the participants are male, 

and their ages are distributed fairly evenly across six ten-year age categories. Nearly two-thirds 

have at least some college education. Less than 10% of participants have annual household 

income below $15,000, while 17% of participants have annual household income of at least 

$100,000. Two-thirds are married, and more than 60% are currently working. Approximately 

80% are White/Caucasian, and approximately 10% are Black/African American. Finally, the 

median participant has one other member in his or her household. 

 

II. Design of Experiment 1 

A. Experimental conditions 

Participants in our first experiment allocated an experimental endowment between a 

liquid account and a commitment account. We randomly assigned each participant to one of 

seven experimental conditions. The features of the liquid account were constant across 

conditions, but the features of the commitment account varied. A within-subject experimental 

design in which a given participant made allocation decisions for several different versions of the 

commitment account would have had the desirable property of eliciting individual-level demand 

for commitment account deposits as account features vary, but we instead used a between-

subjects experimental design to make the decision task simple for participants and to avoid the 

potential experimenter demand effects associated with a within-subject design. Thus, each 

participant saw only one version of the commitment account. 

The illiquidity of the commitment account varied across conditions.  In all of these 

conditions, early withdrawals from the commitment account are defined as withdrawals 
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requested prior to a commitment date chosen (and permanently fixed) by the participant at the 

beginning of the experiment.  Withdrawals from the commitment account made before this 

commitment data were penalized in different ways in the treatment arms. Early withdrawals were 

subject to a 10% penalty, a 20% penalty, or disallowed altogether. We asked participants to 

choose their own commitment dates to allow for heterogeneity in the horizons over which 

individuals wished to generate spending. The 10% penalty condition was chosen to mirror the 

existing penalty levied on non-hardship pre-retirement 401(k) and IRA withdrawals in the U.S. 

The no-early-withdrawal condition mirrors the complete lack of pre-retirement liquidity in some 

defined contribution retirement savings systems in other countries (Beshears et al., 2015).9 No 

version of the commitment account permitted withdrawals during the first week of the 

experiment. (For balance, the liquid account also did not permit withdrawals during the first 

week of the experiment.)  

Balances in the liquid account earned a 22% annual interest rate, while balances in the 

commitment account earned a 21%, 22%, or 23% annual interest rate. The account interest rates 

were chosen to be higher than typical credit card interest rates so that most participants would 

not find it advantageous to allocate money to the liquid account just to withdraw it immediately 

to pay down credit card debt. Of course, savings accounts outside of our experiment have much 

lower interest rates, and the level of the experimental accounts’ interest rates may affect the 

demand for commitment and how commitment account deposits respond to account liquidity. 

High interest rates may make illiquidity more attractive because it helps to lock in high returns, 

or high interest rates may make illiquidity less attractive because the high interest rates 

themselves serve as a deterrent to early withdrawals, rendering withdrawal restrictions 

superfluous. However, these issues do not pose a problem for our research design. Our 

conceptual arguments regarding fully sophisticated, partially sophisticated, and naïve present-

                                                
9 We are cautious in generalizing our results due to important differences between our experiment and real-world 
401(k) plans. First, our interest rates are much higher than market interest rates and our experimental endowments 
are small compared to actual 401(k) balances. Second, our experiment studies windfalls and not “earned” income, 
which may have different mental frames.  Third, our experiment and the associated theoretical framework (see 
appendix B) require individuals to allocate a portion of wealth from a given endowment, whereas actual 401(k) 
plans require individuals to make regular deposits at each pay cycle. In a typical 401(k) setting, however, individuals 
set up automatic contributions for their future selves (rather than manually making each 401(k) contribution), and 
since individuals are unlikely to cancel their contributions (due to inertia/switching costs), the initial 401(k) 
allocation decision may serve as a form of partial commitment, generating some limited similarity with the once-
and-for-all allocation decision in our experiment. On the other hand, 401(k) contributions that result from a default 
option (such as 401(k) contributions induced by automatic enrollment) contrast with the “active choice” allocation 
decision in our experiment.  
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biased agents and agents without present bias rely only on the liquid account and commitment 

account interest rates being equal, and our experiment is intended to produce generalizable 

insight into the qualitative impact of varying commitment account illiquidity, not the quantitative 

magnitude of the impact. 

Table 2 summarizes the experimental design and gives the number of participants in each 

condition.10 Instead of having a full 3 × 3 factorial design involving nine types of commitment 

accounts (all three interest rates and all three degrees of illiquidity), the experiment omitted the 

two arms where the commitment account has a 21% interest rate and (i) imposes a 20% early 

withdrawal penalty, or (ii) prohibits early withdrawals. We anticipated that commitment 

accounts with a 21% interest rate would not attract large allocations, so we did not want to 

devote much of our sample to those conditions. However, we did want to compare commitment 

account allocations when the commitment account interest rate was lower than, equal to, or 

higher than the liquid account interest rate. Therefore, we included one condition where the 

commitment account paid a 21% interest rate. 

 

B. Initial allocation task 

When individuals began participating in the experiment, they first saw a series of screens 

describing the details of the experiment. They would receive $50, $100, or $500, depending on a 

random number drawn in the next national Powerball lottery. Their task was to make three 

allocation decisions: divide each of the possible monetary endowments between a liquid account 

and a commitment account. They would receive weekly emails that displayed their account 

balances and a link to the webpage where they could request withdrawals (including partial 

withdrawals). They could also log into the study website at any time to view their balances and 

request withdrawals. Transfers between the two accounts would be impossible after the initial 

allocation, and withdrawal requests would result in a check being mailed to the participant within 

three business days. 

Throughout the experiment, the liquid account was labeled the “Freedom Account,” and 

the commitment account was labeled the “Goal Account.” These labels were intended to help 

participants remember each account’s rules and understand their purposes. The description of the 

                                                
10 The number of participants is not perfectly balanced across cells because the ALP’s random assignment algorithm 
made the cell sizes equal only in expectation; the realized cell sizes could differ from each other. 
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liquid account emphasized that it permitted flexibility. The description of the commitment 

account emphasized that it could help participants reach their savings goals. Participants using 

the commitment account would have to select a commitment date (labeled the “goal date”) no 

later than one year from the current date, and this date might be associated with a gift purchase, a 

vacation, another special event, or no particular purpose. Appendix Figures A1 and A2 show the 

screens explaining the accounts. Note that the experiment did not have a condition in which an 

account was labeled the “Goal Account” but was not associated with early withdrawal 

restrictions, so we cannot isolate the effect of account labeling. Instead, the labeling was held 

constant across all of the experimental conditions. Thus, while labeling was a relevant contextual 

factor, the design allows us to isolate the effect of varying the degree of commitment account 

liquidity, which is our primary research question. 

All participants allocated the $50 endowment first, the $100 endowment second, and the 

$500 endowment third. Whenever participants allocated any money to the commitment account, 

they were invited but not required to associate a goal with the commitment account (see 

Appendix Figure A3). The $50, $100, or $500 endowment is a windfall, and participants’ 

decisions when allocating a windfall between the liquid account and the commitment account 

may differ from the decisions they would make if they were allocating money they already had. 

Nonetheless, the relationship between commitment account allocations and account withdrawal 

restrictions in our experiment sheds light on how individuals think about the use of illiquid 

accounts. 

Finally, participants chose four Powerball numbers. In the twice-weekly Powerball 

lottery, six integers from 1 to 39 are randomly drawn without replacement, and one of these 

numbers is designated as the “Powerball.” All numbers have an equal likelihood of being the 

Powerball. If the Powerball in the next drawing was the first or second number chosen by the 

participant, she received a $500 endowment in the experiment; if the Powerball was the third or 

fourth number chosen by the participant, she received $100; and otherwise, she received $50. 

The money was then allocated between the two accounts according to the participant’s stated 

wishes for the given monetary amount. After the Powerball drawing, participants received emails 

indicating the dollar amount they were given and reminding them of the allocation they had 

chosen for that amount. All participants chose their allocations between February 1, 2010, and 

February 11, 2010. 
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C. Withdrawals 

Appendix Figure A4 shows an example of the weekly email sent to participants, and 

Appendix Figure A5 shows the summary webpage participants saw when they logged into the 

experimental website. When a participant requested a withdrawal, a message asked the 

participant to confirm the withdrawal amount and the amount by which the account balance 

would be reduced. 

If participants withdrew all the money from their accounts before a year had elapsed, they 

were asked to complete an exit questionnaire asking whether any parts of the study were 

confusing and whether they would have changed any of their decisions in the experiment with 

the benefit of hindsight. If participants still had money in their accounts one year after their 

initial allocation decision, their remaining balances were automatically disbursed to them, and 

they were asked to complete the same exit questionnaire. We report results from the exit 

questionnaire in Appendix Table A8. 

 

III. Results of Experiment 1 

A. Initial allocations 

We first examine the initial allocation decisions of participants. We treat each 

participant’s three allocation decisions as three separate observations, and we perform statistical 

inference using standard errors clustered at the participant level.11 Table 3 shows the mean 

fraction allocated to the commitment account by experimental condition. We have three main 

results.12 

First, about half of initial balances are allocated to the commitment account when it has 

the same interest rate as the liquid account (22% column in Table 3, averaging across all penalty 

types), and about one-quarter of initial balances are allocated to the commitment account when it 

                                                
11 Across all experimental conditions, 42% of participants allocate the same fraction of the endowment to the 
commitment account for all three allocation decisions. Among participants who do not choose the same allocation 
for all three decisions, commitment account allocations generally increase as the initial endowment amount 
increases, but our results are qualitatively similar if we separately examine $50 allocation decisions, $100 allocation 
decisions, or $500 allocation decisions. We speculate that changing the endowment amount changes the set of items 
that come to mind as temptation goods or consumption goals, sometimes leading to changes in the fraction of the 
endowment allocated to the commitment account. 
12 Our results are nearly identical if we control for participant characteristics using regressions. Appendix Table A1 
shows that we see similar patterns when we examine the extensive margin of commitment account utilization, 
although the statistical significance of the differences is weaker. 
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has a lower interest rate than the liquid account (21% column). Thus, it seems that some 

participants value commitment, as they are willing to use the commitment account despite 

earning no additional interest or even forgoing interest. Of course, positive demand for the 

commitment account could be due to experimenter demand effects, so we do not emphasize this 

result. We are primarily interested in how commitment account demand varies as the illiquidity 

of the account increases. 

Second, when the commitment account and the liquid account have the same interest rate 

(22% column), stricter commitment accounts are more attractive. As we move from a 10% early 

withdrawal penalty to a 20% early withdrawal penalty to a complete prohibition on early 

withdrawals, the fraction allocated to the commitment account rises from 39% to 45% to 56%. 

The first and second percentages are not statistically significantly distinguishable from each 

other, but the first and third are, as well as the second and third. This result gives us some 

confidence that the value participants place on commitment is not purely due to experimenter 

demand effects. Although demand effects could explain why a positive amount is deposited to 

commitment accounts, it is not obvious why demand effects would become stronger as the 

commitment account becomes more illiquid. Variation in illiquidity occurred exclusively 

between participants, and participants were not aware that illiquidity varied across participants. 

The effect of increasing the commitment account’s illiquidity can be benchmarked 

against the effect of increasing the commitment account’s interest rate. Comparing across 

conditions with a 10% early withdrawal penalty, as the commitment account’s interest rate rises 

from 21% to 22% to 23%, the fraction allocated to it rises from 28% to 39% to 58%. The 

differences across these three conditions are statistically significant. Thus, starting with a 10% 

penalty commitment account with a 22% interest rate, moving to a prohibition on early 

withdrawals has approximately the same effect on commitment account usage as increasing the 

interest rate to 23%. 

Third, when the interest rate on the commitment account is higher than the interest rate 

on the liquid account, the relationship between commitment account allocations and illiquidity 

disappears (23% column). Commitment accounts with a 23% interest rate attract approximately 

60% of the endowment regardless of their early withdrawal policy. Appendix Table A2 uses a 

regression framework to show that the negative interaction between the effect of the 23% interest 
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rate (relative to the 22% interest rate) and the effect of complete illiquidity (relative to the 10% 

early withdrawal penalty) is statistically significant. 

When participants allocate money to a commitment account, they are required to specify 

a commitment date before which early withdrawal restrictions apply. Table 4 shows the mean 

number of days between the participant’s initial allocation date and his commitment date. This 

average varies between 186 days and 234 days across conditions. Appendix Figure A12 

additionally shows the distribution of days until commitment date by treatment arm. An 

alternative measure of commitment takes into account both the amount of money committed and 

the time until the commitment date. Thus, for each allocation decision, we calculate the dollar-

weighted days to commitment date, which is the fraction of balances allocated to the 

commitment account multiplied by the number of days between the allocation decision date and 

the commitment date. 

Table 5 displays the mean dollar-weighted days to commitment date by experimental 

condition. The results are similar to what we found for percentage allocations to the commitment 

account, but slightly weaker statistically. When the commitment account pays a 22% interest 

rate, the mean dollar-weighted days to commitment date increases from 82 to 101 to 132 as we 

move from a 10% early withdrawal penalty to a 20% early withdrawal penalty to a prohibition 

on early withdrawals. When the commitment account has a 10% penalty on early withdrawals, 

the mean dollar-weighted days to commitment date increases from 64 to 82 to 130 as the interest 

rate increases from 21% to 22% to 23%. When the commitment account pays a 23% interest rate, 

the mean dollar-weighted days to commitment date has no relationship with illiquidity.13 

In Online Appendix B, we show theoretically that sophisticated present-biased agents 

will allocate more to the commitment account as its illiquidity rises (under a wide range of taste 

shock distributions).  Rising allocations to the commitment account is the pattern we empirically 

observe in the arms of the study in which the liquid account and the commitment account pay the 

same interest rate (i.e., 22%). The weaker relationship between allocations to the commitment 

account and commitment account illiquidity when the commitment account pays a higher 

interest rate than the liquid account (23% for the commitment account vs. 22% for the liquid 
                                                
13 A participant who is offered a commitment account with a 23% interest rate might allocate the entire endowment 
to the commitment account but choose the earliest possible commitment date in order to earn the higher interest rate 
while avoiding commitment. We see little evidence of this behavior. Of the 214 participants who had access to the 
23% interest rate commitment account, only four participants selected goal dates within the first two weeks after the 
initial allocation decision. 
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account) is theoretically predicted if there are also agents with standard exponential discounting 

and/or naïve present-biased agents among our experimental participants. When the commitment 

account has an interest rate premium, it attracts some deposits from these two groups.14 

However, since they have no desire for commitment, their commitment account allocations 

decrease as the account becomes more illiquid, partially offsetting the rising allocations to the 

commitment account by sophisticated present-biased agents. This offset affect implies that the 

slope of allocations with respect to rising illiquidity is predicted to be lower in the arms of the 

study in which the commitment account has a 23% rate of interest than it is in the arms of the 

study in which the commitment account has a 22% rate of interest.  (Recall that the liquid 

account has a 22% rate of interest in all arms of the study.)  When the commitment account pays 

the same interest rate as the liquid account (i.e., the 22% arm for commitment account), the 

model predicts that both agents with standard exponential discounting and agents that have naïve 

present-bias will allocate no money to the commitment account regardless of its strictness. 

Therefore, the theoretically predicted relationship between rising withdrawal penalties and rising 

commitment account balances is driven by the sophisticated present-biased agents in the arms of 

the study in which the commitment account has the same interest rate as the liquid account. 

We linked the data from our experiment with other participant data available from the 

RAND American Life Panel and examined correlations between commitment account 

allocations in the experiment and variables such as credit card usage. We did not identify any 

correlations that survive correction for multiple hypothesis testing. Appendix Table A7 shows a 

sample of these correlations. 

 

B. Withdrawals 

What happens to account balances after the initial allocation? For each participant and 

each day during the year-long experiment, we calculate the sum of the liquid account and 

commitment account balances that the participant would have had if no withdrawals had been 

requested. This hypothetical total balance uses the allocation decision for the one endowment 

amount that the participant ended up receiving ($50, $100, or $500). We then calculate the ratio 

                                                
14 In theory, agents who believe themselves to be time-consistent should choose the earliest possible commitment 
date for their commitment account. The absence of such behavior may be due to an experimenter demand effect, 
where participants feel that they are “misbehaving” if they game the system by allocating money to the commitment 
account while creating negligible commitment. 
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of the participant’s actual balance to the hypothetical total balance on each day, and we plot the 

mean of this ratio against the number of days since the endowment was received.15 In order to 

facilitate the relevant comparisons, we present subsets of the seven conditions in each of the 

three graphs in Appendix Figure A6. 

In all conditions, most of the experimental endowment stays in the accounts until the very 

end of the experiment. The lowest ending mean balance ratio is 0.626, and the highest is 0.723. 

The top graph in Appendix Figure A6 appears to show that withdrawals take place earlier in the 

experiment in the treatment arms in which when the interest rate on the commitment account is 

lower. Holding fixed the withdrawal penalty at 10%, the average balance ratio across all the days 

after endowment receipt is 0.814 when the commitment account interest rate is 21%, 0.831 when 

the commitment account interest rate is 22%, and 0.869 when the commitment account interest 

rate is 23%. However, with a standard error on each average of about 0.03, we do not have the 

statistical power to reject equality. 

The next two graphs in Appendix Figure A6 indicate that withdrawal patterns do not vary 

strongly with the commitment account’s degree of illiquidity.16 When both the commitment 

account and the liquid account have the same interest rate, the average balance ratio across all 

days is 0.831 with a 10% early withdrawal penalty, 0.837 with a 20% early withdrawal penalty, 

and 0.827 with no early withdrawals allowed. When the commitment account has a higher 

interest rate than the liquid account, the average balance ratio across days is 0.869 with a 10% 

early withdrawal penalty, 0.829 with a 20% early withdrawal penalty, and 0.857 with no early 

withdrawals allowed. We cannot reject the hypothesis that the average balance ratio does not 

change as illiquidity varies while holding fixed the commitment account interest rate.17  

                                                
15 Recall that there was a gap between when the allocation decision was made and when the endowment was 
received because we needed to wait for the next Powerball lottery drawing to determine how large the participant’s 
endowment would be. 
16 We display various withdrawal statistics in Appendix Table A4. Appendix Table A6 also shows statistics related 
to incurred penalties. 
17 To offer a different perspective on withdrawal decisions, Appendix Figure A7 shows average balance ratios for 
each experimental condition at four points in time: on the day of the initial deposit into participant accounts, three 
days before the commitment date, three days after the commitment date, and three days before remaining account 
balances were automatically disbursed. For participants who did not allocate any funds to a commitment account, 
we use the balance ratio on the initial deposit date as the balance ratio three days before the commitment date, and 
we use the balance ratio three days after the initial deposit date as the balance ratio three days after the commitment 
date. This analysis of withdrawals is imperfect because the commitment date is an endogenous decision that is 
influenced by treatment assignment, but we include the analysis because it allows us to examine withdrawal 
decisions around the date that a participant deems most relevant for commitment. We find that holding fixed the 
commitment account interest rate, participants who were not allowed to withdraw early have the highest balance 
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The net effect of commitment account illiquidity on balance ratios is complicated by the 

competing channels through which illiquidity may affect withdrawal behavior. On the one hand, 

commitment account illiquidity positively impacts balance ratios because individuals in the more 

illiquid treatment groups allocate more to their commitment accounts. On the other hand, 

commitment account illiquidity negatively impacts balance ratios because individuals in the 

more illiquid treatments set earlier commitment dates. Additionally, incurred penalties may 

lower balance ratios for individuals in the 10% or 20% early withdrawal penalty conditions as 

compared to individuals that cannot incur penalties in the no early withdrawals condition.18 

These competing effects generate muddy predictions and lower our power to detect differences. 

In addition, (continuous) withdrawal decisions depend on many realizations that occur during the 

one-year duration of the experiment (e.g., liquidity shocks and taste shocks) while the ex-ante 

commitment decision depends on expectations about these events. Accordingly, withdrawal 

decisions are noisier than ex-ante commitment decisions, further challenging our power to make 

inferences about withdrawal effects by treatment arm.   

 

IV. Design of Experiment 2 

Our second experiment investigates several questions motivated by the first experiment. 

First, do voluntary commitment accounts discourage withdrawals? To address this, we introduce 

greater exogenous variation in the strength of commitment in order to be able to detect 

withdrawal effects more reliably. Second, given some participants’ preference for more illiquid 

commitment accounts, why are such commitment products rarely observed in the market? We 

test one hypothesis: a highly illiquid commitment account is attractive when compared only to a 

fully liquid account, but unattractive when a less illiquid commitment account is added to the 

choice set, since the latter makes the highly illiquid account seem like an extreme option 

                                                                                                                                                       
ratio three days before the commitment date. When the commitment account pays a 22% interest rate, the balance 
ratio is 0.939 for the 10% penalty condition, 0.926 for the 20% penalty condition, and 0.948 for the no-withdrawal 
condition. When the commitment account pays a 23% interest rate, the balance ratio is 0.903 for the 10% penalty 
condition, 0.894 for the 20% penalty condition, and 0.953 for the no-withdrawal condition. However, these 
differences within interest rate condition are not statistically significant. We conduct a similar analysis that adjusts 
for the fact that the mean commitment date differs across arms (see Appendix Discussion A1). While we find 
suggestive evidence that stronger commitment raises balance ratios, we again find no statistically significant 
differences between the averages.   
18 It is possible that the savings goals set during the initial allocation decision impact later withdrawal behavior. If 
either the goals themselves or the withdrawal behavior originating from the goals differ by experimental condition, 
we might expect average balance ratios to differ as well.  
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(Simonson, 1989). Furthermore, the complexity of choosing from a set with multiple 

commitment accounts may make individuals favor the simple liquid account (Redelmeier and 

Shafir, 1995). Finally, strict commitment has the advantage of preventing overspending but does 

not allow participants to access their funds in a financial emergency. Is a commitment account 

that offers early liquidity only in the event of an emergency more attractive to participants than a 

commitment account that prohibits all early withdrawals? 

 

A. Experimental conditions 

Participants in our second experiment were randomized into four treatment conditions. In 

all conditions (and consistent with the first experiment), participants had access to a liquid 

account that paid a 22% interest rate and allowed penalty-free withdrawals. In contrast to the first 

experiment, the commitment accounts in the second experiment always paid a 22% interest rate 

and varied across conditions only in their illiquidity characteristics. Two conditions mimicked 

conditions in the first experiment for the purposes of replication. In the first arm (for replication), 

participants allocated their endowment between the liquid account and a commitment account 

that imposed a 10% penalty on withdrawals before the participant’s chosen commitment date. In 

the second arm (for replication), participants allocated their endowment between the liquid 

account and a commitment account that prohibited withdrawals before the participant’s self-

selected commitment date. In the third arm, participants allocated their endowment among the 

liquid account and two different commitment accounts, one that imposed a 10% penalty on early 

withdrawals and the other that prohibited early withdrawals (mirroring the different goal 

accounts available to participants in the first two arms of the experiment). Participants in this 

third arm could pick any convex combination across the three accounts, and each commitment 

account could be assigned its own commitment date if both were used. In the fourth and final 

arm, participants allocated their endowment between a liquid account and a new type of 

commitment account with a “safety valve” feature that prohibited early withdrawals unless a 

participant indicated that the funds were needed for a financial emergency. Financial 

emergencies would not be verified, but participants were asked to indicate honestly whether or 

not they were experiencing a financial emergency. The safety valve commitment account 

attempts to impose a psychological cost of lying only on participants who make an early 

withdrawal when they are not experiencing a financial emergency, creating a state-contingent 
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early withdrawal penalty. This account was chosen to partially capture the provisions that exist 

in 401(k) and IRA accounts that allow for penalty-free pre-retirement withdrawals in the case of 

certain financial hardships;19 some other countries with defined contribution retirement savings 

systems also allow for pre-retirement withdrawals only in the case of certain financial hardships 

(Beshears et al., 2015). 

After participants indicated their desired allocations, they were randomly assigned to 

receive either $100 allocated according to their wishes or $100 allocated entirely to the liquid 

account. Table 6 shows the number of participants assigned to each experimental condition, 

broken out into the number who received allocations according to their wishes and the number 

who received all of their funds in the liquid account. We did not stratify by experimental 

condition when randomly assigning participants to receive their chosen allocations or the 100% 

liquid account allocation, so the distribution of participants within each experimental condition is 

unbalanced. 

 

B. Initial allocation task 

Participants were told that they would receive $100 to allocate between the accounts 

offered in their condition. The liquid account was again labeled the “Freedom Account,” and the 

commitment accounts were again labeled “Goal Accounts.” The experimental website would 

display balances and allow withdrawal requests at any time,20 and weekly emails would also 

display balances and a link to the withdrawal webpage. Transfers between the accounts would 

not be allowed, and checks would be mailed within three business days of a withdrawal request. 

The descriptions of the liquid account, the 10% penalty commitment account, and the no-

early-withdrawal commitment account were the same as the descriptions used in the first 

experiment. When the 10% penalty account and the no-early-withdrawal account were offered 
                                                
19 401(k) hardship withdrawals differ from our safety-valve treatment in three key ways. First, some hardship 
withdrawals are still penalized with the 10% penalty. Second, the financial circumstance necessitating a hardship 
withdrawal must correspond with an IRS-listed financial hardship; in our safety-valve treatment, we did not specify 
qualifying financial hardships. Third, until recently employers had to verify that the requesting employee was indeed 
experiencing a financial hardship. An IRS memo distributed in 2017, however, changed hardship withdrawal rules 
to allow employers to offer self-substantiation for financial hardships, along the same lines as our safety-valve 
treatment. The Bipartisan Budget Act of 2018 additionally repealed the 6-month suspension of elective deferrals 
following the hardship withdrawal and removed the mandate that required individuals to take out a 401(k) loan prior 
to a hardship withdrawal. See https://www.irs.gov/retirement-plans/retirement-plans-faqs-regarding-hardship-
distributions and https://www.irs.gov/pub/foia/ig/spder/tege-04-0217-0008.pdf for more information. 
20 Like the first experiment, the second experiment permitted withdrawals no sooner than one week after the initial 
allocation decision. 
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simultaneously, they were labeled “Goal Account A” and “Goal Account B,” respectively (see 

Appendix Figure A8). Participants learned that the two commitment accounts could be assigned 

distinct commitment dates (again labeled “goal dates”). In the case of the safety valve account, 

participants were informed that early withdrawals were possible only when a financial 

emergency occurred. Participants would be the sole judges of whether or not an emergency was 

actually occurring (see Appendix Figure A9). 

Participants were told that they would receive their chosen allocation with 50% 

probability and an allocation selected by the experimenters with 50% probability. They did not 

know that the allocation selected by the experimenters would place all of the money in the liquid 

account. A computer rather than a public randomizing device was used for this randomization 

procedure. Finally, participants made their allocation and commitment date choices. Participants 

were then informed whether they were receiving their chosen allocation or the 100% liquid 

account allocation. 

Participants completed this initial phase of the experiment between February 14, 2011, 

and March 2, 2011. The experiment ended for all participants on September 1, 2011. Therefore, 

unlike the one-year duration of the first experiment, the second experiment’s duration was only 

about half a year. 

 

C. Withdrawals 

All participants who requested withdrawals were asked to confirm their requests. In 

addition, participants who wished to make early withdrawals from the safety valve account were 

shown the following text: 

We are relying on you to be honest in judging whether you have a 
financial emergency. If you are sure you want to make a 
withdrawal, please type the sentence below, then click “Next.” 
Otherwise, click “Cancel my withdrawal.” 
 

The sentence that these participants were asked to type was, “I attest that I have a financial 

emergency.” However, the website accepted any entered text. 

The second experiment gave an exit questionnaire to participants who withdrew all of 

their money before September 1, 2011. Participants who had remaining balances on September 

1, 2011 automatically received checks for their balances and received emails with links to the 

same exit questionnaire. The exit questionnaire gave participants the opportunity to identify 
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confusing aspects of the experiment.21 Also, whenever participants in the second experiment 

made any withdrawals (including partial withdrawals) before September 1, 2011, they were 

given the option to provide the reasons for the withdrawal. 

 

V. Results of Experiment 2 

A. Initial allocations 

Table 7 shows the mean fraction of the endowment allocated to a commitment account in 

each experimental condition. When participants are offered only the liquid account and the 10% 

penalty account, the commitment account receives 46% of the endowment. When participants 

are offered only the liquid account and the no-early-withdrawal account, the mean commitment 

account allocation is 54%, which is significantly higher (p = 0.034) than the 46% allocation in 

the former condition. Thus, we replicate the findings from the first experiment that commitment 

is desirable, and stronger commitment is more attractive when the commitment and liquid 

accounts pay the same interest rate. 

The no-early-withdrawal account is appealing even when it is offered in the same choice 

set as the 10% penalty account. In this arm, the no-early-withdrawal account attracts 34% of the 

endowment, while the 10% penalty account attracts only 16%, a difference that is highly 

significant (p < 0.001). We therefore find no evidence that the lack of strict commitment 

accounts in the marketplace is due to the simultaneous presence of partially illiquid accounts. 

Surprisingly, total allocations to commitment accounts are not higher when two 

commitment accounts are available rather than one. With two commitment accounts, the 

commitment accounts receive 50% of the endowment in total. This is halfway between the 46% 

allocation when the 10% penalty account is the only commitment account and the 54% allocation 

when the no-early-withdrawal account is the only commitment account. It is possible that the 

availability of two commitment accounts makes the allocation decision more complex, leading 

participants to view the simple and distinct liquid account as more desirable (Redelmeier and 

Shafir, 1995). Intuitively, if a participant has a hard time choosing between two similar 

commitment accounts, the participant may take the exit strategy of adopting a conflict-avoiding 

                                                
21 In contrast to the first experiment, participants in the second experiment were not asked to explain anything that 
they would have done differently in retrospect. 
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alternative (i.e., the liquid account). This is an instance of “reason-based choice” (Shafir, 

Simonson, and Tversky, 1993). 

Our attempt to create a commitment account that is more appealing than the no-early-

withdrawal account was unsuccessful. The safety valve account receives a mean allocation of 

45%. This is statistically indistinguishable from the 46% allocation to the 10% penalty account 

when it is the only commitment account available, and significantly less (p = 0.018) than the 

54% allocation to the no-early-withdrawal account when it is the only commitment account 

available. It may be that the psychological cost of lying about a financial emergency in order to 

make a withdrawal is too low for the safety valve commitment account to be a strong 

commitment device.22 

Table 8 displays the mean days between the initial allocation date and the commitment 

date, and Table 9 shows the mean dollar-weighted days to commitment date. Appendix Figure 

A13 shows the distribution of days until commitment date. The results in Table 9 are in line with 

the initial commitment account allocations in Table 7. Mean dollar-weighted days to 

commitment date rises from 62 to 64 to 75 in the single commitment account conditions as the 

commitment account changes from safety valve to 10% penalty to no early withdrawals. The 

difference between the safety valve and no early withdrawal conditions is significant (p = 0.046), 

but not the difference between the 10% penalty and no early withdrawal conditions (p = 0.137).23 

When two commitment accounts are available, the mean dollar-weighted days to commitment 

date of 71 lies between the values in the arms where only one commitment account is available 

and the commitment account either imposes a 10% penalty or does not allow early withdrawals. 

 

B. Withdrawals 

Because we randomly assigned half of participants to receive all of their endowment in 

the liquid account, we have greater exogenous variation in liquidity than in the first experiment, 

which we can use to identify whether the commitment accounts help participants save more. 

Appendix Figure A10 shows the balance ratios over time for the four experimental conditions, 

breaking apart participants by whether they received their endowments allocated according to 
                                                
22 All of the allocation results are qualitatively unchanged if we adjust for participant characteristics using 
regressions, except that the difference between the safety valve account allocation and the no-early-withdrawal 
account allocation when only one commitment account is offered is significant at only the 10% level. Appendix 
Table A3 shows results for the extensive margin of commitment account utilization. 
23 These two p-values are 0.101 and 0.099, respectively, when we control for participant characteristics. 
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their choices or 100% in the liquid account.24 Because participants made initial allocation 

decisions on different dates but completed the experiment on the same date (September 1, 2011), 

some participants participated in the experiment for slightly longer periods of time than others. 

The figure displays only the first 183 days since endowment receipt, so that the sample remains 

constant within each graph. To provide a complementary perspective, Appendix Figure A11 

shows mean balance ratios in each of the experimental conditions, separately for participants 

who received their own allocation choices and those who received the entire endowment in the 

liquid account, at four points in time: the day of the initial deposit into the participant’s accounts, 

three days before the participant’s commitment date, three days after the participant’s 

commitment date, and three days before remaining account balances were automatically 

disbursed to the participant. Appendix Table A5 shows additional withdrawal statistics.   

Consistent with the safety valve account being a weak commitment device, the balance 

ratios for those in the safety valve condition do not markedly differ when participants receive all 

of their endowment in the liquid account instead of according to their chosen allocation. In 

contrast, balance ratios are substantially lower in the 10% penalty and no early withdrawal 

conditions with only one commitment account if all of the endowment was deposited into the 

liquid account. The same pattern emerges when there are two commitment accounts, although 

the gap is much smaller. In Table 10, we report the difference in balance ratio means within 

condition at selected points in time during the experiment, as well as for the four experimental 

conditions pooled. The results for the pooled sample suggest that the commitment accounts do 

significantly reduce withdrawals. Of course, we do not observe participants’ other financial 

accounts, so higher balances in the experimental accounts may be offset by lower balances in 

accounts outside the experiment.  

 

VI. Conclusion 

This paper studies the demand for commitment devices in the form of illiquid financial 

accounts, focusing on individuals’ responses to variation in early withdrawal penalties. When we 

ask experimental participants to allocate an endowment between a liquid account and a 
                                                
24 For one participant in the no early withdrawal condition, we have conflicting records as to whether the participant 
was randomly assigned to receive the chosen commitment account allocation or was randomly assigned to receive 
the entire endowment in the liquid account. We drop this participant from the data set when analyzing withdrawal 
patterns, but the results do not change materially if we assume that the participant was randomly assigned to one 
group or the other. 
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commitment account with the same interest rate, we find that commitment account allocations 

are increasing in the commitment account’s degree of illiquidity. This result is consistent with 

the presence of some partially- or fully-sophisticated present-biased agents. However, when the 

commitment account pays a higher interest rate than the liquid account, we find that this positive 

relationship is flattened: commitment account allocations do not robustly rise with the 

commitment account’s degree of illiquidity.  This flattening is consistent with the hypothesis that 

naïve present-biased individuals or individuals without present bias are also in our sample. Thus, 

increasing the illiquidity of 401(k) and IRA accounts, which yield higher after-tax returns than 

more liquid accounts, may not increase aggregate 401(k) and IRA contributions despite the 

desire for strict commitment within a (sophisticated, present-biased) segment of the population. 

Many U.S. retirement savings accounts only weakly restrict pre-retirement spending. 

Withdrawals from 401(k) plans and IRAs before the age of 59½ generate a 10% tax penalty, and 

there are many classes of withdrawals from these accounts that are penalty-free. It is estimated 

that 46% of workers with 401(k) accounts who leave their jobs receive their 401(k) balances as a 

lump-sum withdrawal (Hewitt Associates, 2009), and retirement savings plan managers assert 

that this “leakage” is socially sub-optimal (Steyer, 2011). Our experimental results indicate that a 

fraction of the population—those present-biased individuals who are sophisticated about their 

present bias—might not object to or even welcome increasing the illiquidity of retirement 

accounts. Future work should address the challenge of designing the liquidity features of an 

optimal retirement savings system that takes into account the presence of both sophisticated and 

naïve present-biased individuals, as well as individuals with no present bias at all.  

The results from the experiments reported in this paper raise the possibility that voluntary 

commitment accounts with modest financial incentives could improve the lifecycle welfare of 

both sophisticated agents (who understand the benefits of the penalties/illiquidity) and naïve 

agents (who invest in those commitment accounts for the excess return, despite, and not because 

of, the illiquidity).  Our empirical results suggest that many households might be tolerant of 

highly illiquid retirement savings accounts if those accounts had a modest sweetener (e.g., a 

higher return than alternative liquid investments).  Across all of our experimental treatments, 

higher early withdrawal penalties on the commitment account sometimes increase and never 

reduce allocations to the commitment account. 
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Highly illiquid accounts are socially optimal in economies with populations that have 

heterogeneous levels of present bias (e.g., see Moser and Olea de Souza e Silva, 2017; and 

Beshears et al., 2019).  To a first approximation, socially optimal illiquidity is obtained when 

early withdrawal penalties are equal to the degree of present bias (in a two-period problem): i.e., 

the early withdrawal penalty should equal 1 − 𝛽, where 𝛽 is the present bias parameter.  To see 

why, note that the planner would like equilibrium allocations to be characterized by the classical 

Euler Equation: 

𝑢&(𝑐)) = 𝑅𝛿𝑢&(𝑐)./), 

where u is a stationary utility function, c is consumption (with a time subscript), R is the gross 

rate of return, and 𝛿 is the exponential discount factor.  If an agent has present bias, and the 

planner introduces an early withdrawal penalty, p, then the agent’s actual (two-period25) Euler 

Equation will be 

𝑢&(𝑐)) = 𝛽(1 + 𝑝)𝑅𝛿𝑢&(𝑐)./). 

The planner’s socially optimal intertemporal consumption allocation is obtained if 𝑝 ≈ 1 − 𝛽. 26 

In populations with heterogeneous present bias where present-bias screening is either 

difficult because agents try to pool or challenging for political reasons (e.g., the government 

needs to treat everyone equally), society’s retirement savings regime should be 

disproportionately targeted at the households with relatively extreme levels of present bias (i.e., 

those with lower values of 𝛽). These are the households at most risk of radically deviating from 

their optimal consumption path.27 Accordingly, high penalties in universal retirement accounts 

will be (second-best) socially optimal. Despite numerous significant reservations about external 

validity, the results of our experiments hold out the possibility that long-run savings accounts 

with large early withdrawal penalties (or even complete illiquidity, as is the norm in social 

security systems or defined benefit pension systems) may be broadly popular, particularly if the 

commitment accounts are sugar-coated so they also appeal to agents who are naïve.  

 

  

                                                
25 In a problem with an arbitrary horizon the Euler Equation is characterized in Harris and Laibson (2001). 
26 The relationship 𝑝 = 1 − 𝛽, is exact if the penalty is paid out of withdrawals, so that the Euler Equation is 
(1 − 𝑝)𝑢&(𝑐)) = 𝛽𝑅𝛿𝑢&(𝑐)./). 
27 See Beshears et al (2019) for details of this argument. 
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Table 1. Participant Characteristics 
Demographic characteristics for participants in the first experiment (n = 495) and the second 
experiment (n = 550). We additionally include two columns with US statistics from the CPS 
(among individuals 18+). Experiment 1 took place in 2010 and experiment 2 took place in 2011.  
 
 Expt. 1 2010 CPS Expt. 2 2011 CPS 
Percent male 43% 48% 43% 48% 
     
Age     
≤ 25 8% 15% 8% 15% 
26-35 17% 18% 19% 17% 
36-45 21% 18% 18% 17% 
46-55 22% 19% 22% 19% 
56-65 16% 15% 15% 15% 
≥ 66 16% 16% 17% 16% 
     

Education     
No high school diploma 3% 14% 5% 13% 
High school graduate 32% 31% 29% 30% 

      Some college 20% 19% 23% 20% 
Associate’s degree 7% 9% 12% 9% 
Bachelor’s degree 24% 18% 19% 18% 
Graduate degree 13% 9% 12% 10% 
     

Annual Household Income     
      < $15,000 6% 9% 9% 10% 
      $15,000 - $34,999 19% 20% 20% 20% 

$35,000 - $49,999 16% 14% 16% 13% 
$50,000 - $74,999 27% 19% 22% 19% 
$75,000 - $99,999 15% 13% 16% 13% 
≥ $100,000 17% 25% 17% 25% 
 

Marital Status      

      Married 68% 54% 66% 54% 
      Separated/divorced 11% 13% 14% 13% 

Widowed 5% 6% 5% 6% 
Never married 16% 27% 15% 27% 

 
Race     

      White/Caucasian 80% 81% 81% 80% 
      Black/African American 8% 12% 10% 12% 
      Amer. Indian or Alaskan Native 1% 1% 1% 1% 

Asian or Pacific Islander 4% 5% 2% 5% 
      Other 6% 2% 5% 2% 
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Table 2. Sample Size in Each Experimental Condition: Experiment 1 
This table reports the number of participants who were assigned to each experimental condition 
in Experiment 1 (February 1, 2010, to February 13, 2011). 
 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 72 66 78 
20% early withdrawal penalty 0 79 68 
No early withdrawals 0 64 68 
 
 
 
 
 
 
 
 

Table 3. Percent of Endowment Allocated to Commitment Account: Experiment 1 
For each experimental condition, this table reports the mean percent of endowment allocated to 
the commitment account. There are three observations for every participant: one observation for 
each possible endowment amount. Standard errors clustered at the participant level are in 
parentheses. The table also gives p-values from tests of equality of means, as indicated. 
Importantly, the interest rate on the liquid account is 22% percent in all experimental conditions.  
 
Withdrawal restrictions on 
commitment account prior to 
commitment date 

Commitment account 
interest rate 

p-value of equality 
of means 

21% 22% 23% 21% vs. 22% 22% vs. 23% 
10% early withdrawal penalty 27.6 

(2.8)	
38.9 
(3.4)	

58.2 
(3.4)	

0.011 0.000 

20% early withdrawal penalty --	 44.8 
(3.4)	

61.1 
(3.4)	

--	 0.001 

No early withdrawals	 --	 56.0 
(4.1)	

59.9 
(3.6)	

--	 0.469 

 
p-value of equality of means      

 10% penalty vs. 20% penalty -- 0.220 0.539   
 10% penalty vs. no early w/d -- 0.002 0.719   
 20% penalty vs. no early w/d -- 0.035 0.809   
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Table 4. Days to Commitment Date: Experiment 1 
For each experimental condition, this table reports the mean days between the initial allocation 
decision date and the commitment date. There are up to three observations for every participant: 
one observation for each possible endowment amount. If a participant allocates no money to the 
commitment account for a given endowment amount, the days to commitment date for that 
participant and endowment amount is treated as missing. Standard errors clustered at the 
participant level are in parentheses. The table also gives p-values from tests of equality of means, 
as indicated. 
 
Withdrawal restrictions on 
commitment account prior to 
commitment date 

Commitment account 
interest rate 

p-value of equality 
of means 

21% 22% 23% 21% vs. 22% 22% vs. 23% 
10% early withdrawal penalty 234.0 

(12.0) 
209.0 
(13.4) 

227.6 
(12.3) 

0.165 0.306 

20% early withdrawal penalty	 --	 207.4 
(12.5) 

202.1 
(13.7)	

--	 0.775 

No early withdrawals	 --	 214.3 
(14.1) 

186.0  
(12.6) 

--	 0.136 

 
p-value of equality of means      

 10% penalty vs. 20% penalty -- 0.931 0.167   
 10% penalty vs. no early w/d -- 0.785 0.019   
 20% penalty vs. no early w/d -- 0.716 0.384   
 

Table 5. Dollar-Weighted Days to Commitment Date: Experiment 1 
For each experimental condition, this table reports the mean dollar-weighted days to 
commitment date, which is the fraction of the endowment initially allocated to the commitment 
account multiplied by the number of days separating the initial allocation decision date and the 
commitment date. There are three observations for every participant: one observation for each 
possible endowment amount. Standard errors clustered at the participant level are in parentheses. 
The table also gives p-values from tests of equality of means, as indicated. 
 
Withdrawal restrictions on 
commitment account prior to 
commitment date 

Commitment account 
interest rate 

p-value of equality 
of means 

21% 22% 23% 21% vs. 22% 22% vs. 23% 
10% early withdrawal penalty	 64.3 

(7.3) 
81.8 
(9.1) 

129.6 
(10.6) 

0.136 0.001 

20% early withdrawal penalty	 --	 100.5	
(10.9) 

127.0	
(12.3) 

--	 0.108 

No early withdrawals	 --	 131.8	
(13.9) 

117.8	
(11.2) 

--	 0.436 

 
p-value of equality of means      

 10% penalty vs. 20% penalty -- 0.188 0.872   
 10% penalty vs. no early w/d -- 0.003 0.447   
 20% penalty vs. no early w/d -- 0.078 0.584   
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Table 6. Sample Size in Each Experimental Condition: Experiment 2 
This table reports the number of participants who were assigned to each experimental condition 
in Experiment 2 (February 14, 2011, to September 1, 2011). 
 

Withdrawal restrictions on commitment 
account prior to commitment date 

Endowment allocation  
According to 
participant’s 

choice 
All in liquid 

account 

 
 

Total 
Safety valve (withdrawals only in financial 
emergencies) 

85 65 150 

10% early withdrawal penalty 54 46 100 
No early withdrawals 60 90 150 
Two commitment accounts: 10% early 
withdrawal penalty and no early withdrawals 

70 80 150 

 
 
 
 
 
 
 
 

Table 7. Percent of Endowment Allocated to Commitment Account: Experiment 2 
For each experimental condition, this table reports the mean percent of endowment allocated to a 
commitment account. For the condition offering two commitment accounts, mean allocations are 
also reported for each individual commitment account. Standard errors are in parentheses. 
 
Withdrawal restrictions on commitment account  
prior to commitment date 

% allocated to 
commitment account 

Safety valve (withdrawals only in financial	
   emergencies) 

45.3 
(2.7) 

10% early withdrawal penalty	 45.8 
(2.9) 

No early withdrawals	 53.7 
(2.3) 

Two commitment accounts: 10% early withdrawal penalty and no early 
withdrawals 

50.1 
(2.7) 

   Allocation to 10% early withdrawal penalty account	 16.2 
(1.4) 

   Allocation to no early withdrawals account	 33.9 
(2.4) 
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Table 8. Days to Commitment Date: Experiment 2 
For each experimental condition, this table reports the mean days between the initial allocation 
decision date and the commitment date. If a participant allocates no money to a commitment 
account, the days to commitment date for that participant and commitment account is treated as 
missing. Standard errors are in parentheses. The table also gives p-values from tests of equality 
of means, as indicated. 
 

Withdrawal restrictions on commitment account 
prior to commitment date 

Days to commitment 
date 

p-value of equality 
of means vs. no 

early withdrawals 
only  

Safety valve (withdrawals only in financial 
   emergencies) 

135.4  
(5.4) 

0.923 

10% early withdrawal penalty 135.6  
(6.0) 

0.900 

No early withdrawals 134.7 
(4.5) 

-- 

Two commitment accounts   
   10% early withdrawal penalty 116.3 

(6.5) 
0.020 

   No early withdrawals 148.7 
(5.5) 

0.050 

 
Table 9. Dollar-Weighted Days to Commitment Date: Experiment 2 

For each experimental condition, this table reports the mean dollar-weighted days to 
commitment date. When one commitment account is offered, dollar-weighted days to 
commitment date is defined as the fraction of the endowment initially allocated to the 
commitment account multiplied by the number of days separating the initial allocation date and 
the commitment date. When two commitment accounts are offered, dollar-weighted days to 
commitment date is obtained by calculating this product for each account and taking the sum. 
Standard errors are in parentheses. The table also gives p-values from tests of equality of means, 
as indicated. 
 

Withdrawal restrictions on commitment account 
prior to commitment date 

Dollar-weighted days 
to commitment date 

p-value of equality 
of means vs. no 

early withdrawals 
only 

Safety valve (withdrawals only in financial 
   emergencies) 

62.0 
(4.6) 

0.046 

10% early withdrawal penalty	 64.4	
(5.5) 

0.137 

No early withdrawals	 74.8	
(4.4) 

-- 

Two commitment accounts: 10% early	
   withdrawal penalty and no early withdrawals 

71.3	
(4.8) 

0.587 
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Table 10. Mean Withdrawal Measure for Own versus All Liquid Allocation: Experiment 2 
For each participant at a given number of days since the start of the experiment, we calculate the 
ratio of their actual balances in the experimental accounts to the hypothetical balances in the 
experimental accounts had the participant not made any withdrawals. The table reports the mean 
difference between the balance ratio at various dates for participants who were randomly 
assigned to receive their chosen allocations versus participants who were randomly assigned to 
receive their entire endowment in the liquid account. Standard errors robust to heteroskedasticity 
are in parentheses. 
Withdrawal restrictions on 
commitment account prior to 
commitment date 

Own allocation vs. all in liquid account mean difference 
Days since initial deposit into participant accounts 
20 60 100 140 180 

Safety valve (withdrawals only in 
   financial emergencies) 

0.049 
(0.033)  

-0.004 
(0.047) 

0.002 
(0.059) 

0.022 
(0.066) 

-0.027 
(0.071) 

10% early withdrawal penalty	 0.120* 
(0.060)  

0.121 
(0.071) 

0.156 
(0.082) 

0.197* 
(0.087) 

0.143 
(0.090) 

No early withdrawals	 0.070* 
(0.034) 

0.149** 
(0.047) 

0.127* 
(0.057) 

0.092 
(0.070) 

0.114 
(0.073) 

Two commitment accounts	 -0.038 
(0.031) 

0.029 
(0.046) 

0.026 
(0.053) 

0.035 
(0.057) 

0.064 
(0.061) 

Combined	 0.044* 
(0.019) 

0.069** 
(0.026) 

0.069* 
(0.031) 

0.078* 
(0.034) 

0.067 
(0.036) 

Combined (excluding safety 
valve)	

0.039 
(0.023) 

0.094** 
(0.031) 

0.093** 
(0.036) 

0.097** 
(0.040) 

0.103* 
(0.042) 

* Significant at the 5% level. ** Significant at the 1% level. 
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Appendix Table A1. Percent of Decisions Allocating Strictly Positive Amount  
to Commitment Account: Experiment 1 

For each experimental condition, this table reports the percent of decisions that allocate a strictly 
positive amount to the commitment account. There are three observations for every participant: 
one observation for each possible endowment amount. Standard errors clustered at the 
participant level are in parentheses. The table also gives p-values from tests comparing pairs of 
conditions, as indicated. 
 
Withdrawal restrictions on 
commitment account prior to 
commitment date 

Commitment account 
interest rate 

p-value for test 
of equality 

21% 22% 23% 21% vs. 22% 22% vs. 23% 
10% early withdrawal penalty 0.681 

(0.053)	
0.722 

(0.050)	
0.902 

(0.033)	
0.566 0.003 

20% early withdrawal penalty --	 0.789 
(0.043)	

0.926 
(0.029)	

--	 0.008 

No early withdrawals	 --	 0.823 
(0.046)	

0.892 
(0.035)	

--	 0.232 

 
p-value for test of equality      

 10% penalty vs. 20% penalty -- 0.310 0.570   
 10% penalty vs. no early w/d -- 0.142 0.841   
 20% penalty vs. no early w/d -- 0.590 0.445   
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Appendix Table A2. Regression Analysis of Percent of Endowment Allocated to 
Commitment Account and Dollar-Weighted Days to Commitment Date: Experiment 1 

This table reports the results of ordinary least squares regressions that use the sample of all 
allocation decisions in the first experiment. There are three observations for every participant: 
one observation for each possible endowment amount. In the first column, the outcome variable 
is the percent of endowment allocated to the commitment account. In the second column, the 
outcome variable is the dollar-weighted days to commitment date, which is the fraction of the 
endowment initially allocated to the commitment account multiplied by the number of days 
separating the initial allocation decision date and the commitment date. The explanatory 
variables are indicator variables for different interest rates, indicator variables for different 
withdrawal restrictions on the commitment account prior to the commitment date, and the 
interactions of those indicator variables. The omitted category is the condition featuring a 22% 
interest rate and a 10% early withdrawal penalty for the commitment account. Standard errors 
clustered at the participant level are in parentheses. 
 

Explanatory variable 

% of endowment 
allocated to 
commitment 

account 

Dollar-weighted 
days to 

commitment date 
21% interest rate -11.3* 

(4.4) 
-17.4 
(11.6) 

23% interest rate	 19.3** 
(4.8) 

47.8** 
(13.9) 

20% early withdrawal penalty	 5.9 
(4.8) 

18.7 
(14.1) 

No early withdrawals 17.1** 
(5.3) 

50.0** 
(16.5) 

23% interest rate × 20% early withdrawal penalty -2.9 
(6.8) 

-21.3 
(21.5) 

23% interest rate × no early withdrawals -15.4* 
(7.2) 

-61.7** 
(22.6) 

Constant (22% interest rate, 10% early withdrawal 
penalty is omitted category)	

38.9** 
(3.4) 

81.8** 
(9.0) 

R2	 0.128 0.060 
N 1,485 1,485 
* Significant at the 5% level. ** Significant at the 1% level. 
  



 5 

Appendix Table A3. Percent of Participants Allocating Strictly Positive Amount to 
Commitment Account: Experiment 2 

For each experimental condition, this table reports the percent of participants allocating a strictly 
positive amount to a commitment account. For the condition offering two commitment accounts, 
the table also reports the percent of participants allocating a strictly positive amount to each 
individual commitment account. Standard errors are in parentheses. 
 

Withdrawal restrictions on commitment account  
prior to commitment date 

% of participants 
using commitment 

account 
Safety valve (withdrawals only in financial	
   emergencies) 

75.3 
(3.5) 

10% early withdrawal penalty	 83.0 
(3.8) 

No early withdrawals	 90.7 
(2.4) 

Two commitment accounts: strictly positive allocation to either 10% 
   early withdrawal penalty account or no early withdrawals account 

80.7 
(3.2) 

   10% early withdrawal penalty account	 56.0 
(4.1) 

   No early withdrawals account	 75.3 
(3.5) 

  



 6 

Appendix Table A4. Withdrawal Statistics: Experiment 1 
This table reports various withdrawal statistics for individuals in experiment 1. To note, 

withdrawal statistic comparisons by treatment condition are confounded by initial allocations 
into the commitment accounts.  

 
What fraction of participants ever withdrew?  
By treatment, we calculate the percentage of individuals that ever withdrew from the 
commitment account before the last day of the study conditional on allocating to the commitment 
account. We do not differentiate between pre and post commitment date withdrawals. 

 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 0.361 0.379 0.346 
20% early withdrawal penalty  0.367 0.412 
No early withdrawals  0.344 0.338 
 

 
How many withdrawals did participants make? 
By treatment, we calculate the mean number of withdrawals participants made before the last 
day of the study conditional on allocating to the commitment account. We do not differentiate 
between pre and post commitment date withdrawals. 

 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 0.639 0.621 0.628 
20% early withdrawal penalty  0.633 0.706 
No early withdrawals  0.531 0.544 
 
How many dollars did participants earn? 
For each individual in the study, we divide their end earnings (amount withdrawn + balance at 
the end) over their initial endowment, and we average this ratio across individuals in each 
treatment. 

 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 1.170 1.178 1.188 
20% early withdrawal penalty  1.175 1.176 
No early withdrawals  1.178 1.189 
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Appendix Table A5. Withdrawal Statistics: Experiment 2 
This table reports various withdrawal statistics for individuals in experiment 2. To note, 

withdrawal statistic comparisons by treatment condition are confounded by initial allocations 
into the commitment accounts. 

 
What fraction of participants ever withdrew?  
By treatment, we calculate the percentage of individuals that ever withdrew from the 
commitment account before the last day of the study conditional on allocating to the commitment 
account. We do not differentiate between pre and post commitment date withdrawals. 

Withdrawal restrictions on commitment account 
prior to commitment date 

Endowment allocation 
According to 

participant’s choice 
All in liquid 

account 
Safety valve (withdrawals only in financial 
emergencies) 0.376 0.308 

10% early withdrawal penalty 0.296 0.413 
No early withdrawals 0.383 0.449 
Two commitment accounts: 10% early withdrawal 
   penalty and no early withdrawals 

0.300 0.338 

 
How many withdrawals did participants make? 
By treatment, we calculate the mean number of withdrawals participants made before the last 
day of the study conditional on allocating to the commitment account. We do not differentiate 
between pre and post commitment date withdrawals. 

Withdrawal restrictions on commitment account 
prior to commitment date 

Endowment allocation 
According to 

participant’s choice 
All in liquid 

account 
Safety valve (withdrawals only in financial 
emergencies) 0.659 0.400 

10% early withdrawal penalty 0.537 0.609 
No early withdrawals 0.717 0.528 
Two commitment accounts: 10% early withdrawal 
   penalty and no early withdrawals 

0.571 0.400 

 
How many dollars did participants earn? 
For each individual in the study, we divide their end amount (amount withdrawn + balance at the 
end) over their initial endowment, and we average this ratio across individuals in each treatment. 

Withdrawal restrictions on commitment account 
prior to commitment date 

Endowment allocation 
According to 

participant’s choice 
All in liquid 

account 
Safety valve (withdrawals only in financial 
emergencies) 1.096 1.096 

10% early withdrawal penalty 1.096 1.082 
No early withdrawals 1.099 1.086 
Two commitment accounts: 10% early withdrawal 
   penalty and no early withdrawals 

1.098 1.095 
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Appendix Table A6. Incurred Penalties: Experiment 1 
This table reports on incurred penalties for participants in experiment 1. 

 

How many participants incurred penalties? 

By treatment, conditional on allocating to the commitment account, we calculate the percentage 
of individuals that incurred a penalty (total number of individuals that incurred a penalty in 
parentheses). 

 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 0.106 (5) 0.045 (2) 0.057 (4) 
20% early withdrawal penalty  0.033 (2) 0.049 (3) 
No early withdrawals    

 
 

 
How do incurred penalties compare to initial endowments? 
 
For each individual that incurred a penalty, we calculate their penalties divided by their initial 
endowments, and we average by treatment (total number of individuals that incurred a penalty in 
parentheses).  
 
Withdrawal restrictions on commitment 
account prior to commitment date 

Commitment account interest rate 
21% 22% 23% 

10% early withdrawal penalty 0.093 (5) 0.059 (2) 0.091 (4) 
20% early withdrawal penalty  0.188 (2) 0.177 (3) 
No early withdrawals    
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Appendix Table A7. Regression Analysis of Percentage Allocated to the Commitment 
Account on Various ALP Survey Variables 

This table reports a regression of the percentage allocated to the commitment account across all 
treatments on various dummy variables created from additional surveys administered by RAND. 
Below we display the regression results for select dummy variables. Though two of the 
correlations yield some level of statistical significance, neither of the variables are statistically 
significant after a Bonferroni correction.  
 

Dummy Variable 
Coefficient (T-statistic 
in parentheses) Dummy Construction 

Income in Quartile 2 0.018 (0.40) = 1 if family income is greater than $35,000 
and less than $60,000 

Income in Quartile 3 0.041 (0.93) = 1 if family income is greater than $60,000 
and less than $100,000 

Income in Quartile 4 0.045 (1.04) = 1 if family income is greater than $100,000 
Net Wealth in Quartile 2 0.057 (1.32) = 1 if net wealth is greater than $2,500 and 

less than $63,250 
Net Wealth in Quartile 3 0.090* (2.03) = 1 if net wealth is greater than $63,250 and 

less than $235,000 
Net Wealth in Quartile 4 0.048 (1.15) = 1 if net wealth is greater than $235,000 
Overweight -0.001 (0.04) = 1 if BMI is greater than 25 
No Exercise -0.028 (1.08) = 1 if participants reported that they hardly 

ever or never engage in physical activity 
Smokes Now -0.060 (1.47) = 1 if participants reported being a current 

cigarette smoker 
Good at Math 0.036 (1.25) = 1 if participants reported strongly 

agreeing or somewhat agreeing that they 
are good at math 

Financial Confidence -0.014 (0.34) = 1 if participants reported strongly 
agreeing or somewhat agreeing that they 
are financially confident  

Financial Assessment -0.083** (2.81) = 1 if participants reported strongly 
agreeing or somewhat agreeing that they 
are able to assess financial services  

Emergency Savings 0.020 (0.64) = 1 if participants reported strongly 
agreeing or somewhat agreeing that they 
could come up with $2,000 if an unexpected 
need arose 

Present Bias 0.056 (1.32) = 1 if individuals are present biased1 
* Significant at the 5% level. ** Significant at the 1% level.  

                                                
1 We calculated whether participants are present biased based on survey questions that measured preferences over 
financial prizes at different time periods. Specifically, participants answered two questions, one that asked whether 
participants would prefer $1,000 today or $1,250 next year, and another that asked individuals whether they would 
prefer $1,000 next year or $1,250 in two years. The survey also asked these same questions for preferences over 
$1,000 and $1,650. If individuals answered that they preferred the $1,000 in the former question but the larger dollar 
amount in the latter question (for either the $1,250 or the $1,650 case), we recorded that the individuals were 
present-biased.  
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Appendix Table A8. Exit Questionnaire: Experiment 1 

This table reports the results from exit questionnaire question 1. The question asked participants 
whether they would have in hindsight changed their allocation decision. Below we report the 

results by treatment condition.  
 

Treatment Condition More to 
liquid 

account 

More to 
commitment 

account 

Same 
allocation 
as before 

Missing 
survey 

response 

Number of 
observations 

21% commitment 
account interest rate – 

10% withdrawal penalty 

6 7 48 11 72 

22% commitment 
account interest rate – 

10% withdrawal penalty 

4 9 40 13 66 

23% commitment 
account interest rate – 

10% withdrawal penalty 

5 10 39 24 78 

22% commitment 
account interest rate – 

20% withdrawal penalty 

5 14 51 9 79 

23% commitment 
account interest rate – 

20% withdrawal penalty 

3 10 37 18 68 

22% commitment 
account interest rate – no 

withdrawals 

3 4 38 19 64 

22% commitment 
account interest rate – no 

withdrawals 

4 7 40 17 68 

Total 30a 61a 293 111 495 
 

 
 
 
 
 
 
 
 
 
 
 

                                                
a A hypothesis test on the equality of these two proportions yields a p-value of 0.0012.  
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Appendix Figure A1. Description of the Liquid Account 
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Appendix Figure A2. Description of the 22% Interest Rate, 10% Early Withdrawal Penalty 
Commitment Account 
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Appendix Figure A3. Example Allocation Page 
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Appendix Figure A4. Sample Weekly Email to Participant 
 
Dear Participant, 
 
This is a breakdown of your current balances: 
 
Freedom Account: $24.25 
Goal Account: $53.18 
Goal Date: July 20th, 2010 
 
If you wish to withdraw any money from your accounts, please go to your panel pages and click on the 
"Savings Game" button: https://mmic.rand.org/panel 
 
If you have any questions about this game or your accounts, please feel free to contact us 
at webhelp@rand.org or 866.591.2909 
 
Thanks! 
www.rand.org/alp 
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Appendix Figure A5. Withdrawal Interface 
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Appendix Figure A6. Balance Ratios by Experimental Condition: Experiment 1 
For each experimental condition, these figures show withdrawal patterns over the course of the 
experiment. For each participant and for each day, we calculate the sum of the liquid account and 
commitment account balances that the participant would have had if no withdrawals had been 
requested. This hypothetical total balance takes as given the participant’s initial allocation 
between the liquid account and the commitment account, and it uses the allocation decision that 
applies to the ex post realization of the endowment amount ($50, $100, or $500). We then 
calculate the ratio of the participant’s actual balance to the hypothetical total balance, and we 
plot the mean of this ratio against the number of days since the initial deposit into the 
participant’s accounts. 
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Appendix Figure A7. Balance Ratios by Experimental Condition: Experiment 1 
For each experimental condition, these figures show withdrawal patterns over the course of the 
experiment. For each participant and for each day, we calculate the sum of the liquid account and 
commitment account balances that the participant would have had if no withdrawals had been 
requested. This hypothetical total balance takes as given the participant’s initial allocation 
between the liquid account and the commitment account, and it uses the allocation decision that 
applies to the ex post realization of the endowment amount ($50, $100, or $500). We then 
calculate the ratio of the participant’s actual balance to the hypothetical total balance, and we 
plot the mean of this ratio at four points in time: the day of the initial deposit into the 
participant’s accounts, three days before the participant’s commitment date, three days after the 
participant’s commitment date, and three days before remaining account balances were 
automatically disbursed to the participant. For participants who did not allocate any funds to a 
commitment account, we use the balance ratio on the initial deposit date as the balance ratio 
three days before the commitment date, and we use the balance ratio three days after the initial 
deposit date as the balance ratio three days after the commitment date. 
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Appendix Figure A8. Description of Two Commitment Accounts Offered Simultaneously 
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Appendix Figure A9. Description of the Safety Valve Commitment Account, Withdrawal 
Screen for the Safety Valve Commitment Account 

 

 
 

 
  



 20 

Appendix Figure A10. Withdrawal Patterns for Own versus All Liquid Allocation: 
Experiment 2 

For each experimental condition, these figures show withdrawal patterns over the course of the 
experiment for participants who were randomly assigned to receive their chosen allocations and 
for participants who were randomly assigned to receive their entire endowment in the liquid 
account. For each participant and for each day, we calculate the sum of the liquid account and 
commitment account balances that the participant would have had if no withdrawals had been 
requested. We then calculate the ratio of the participant’s actual balance to this hypothetical total 
balance, and we plot the mean of this ratio against the number of days since the initial deposit 
into the participant’s accounts. 
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Appendix Figure A11. Withdrawal Patterns for Own versus All Liquid Allocation: 
Experiment 2 

For each experimental condition, these figures show withdrawal patterns over the course of the 
experiment for participants who were randomly assigned to receive their chosen allocations and 
for participants who were randomly assigned to receive their entire endowment in the liquid 
account. For each participant and for each day, we calculate the sum of the liquid account and 
commitment account balances that the participant would have had if no withdrawals had been 
requested. We then calculate the ratio of the participant’s actual balance to this hypothetical total 
balance, and we plot the mean of this ratio at four points in time: the day of the initial deposit 
into the participant’s accounts, three days before the participant’s commitment date (three days 
before the participant’s earliest commitment date in the case of participants who had more than 
one), three days after the participant’s commitment date (three days after the participant’s latest 
commitment date in the case of participants who had more than one), and three days before 
remaining account balances were automatically disbursed to the participant. For participants who 
did not allocate funds to a commitment account, we use the actual balance and the hypothetical 
total balance on the initial deposit date when calculating the withdrawal measure for three days 
before the commitment date, and we use the actual balance and the hypothetical total balance 
three days after the initial deposit date when calculating the withdrawal measure for three days 
after the commitment date. 
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Appendix Figure A12. Distribution of Days to Commitment Date: Experiment 1 
For each experimental condition, we calculate the cumulative distribution function for days to 
commitment date. In other words, for each day until commitment date, we plot the fraction of 
participants in that treatment that set days to commitment date equal or prior to that number of 

days.    
 

 

 

 
 

0

0.2

0.4

0.6

0.8

1

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

C
um

ul
at

iv
e 

D
en

si
ty

Days to Commitment Date

10% Withdrawal Penalty Conditions

21% interest rate

22% interest rate

23% interest rate

0

0.2

0.4

0.6

0.8

1

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

C
um

ul
at

iv
e 

D
en

si
ty

Days to Commitment Date

22% Commitment Account Interest Rate Conditions

10% penalty

20% penalty

No withdrawals

0

0.2

0.4

0.6

0.8

1

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

C
um

ul
at

iv
e 

D
en

si
ty

Days to Commitment Date

23% Commitment Account Interest Rate Conditions

10% penalty

20% penalty

No withdrawals



 23 

Appendix Figure A13. Distribution of Days to Commitment Date: Experiment 2 
For each experimental condition, we calculate the cumulative distribution function for days to 
commitment date. In other words, for each day until commitment date, we plot the fraction of 
participants in that treatment that set days to commitment date equal or prior to that number of 

days.    
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Appendix Discussion A1. Balance Ratios Adjusted for Mean Commitment Dates Across 
Arms 

 

When calculating balance ratios, we can adjust for the fact that the mean commitment 

date differs across arms. Let the “adjustment factor” for participant i be the difference between 

the mean commitment date (measured in days since endowment receipt) in i’s experimental arm 

and the earliest mean commitment date among the arms being compared. Let i’s “adjusted 

commitment date” be the larger of zero and i’s commitment date minus the adjustment factor. If 

there were no censoring at zero, this adjustment would equalize the mean commitment date 

across the arms being compared. We then compute commitment period balance ratios for each 

participant by averaging that participant’s daily balance ratios from the endowment receipt date 

to the adjusted commitment date. If a participant allocated zero dollars to the commitment 

account or had an adjusted commitment date of zero, we classify the participant as having made 

no withdrawals during the commitment period, and we therefore assign that participant a 

commitment period balance ratio of one. 

Again, we find suggestive evidence that stronger commitment raises balance ratios. 

When the commitment account and liquid account have the same interest rate, the average 

commitment period balance ratio is 0.967 with a 10% penalty, 0.961 with a 20% penalty, and 

0.982 with no early withdrawals allowed. When the commitment account has a higher interest 

rate than the liquid account, the averages are 0.932, 0.950, and 0.967, respectively. However, 

holding fixed the commitment account interest rate, there are no statistically significant 

differences among these averages, as the standard errors of the averages range from 0.009 to 

0.022. 
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1. Introduction

To study the tradeoff between commitment and flexibility in a consumption/savings

context, Amador, Werning and Angeletos (2006; hereafter AWA) use a model with

three conceptual ingredients.

First, AWA assume dynamically inconsistent preferences generated by the present-

biased discount function

D(τ) =

{
1 if τ = 0

β if τ ≥ 1

}
,

where 0 < β < 1 (Phelps and Pollak, 1968; Laibson, 1997).1 This discount func-

tion implies that, from the perspective of period 0, the agent is more patient about

tradeoffs between periods 1 and 2 than she will be when period 1 actually arrives:

D(1)

D(2)
=
β

β
<

1

β
=
D(0)

D(1)
.

Dynamically inconsistent preferences generate a motivation for commitment.

Second, they assume that the agent experiences transitory taste shocks that are

not observable in advance and are not contractable. Such taste shocks generate a

motivation to give future selves flexibility in choosing the consumption path.

Third, they assume that the agent has a very general commitment technology.

Specifically, she can manipulate the choice sets of future selves, trading off the ben-

efits of commitment (preventing later selves from overconsuming) and the costs of

commitment (preventing later selves from responding flexibly to taste shocks).

We enrich AWA’s analysis by placing a bound on the strength of the commitment

technology. We show that, in this more general setting, the agent can still achieve

the (second-best) optimum using a simple commitment mechanism. Furthermore, we

vary the bound and explore the implications for the choice of commitment mechanism.

These comparative statics enable us to compare the model’s predictions with the

behavior of our experimental participants.

1The analysis that follows would be nearly identical if we were to use the more general quasi-
hyperbolic discount function given by D(0) = 1 and D(τ) = β δτ for τ ≥ 1, where 0 < β < 1 and
0 < δ ≤ 1. For simplicity, we follow AWA and set δ = 1.
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We briefly describe the key properties of the model below. Sections 1-16 of Online

Appendix C provide a complete exposition and analysis of the model.

2. Timing and Preferences

The simplest model that elicits a tradeoff between commitment and flexibility has

three periods: an initial period in which some degree of commitment is created with

respect to future decisions; a following period in which a consumption/savings choice

is made with immediate utility consequences; and a final period in which residual

wealth is consumed.

Period 0. Self 0 chooses the commitment mechanism that will govern the choices of

selves 1 and 2. (There is no consumption in period 0.)

Period 1. A taste shock θ ∈ Θ =
[
θ , θ

]
is realized. Self 1 observes θ and makes a

consumption/savings decision, subject to the constraints imposed by the com-

mitment mechanism chosen by self 0.

Period 2. Self 2 consumes all remaining wealth.

Section 3 below describes the set of commitment mechanisms available to self 0, and

Section 4 sets out our assumptions on the distribution of θ. Note that the three-period

structure maps directly onto our experimental setup, with period 0 corresponding

to the initial allocation decision, period 1 corresponding to the time between the

allocation decision and the commitment date (which was tailored in the experiment by

each participant according to the time horizon over which the temptation to overspend

was relevant), and period 2 corresponding to the time after the commitment date.

Let c1 and c2 denote the consumption levels of selves 1 and 2. Then underlying

preferences at dates 0, 1 and 2 can be specified as follows:

utility of self 0 = β θ U1(c1) + β U2(c2)

utility of self 1 = θ U1(c1) + β U2(c2)

utility of self 2 = U2(c2)

3
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Here Ut is the utility function at time t. We assume that: Ut : [ 0,∞) → [−∞,∞);

U ′t > 0 and U ′′t < 0 on (0,∞); and U ′t(0+) =∞.2

We also assume that self 0 fully understands and anticipates the preferences of

self 1. That is, we assume that the agent is sophisticated.

3. Commitment Technology

A commitment mechanism is modeled as a budget set B chosen by self 0. This B is

the set of consumption pairs (c1, c2) that can be chosen by self 1. Recall that the taste

shock is not yet observable in period 0, and that it will only be privately observable

in time period 1, so B cannot be conditioned on the realization of the taste shock.

Let y > 0 be the agent’s exogenous budget and, without loss of generality, let the

gross interest rate be unity. To map to our experimental design, y can be interpreted

as the agent’s total wealth if the participants integrate the experimental windfall

with their other wealth, or it can be interpreted as only the windfall itself if the

participants psychologically code the windfall as part of a separate mental account.

The main implications of the model apply in both cases.

Let the “ambient budget set”A be the set of all consumption pairs (c1, c2) such

that c1, c2 ≥ 0 and c1 + c2 ≤ y. Fix a parameter π ∈ [ 0,∞ ), which will bound the

strength of the commitment mechanism. Then the budget set B chosen by self 0

must satisfy the following two constraints:

Constraint 1. B is a non-empty compact subset of A.

Constraint 2. The penalty for transferring consumption from period 2 to period 1

is no greater than π.3

2For example, it could be that Ut has constant relative risk aversion ρt > 0. In that case: if
ρt ∈ (0, 1), then Ut(0) > −∞; and if ρt ∈ [1,∞), then Ut(0) = −∞. In particular, we do not require
Ut(0) = −∞.

3The precise statement of Constraint 2 runs as follows. For all (c1, c2) ∈ B and all c̃1 ∈[
c1, c1 + 1

1+π c2

]
, there exists c̃2 such that: (i) (c̃1, c̃2) ∈ B; and (ii) c2 − c̃2 ≤ (1 + π) (c̃1 − c1).

In other words, self 1 can increase her consumption by any amount c̃1 − c1 between 0 and 1
1+π c2.

Moreover, she can do this in such a way that the associated reduction c2 − c̃2 in consumption in
period 2 is at most c̃1− c1 plus the maximum penalty that can be placed on a withdrawal of c̃1− c1,
namely π (c̃1 − c1). Notice that this penalty is paid out of period 2 consumption.

4
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Figure B1: A budget set illustrating Constraints 1 and 2 of the model. This budget
set is a non-empty compact subset of the ambient budget set and therefore satisfies
Constraint 1. It satisfies Constraint 2 if π = 0.5, but not if π = 0.1. The slope at
the encircled point is −1.3. This is greater than −1.5 (the minimum slope that is
permissible when π = 0.5), but less than −1.1 (the minimum slope that is permissible
when π = 0.1).

In other words, self 0 can choose a budget set of almost any size and shape. The

only restriction on size is that B must be small enough to fit inside A.4 The only

restriction on shape is that, starting from any consumption pair (c1, c2) ∈ B such that
c2 > 0 and any ∆ ∈

[
0, c2

1+π

]
, self 1 must be able to transfer ∆ units of consumption

from period 2 to period 1. She may face a penalty for doing so, in the form of a

reduction in consumption in period 2 over and above the reduction resulting from the

transfer ∆ itself. However, this penalty will never be greater than π∆.5

A wide variety of budget sets satisfy Constraints 1 and 2. For example, the budget

set shown in Figure B1 consists of: (i) a downward sloping budget curve that begins

on the c2 axis and ends on the c1 axis; and (ii) all the points of A that lie below or to

the left of the budget curve. It obviously satisfies Constraint 1. It satisfies Constraint

2 if π = 0.5, but not if π = 0.1. Indeed, the slope of the budget set at the encircled

point is −1.3. This is greater than −1.5 (the most negative slope that is permissible

4This is Constraint 1.
5This is Constraint 2.
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Figure B2: A two-part budget set. Such budget sets consist of: (i) a budget curve
that has slopes of −1 and −(1 + p) to the left and right of a kink at (c∗1, c

∗
2); and (ii)

none, some or all of the points of the ambient budget set that lie below or to the left
of the budget curve.

when π = 0.5), but less than −1.1 (the most negative slope that is permissible when

π = 0.1).6

As we shall see, the optimum can be obtained using a particularly simple kind of

budget set, namely a two-part budget set. Such budget sets consist of: (i) a budget

curve that has slopes of −1 and −(1 + p) to the left and right of a kink at (c∗1, c
∗
2);

and (ii) none, some or all of the points of A that lie below or to the left of the budget

curve. For example, the budget set shown in Figure B2 consists of just such a budget

curve, together with all of the points of A that lie below or to the left of it.

6Notwithstanding its obvious generality, this budget set is still special in a number of respects.
We give four examples. First, there is nothing in Constraints 1 and 2 that requires that the budget
curve be downward sloping. Indeed, these constraints place no upper bound at all on the slope of
the budget curve. Second, there is no reason why the budget curve needs to begin on the c2 axis.
It could perfectly well begin at some (c01, c

0
2) ∈ A for which c01 > 0. (Constraint 2 does, however,

require that the budget curve end on the c1 axis.) Third, there is no reason why points below or
to the left of the budget curve need be included. Fourth, there is no reason why the budget curve
need be connected. It could perfectly well consist of two or more components. For example, a first
component might begin at some (c01, c

0
2) ∈ A for which c01 > 0 and end at some (c11, c

1
2) ∈ A for which

c12 = 0. A second component might then begin at some (c21, c
2
2) ∈ A for which c21 > c11 and end at

some (c31, c
3
2) ∈ A for which c32 = 0. (Constraint 2 does, however, rule out budget curves consisting

of a finite set of points, unless these points all lie on the c1 axis.)
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Two-part budget sets arise naturally in practical applications. Indeed, suppose

that self 0 sets up two separate accounts: (i) a fully liquid account with balance c∗1;

and (ii) a partially illiquid account with balance c∗2 and an early withdrawal penalty

p.7 Then self 1 will face a two-part budget set.

4. Distribution of the Taste Shock

AWA show that their problem can be reduced to a problem in the class of optimization

problems identified and analyzed by Luenberger (1969). We follow AWA’s lead. We

make the following assumptions on the distribution function F of the taste shock θ.

A1 Both F and F ′ are functions of bounded variation on (0,∞).8

A2 The support of F ′ is contained in
[
θ, θ
]
, where 0 < θ < θ <∞.

A3 Put G(θ) = (1− β) θ F ′(θ) + F (θ). Then there exists θM ∈
[
θ, θ
]
such that: (i)

G′ ≥ 0 on (0, θM); and (ii) G′ ≤ 0 on (θM ,∞).9

We now comment on these assumptions. A function f : (0,∞)→ R is of bounded
variation if and only if it is the difference of two bounded and non-decreasing functions

f1, f2 : (0,∞)→ R. Since F is a distribution function, it is automatically a function

of bounded variation. The substance of A1 is therefore the requirement that F has

a density F ′ that is a function of bounded variation. A2 means that F ′ = 0 on

(0,∞) \
[
θ, θ
]
. Notice that F ′ need not be continuous. In particular, it can jump

up at θ and down at θ. A3 means that G is first increasing and then decreasing.

It implies that the support of F ′ is connected. It is preserved under truncation:

7By saying that self 1 pays a penalty p on early withdrawals from the second account, we mean
that if she consumes ∆ from the second account then that account is debited (1 + p) ∆.

8A suffi cient condition for A1 is that: (i) F ′ and F ′′ both exist; and (ii)
∫∞
0
|F ′(θ)| dθ and∫∞

0
|F ′′(θ)| dθ are both finite. In other words, if one walks along the graph of F or F ′, then the

total vertical distance travelled (both up and down) is finite. We do not use this stronger condition
because we want to allow for densities, like that of the uniform distribution, that have jumps at θ
and θ. Indeed, a good way of generating examples is to take a standard distribution and truncate
it at suitable points θ and θ. This procedure typically results in discontinuities in F ′ at θ and θ.

9A3 is slightly stronger than the analogous assumption in AWA, namely their Assumption A.
However: (i) it is not clear that our results for the model with π < ∞ actually hold under AWA’s
A; (ii) A3 is easier to state than AWA’s A; and (iii) it is easier to check whether a given distribution
satisfies A3 than to check whether it satisfies AWA’s A.
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if a distribution function F satisfies A3, then so too does the distribution function

obtained by truncating F at θ and θ.

A3 is satisfied by many of the distributions that one encounters in practice. To

illustrate this point, we have made a list of all the distributions occurring in either of

two leading statistics textbooks: Rice (1995) and Hogg, McKean and Craig (2005).

This list contains 18 distributions. Of these, 14 satisfy A1-A3 for all parameter values

(including θ and θ ). More precisely, we have:

Remark 1. Suppose that D is one of the Burr, Chi-squared, Exponential, Extreme

Value, F, Gamma, Gompertz, Log-Normal, Maxwell, Normal, Rayleigh, t, Uniform,

and Weibull distributions. Then, for any 0 < θ < θ < ∞, the distribution function
F obtained by truncating D at θ and θ satisfies Assumptions A1-A3.10

The four exceptions are the Beta, Cauchy, Log-Gamma and Pareto distributions.

In the form in which it occurs in both Rice and Hogg, McKean, and Craig, the

Beta distribution does in fact satisfy A1-A3. However, for our purposes, it is more

natural to consider a generalization of the Beta distribution for which the support

is a compact interval contained in (0,∞). For this distribution, A3 is not always

satisfied.11 Similarly, the standard Cauchy distribution, which is the form of the

Cauchy distribution considered in both Rice and Hogg, McKean, and Craig, satisfies

A1-A3. However, in its general form, the Cauchy distribution fails A3 for some

choices of the parameter values.12 Next, the Log-Gamma distribution occurs only in

Hogg, McKean, and Craig. This distribution may or may not satisfy A3, depending

on the parameters. 13 Finally, Rice and Hogg, McKean and Craig each consider

a single special case of the Pareto distribution. Both of these special cases satisfy
10Notice that 5 of these 14 distributions (namely the Burr, Chi-squared, F, Gamma and Weibull

distributions) are unbounded at 0 for some parameter values. However, the truncated distributions
all satisfy A1 because θ > 0.
11The density of the generalization of the Beta that we consider is proportional to

(x− a)
ζ−1

(b− x)
η−1 on the interval (a, b), where 0 < a < b < ∞ and ζ, η > 0. Exceptions to

A3 occur when ζ < 1.
12The density of the general form of the Cauchy distribution is proportional to

(
1 +

(
x−µ
σ

)2)−1
on R, where µ ∈ R is a location parameter and σ > 0 is a scale parameter. Exceptions to A3 occur
when µ

σ is large and positive.
13The density of the Log-Gamma distribution is proportional to x−

η+1
η (log(x))

ζ−1 on (1,∞),
where ζ, η > 0. Exceptions to A3 occur when ζ < 1 and η > 1− β.
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A1-A3. However, in general, the Pareto distribution fails A3 for some choices of the

parameter values.14 For additional discussion of these exceptional cases, see Section

17 of Online Appendix C.

5. Theorems and Relationship to Experimental Results

AWA show that, when there is no bound on the strength of the commitment tech-

nology, an optimal choice for self 0 is a minimum-savings rule. In our terminology,

this can be expressed by saying that an optimal choice for self 0 is to divide her

endowment y between two accounts: (i) a fully liquid account that places no penalty

on withdrawals in either period 1 or period 2; and (ii) a fully illiquid account that

disallows any withdrawals in period 1 but places no penalty on withdrawals in period

2.15 ,16 Our first result generalizes AWA’s result to the case in which there is a bound

π on the strength of the commitment mechanism.

Theorem 1. Suppose that U1 = U2 = U , and that U has constant relative risk

aversion ρ > 0. Then an optimal choice for self 0 is to divide her endowment y

between two accounts: (i) a fully liquid account with no penalty on withdrawals in

either period 1 or period 2; and (ii) a partially illiquid account, with a penalty p = π

on withdrawals in period 1 and no penalty on withdrawals in period 2.17

14For example, the density of the Pareto type II distribution is proportional to
(
1 + x−µ

σ

)−ζ−1
on (µ,∞), where µ ∈ R is a location parameter, σ > 0 is a scale parameter and ζ > 0 is a shape
parameter. Exceptions to A3 occur when ζ is small and µ

σ is large and positive.
15There is a small technical difference between a fully illiquid account and a partially illiquid

account with penalty p =∞. If self 0 places yliquid in a fully liquid account and y− yliquid in a fully
illiquid account, then she is effectively choosing a budget set that consists of the line segment joining
the two points (0, y) and (yliquid, y− yliquid). On the other hand, if she places yliquid in a fully liquid
account and y − yliquid in a partially illiquid account with penalty p = ∞, then she is effectively
choosing a budget set that consists of all points on or vertically below the line segment joining the
two points (0, y) and (yliquid, y − yliquid). (In effect, an illiquid account with penalty p = ∞ gives
self 1 the possibility of free disposal, whereas a fully illiquid account does not.) Of course, these two
mechanisms are equivalent from the point of view of self 0, since self 1 will always choose from the
line segment joining the two points (0, y) and (yliquid, y− yliquid). We shall not therefore distinguish
between them in what follows.
16Ambrus and Egorov (2013) provide additional analysis of AWA’s model.
17As the wording of the Theorem implies, the optimal choice of self 0 is not unique. Indeed, as

long as one thinks of self 0 as choosing a budget set B, her optimal choice is inherently non-unique.
This is because, starting from any given B (optimal or not), one can make equivalent budget sets by
adding or removing consumption pairs that would not be chosen by any type. This particular form
of non-uniqueness can be eliminated if, instead of thinking of self 0 as choosing a budget set B, we

9
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See Sections 1 through 10 of Online Appendix C.

Theorem 1 implies that there is no advantage to self 0 in using more than two

accounts, in using accounts with more complex conditions attached to them, in using

accounts with a penalty p < π, or in using some commitment mechanism other than

accounts.

Moving on from Theorem 1, let us continue to suppose that U1 = U2 = U , and

that U has constant relative risk aversion ρ > 0. But let us suppose now that self 0

must divide her endowment y between two accounts: (i) a fully liquid account with

no penalty on withdrawals in either period 1 or period 2; and (ii) a partially illiquid

account with a penalty p on withdrawals in period 1 and no penalty on withdrawals

in period 2. Finally, let us denote the optimal allocations to these two accounts by

yliquid and ypenalty.

How will the allocation ypenalty to the partially illiquid account depend on p? As

with many questions in comparative statics, this question is easier to answer when

ypenalty is unique. We therefore begin by introducing an additional assumption that,

when taken in conjunction with our existing Assumptions A1-A3, ensures this:

A4 G is strictly increasing on [ θ, θM).18

A4 strengthens Part (i) of A3 —which effectively requires that G is weakly increasing

on (0, θM) —by requiring that G is strictly increasing on a part of this interval.19

Under Assumptions A1-A4, we obtain an explicit expression for the derivative

of ypenalty with respect to p.20 In the case where the maximum-penalty constraint

is binding, in the sense that some high-θ types will choose to pay the penalty and

consume out of the partially illiquid account, this expression can be decomposed into

two contributions.21 The first of these is always positive. The second can be either

positive or negative. In the case where the maximum-penalty constraint is slack, in

think rather of her as choosing an incentive-compatible consumption curve c = (c1, c2) :
[
θ , θ

]
→ A.

18More precisely, the right-continuous version of G is strictly increasing on [ θ, θM ).
19We do not need to strengthen Part (ii) of A3, which effectively requires that G is weakly

decreasing on (θM ,∞), e.g. by requiring that G is strictly decreasing on (θM , θ ].
20See Propositions 32, 40, 42 and 43 of Appendix C.
21See Propositions 32 and 40 of Appendix C.
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the sense that even the highest-θ type will strictly prefer not to consume out of the

partially illiquid account, this expression vanishes.22

Hence, in order to find suffi cient conditions under which ypenalty is non-decreasing

in p, it suffi ces to find suffi cient conditions under which the second contribution to

the derivative of ypenalty with respect to p is non-negative. The required conditions

depend on whether ρ < 1, ρ = 1 or ρ > 1.

Theorem 2. Suppose that:

1. Assumption A4 is satisfied;

2. U has constant relative risk aversion ρ < 1;

3. θM = θ.

Then there exists π1 ∈ (0,∞) such that ypenalty is strictly increasing on (0, π1] and

constant on [π1,∞).

In other words, if ρ < 1 and G is weakly decreasing on the whole of ( θ,∞ ), then

ypenalty is monotonic in p.23

Theorem 3. Suppose that:

1. Assumption A4 is satisfied;

2. U has constant relative risk aversion ρ = 1.

Then there exists π1 ∈ (0,∞) such that ypenalty is strictly increasing on (0, π1] and

constant on [π1,∞).

In other words, if ρ = 1 then, under no additional assumptions on G beyond A4

itself, ypenalty is monotonic in p.

Theorem 4. Suppose that:
22See Propositions 42 and 43 of Appendix C.
23Notice that, if G is weakly decreasing on the whole of ( θ,∞ ), then G must be strictly increasing

at θ. That is, we must have ∆G( θ ) > 0.
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1. Assumption A4 is satisfied;

2. U has constant relative risk aversion ρ > 1;

3. θM = θ.

Then there exists π1 ∈ (0,∞) such that ypenalty is strictly increasing on (0, π1] and

constant on [π1,∞).

In other words, if ρ > 1 and G is weakly increasing on the whole of ( 0, θ ), then

ypenalty is again monotonic in p.24

Notice that the strategy of proof used to obtain Theorems 2 and 4 is quite ex-

treme: there are two contributions to the derivative of ypenalty with respect to p, and

we already know that the first of these is positive. Hence this contribution could eas-

ily outweigh the second contribution, even if the latter were negative. Nonetheless,

we impose the extreme conditions θM = θ and θM = θ respectively to ensure that the

second contribution weakly reinforces the first.25 This suggests that the suffi cient con-

ditions for monotonicity contained in these theorems might be some way from being

necessary. We have obtained limited confirmation for this suggestion: monotonicity

does seem to hold in all of the simple examples that we have investigated numeri-

cally, and in most of which we do not have θM ∈ { θ , θ }. However, we also have an
analytical “counterexample”to each theorem. Hence, ultimately, it is a quantitative

question whether monotonicity does or does not hold for any given calibration: the

second contribution can certainly go the wrong way, and it can even outweigh the

first contribution.

Theorem 3, by contrast, does not impose any extreme conditions on G: the fact

that ρ = 1 ensures that the second contribution to the derivative of ypenalty with

respect to p vanishes. We are therefore left with the first contribution, which is

unambiguous.

24Notice that, if G is weakly increasing on the whole of ( 0, θ ), then G must be strictly decreasing
at θ. That is, we must have ∆G( θ ) < 0.
25These conditions are extreme in the sense that they put θM at the extremes of the support of

F ′.
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Remark 2. An interesting example is provided by the uniform distribution on [a, b].

For this distribution, we have

G′(θ) =
2− β
b− a > 0.

Hence Theorems 3 and 4 apply, and we can be sure that the desired conclusion holds

for all ρ ≥ 1. On the other hand, if ρ < 1, then the second contribution to the

derivative of ypenalty with respect to p is negative.26

Remark 3. If we solve the differential equation G′(θ) = 0, then we obtain (up to a

multiplicative constant)

F ′(θ) = θ−
2−β
1−β .

This is a special case of the Pareto distribution. For this distribution, Theorems 2, 3

and 4 all apply, and we can be sure that the desired conclusion holds for all ρ > 0.

Finally, it is helpful to provide some intuition as to why ypenalty is weakly increasing

in p when there is no uncertainty (i.e. θ is fixed). In equilibrium, self 0 uses the

illiquid account to store all wealth that will be consumed in period 2. Moreover, self

0 will not store any wealth in the illiquid account that will end up being consumed

in period 1, because such a strategy is strictly dominated by the alternative strategy

that takes both the amount that is withdrawn from the illiquid account in period 1

and the amount that is paid in early-withdrawal penalty and reallocates that sum

into the fully liquid account. Accordingly, self 0 will allocate resources to the illiquid

account either (i) up to the point where self 0 has achieved its first-best optimum

under commitment (which will be true with a high enough penalty),27 or (ii) up to the

point where self 1 is indifferent between consuming a marginal unit of consumption

in period 1 or consuming 1+p marginal units of consumption in period 2. In the first

case, ypenalty will not change with further increases in p. In the second c1 = yliquid,

c2 = ypenalty, yliquid + ypenalty = y and

θ U ′1(yliquid) = (1 + p) β U ′2(ypenalty).

26Our simulations suggest that, in the case of the uniform distribution, the desired conclusion
holds even when ρ < 1.
27Specifically, when θ is fixed, self 0 can achieve its first-best optimum if and only if β ≥ 1

1+p .
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For this case, strict concavity of the utility functions implies that ypenalty is strictly

increasing in p. Intuitively, the higher the penalty, the more wealth self 0 can store

in the illiquid asset without generating gratuitious penalties from early withdrawals.

Remark 4. For more details on Theorems 2, 3 and 4, see Sections 10 through 14 of
Online Appendix C.

Remark 5. Versions of Theorems 2, 3 and 4 all hold even in the absence of Assump-
tion A4. See Section 15 of Online Appendix C.

Moving on again, let us continue to suppose that U1 = U2 = U , that U has

constant relative risk aversion ρ > 0 and that Assumption A4 is satisfied. Suppose

further that self 0 must now divide her endowment y among three accounts: (i) a

fully liquid account with no penalty on withdrawals in either period 1 or period 2;

(ii) a partially illiquid account with a penalty p on withdrawals in period 1 and no

penalty on withdrawals in period 2; and (iii) a fully illiquid account that disallows

any withdrawals in period 1 but places no penalty on withdrawals in period 2. Denote

the optimal allocations to the three accounts by yliquid, ypenalty and yilliquid.

Theorem 5. The liquid allocation yliquid is unique and independent of p. By the
same token, the total illiquid allocation ypenalty + yilliquid is unique and independent of

p. Furthermore, self 0 weakly prefers the fully illiquid account to the partially illiquid

account. Specifically, there exists π1 ∈ (0,∞) such that:

1. For all p ∈ (0, π1), self 0 strictly prefers the fully illiquid account to the par-

tially illiquid account. More precisely: self 0 places her total illiquid allocation

ypenalty + yilliquid in the fully illiquid account; ypenalty = 0; and yilliquid is unique

and independent of p.

2. For all p ∈ [π1,∞), self 0 is indifferent between the fully illiquid account and

the partially illiquid account. More precisely: self 0 does not care how her

total illiquid allocation ypenalty + yilliquid is divided between the partially illiquid

account and the fully illiquid account.
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The logic behind Theorem 5 runs as follows. First, it follows directly from the

formulation of our problem that the maximum expected utility of self 0 is weakly

increasing in π. Second, if U1 = U2 = U and U has constant relative risk aversion,

then self 0 can achieve this maximum using two accounts, namely a fully liquid

account and a partially illiquid account with penalty p = π. Hence, if we restrict self

0 to dividing her endowment between a fully liquid account and a partially illiquid

account with penalty p, then she will always weakly prefer a higher p. In particular,

she will like p = ∞ best of all. In other words, she weakly prefers the fully illiquid

account to the partially illiquid account.

Now suppose that the optimal allocation to a fully illiquid account is yilliquid, and

consider two scenarios. In the first scenario, self 0 deposits yilliquid in a fully illiquid ac-

count. In that case, there will be a θ1 such that: (i) any self 1 of type θ ≤ θ1 will choose

freely from the line segment joining the two points (0, y) and (y−yilliquid, yilliquid); and
(ii) any self of type θ ≥ θ1 will choose the point (y − yilliquid, yilliquid). In the second
scenario, self 0 deposits yilliquid in a partially illiquid account with penalty p. In that

case, the behaviour of self 1 will be effecively unchanged from the first scenario if and

only if p ≥ π1, where π1 is the minimum penalty necessary to deter the θ type of self

1 from increasing consumption above yliquid = y − yilliquid.
Hence, if p ≥ π1, then self 0 can attain the maximum expected utility associated

with a fully illiquid account by using a partially illiquid account with a penalty p

instead. She will therefore be indifferent between these two accounts. On the other

hand, if p < π1, then a penalty of p is no longer suffi cient to deter the θ type of self

1 from increasing consumption above yliquid. Hence the behavior of self 1 will change

if self 0 deposits yilliquid in a partially illiquid account with penalty p. Furthermore,

it can be shown that, even when self 0 makes the optimal allocation ypenalty to the

partially illiquid account, her expected utility will still be strictly lower than the

expected utility that she can obtain from the fully illiquid account. She will therefore

strictly prefer the fully illiquid account.

This prediction of an overall weak preference for the fully illiquid account over

the partially illiquid account is consistent with our empirical results in the experi-

mental arm in which subjects allocated their endowments across three accounts: a

liquid account, a partially illiquid account with a 10% penalty, and a fully illiquid
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account. Among the participants in this experimental arm, 37 allocated money to

the fully illiquid account but not to the partially illiquid account, while only 8 al-

located money to the partially illiquid account but not to the fully illiquid account

(76 allocated money to both illiquid accounts, and 29 allocated money to neither).

The average allocations to the accounts follow a similar pattern: the partially illiquid

account attracts 16% of the endowment, while the fully illiquid account attracts 34%

of the endowment. The decision to allocate money to the partially illiquid account is

consistent with the model. Theorem 5 predicts that subjects who allocate money to

the partially illiquid account do so because the 10% penalty is above π1 and therefore

suffi cient to deter early withdrawals. There were 42 participants who allocated money

to the partially illiquid account and were randomly assigned to receive their chosen

allocation (instead of having all of their endowment placed in the liquid account), and

out of those 42 participants, only one made a withdrawal from the partially illiquid

account before the goal date.

Thus, the data tend to support Theorem 5. However, it would be necessary to

extend the model to accommodate some of the nuances of the experimental design.

Most importantly, participants in the study were allowed to set different goal dates

for the fully illiquid account and the partially illiquid account, and 55 out of the

76 subjects who allocated money to both accounts took advantage of this flexibil-

ity. Among the experimental participants who chose to allocate money to both the

partially illiquid account and the fully illiquid account, the average goal horizon for

the partially illiquid account was 116 days, and the average goal horizon for the fully

illiquid account was 145 days, a difference that is statistically significant at the 1%

level in a paired t-test. Hence, subjects tended to use the partially illiquid account

to create short-run commitments and the fully illiquid account to create long-run

commitments. We do not know if participants would prefer to use the fully illiquid

account to create commitments at all horizons if they were given the option to do so.

Finally, it is important to emphasize that our theoretical analysis considers a so-

phisticated agent, who in period 0 fully anticipates the difference between the current

self’s preferences and preferences as of period 1. There is evidence that many individ-

uals in the population are only partially sophisticated– they understand that there

is a divergence between current and future preferences but underappreciate the full
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extent of that divergence (John, 2018). From a descriptive perspective, our theoreti-

cal analysis of commitment account allocations also applies to the case of a partially

sophisticated agent. However, the welfare implications may not apply. In particular,

because a partially sophisticated agent makes commitment account allocation deci-

sions in period 0 based on an incorrect forecast of consumption decisions in period 1,

the period 0 decisions may not be optimal in the sense that welfare from the period 0

perspective may be improved by selecting different commitment account allocations.

As the current analysis focuses on descriptive issues, we leave welfare analysis to other

work (see Galperti, 2015; Beshears et al., 2017; and Moser and Olea de Souza e Silva,

2017).
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1. Introduction

In this appendix we provide a complete analysis of the mechanism-design problem

described in the main body of the paper.

2. Preliminaries

2.1. Functions of Bounded Variation. We begin by discussing the concept

of bounded variation. This concept will be used to formulate our assumptions on

the distribution function F in the subsection immediately following this one, namely

Section 2.2. More importantly, it plays an essential role in our proof of suffi ciency in

a much later section, namely Section 16.

The simplest definition of a function of bounded variation is probably that given

in the main text: a function f : (0,∞) → R is of bounded variation iff it is the

difference of two bounded and non-decreasing functions f+, f− : (0,∞) → R. This
definition forms the starting point for the definition that we shall use. However, it

needs to be developed into a form that is more convenient for the Lagrangean analysis

below.

The first step is to collect the functions of bounded variation into equivalence

classes. Intuitively speaking, two functions of bounded variation are equivalent iff

they differ only at their points of discontinuity. This step is analogous to the first

1
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step in defining spaces of Lebesgue integrable functions. (In that case, one collects

the Lebesgue integrable functions into equivalence classes. Two Lebesgue integrable

functions are equivalent if they differ only on a set of measure 0.)

The second step is to place a norm on the resulting equivalence classes in such a

way that the limit of a sequence of equivalence classes is again a suitable equivalence

classes. (This step is analogous to the second step in defining spaces of Lebesgue

integrable functions.) The main idea here is to note that, since f+ and f− are non-

decreasing, they are effectively the distribution functions of a pair of non-negative

bounded measures df+ and df−. Of course, neither df+ nor df− is unique. But their

difference df = df+ − df− is. The main component of the norm is therefore the total

variation ‖df‖TV of df . The other idea is to note that, while ‖df‖TV effectively controls
the derivative of f , it does not control the level of f . The remaining component of

the norm can therefore be taken to be |fR(1)|, where fR(1) is the limit of f from the

right at 1.

The best way of understanding how these ideas work is to note that we can easily

reconstruct f from df and fR(1). For all θ ∈ (0, 1), we have

fR(θ) = fR(1)− df((θ, 1])

and

fL(θ) = fR(1)− df([θ, 1]) ,

where fR(θ) and fL(θ) are the limits of f from the right and left at θ. And for all

θ ∈ (1,∞), we have

fR(θ) = fR(1) + df((1, θ])

and

fL(θ) = fR(1) + df((1, θ)) .

We also need to work with the space BV(Θ,R) of functions of bounded variation

on Θ =
[
θ, θ
]
. By analogy with our discussion of the space BV((0,∞),R), it should

be clear that we can endow BV(Θ,R) with the norm

‖f‖BV = |fR(θ0)|+ ‖df‖TV ,

2
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where θ0 is a fixed element of
(
θ, θ
)
and df is a bounded measure on Θ. There is,

however, one surprise: a function f ∈ BV(Θ,R) has a limit on the left at θ and a

limit on the right at θ. Indeed, we have

fL( θ ) = fR(θ0)− df([ θ, θ0])

and

fR( θ ) = fR(θ0) + df
(
(θ0, θ ]

)
.

To summarize, we denote the space of functions of bounded variation on (0,∞)

by BV((0,∞),R), and we denote the space of functions of bounded variation on

Θ =
[
θ, θ
]
by BV(Θ,R). Unless explicitly stated to the contrary, we shall always

use the right-continuous representative of a function of bounded variation. We will

usually denote this representative simply by f , but we will occasionally denote it by

fR for emphasis. We will denote the left-continuous representative of f by fL.

2.2. Assumptions on F . We are now in a position to introduce our assumptions

on the distribution function F of the taste shock θ. They are:

A1 Both F and F ′ are functions of bounded variation on (0,∞).

A2 The support of F ′ is contained in
[
θ, θ
]
, where 0 < θ < θ <∞.

A3 There exists θM ∈
[
θ, θ
]
such that: (i) G′ ≥ 0 on (0, θM); and (ii) G′ ≤ 0 on

(θM ,∞).

Here G is given by the formula G(θ) = (1 − β) θ F ′(θ) + F (θ). If A1 holds then G,

like F and F ′, is a function of bounded variation on (0,∞).

2.3. The Support of F ′ is Connected. Fourth, we note that either β = 1,

in which case the analysis is trivial, or β < 1, in which case the support of F ′ is

connected.1 More precisely, we have:
1Notice that F is a distribution function, not a distribution. Also, F ′ has a dual interpretation.

It can be regarded as: either (i) the non-negative finite measure with distribution function F ; or (ii)
the density of that measure with respect to Lebesgue measure. By the same token, the support of
F ′ has a dual interpretation. It can be regarded as: either (i) the support of the non-negative finite
measure F ′; or (ii) the support of the non-negative function of bounded variation F ′. It makes no
difference which of these two interpretations is adopted.

3
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Proposition 1. Suppose that β < 1 and that A1-A3 are satisfied. Then there exist

κ , κ ∈
[
θ , θ

]
such that: (i) κ < κ; (ii) F ′ > 0 on (κ , κ ); and (iii) F ′ = 0 on

(0,∞) \ [κ , κ ].

In what follows we shall therefore take it that β < 1, and that the support of F ′

is
[
θ , θ

]
.

Proof. Note first that there exists κ1 ∈
(
θ , θ

)
such that F ′(κ1) > 0. Otherwise we

would have F ′ = 0 everywhere on (0,∞), by right-continuity of F ′. Next, there exists

κ2 ∈
(
κ1, θ

)
such that F ′ > 0 on (κ1, κ2), again by right-continuity of F ′. Third, put

κ = inf {θ | F ′(θ) > 0} and κ = sup {θ | F ′(θ) > 0}. Then certainly θ ≤ κ < κ ≤ θ.

Fourth, put α = 2−β
1−β . Then G

′ ≥ 0 iff (θαF ′)′ ≥ 0 and G′ ≤ 0 iff (θαF ′)′ ≤ 0. There

are therefore two possibilities. If G′ ≥ 0 at θM (i.e. ∆G(θM) ≥ 0), then we must have

θαF ′ > 0 on (κ , θM ] (because (θαF ′)′ ≥ 0 on this interval) and θαF ′ > 0 on (θM , κ )

(because (θαF ′)′ ≤ 0 on this interval); and if G′ ≤ 0 at θM (i.e. ∆G(θM) ≤ 0), then

we must have θαF ′ > 0 on (κ , θM) and θαF ′ > 0 on [θM , κ ).2 Either way, we see

that: (i) θαF ′ > 0, and hence F ′ > 0, on (κ , κ ); (ii) θM ≤ κ, for otherwise we would

have F ′ > 0 on the non-empty interval (κ, θM), and this contradicts the choice of

κ; and (iii) θM ≥ κ, for otherwise we would have F ′ > 0 on the non-empty interval

(θM , κ ), and this contradicts the choice of κ.

2.4. Constraints on the Budget Set. Fifth, recall that self 0 chooses a subset

B of the ambient action set A, and that self 1’s choice of a consumption pair from B

can therefore be described by a consumption curve (c1, c2) :
[
θ , θ

]
→ B. We consider

three possible constraints on B, namely:

Constraint 1. B is a non-empty compact subset of A.

Constraint 2. The penalty for transferring consumption from period 2 to period 1

is no greater than π.3

2If θM ≤ κ then we take the intervals (κ , θM ) and (κ , θM ] to be empty. Similarly, if θM ≥ κ,
then we take the intervals (θM , κ ) and [θM , κ ) to be empty.

3In other words, for any given (c1, c2) ∈ B and any ∆c1 ∈
[
0, 1

1+π c2

]
, self 1 can increase her own

consumption c1 by ∆c1 at a cost of at most (1 + π) ∆c1 in terms of the consumption c2 of self 2.

4
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Constraint 3. The penalty for transferring consumption from period 1 to period 2

is no greater than π.4

Constraint 1 involves no loss of generality. Indeed, it must be possible for all

possible types θ ∈ Θ to find an optimum within B. This being the case, we can

always take the closure of B without changing the outcome, since the utility function

is continuous. Finally, since A itself is compact, so too is the closure of B. Constraint

2 is an essential part of the formulation of our problem. We wish to avoid extreme

outcomes in which self 0 imposes an infinite penalty on self 1 for increasing her own

consumption at the expense of self 2. Constraint 3 is simply the mirror image of

Constraint 2. It eliminates extreme outcomes in which self 0 imposes an infinite

penalty on self 1 for increasing the consumption of self 2 at her own expense.

Remark 2. If we only impose Constraint 2, then the problem is one sided: Con-

straint 2 places a limit on the cost, in terms of c2, of increasing c1; but there is

no corresponding limit on the cost, in terms of c1, of increasing c2. By imposing

Constraint 3, we eliminate this asymmetry.

Now suppose that B must satisfy all three constraints. Then B must take one of

two forms: either

1. it consists of the single point (0, 0); or

2. its frontier consists of a curve that begins at some (0, c2) such that c2 > 0,

slopes downwards with slope between −(1 + π) and −(1 + π)−1, and ends at

some (c1, 0) such that c1 > 0.

Self 0 will never choose the first option, since the optimal pooling point on the frontier

of the ambient budget set A is preferable. (By the same token, self 0 will never choose

a B, the frontier of which is close to (0, 0).) But, if she chooses the second option,

then the resulting consumption curve (c1, c2) will be interior. That is, we will have

c1, c2 > 0 on Θ.5

4In other words, for any given (c1, c2) ∈ B and any ∆c2 ∈
[
0, 1

1+π c1

]
, self 1 can increase the

consumption c2 of self 2 by ∆c2 at a cost of at most (1 + π) ∆c2 in terms of her own consumption
c1.

5This follows from our assumption that U ′t(0+) =∞.
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The ideal approach to our problem would therefore be to impose all three con-

straints on B, and to solve the optimization problem of self 0 subject to these con-

straints. One could then verify ex post that Constraint 3 was not binding.6

In practice, we shall take a shortcut. Rather than working explicitly with Con-

straint 3, we shall instead replace it by the weaker requirement that consumption

curves are interior. Our analysis could, of course, be reworked in such a way as to

incorporate Constraint 3 explicitly. But, in practice, this would simply involve an

additional notational burden.

Remark 3. The situation would be very different if β > 1. In that case, it would be

Constraint 2 that would not bind. We would therefore replace Constraint 2 by the

weaker requirement that consumption curves are interior.

2.5. Utility Curves. Suppose accordingly that we are given a B satisfying Con-

straints 1 and 2, and that the associated consumption curve is interior. Define a

utility curve

(u1, u2) :
[
θ , θ

]
→ (U1(0), U1(∞))× (U2(0), U2(∞))

by the formula (u1, u2)(θ) = (U1(c1(θ)), U2(c2(θ))). Then (u1, u2) must satisfy the

following conditions:

N1 C1(u1(θ)) + C2(u2(θ)) ≤ y for all θ ∈
[
θ , θ

]
.

N2 u1 is non-decreasing and u2 is non-increasing.

N3 θ du1 + β du2 = 0.

N4 β (1 + π)U ′2(C2(u2(θ))) ≥ θ U ′1(C1(u1(θ))).

Here: Ct = U−1t ; and du1 is a non-negative finite measure and du2 is a non-positive

finite measure.

Conversely, suppose that a utility curve (u1, u2) is interior, in the sense that it

satisfies u1 > U1(0) and u2 > U2(0) on Θ, and that it satisfies Conditions N1-N4.

6It turns out that the slope of the optimal budget set is at most −1. So Constraint 3 certainly
is not binding!
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Define (c1, c2) by the formula (c1, c2)(θ) =
(
U−11 (u1(θ)), U

−1
2 (u2(θ))

)
. Then there

exists a B with slope at least −(1 + π) such that (c1, c2) is the consumption curve

arising from B. Moreover (c1, c2) is interior.

2.6. The CRRA Case. Suppose now that U1 = U2 = U on (0,∞), and that U

has constant relative risk aversion ρ > 0. Indeed, suppose for concreteness that U is

given by the formula

U(c) =

{
c1−ρ−1
1−ρ if ρ 6= 1

log(c) if ρ = 1

}
.

Then N4 is equivalent to

N4′ u2(θ) ≤ −1
ρ
a
(

θ
(1+π)β

)
+ b
(

θ
(1+π)β

)
u1(θ) /,

where a and b are given by the formulae

a(z) =


z
1− 1ρ−1

1− 1
ρ

if ρ 6= 1

log(z) if ρ = 1

 (1)

and

b(z) = z1−
1
ρ . (2)

Remark 4. It is obvious that N4 becomes weaker as π increases. Since N4′ is equiv-
alent to N4, N4′ likewise becomes weaker as π increases.

3. The Main Problem

Our strategy will be to study a relaxed version of the problem of self 0 in which we

maximize self 0’s expected utility
∫

(θ u(θ) + w(θ)) dF (θ) subject to N1, N3 and N4′,

but not N2. Following Luenberger (1969, Sections 8.3 and 8.4, pp. 216-221), we shall

need:

1. A vector space7 X, which we take to be C(Θ,R)2. Here: Θ =
[
θ , θ

]
⊂ (0,∞)

is the space of types; and C(Θ,R) is the space of continuous functions from Θ

to R.
7In our case X is actually a Banach space. For the Lagrangean analysis, we only need the fact

that it is a vector space. When we later use calculus to find necessary and suffi cient conditions for the
maximization of the Lagrangean, we shall need the fact that it is a normed space. Cf. Luenberger
(1969, Lemma 1, p. 227).

7



Online Appendix C to “Which Early Withdrawal Penalty Attracts the
Most Deposits to a Commitment Savings Account?”

2. A convex set8 Ω ⊂ X, which we take to consist of all

(u,w) ∈
(
BV(Θ, ran(U)) ∩ C(Θ, ran(U))

)2
such that

θ du+ β dw = 0.

Here: ran(U) is the range of U ;9 C(Θ, ran(U)) is the space of continuous func-

tions from Θ to ran(U); BV(Θ, ran(U)) is the space of all functions of bounded

variation from Θ to ran(U); and du and dw are in general elements of the space

M(Θ,R) of finite Borel measures on Θ.

3. A concave function10 M : Ω→ R (the objective function), which we take to be
given by the formula

M(u,w) =

∫ (
θ u(θ) + w(θ)

)
dF (θ).

4. A normed space11 Z, which we take to be C(Θ,R).

5. A closed convex cone P in Z with vertex 0 and non-empty interior, which we

take to be C(Θ, [0,∞)). With this choice of P , z1 ≥ z2 iff z1(θ) ≥ z2(θ) for all

θ ∈ Θ and z1 > z2 iff z1(θ) > z2(θ) for all θ ∈ Θ. In other words, P is the

positive cone of Z.

6. The space Z∗ of continuous linear functionals on Z. Since Z = C(Θ,R), Z∗ can

be identified withM(Θ,R).

7. The positive cone P ∗ of Z∗. Since P = C(Θ, [0,∞)), P ∗ can be identified with

M(Θ, [0,∞)) (i.e. the space of non-negative finite Borel measures on Θ).

8In our case Ω is actually a cone, the vertex of which is the constant mapping 1
ρ−1 when ρ 6= 1

and the constant mapping 0 when ρ = 1.
9I.e. ran(U) is ( 1

ρ−1 ,∞) when ρ < 1, (−∞,∞) when ρ = 1 and (−∞, 1
ρ−1 ) when and ρ > 1.

10In our case M is actually defined on the whole of X (and not just on Ω), and it is linear (and
not just concave).
11In our case, Z is actually a Banach space, and not just a normed space.
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8. Concave mappings G1, G2 : Ω→ Z (the constraint mappings),12 which we take

to be given by the formulae

(G1(u,w))(θ) = y − C(u(θ))−K(w(θ))

and

(G2(u,w))(θ) = b
(

θ
(1+π)β

)
u(θ)− 1

ρ
a
(

θ
(1+π)β

)
− w(θ),

where C = K = U−1 : ran(U)→ (0,∞), and a and b are given by the formulae

(1) and (2).

Our problem is then to

maximize M(x)

subject to


x ∈ Ω

G1(x) ≥ 0

G2(x) ≥ 0

 .
(3)

4. Characterizing the Optimum

In our context, the Lagrangean is the mapping L : Ω × Z∗ × Z∗ → R given by the
formula

L(x, λ1, λ2) = M(x) + 〈G1(x), λ1〉+ 〈G2(x), λ2〉 ,

where 〈Gi(x), λi〉 denotes the real number obtained when the linear functional λi ∈ Z∗

is evaluated at the point Gi(x) ∈ Z.
In view of our assumptions, the maximum is achieved at x0 ∈ Ω if and only if

there exist λ1, λ2 ∈ Z∗ such that:

1. L(x0, λ1, λ2) ≥ L(x, λ1, λ2) for all x ∈ Ω;

2. G1(x) ≥ 0, λ1 ≥ 0 and

〈G1(x), λ1〉 = 0; (4)

12In our case G1 is actually defined on Ξ = C(Θ, ran(U))2 (and not just on Ω). This will be useful
when we later want to do calculus. Furthermore G2 is defined on the whole of X (and not just on
Ω), and it is linear (and not just concave).
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3. G2(x) ≥ 0, λ2 ≥ 0 and

〈G2(x), λ2〉 = 0. (5)

In other words, there exists multipliers λ1 and λ2 such that: x0 maximizes L( · , λ1, λ2)
over Ω; complementary slackness holds for the first constraint; and complementary

slackness holds for the second constraint.

Since P ∗ can be identified withM(Θ, [0,∞)), we have the following explicit rep-

resentations of M(x), 〈G1(x), λ1〉 and 〈G2(x), λ2〉:

M(x) =

∫ (
θ u(θ) + w(θ)

)
dF (θ), (6)

〈G1(x), λ1〉 =

∫ (
y − C(u(θ))−K(w(θ))

)
dΛ1(θ) (7)

and

〈G2(x), λ2〉 =

∫ (
b
(

θ
(1+π)β

)
u(θ)− 1

ρ
a
(

θ
(1+π)β

)
− w(θ)

)
dΛ2(θ), (8)

where Λ1 and Λ2 are the distribution functions of λ1 and λ2 respectively.

Remark 5. In the interests of clarity and consistency, all integrals in this Appendix
are Lebesgue-Stieltjes integrals, i.e. integrals with respect to functions of bounded

variation.

5. The Lagrangean is Fréchet Differentiable

It is immediate from the formulae (6), (7) and (8) that L(x, λ1, λ2) is in fact well

defined for all x ∈ Ξ = C(Θ, ran(U))2. Let us consider accordingly any x0 = (u0, w0) ∈
Ξ and any x1 = (u1, w1) ∈ X. Because Ξ is open, x0+ε x1 ∈ Ξ for all ε > 0 suffi ciently

small. Furthermore, it can be verified that the directional derivative ∇x1L(x0, λ1, λ2)

of L at x0 in the direction x1 takes the form∫ (
θ u1 + w1

)
dF −

∫ (
C ′(u0)u1 +K ′(w0)w1

)
dΛ1 +

∫ (
b
(

θ
(1+π)β

)
u1 − w1

)
dΛ2.

(9)

This is easily seen to define a continuous linear functional

∇L(x0, λ1, λ2) : x1 7→ ∇x1L(x0, λ1, λ2)

10



Online Appendix C to “Which Early Withdrawal Penalty Attracts the
Most Deposits to a Commitment Savings Account?”

onX. That is, L( · , λ1, λ2) is Gâteaux differentiable at x0 with gradient∇L(x0, λ1, λ2) ∈
X∗. Finally, ∇L( · , λ1, λ2) : Ξ→ X∗ can be shown to be continuous. It follows that

L( · , λ1, λ2) is Fréchet differentiable on Ξ.

6. Maximizing the Lagrangean

Since L( · , λ1, λ2) is convex and Fréchet differentiable on Ξ, and since Ω is convex,

the maximum of L( · , λ1, λ2) over Ω is achieved at x0 ∈ Ω iff

∇x−x0L(x0, λ1, λ2) ≤ 0

for all x ∈ Ω. In this section we shall identify the restrictions that this places on λ1
and λ2.

To this end, put

Y =
(
BV(Θ,R) ∩ C(Θ,R)

)
× R;

and consider the affi ne transformation

S : Y →
(
BV(Θ,R) ∩ C(Θ,R)

)2
that maps y = (u, r) to x = (u0 + u,w0 + w), where w is the unique solution of the

equation θ du+ β dw = 0 with boundary condition w( θ ) = r.

For any y ∈ Y , we have

∇S(y)−x0L(x0, λ1, λ2) =

∫ (
θ u+ w

)
dF −

∫ (
C ′(u0)u+K ′(w0)w

)
dΛ1

+

∫ (
b
(

θ
(1+π)β

)
u− w

)
dΛ2

=

∫ (
θ u+ w

)
dF −

∫ (
C′(u0)
K′(w0)

u+ w
)
dΛ̃1

+

∫ (
b
(

θ
(1+π)β

)
u− w

)
dΛ2

(where dΛ̃1 = K ′(w0) dΛ1). Furthermore, integrating by parts, we have∫
w dF = [wF ]θθ− −

∫
F dw = w( θ )F ( θ ) +

∫
F
θ

β
du

11
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(because F ( θ−) = 0 and dw = − θ
β
du)

= r F ( θ ) +

∫
F
θ

β
du.

Moreover ∫
F θ du =

∫
F (θ du+ u dθ)−

∫
F u dθ

= [ θ uF ]θθ− −
∫
θ u dF −

∫
F u dθ

= θ u( θ )F ( θ )−
∫
θ u dF −

∫
F u dθ

(where we have again used the fact that F ( θ−) = 0). Hence∫
w dF =

(
θ

β
u( θ ) + r

)
F ( θ )− 1

β

∫
u (θ dF + F dθ).

Similarly, ∫
w dΛ̃1 =

(
θ

β
u( θ ) + r

)
Λ̃1( θ )− 1

β

∫
u (θ dΛ̃1 + Λ̃1 dθ)

and ∫
w dΛ2 =

(
θ

β
u( θ ) + r

)
Λ2( θ )− 1

β

∫
u (θ dΛ2 + Λ2 dθ).

Overall, then,

∇S(y)−x0L(x0, λ1, λ2) =

(
θ

β
u( θ ) + r

)(
F ( θ )− Λ̃1( θ )− Λ2( θ )

)
− 1

β

∫
u
(

(1− β) θ dF + F dθ
)

+
1

β

∫
u
((
θ − β C′(u0)

K′(w0)

)
dΛ̃1 + Λ̃1 dθ

)
+

1

β

∫
u
((
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ

)
.
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Next, it is easy to see that the mapping

y 7→ ∇S(y)−x0L(x0, λ1, λ2)

defines a continuous linear functional on Y . Since it does not depend on the deriva-

tives of y, this functional extends uniquely to a continuous linear functional

y∗ : C(Θ,R)× R→ R.

Indeed, we have

y∗ = (u∗, r∗) ∈M(Θ,R)× R = (C(Θ,R)× R)∗ ,

where

du∗ = − 1

β

(
(1− β) θ dF + F dθ

)
+

1

β

((
θ − β C′(u0)

K′(w0)

)
dΛ̃1 + Λ̃1 dθ

)
+

1

β

((
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ

)
+
θ

β

(
F ( θ )− Λ̃1( θ )− Λ2( θ )

)
dI (10)

and

r∗ = F ( θ )− Λ̃1( θ )− Λ2( θ )

and I is the distribution function of the unit mass at θ.

Remark 6. In reading (10), note that F , Λ̃1, Λ2 and θ are functions of bounded

variation (with θ being simply the identity function). Hence dF , dΛ̃1, dΛ2 and dθ are

measures, and the equation as a whole holds in terms of measures.

Finally, it is easy to see that there exists ε > 0 such that S(y) ∈ Ω for all

y ∈ Y ∩Bε(0), where Bε(0) is the open ball in C(Θ,R)×R with radius ε and centre
0. It follows that 〈y, y∗〉 ≤ 0 for all y ∈ Y ∩ Bε(0). But Y ∩ Bε(0) is dense in Bε(0).

13
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Hence 〈y, y∗〉 ≤ 0 for all y ∈ Bε(0). Hence y∗ = 0. In other words, we have

0 = − 1

β

(
(1− β) θ dF + F dθ

)
+

1

β

((
θ − β C′(u0)

K′(w0)

)
dΛ̃1 + Λ̃1 dθ

)
+

1

β

((
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ

)
+
θ

β

(
F ( θ )− Λ̃1( θ )− Λ2( θ )

)
dI (11)

and

0 = F ( θ )− Λ̃1( θ )− Λ2( θ ). (12)

Taking advantage of (12), (11) simplifies to

0 = −Gdθ +
((
θ − β C′(u0)

K′(w0)

)
dΛ̃1 + Λ̃1 dθ

)
+
((
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ

)
, (13)

where G is given by the formula G(θ) = (1− β) θ F ′(θ) + F (θ).

7. A One-Parameter Family of Utility Curves

We shall consider a family of utility curves depending on the single parameter θ1 ∈(
0, θ
]
. For each θ1, we begin by finding the point (c∗(θ1), k

∗(θ1)) that would be chosen

by a self 1 of type θ1 from the ambient budget set A. The utility curve corresponding

to θ1 is then the utility curve associated with a two-part budget set with slopes of

−1 and −(1 + π) to the left and right of a kink at (c∗(θ1), k
∗(θ1)). Notice that we

specifically allow for the possibility that θ1 < θ.

Put θ2 = (1 + π) θ1. Knife-edge cases apart, there are then five possible cases

arising from the relative positions of the two non-trivial intervals
[
θ , θ

]
and [θ1, θ2]:

Case 1
[
θ , θ

]
contains [θ1, θ2];

Case 2 [θ1, θ2] contains
[
θ , θ

]
;

Case 3 the two intervals overlap, with [θ1, θ2] lying to the left and
[
θ , θ

]
to the

right;

Case 4 the two intervals overlap, with
[
θ , θ

]
lying to the left and [θ1, θ2] to the

right;

14
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Case 5 [θ1, θ2] lies entirely to the left of
[
θ , θ

]
.

(The case in which
[
θ , θ

]
lies entirely to the left of [θ1, θ2] cannot occur, because we

are confining θ1 to the interval
(

0, θ
]
.)

7.1. Case 1. If the utility curve corresponding to θ1 is to be an optimum, then

the associated multipliers λ1 and λ2 must satisfy the three necessary conditions (4),

(5) and (13) (i.e. complementary slackness for the first constraint, complementary

slackness for the second constraint and the measure equation). In this section, we

show that these three necessary conditions tie down λ1 and λ2 uniquely. The fourth

necessary condition, namely the boundary condition (12), is not needed at this stage.

(It will be used below to tie down θ1.)

By construction, the maximum-penalty constraint is strictly slack on [ θ, θ2) and

the budget constraint is strictly slack on
(
θ2, θ

]
. Hence dΛ2 = 0 on the former interval

and dΛ̃1 = 0 on the latter. Furthermore (13) implies that

(1− β) θ2 ∆F (θ2) = (θ2 − θ1) ∆Λ̃1(θ2) +
(
θ2 + β b

(
θ2

(1+π)β

))
∆Λ2(θ2),

where ∆F (θ2), ∆Λ̃1(θ2) and ∆Λ2(θ2) are the atoms of dF , dΛ̃1 and dΛ2 at θ2. But

Assumption A1 implies that ∆F (θ2) = 0. Since all the terms on the right-hand side

of the equation are non-negative, it follows that ∆Λ̃1(θ2) = ∆Λ2(θ2) = 0. Hence

∆Λ2(θ2) = 0 (and therefore dΛ2 = 0 on [ θ, θ2]) and ∆Λ̃1(θ2) = 0 (and therefore

dΛ̃1 = 0 on
[
θ2, θ

]
).

Now let us consider the three intervals [ θ, θ1], [θ1, θ2] and
[
θ2, θ

]
in turn. On

[ θ, θ1], we have
C′(u0)
K′(w0)

= θ
β
, Λ2 = 0 and dΛ2 = 0. Hence (13) becomes

0 = −Gdθ + Λ̃1 dθ.

It follows that Λ̃1 = G almost everywhere with respect to Lebesgue measure dθ. Since

both Λ̃1 and G are functions of bounded variation, it then follows (bearing in mind

the convention that functions of bounded variation are right continuous) that Λ̃1 = G

everywhere on [ θ, θ1), and hence that Λ̃1(θ1−) = G(θ1−).

15
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On [θ1, θ2], we have
C′(u0)
K′(w0)

= θ1
β
, Λ2 = 0 and dΛ2 = 0. Hence (13) becomes

0 = −Gdθ + (θ − θ1) dΛ̃1 + Λ̃1 dθ.

This implies that Λ̃1 takes the form

Λ̃1(θ) =
1

θ − θ1

∫ θ

θ1

G(t) dt

for all θ ∈ (θ1, θ2), that Λ̃1(θ1) = G(θ1) (since Λ̃1 and G are right continuous) and

that Λ̃1(θ2) = Λ̃1(θ2−) = 1
θ2−θ1

∫ θ2
θ1
G(θ) dθ (since Λ̃1 cannot have a jump at θ2).

On
[
θ2, θ

]
, we have dΛ̃1 = 0. Hence (13) becomes

0 = −Gdθ + Λ̃1 dθ +
(
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ.

Furthermore, we have the boundary condition Λ2(θ2) = 0 (since Λ2 cannot have a

jump at θ2). Putting Λ̃2 = Λ2 + Λ̃1(θ2), this equation simplifies slightly to

0 = −Gdθ +
(
θ + β b

(
θ

(1+π)β

))
dΛ̃2 + Λ̃2 dθ,

with boundary condition Λ̃2(θ2) = Λ̃1(θ2).

7.2. Cases 2 to 5. In order to handle the remaining cases, we need a unified

construction. (This construction includes Case 1 too.) It is more convenient to work

in terms of the distribution function Ψ = Ψ( · ; θ1) of the total multiplier dΛ̃1 + dΛ2,

and to view this as a function on
[

0, θ
]
. The construction is then very simple. For

all θ1 ∈
(

0, θ
]
:

1. put Ψ = G on [ 0, θ1];

2. if θ1 < θ (so that Ψ is not yet defined on the whole of
[

0, θ
]
), then let Ψ be

the unique bounded solution of the o.d.e.

0 = −G+ (θ − θ1) Ψ′ + Ψ

16
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on
(
θ1, θ2 ∧ θ

]
, i.e. put

Ψ(θ) =
1

θ − θ1

∫ θ

θ1

G(t) dt;

3. if θ2 < θ (so that Ψ is still not defined on the whole of
[

0, θ
]
), then let Ψ be

the unique solution of the o.d.e.

0 = −G+
(
θ + β b

(
θ

(1+π)β

))
Ψ′ + Ψ

on
(
θ2, θ

]
with boundary condition

Ψ(θ2) =
1

θ2 − θ1

∫ θ2

θ1

G(t) dt.

Then, using arguments similar to those of the preceding section, it is easy to verify

that the three necessary conditions (4), (5) and (13) together imply that, for all

θ1 ∈
(

0, θ
]
, Ψ must take the given form.

Remark 7. We can easily extend the construction of Ψ to include the case θ1 = 0.

Indeed, in line with the construction above, we can let Ψ( · ; 0) be the unique bounded

solution of the o.d.e.

0 = −G+
(
θ + β b

(
θ

(1+π)β

))
Ψ′ + Ψ

on
(

0 , θ
]
.

Remark 8. With this definition of Ψ( · ; 0), Ψ( · ; θ1) is independent of θ1 for θ1 ∈[
0, 1

1+π
θ
]
.

8. Existence of an Optimum

For all θ1 ∈
(

0, θ
]
, we have shown that there exists a unique Ψ = Ψ( · ; θ1) satisfying

the two complementary slackness conditions (4) and (5) and the measure equation

(13). This Ψ( · ; θ1) does not in general satisfy the boundary condition (12). The

17
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purpose of the current section is to establish that there is at least one choice of θ1 for

which (12) is satisfied.

For all θ1 ∈
(

0, θ
]
, put ψ(θ1) = Ψ

(
θ ; θ1

)
. Now consider G. We certainly have

G = 0 on ( 0, θ ) and G = F ( θ ) on
[
θ ,∞

)
. Furthermore Assumption A3 tells us that

G is first increasing (on (0, θM)) and then decreasing (on (θM ,∞)). It is therefore

obvious that there exists θF ∈
[
θ , θ

]
such that G < F ( θ ) on ( 0, θF ) and G ≥ F ( θ )

on
[
θF , θ

]
. Our first lemma sharpens this observation.

Lemma 9. There exists θF ∈
[
θ , θ

)
such that G ≤ F ( θ ) on

(
0, θF

)
and G > F ( θ )

on
(
θF , θ

)
.

Proof. Suppose first that θM < θ. Suppose further that there exists ξ0 ∈
(
θM , θ

)
such that G(ξ0) = G( θ ). Since G′ ≤ 0 on (θM ,∞) ⊃

(
ξ0, θ

]
, it follows that G′ = 0

on
(
ξ0, θ

]
. We also know that G = F ( θ ) on

[
θ ,∞

)
, and therefore that G′ = 0 on(

θ ,∞
)
. Overall, then, G′ = 0 on (ξ0,∞). Hence θα F ′(θ) is constant on (ξ0,∞),

where α = 2−β
1−β . (Cf. the proof of Proposition 1.) Hence F

′ = 0 on (ξ0,∞). But this

contradicts the fact that θ is the maximum of the support of F . We may therefore

conclude that G > G( θ ) = F ( θ ) on
(
θM , θ

)
.

Suppose second that θM = θ. Then G′ ≥ 0 on (0, θ ). Hence θα F ′(θ) is non-

decreasing on (0, θ ). In particular, if we fix ξ1 ∈
(
θ , θ

)
, then we will have θα F ′(θ) ≥

ξα1 F
′(ξ1) for all θ ∈

(
ξ1 , θ

)
. Letting θ ↑ θ, it follows that θα F ′( θ−) ≥ ξα1 F

′(ξ1).

But F ′(ξ1) > 0, since ξ1 lies in the interior of the support of F . Hence F
′( θ−) > 0.

Hence G( θ−) = (1 − β) θ F ′( θ−) + F ( θ ) > F ( θ ). Hence there exists ε > 0 such

that G > F ( θ ) on
(
θ − ε, θ

)
.

Overall, then, we have the following picture: G = 0 on (0, θ ); there exists ξ2 ∈[
θ , θ

)
such that G > F ( θ ) on

(
ξ2, θ

)
; and G = F ( θ ) on

[
θ ,∞

)
. Furthermore

Assumption A3 ensures that
{
θ | G(θ) > F ( θ )

}
is an interval. We may therefore

put θF = inf
{
θ | θ ∈

[
θ , θ

)
, G(θ) > F ( θ )

}
.

Now, it follows from the construction of Ψ given in Section 7.2 that Ψ( θ ; θ1) is

a convex combination of the values of G on the interval
(
θ1, θ

)
. Combining this

observation with Lemma 9, we obtain:

Lemma 10. ψ > F ( θ ) on
[
θF , θ

)
. �
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We also have:

Lemma 11. ψ < F ( θ ) on
(

0, 1
1+π

θ
]
.

Proof. We begin by noting that Ψ = Ψ( · ; θ1) is independent of θ1 for θ1 ∈[
0, 1

1+π
θ
]
. It is therefore the unique bounded solution of the o.d.e.

0 = −G+
(
θ + β b

(
θ

(1+π)β

))
Ψ′ + Ψ (14)

on
(

0 , θ
]
. We compare Ψ with the function Φ which is the unique bounded solution

of the o.d.e.

0 = −G+ θΦ′ + Φ (15)

on
(

0 , θ
]
. Now

Φ(θ) =
1

θ

∫ θ

0

G(t) dt = (1− β)F (θ) + β
1

θ

∫ θ

0

F (t) dt.

Hence: Φ = 0 on ( 0 , θ ]; and 0 < Φ < F on
(
θ , θ

]
. Hence

Φ′ =
G− Φ

θ
≥ F − Φ

θ
≥ 0

on
(

0 , θ
]
, with strict inequality on

(
θ , θ

]
. Furthermore, Φ is a supersolution of the

equation for Ψ. Indeed, we have

−G+
(
β b
(

θ
(1+π)β

)
+ θ
)

Φ′ + Φ

= −G+ β b
(

θ
(1+π)β

)
Φ′ + θΦ′ + Φ

(on rearranging)

= β b
(

θ
(1+π)β

)
Φ′

(since Φ satisfies (15))

≥ 0

on
(

0 , θ
]
, with strict inequality on

(
θ , θ

]
. That is, Φ is a supersolution of the

equation for Ψ, and a strict supersolution on
(
θ , θ

]
. Hence Φ > Ψ on

(
θ , θ

]
. In
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particular, ψ(0) = Ψ( θ ) < Φ( θ ) < F ( θ ). The general case now follows on noting

that Ψ( · ; θ1) = Ψ( · ; 0) for all θ1 ∈
(
0, 1

1+π
θ
]
. Cf. the remark at the end of Section

7.2.

Since ψ is continuous, we can combine Lemmas 10 and 11 to obtain:

Proposition 12. There exists θ1 ∈
(

1
1+π

θ , θF
)
such that ψ(θ1) = F ( θ ). �

That is, there exists θ1 ∈
(

1
1+π

θ, θF
)
such that equation (12) is satisfied. However,

we still need to verify that the multipliers associated with any such θ1 are non-

negative.

9. Non-Negativity of the Multiplier

In this section we show that, if θ1 ∈
(
0, θF

)
is such that ψ(θ1) ≤ F ( θ ), then

Ψ = Ψ( · ; θ1) is non-decreasing on
[

0, θ
]
. We treat the intervals [0, θ1],

(
θ1, θF

)
and

[
θF , θ

]
in turn. We begin with a simple lemma.

Lemma 13. θF ≤ θM .

Proof. In the light of Lemma 9, supG > F ( θ ). Moreover it follows from the

definition of θM that supG = max {GL(θM), G(θM)}. There are therefore two possi-
bilities. Either GL(θM) > F ( θ ), in which case there is a left neighbourhood of θM
on which G > F ( θ ), and therefore θF < θM . Or G(θM) > F ( θ ), in which case

necessarily θF ≤ θM .

Lemma 14. G′ ≥ 0 on
[

0, θF
]
.

Proof. From Lemma 13 we know that
[

0, θF
)
⊂ [ 0, θM ). Hence G′ ≥ 0 on[

0, θF
)
. However, G ≤ F ( θ ) on

[
0, θF

)
and G > F ( θ ) on

(
θF , θ

)
. Hence

∆G( θF ) ≥ 0. Hence G′ ≥ 0 on
[

0, θF
]
.

Proposition 15. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ′ ≥ 0 on [0, θ1].

Proof. Since ψ(θ1) ≤ F ( θ ), Lemma 10 implies that θ1 < θF . Hence [0, θ1] ⊂[
0, θF

)
. But Ψ = G on [0, θ1] by construction of Ψ, and Lemma 14 tells us that

G′ ≥ 0 on
[
0, θF

]
. It follows that Ψ′ ≥ 0 on [0, θ1].
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In order to show that Ψ′ ≥ 0 on
(
θ1, θ

]
, we use the fact that Ψ solves

0 = −G+ (θ − θ1) Ψ′ + Ψ (16)

on
(
θ1, θ2 ∧ θ

]
and

0 = −G+
(
θ + β b

(
θ

(1+π)β

))
Ψ′ + Ψ (17)

on
(
θ2 ∧ θ , θ

]
. We also make use of the corresponding o.d.e. for θ, namely

θ̇ = − (θ − θ1) (18)

on
(
θ1, θ2 ∧ θ

]
and

θ̇ = −
(
θ + β b

(
θ

(1+π)β

))
(19)

on
(
θ2 ∧ θ , θ

]
. Specifically, for all g, h ∈

(
θ1, θ

]
such that h < g, let T (h, g) denote

the time at which the solution of the o.d.e. (18-19) for θ starting from g hits h, and

put S(h, g) = exp(−T (h, g)). Notice that S(·, g) increases from 0 at θ1 to 1 at g.

Lemma 16. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ ≤ G on (θ1, θM).

Proof. Since ψ(θ1) ≤ F ( θ ), Lemma 10 implies that θ1 < θF . Furthermore Lemma

13 tells us that θF ≤ θM . For all g ∈ (θ1, θM), we therefore have

Ψ(g) =

∫ g

θ1

∂S
∂h

(h, g)G(h) dh ≤
∫ g

θ1

∂S
∂h

(h, g)G(g−) dh

(with equality iffG(g−) = G(θ1))

= G(g−).

Taking limits from the right (and using the continuity of Ψ and the right continuity

of G) then yields Ψ ≤ G.

Lemma 17. The sign of Ψ′ coincides with that of G−Ψ on
(
θ1, θ

]
.

Proof. We have

Ψ′ =
G−Ψ

θ − θ1
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on
(
θ1, θ2 ∧ θ

]
(from equation (16)) and

Ψ′ =
G−Ψ

θ + β b
(

θ
(1+π)β

)
on
(
θ2 ∧ θ , θ

]
(from equation (17)). Bearing in mind that we have θ − θ1 > 0 on(

θ1, θ2 ∧ θ
]
, it follows that the sign of Ψ′ coincides with that of G−Ψ on

(
θ1, θ2 ∧ θ

]
∪(

θ2 ∧ θ , θ
]

=
(
θ1, θ

]
.

Proposition 18. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ′ ≥ 0 on
(
θ1, θF

)
.

Proof. From Lemma 16 we know that Ψ ≤ G on (θ1, θM) and therefore on(
θ1, θF

)
⊂ (θ1, θM). Lemma 17 then implies that Ψ′ ≥ 0 there.

Proposition 19. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ′ > 0 on
[
θF , θ

)
.

Proof. For all θ ∈
[
θF , θ

)
, we have

Ψ( θ ) = S(θ, θ ) Ψ(θ) +

∫ θ

θ

∂S
∂h

(h, θ )G(h) dh. (20)

Since ∫ θ

θ

∂S
∂h

(h, θ ) dh = 1− S(θ, θ ),

this means that Ψ( θ ) is a convex combination of Ψ(θ) and the values of G on
(
θ, θ
]
.

But Ψ( θ ) = ψ(θ1) ≤ F ( θ ) and G > F ( θ ) on
(
θ, θ
)
. So we must have Ψ(θ) < F ( θ ).

On the other hand, G(θ) ≥ F ( θ ) since θ ≥ θF . Lemma 17 therefore implies that

Ψ′(θ) > 0.

10. Uniqueness of the Optimum

At this point we have established that the utility curve associated with θ1 solves

the main maximization problem (3) iff ψ(θ1) = F ( θ ). Furthermore ψ < F ( θ ) on[
0, 1

1+π
θ
]
and ψ > F ( θ ) on

[
θF , θ

)
. Hence there exists θ1 ∈

(
1
1+π

θ , θF
)
such

that ψ(θ1) = F ( θ ). In the current section, we show that the set of θ1 for which

ψ(θ1) = F ( θ ) is an interval. Furthermore, if we strengthen Assumption A3 by
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requiring that G is strictly increasing to the left of its peak, then ψ′ > 0 over the

relevant range. It then follows that there is a unique θ1 for which ψ(θ1) = F ( θ ).

This result is limited: it shows that —under the strengthened version of A3 —there is

exactly one solution to problem (3) within our one-parameter family of utility curves;

but it does not show that that there is exactly one solution to problem (3) in Ω. It

is, however, very suggestive.

The main idea of the proof is to find an explicit formula for ψ′, and then use

this formula to determine the sign of ψ′. Of course, the formula depends on whether

θ1 <
1
1+π

θ or θ1 > 1
1+π

θ. In the former case: θ2 = (1 + π) θ1 < θ; the maximum-

penalty constraint is strictly binding; and the types in the range
[
θ2, θ

]
will choose to

incur the consumption penalty. In the latter case: θ2 = (1+π) θ1 > θ; the maximum-

penalty constraint is strictly slack; and no type will choose to incur the consumption

penalty.

In order to state the formula for ψ′, it will be helpful to introduce the functions

φ, χ, ζ and η given by the formulae

φ(θ1) =
1

θ2 − θ1

∫ θ2

θ1

G(θ) dθ (21)

for all θ1 ∈ (0,∞) (where we have suppressed the dependence of θ2 on θ1),

χ(θ1) =
1

θ − θ1

∫ θ

θ1

G(θ) dθ (22)

for all θ1 ∈
(

0, θ
)
,

ζ(θ1) =

β
1+π

b
(
θ1
β

)
θ1

(
θ1 + β

1+π
b
(
θ1
β

)) (G(θ2)− φ(θ1)) +
1

π θ1
(G(θ2)−G(θ1)) (23)

for all θ1 ∈ (0,∞) (where we have suppressed the dependence of θ2 on θ1) and

η(θ1) =
χ(θ1)−G(θ1)

θ − θ1
(24)
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for all θ1 ∈
(

0, θ
)
.

Lemma 20. ψ′(θ1) = S(θ2, θ ) ζ(θ1) for θ1 ∈
(
0, 1

1+π
θ
)
.

Proof. Equation (20) gives

ψ(θ1) =

∫ θ

θ2

∂S
∂h

(h, θ )G(h) dh+ S(θ2, θ )φ(θ1),

where we have used the fact that Ψ( θ ; θ1) = ψ(θ1) and Ψ(θ2; θ1) = φ(θ1). Hence

ψ′ = −∂S
∂h

(θ2, θ )G(θ2) θ
′
2 + ∂S

∂h
(θ2, θ ) θ′2 φ+ S(θ2, θ )φ′

= exp(−T (θ2, θ ))
(
∂T
∂h

(θ2, θ ) θ′2 (G(θ2)− φ) + φ′
)
,

where we have suppressed the dependence of φ and ψ on θ1, and where θ
′
2 and φ

′

denote the derivatives of θ2 and φ with respect to θ1. Furthermore

φ =
1

θ2 − θ1

∫ θ2

θ1

G(t) dt

and

T (θ2, θ ) =

∫ θ

θ2

dt

t+ β b
(

t
(1+π)β

) .
Hence

φ′ = − θ′2 − 1

(θ2 − θ1)2
∫ θ2

θ1

G(t) dt+
1

θ2 − θ1
(G(θ2) θ

′
2 −G(θ1))

=
1

θ2 − θ1
(−π φ+ ((1 + π)G(θ2)−G(θ1)))

=
1

θ1
(G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

and
∂T
∂h

(θ2, θ ) = − 1

θ2 + β b
(

θ2
(1+π)β

) . (25)
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Overall, then,

exp(T (θ2, θ ))ψ′ = ∂T
∂h

(θ2, θ ) θ′2 (G(θ2)− φ) + φ′

= − 1 + π

θ2 + β b
(

θ2
(1+π)β

) (G(θ2)− φ) +
1

θ1
(G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

=

 1

θ1
− 1

θ1 + β
1+π

b
(
θ1
β

)
 (G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

(collecting terms in (G(θ2) − φ) and (G(θ2) − G(θ1)), and using the fact that θ2 =

(1 + π) θ1)

=

β
1+π

b
(
θ1
β

)
θ1

(
θ1 + β

1+π
b
(
θ1
β

)) (G(θ2)− φ) +
1

π θ1
(G(θ2)−G(θ1)).

Making ψ′ the subject of this equation, we obtain the required result.

The second of the two formulae for ψ′ is given by the following lemma.

Lemma 21. ψ′ = η on
[

1
1+π

θ , θ
)
.

Proof. We have ψ = χ on
[

1
1+π

θ , θ
)
. Moreover it is easy to check that

χ′(θ1) =
χ(θ1)−G(θ1)

θ − θ1

on
(

0, θ
)
.

There are now two main cases to consider. The more general of the two main cases

occurs when 1
1+π

θ < θF . In this case, there are three main subcases to consider:

Subcase 1 θ1 ∈
(

1
1+π

θ , 1
1+π

θF
]
. In this subcase, the maximum-penalty constraint

is strictly binding in the sense that θ2 < θ. I.e. all the types in the non-trivial

range of
[
θ2, θ

]
choose to make an early withdrawal from the penalty account.

Subcase 2 θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
]
. In this subcase, the maximum-penalty constraint

is weakly binding in the sense that θ2 ≤ θ.
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Subcase 3 θ1 ∈
[

1
1+π

θ , θF
)
. In this subcase, the maximum-penalty constraint is

weakly slack in the sense that θ2 ≥ θ.

The less general of the two main cases occurs when 1
1+π

θ ≥ θF . In this case, the

third subcase does not arise.

We deal with both of the two main cases simultaneously. The first subcase is

settled by the following lemma.

Lemma 22. Suppose that θ1 ∈
(
0, 1

1+π
θF
]
. Then ψ′(θ1) ≥ 0.

Proof. The proof relies on the formula ψ′(θ1) = S(θ2, θ ) ζ(θ1) given in Lemma 20.

This formula is valid for θ1 ∈
(
0, 1

1+π
θ
)
⊃
(
0, 1

1+π
θF
]
.

We have [θ1, θ2] ⊂
(
0, θF

]
and therefore G′ ≥ 0 on [θ1, θ2]. Hence G(θ2) ≥ φ(θ1)

and G(θ2) ≥ G(θ1). It then follows from formula (23) that ζ(θ1) ≥ 0 (with equality

iffG(θ2) = G(θ1)), and thence that ψ
′(θ1) ≥ 0 (with equality iffG(θ2) = G(θ1)).

We now turn to the second subcase.

Lemma 23. Suppose that θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
]
and that ψ(θ1) ≤ F ( θ ). Then

G(θ2)− φ(θ1) ≥ 0.

Proof. We have θ2 ∈
[
θF , θ

]
and therefore

G(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
(

1
1+π

θF ,
1
1+π

θ
)
, because then θ2 ∈

(
θF , θ

)
)

≥ ψ(θ1) = Ψ( θ ; θ1)

(by assumption and by definition of ψ respectively)

≥ Ψ(θ2; θ1)

(with strict inequality if θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
)
, because then θ2 < θ)

= φ(θ1)

(by definition of φ).
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Lemma 24. Suppose that θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
]
and that ψ(θ1) ≤ F ( θ ). Then

G(θ2)−G(θ1) > 0.

Proof. We have

G(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
(

1
1+π

θF ,
1
1+π

θ
)
)

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1)

(by assumption, by definition of ψ, because θ1 < θ and by construction of Ψ respec-

tively).

Combining Lemmas 23 and 24, we obtain the following result about the right-hand

derivative of ψ.

Lemma 25. Suppose that θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
)
and that ψ(θ1) ≤ F ( θ ). Then

ψ′(θ1) > 0.

Proof. The proof again relies on the formula ψ′(θ1) = S(θ2, θ ) ζ(θ1) given in

Lemma 20. In view of this formula, ψ′(θ1) > 0 if G(θ2) ≥ φ(θ1) and G(θ2) ≥ G(θ1)

with at least one strict inequality. But Lemmas 23 and 24 show that G(θ2) ≥ φ(θ1)

and G(θ2) > G(θ1) respectively.

We also need the corresponding result about the left-hand derivative of ψ.

Lemma 26. Suppose that θ1 ∈
(

1
1+π

θF ,
1
1+π

θ
]
and that ψ(θ1) ≤ F ( θ ). Then

ψ′L(θ1) > 0.

Proof. The proof parallels that of Lemma 25, with minor changes. First of all,

bearing in mind that φ is continuous, we have

ζL(θ1) =

β
1+π

b
(
θ1
β

)
θ1

(
θ1 + β

1+π
b
(
θ1
β

)) (GL(θ2)− φ(θ1)) +
1

π θ1
(GL(θ2)−GL(θ1)) (26)

for all θ1 ∈ (0,∞). As in Lemma 20, we then have ψ′L(θ1) = S(θ2, θ ) ζL(θ1) for

θ1 ∈
(
0, 1

1+π
θ
]
. Next, just as the single peakedness of G implies that G > F ( θ )
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on
(
θF , θ

)
, so it also implies that GL > F ( θ ) on

(
θF , θ

)
. Arguing as in Lemma 23,

we can therefore show that GL(θ2) − φ(θ1) ≥ 0 for θ1 ∈
(

1
1+π

θF ,
1
1+π

θ
]
, with strict

inequality if θ1 < 1
1+π

θ. (We cannot however extend this to θ1 ∈
[

1
1+π

θF ,
1
1+π

θ
]
,

since we cannot deduce from the fact that GL > F ( θ ) on
(
θF , θ

)
that GL ≥ F ( θ ) at

θF .) Next, as in Lemma 24, we have GL(θ2)−GL(θ1) > 0 on
(

1
1+π

θF ,
1
1+π

θ
]
. Indeed,

as in the proof of that lemma, we can show that

GL(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
(

1
1+π

θF ,
1
1+π

θ
)
)

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1).

In particular, G(θ1) < F ( θ ); and therefore θ1 < θF ≤ θM ; and therefore GL(θ1) ≤
G(θ1). Finally, applying (26) yields the required result.

Next, we prove a lemma that will be needed for the third subcase.

Lemma 27. χ > G on
[
0, θF

)
.

Proof. For all θ1 ∈
[
0, θF

)
, we have

χ(θ1) =
1

θ − θ1

∫ θ

θ1

G(θ) dθ =
1

θ − θ1

∫ θF

θ1

G(θ) dθ +
1

θ − θ1

∫ θ

θF

G(θ) dθ.

Moreover: ∫ θF

θ1

G(θ) dθ ≥ ( θF − θ1)G(θ1),

since G′ ≥ 0 on
[
0, θF

]
by Lemma 14; and

∫ θ

θF

G(θ) dθ > ( θ − θF )F ( θ ) ≥ ( θ − θF )G(θ1),

since G > F ( θ ) on
(
θF , θ

)
and (by Lemma 9) G ≤ F ( θ ) on

(
0, θF

)
. Hence

χ(θ1) >
θF − θ1
θ − θ1

G(θ1) +
θ − θF
θ − θ1

G(θ1) = G(θ1),
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as required.

We can now deal with the third subcase, which arises only in the first scenario.

Lemma 28. Suppose that 1
1+π

θ < θF —i.e. that we are in the first scenario —and

that θ1 ∈
[

1
1+π

θ, θF
)
. Then ψ′(θ1) > 0.

Proof. Since θ1 ≥ 1
1+π

θ, we may apply Lemma 21 to obtain

ψ′(θ1) =
χ(θ1)−G(θ1)

θ − θ1
.

Since θ1 < θF , we may apply Lemma 27 to obtain χ(θ1) − G(θ1) > 0. The result

follows.

Combining Lemmas 22, 25, 26 and 28, we obtain:

Proposition 29. The set of θ1 ∈
(
0, θF

)
such that ψ(θ1) = F ( θ ) is a closed inter-

val. �

The idea behind the proof of the proposition is straightforward. We know from

Proposition 12 that all solutions to the equation ψ = F ( θ ) lie in
(

1
1+π

θ , θF
)
. Hence,

to prove the proposition, we need only show that ψ′ ≥ 0 on this interval. Furthermore

this is what Lemma 22 (for the interval
(

1
1+π

θ , 1
1+π

θF
]
), Lemmas 25 and 26 (for the

interval
(

1
1+π

θF ,
1
1+π

θ
)
) and Lemma 28 (for the interval

[
1
1+π

θ, θF
)
) seem to tell us.

The only complication is that Lemmas 25 and 26 both require the side condition

ψ ≤ F ( θ ). However, they make up for this by providing strict rather than weak

inequalities. The proof of the Proposition does therefore go through.

Indeed, we actually have ψ′ > 0 on the interval
(

1
1+π

θF , θF
)
. Hence, the only way

in which non-uniqueness can occur at all is if there is a non-trivial interval, contained

in
(

1
1+π

θ , 1
1+π

θF
]
, on which ψ = F ( θ ). Unfortunately, it is possible to construct

an example in which precisely this form of non-uniqueness occurs. The spirit of the

example is that there exist θ3, θ4 ∈
[
θ , θF

)
such that: (i) θ4 > (1 + π) θ3 (i.e. it is

possible that the entire interval of types associated with the kink lies within [θ3, θ4));

and (ii) GL(θ4) = G(θ3) (i.e. G is constant on [θ3, θ4)). It then follows that, if

there exists θ1 ∈
[
θ3,

1
1+π

θ4
]
such that ψ(θ1) = F ( θ ), then ψ(θ1) = F ( θ ) for all

θ1 ∈
[
θ3,

1
1+π

θ4
]
.
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There are two ways to eliminate this possibility. The first way is to ensure that G

cannot have a “flat”of the type envisaged. The following assumption is more than

suffi cient to ensure this:

A4 G is strictly increasing on [ θ, θM).13

We then have:

Proposition 30. Suppose that Assumptions A1-A4 hold. Then there is a unique
θ1 ∈

(
0, θF

)
such that ψ(θ1) = F ( θ ). �

Working with Assumption A4 certainly simplifies our comparative statics. See

Sections 11-14 below. However, we can still obtain satisfactory comparative-statics

results without it. See Section 15 below.

The second way to eliminate the possibility of non-uniqueness is ensure that G

cannot have a long enough flat:

Proposition 31. Suppose that Assumptions A1-A3 hold, and that π > θ−θ
θ
. Then

there is a unique θ1 ∈
(
0, θF

)
such that ψ(θ1) = F ( θ ). �

In particular, if π = ∞, then we there is a unique optimum within our one-

parameter family of candidate optima.

11. Comparative Statics with A4

The analysis of Sections 8-10 shows that, for all π ∈ [0,∞), the set of solutions of

the equation

ψ(θ1, π) = F ( θ ) (27)

is a non-empty interval. We denote this interval by τ(π) = [ τ(π), τ(π) ]. The purpose

of the current section is to investigate the dependence of τ on π.

In order to simplify the exposition, it will be helpful to assume for the time being

that A4 holds. This ensures that the interval τ(π) collapses to a single point, which

we shall denote by τ 1(π). It also ensures that ∂ψ
∂θ1

(τ 1(π), π) > 0.

13Notice that G is identically 0 on (0, θ ). It does not therefore make sense to require that G is
strictly increasing on (0, θM ).
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If we assume further that all the functions involved are suffi ciently smooth, then

we can apply the Implicit-Function Theorem to the equation

ψ(τ 1(π), π) = F ( θ )

to conclude that

τ ′1 = −
∂ψ
∂π
∂ψ
∂θ1

. (28)

In particular: τ 1 will be increasing (decreasing) in π iff
∂ψ
∂π

< 0
(
∂ψ
∂π
> 0
)
; and the

allocation to the illiquid account will be increasing (decreasing) in π iff ∂ψ
∂π

> 0(
∂ψ
∂π
< 0
)
.

Motivated by these observations, we look first at the case in which the maximum-

penalty constraint is strictly binding. More precisely, we put τ 2(π) = (1 + π) τ 1(π),

and we consider the case in which τ 2(π) < θ. In other words, there is a non-trivial

interval of types
(
τ 2(π), θ

)
who choose to consume out of the illiquid account and

therefore pay the penalty for doing so. In this case we begin by finding explicit

formulae for ∂ψ
∂π
and ∂ψ

∂θ1
. We then go on to find conditions under which ∂ψ

∂π
> 0 and

∂ψ
∂θ1

> 0, thereby ensuring that τ ′1 < 0 (and hence that the allocation to the illiquid

account will be strictly increasing in π).

We look second at the case in which the maximum-penalty constraint is strictly

slack. More precisely, we consider the case in which τ 2(π) > θ. In other words, even

the highest type is not tempted to consume out of the illiquid account. In this case

we again begin by finding explicit formulae for ∂ψ
∂π
and ∂ψ

∂θ1
. It turns out that ∂ψ

∂π
= 0.

We therefore concentrate on finding conditions under which ∂ψ
∂θ1

> 0, thereby ensuring

that τ ′1 = 0 (and hence that the allocation to the illiquid account does not change

with π).

We look third at the intermediate case in which τ 2(π) = θ. This case is important

because it is τ 2(π) that determines whether we are in the strictly binding case τ 2(π) <

θ or the strictly slack case τ 2(π) > θ. Our analysis of the comparative statics of

our problem is not therefore complete until we have understood how the transition

between these two cases occurs.
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12. The Strictly Binding Case

In this section we focus on the set V of (θ1, π) such that

1. θ1 ∈
(
0, θ
)
,

2. π ∈ (0,∞) and

3. θ2 = (1 + π) θ1 < θ.

In other words, we do not impose the requirement that θ1 = τ 1(π) (i.e. that θ1 be

optimal for the given π), but we do require that the maximum-penalty constraint is

binding (in the sense that types in the non-empty interval
(
θ2, θ

)
are choosing to pay

the penalty).

12.1. The formula for ∂ψ
∂π
. Consider the o.d.e.

θ̇ = −
(
θ + β b

(
θ

(1+π)β

))
(29)

on
[
θ2, θ

]
, with initial condition θ(0) = θ. Let T (h; π) denote the first hitting time

of h ∈
[
θ2, θ

]
, and put S(h; π) = exp(−T (h; π)). Then the formula for ∂ψ

∂π
is given

by the following proposition.

Proposition 32. Suppose that θ2 < θ. Then

∂ψ

∂π
(θ1, π) =

(
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π)

)
(G(θ2)− φ(θ1, π))

−
∫

(θ2,θ ]

∂S

∂π
(h, π) dG(h).

Proof. Equation (20) can be written

ψ(θ1, π) =

∫
[ θ2,θ ]

∂S

∂h
(h, π)G(h) dh+ S(θ2, π)φ(θ1, π).
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Hence

∂ψ

∂π
=

∫
[ θ2,θ ]

∂2S

∂h∂π
(h, π)G(h) dh− ∂S

∂h
(θ2, π)G(θ2)

∂θ2
∂π

+

(
∂S

∂h
(θ2, π)

∂θ2
∂π

+
∂S

∂π
(θ2, π)

)
φ+ S(θ2, π)

∂φ

∂π
, (30)

where we have suppressed the dependence of ψ and φ on θ1 and π. Now:∫
[ θ2,θ ]

∂2S

∂h∂π
(h, π)G(h) dh =

∫
[ θ2,θ ]

∂2S

∂π∂h
(h, π)G(h) dh

=

[
∂S

∂π
(h, π)G(h)

]θ
θ2−
−
∫

[ θ2,θ ]

∂S

∂π
(h, π) dG(h)

= −∂S
∂π

(θ2, π)G(θ2−)−
∫

[ θ2,θ ]

∂S

∂π
(h, π) dG(h)

= −∂S
∂π

(θ2, π)G(θ2)−
∫

(θ2,θ ]

∂S

∂π
(h, π) dG(h),

where we have used the fact that ∂S
∂π

( θ ) = 0;

∂φ

∂π
=
G(θ2)− φ
θ2 − θ1

∂θ2
∂π

=
G(θ2)− φ

π
;

and
∂θ2
∂π

= θ1.

Substituting into (30), we therefore obtain

∂ψ

∂π
= −∂S

∂π
(θ2, π)G(θ2)−

∫
(θ2,θ ]

∂S

∂π
(h, π) dG(h)− ∂S

∂h
(θ2, π)G(θ2) θ1

+

(
∂S

∂h
(θ2, π) θ1 +

∂S

∂π
(θ2, π)

)
φ+ S(θ2, π)

G(θ2)− φ
π

= −∂S
∂π

(θ2, π) (G(θ2)− φ(θ1, π))−
∫

(θ2,θ ]

∂S

∂π
(h, π) dG(h)

+

(
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)

)
(G(θ2)− φ(θ1, π)) .
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The required formula now follows on rearranging.

In view of Proposition 32, it is clear that there are three main contributions to
∂ψ
∂π
, namely:

1.
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π);

2. G(θ2)− φ(θ1, π);

3. −
∫

(θ2,θ ]

∂S

∂π
(h, π) dG(h).

We discuss these contributions in turn.

The first contribution can be signed quite generally:

Proposition 33. Suppose that θ2 ≤ θ. Then

1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π) > 0.

In other words, Contribution 1 is strictly positive.

Proof. Explicit calculation shows that

1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π) =

N

D
,

where

N = 1 + (1 + π)

(
θ2

β(1 + π)

)1/ρ
+

(
θ

β(1 + π)

)1/ρ
+ (1 + π)

(
θ2

β(1 + π)

)1/ρ(
θ

β(1 + π)

)1/ρ
+ ρ π

((
θ

β(1 + π)

)1/ρ
−
(

θ2
β(1 + π)

)1/ρ)
.

and

D = π

(
1 + (1 + π)

(
θ2

β(1 + π)

)1/ρ)1−ρ(
1 + (1 + π)

(
θ

β(1 + π)

)1/ρ)1+ρ
.
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Now the last term in the formula for N is non-negative, since θ2 ≤ θ. Hence N > 0.

Finally, it is clear that D > 0.

The second contribution can only be signed when θ1 = τ 1(π) (or, more generally,

when θ2 ∈
(
θ , θ

)
and ψ(θ1) ≤ F ( θ )). This, however, is enough for the purpose of

our comparative statics.

Proposition 34. Suppose that:

1. θ2 ∈
(
θ , θ

)
;

2. ψ(θ1) ≤ F ( θ );

3. Assumption A4 holds.

Then G(θ2)− φ(θ1, π) > 0. In other words, Contribution 2 is strictly positive.

Proof. We break the proof down into the cases θ2 ∈
(
θ , θF

)
and θ2 ∈

[
θF , θ

)
. In

the first case, the proof parallels that of Lemma 22. We have [θ1, θ2] ⊂
(

1
1+π

θ, θF
)
⊂

(0, θM) and θ2 > θ. Assumption A4 therefore implies that G(θ2) > φ(θ1, π). In the

second case, it follows from the proof of Lemma 23 that G(θ2)− φ(θ1, π) > 0.

The third contribution cannot be signed under our primary assumptions. It is,

however, worth drawing attention to three special cases in which it can be signed.

In all three cases, the comparative statics end up going the same way: ∂ψ
∂π

> 0, and

therefore the allocation to the illiquid account will be increasing in π. We state these

three cases as separate propositions, corresponding to the cases ρ < 1, ρ = 1 and

ρ > 1.

Proposition 35. Suppose that:

1. ρ < 1;

2. G′ ≤ 0 on (θ ,∞) (i.e. θM = θ);

3. θ2 ∈
(
θ , θ

)
.

Then −
∫
(θ2,θ ]

∂S

∂π
(h, π) dG(h) ≥ 0. In other words, Contribution 3 is non-negative.
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Proof. It is easy to show that we have

∂S

∂π
(h, π)


> 0 if ρ < 1

= 0 if ρ = 1

< 0 if ρ > 1


for all h ∈

[
θ2, θ

)
. Furthermore, we have

∂S

∂π
( θ , π) = 0 for all ρ,

because S( θ, π) = 1. We can therefore proceed as follows.

First, we know that θ2 ∈
(
θ , θ

)
. Hence G′ ≤ 0 on

(
θ2, θ

]
⊂ (θ ,∞). Second,

ρ < 1. Hence
∂S

∂π
(·, π) ≥ 0 on

(
θ2, θ

]
⊂
[
θ2, θ

]
. Putting these two observations

together gives us the required conclusion.

Remark 36. If G′ ≤ 0 on (θ ,∞) then necessarily ∆G(θ) > 0. Hence it is essential

for the proof of Proposition 35 that we restrict attention to θ2 > θ .

Proposition 37. Suppose that:

1. ρ = 1;

2. θ2 ∈
(
0, θ
)
.

Then −
∫
(θ2,θ ]

∂S

∂π
(h, π) dG(h) = 0. In other words, Contribution 3 is zero.

Proof. This follows at once from the fact that ∂S
∂π

(·, π) = 0 on
[
θ2, θ

]
.

Proposition 38. Suppose that:

1. ρ > 1;

2. G′ ≥ 0 on
(
0, θ
)
(i.e. θM = θ);

3. θ2 ∈
(
0, θ
)
.
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Then −
∫
(θ2,θ ]

∂S

∂π
(h, π) dG(h) ≥ 0. In other words, Contribution 3 is non-negative.

Proof. Note first thatG′ ≥ 0 on
(
θ2, θ

)
⊂
(
0, θ
)
. Second, ρ > 1. Hence

∂S

∂π
(·, π) <

0 on
(
θ2, θ

)
⊂
[
θ2, θ

]
. (Cf. the proof of Proposition 35.) Third, ∂S

∂π
( θ , π) = 0.

Putting these three observations together, we obtain∫
(θ2,θ ]

∂S

∂π
(h, π) dG(h) =

∫
(θ2,θ )

∂S

∂π
(h, π) dG(h) +

∫
[θ,θ ]

∂S

∂π
(h, π) dG(h)

=

∫
(θ2,θ )

∂S

∂π
(h, π) dG(h) ≤ 0,

as required.

Remark 39. If G′ ≥ 0 on
(
0, θ
)
then necessarily ∆G(θ) < 0. The fact that

∂S
∂π

( θ , π) = 0 therefore plays an essential role in the proof of Proposition 38.

12.2. The formula for ∂ψ
∂θ1
. Let T (h; π) and S(h; π) = exp(−T (h; π)) be de-

fined as in the preceding section. Then the formula for ∂ψ
∂θ1

is given by the following

proposition.

Proposition 40. Suppose that θ2 < θ. Then

∂ψ

∂θ1
(θ1, π) =

 β b
(
θ1
β

)
θ1

(
θ2 + β b

(
θ1
β

)) (G(θ2)− φ(θ1, π))

+
1

π θ1
(G(θ2)−G(θ1))

S(θ2, θ ).

Proof. This is simply a restatement of Lemma 20.

In view of Proposition 40, there are two main contributions to ∂ψ
∂θ1
, namely

1. G(θ2)− φ(θ1, π);

2. G(θ2)−G(θ1).
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We have already given conditions under which the first is strictly positive (in Propo-

sition 34). The second is strictly positive under the same conditions:

Proposition 41. Suppose that:

1. θ2 ∈
(
θ , θ

)
;

2. ψ(θ1) ≤ F ( θ );

3. Assumption A4 holds.

Then G(θ2)−G(θ1) > 0.

Proof. We break the proof down into the cases θ1 ∈
(

1
1+π

θ , 1
1+π

θF
)
and θ1 ∈[

1
1+π

θF ,
1
1+π

θ
)
. In the first case, the proof parallels that of Lemma 22. We have

[θ1, θ2] ⊂
(

1
1+π

θF , θF
)
⊂ (0, θM), and moreover θ2 > θ. Assumption A4 therefore

implies that G(θ2) > G(θ1). In the second case, Lemma 24 implies directly that that

G(θ2) > G(θ1).

13. The Strictly Slack Case

In this section we focus on the set W of (θ1, π) such that

1. θ1 ∈
(
0, θ
)
,

2. π ∈ (0,∞) and

3. θ2 = (1 + π) θ1 > θ.

In other words, we do not impose the requirement that θ1 = τ 1(π) (i.e. that θ1 be

optimal for the given π), but we do require that the maximum-penalty constraint is

slack in the sense that no types are choosing to pay the penalty.
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13.1. The formula for ∂ψ
∂π
. The formula for ∂ψ

∂π
is given by the following propo-

sition.

Proposition 42. Suppose that θ2 > θ. Then

∂ψ

∂π
(θ1, π) = 0.

Proof. As in the proof of Lemma 21, we have ψ(θ1, π) = χ(θ1) for θ1 ∈
(

1
1+π

θ , θ
)
,where

χ(θ1) =
1

θ − θ1

∫ θ

θ1

G(θ) dθ.

Hence ψ is independent of π for such θ1.

13.2. The formula for ∂ψ
∂θ1
. The formula for ∂ψ

∂θ1
is given by the following propo-

sition.

Proposition 43. Suppose that θ2 > θ. Then

∂ψ

∂θ1
(θ1, π) =

χ(θ1)−G(θ1)

θ − θ1
.

Proof. As already noted, we have ψ(θ1, π) = χ(θ1) for θ1 ∈
(

1
1+π

θ , θ
)
. Moreover

χ′(θ1) =
χ(θ1)−G(θ1)

θ − θ1
,

as in the proof of Lemma 21.

In view of Proposition 43, there is really only one contribution to ∂ψ
∂θ1
, namely

χ(θ1) − G(θ1). It is not possible to sign χ(θ1) − G(θ1) for all θ1, but it is possible

to sign it when θ1 = τ 1(π), and indeed much more generally when θ1 ∈
(
0, θF

)
. As

before, this is enough for the purpose of our comparative statics.

Proposition 44. Suppose that θ1 ∈
(
0, θF

)
. Then χ(θ1)−G(θ1) > 0.

Proof. This is simply a special case of Lemma 27.
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14. The Intermediate Case

Up to now we have focussed on the comparative statics of τ 1. For example, we have

shown that if A4 is satisfied and ρ = 1 then: (i) τ ′1 < 0 when τ 2(π) < θ; and (ii)

τ ′1 = 0 when τ 2(π) > θ. However, this leaves open the question of what happens at

the transition between the two cases. For example, does τ 1 jump up when τ 2(π) = θ ?

Does it jump down? Or is there more than one value of π for which τ 2(π) = θ ?

In order to address these questions, we need to understand the comparative statics

of τ 2. These comparative statics are quite complex in the binding case. However,

they simplify as the borderline between the two cases is approached. Moreover they

are simpler still in the slack case.

14.1. Comparative Statics of τ 2 in the Weakly Binding Case. We begin

this section by looking at the comparative statics of τ 2 when the maximum-penalty

constraint is strictly binding (in the sense that τ 2(π) < θ). More precisely, we show

that τ ′2(π) satisfies a simple linear equation. We then go on to check whether this

equation remains valid when the maximum-penalty constraint is only weakly binding

(in the sense that τ 2(π) ↑ θ ).

Proposition 45. Suppose that τ 2(π) < θ. Then

D(τ 1(π), π) τ ′2(π) = N(τ 1(π), π), (31)

where

D(θ1, π) = (1 + π)
θ1 + β b

(
θ1
β

)
θ2 + β b

(
θ1
β

) (G(θ2)− φ(θ1, π)) + (φ(θ1, π)−G(θ1)) ,

N(θ1, π) =

(
(φ(θ1, π)−G(θ1)) +

π (1 + π)

S (θ2, π)

∫
[θ2,θ ]

∂S
∂π

(h; π) dG̃(h)

)
θ1

and G̃ ∈ BV(
[
θ2, θ

]
,R) is given by the formulae G̃L(θ2) = φ(θ1, π) and G̃ = G on(

θ2, θ
]
.

Proof. We have

τ 2(π) = (1 + π) τ 1(π)
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and therefore

τ ′2(π) = τ 1(π) + (1 + π) τ ′1(π). (32)

Now,
∂ψ

∂θ1
(τ 1(π), π) τ ′1(π) +

∂ψ

∂π
(τ 1(π), π) = 0.

Hence, multiplying (32) through by ∂ψ
∂θ1

(τ 1(π), π), we obtain

∂ψ

∂θ1
τ ′2 =

∂ψ

∂θ1
τ 1 + (1 + π)

∂ψ

∂θ1
τ ′1

=
∂ψ

∂θ1
τ 1 − (1 + π)

∂ψ

∂π
,

where we have suppressed the dependence of ∂ψ
∂θ1

and ∂ψ
∂π
on τ 1(π) and π, and the

dependence of τ 1 and τ 2 on π. We may therefore put

D(θ1, π) =
π θ1

S(θ2, θ )

∂ψ

∂θ1
(θ1, π)

and

N(θ1, π) =
π θ1

S(θ2, θ )

(
∂ψ

∂θ1
(θ1, π) θ1 − (1 + π)

∂ψ

∂π
(θ1, π)

)
.

Equation (31) now follows on applying the formulae for ∂ψ
∂π

(θ1, π) and ∂ψ
∂θ1

(θ1, π) given

in Propositions 32 and 40.

Equation (31) can be solved for τ ′2(π) under the conditions of Proposition 34,

namely that: (i) τ 2(π) ∈
(
θ , θ

)
; (ii) ψ(τ 1(π)) ≤ F ( θ ); and (iii) Assumption A4

holds. This is not, however, enough for our current purposes: we need to make sure

that it can still be solved for τ ′2(π) in the limiting case τ 2(π) ↑ θ. To this end, recall
that

V =
{

(θ1, π) | θ1 ∈
(
0, θ
)
, π ∈ (0,∞) , θ2 < θ

}
,

and put

∂V =
{

(θ1, π) | θ1 ∈
(
0, θ
)
, π ∈ (0,∞) , θ2 = θ

}
.
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Furthermore, for all (θ1, π) ∈ V ∪ ∂V , put

D(θ1, π) = (1 + π)
θ1 + β b

(
θ1
β

)
θ2 + β b

(
θ1
β

) (GL(θ2)− φ(θ1, π))

+ (φ(θ1, π)−max {G(θ1), GL(θ1)})

and

D(θ1, π) = (1 + π)
θ1 + β b

(
θ1
β

)
θ2 + β b

(
θ1
β

) (GL(θ2)− φ(θ1, π))

+ (φ(θ1, π)−min {G(θ1), GL(θ1)}) .

Then we have:

Lemma 46. Suppose that (θ̃1, π̃) ∈ V → (θ1, π) ∈ ∂V . Then

D(θ1, π) ≤ lim inf D( θ̃1, π̃ ) ≤ lim supD( θ̃1, π̃ ) ≤ D(θ1, π).

Proof. Note first that b and φ are both continuous. Hence b
(
θ̃1
β

)
→ b

(
θ1
β

)
and

φ( θ̃1, π̃)→ φ(θ1, π). Next, put θ̃2 = (1 + π) θ̃1 and θ2 = (1 + π) θ1. Then θ̃2 ↑ θ2, and
therefore G( θ̃2)→ GL( θ2 ). Finally,

min {G(θ1), GL(θ1)} ≤ lim inf G( θ̃1)

≤ lim supG( θ̃1)

≤ max {G(θ1), GL(θ1)} .

The result follows.

The next step is to signD. This cannot be done everywhere on V ∪∂V . But it can
be done when θ2 = θ and θ1 = τ 1(π). Indeed, it is enough to require that θ2 ∈

(
θF , θ

]
(i.e. we do not actually have to be on the boundary) and that ψ(θ1, π) ≤ F ( θ ) (i.e.
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we do not actually have to be at an optimum). We begin with a lemma.

Lemma 47. Suppose that:

1. θ2 ∈
(
θF , θ

]
;

2. ψ(θ1) ≤ F ( θ ).

Then GL(θ2) > G(θ1) ≥ GL(θ1).

Proof. The proof is similar to that of Lemma 24. Note first that

GL(θ2) ≥ F ( θ )

(with strict inequality if θ2 < θ )

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1)

(by assumption, by definition of ψ, because θ1 < θ2 ≤ θ and by construction of Ψ

respectively). Second, Lemma 10 tells us that ψ > F ( θ ) on
[
θF , θ

)
. But we have

ψ(θ1) ≤ F ( θ ). Hence θ1 < θF and therefore G′ ≥ 0 at θ1 ∈
(
0, θF

)
⊂ (0, θM). That

is, G(θ1)−GL(θ1) = ∆G(θ1) ≥ 0.

We can now sign D.

Proposition 48. Suppose that:

1. θ2 ∈
(
θF , θ

]
;

2. ψ(θ1) ≤ F ( θ ).

Then D(θ1, π) > 0.

Proof. Two things follow from Lemma 47. First, G(θ1) ≥ GL(θ1). Hence the

formula for D(θ1, π) simplifies to

D(θ1, π) = (1 + π)
θ1 + β b

(
θ1
β

)
θ + β b

(
θ1
β

) (GL(θ2)− φ(θ1, π)) + (φ(θ1, π)−G(θ1)) .
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In particular, D(θ1, π) is a strictly positive linear combination of the two terms

GL(θ2) − φ(θ1, π) and φ(θ1, π) − G(θ1). Second, GL(θ2) − G(θ1) > 0. Hence the

sum of the two terms GL(θ2) − φ(θ1, π) and φ(θ1, π) − G(θ1) is strictly positive. It

therefore suffi ces to show that each of these two terms is non-negative. We have

GL(θ2) ≥ F ( θ ) ≥ ψ(θ1) = Ψ( θ ; θ1)

(as in the proof of Lemma 47)

≥ Ψ(θ2; θ1) > Ψ(θ1; θ1)

(since Ψ′ ≥ 0 on
(
θ1, θF

)
(by Proposition 18) and Ψ′ > 0 on

[
θF , θ

)
(by Proposition

19))

= G(θ1)

(again as in the proof of Lemma 47). In particular, since Ψ(θ2; θ1) = φ(θ1, π), we

have GL(θ2) ≥ φ(θ1, π) and φ(θ1, π) > G(θ1).

Since D > 0, finding the sign of N and finding the sign of τ ′2(π) amount to the

same thing. Note first that

τ 2(π) = (1 + π) τ 1(π)

and hence

τ ′2(π) = (1 + π) τ ′1(π) + τ 1(π).

We therefore face a tension. On the one hand, we are mainly interested in the

case in which τ ′1(π) < 0. For our purposes, then, the first contribution to τ ′2(π)

(namely (1 + π) τ ′1(π)) is negative. However, the second contribution (namely τ 1(π))

is necessarily positive. The net effect is therefore ambiguous. Worse still, what we

really need to show for the purposes of comparative statics is that τ ′2(π) > 0 (so that

the curve (τ 1(π), π) crosses the boundary θ2 = θ in a simple way). This is directly at

odds with our interest in the case in which τ ′1(π) < 0.
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Fortunately, the problem of signing τ ′2(π) at the boundary is much simpler than

the problem of signing τ ′2(π) in V . With this end in mind, for all (θ1, π) ∈ ∂V , put

N(θ1, π) = (φ(θ1, π)−max {G(θ1), GL(θ1)}) θ1

and

N(θ1, π) = (φ(θ1, π)−min {G(θ1), GL(θ1)}) θ1.

Then we have the following lemma.

Lemma 49. Suppose that ( θ̃1, π̃ ) ∈ V → (θ1, π) ∈ ∂V . Then

N(θ1, π) ≤ lim inf N( θ̃1, π̃ ) ≤ lim supN( θ̃1, π̃ ) ≤ N(θ1, π).

Proof. The proof is similar to that of Lemma 46. Put θ̃2 = (1+π) θ̃1 and θ2 = (1+

π) θ1. Then θ̃2 ↑ θ2 = θ, and therefore ∂S
∂π

( θ̃2, π)→ 0 and
∫
(θ2,θ ]

∂S
∂π

(h; π) dG(h)→ 0.

Furthermore φ( θ̃1, π̃)→ φ(θ1, π) and

min {G(θ1), GL(θ1)} ≤ lim inf G( θ̃1)

≤ lim supG( θ̃1)

≤ max {G(θ1), GL(θ1)} .

Passing to the limit in the formula given for N in the statement of Proposition 45,

we therefore obtain the required result.

Combining Lemma 49 with the earlier Lemma 47, we obtain:

Proposition 50. Suppose that:

1. θ2 = θ;

2. ψ(θ1) ≤ F ( θ ).

Then N(θ1, π) > 0.
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Proof. The proof is similar to that of Proposition 48. First, because ψ(θ1) ≤ F ( θ )

and therefore θ1 < θF , the formula for N(θ1, π) simplifies to

N(θ1, π) = (φ(θ1, π)−G(θ1)) θ1.

Second, we have

Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1).

It remains only to note that, because θ2 = θ, we have φ(θ1, π) = Ψ( θ ; θ1).

Combining Propositions 48 and 50, we see that τ ′2(π) > 0 on ∂V . In other words,

whatever the behaviour of the curve (τ 1(π), π) in V , it points out of V at ∂V . I.e.

it can exit, but not enter, V at ∂V . In particular, there exists π1 ∈ (0,∞) such that

τ 2(π) < θ iff π ∈ [0, π1).

14.2. Comparative Statics of τ 2 in the Weakly Slack Case. We begin this

section by looking at the comparative statics of τ 2 when the maximum-penalty con-

straint is strictly slack (in the sense that τ 2(π) > θ). More precisely, we show that

τ ′2(π) satisfies a simple linear equation. We then go on to check whether this equa-

tion remains valid when the maximum-penalty constraint is only weakly slack (in the

sense that τ 2(π) ↓ θ ). Our first proposition is analogous to Proposition 45.

Proposition 51. Suppose that τ 2(π) > θ. Then

D(τ 1(π), π) τ ′2(π) = N(τ 1(π), π), (33)

where

D(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1
and

N(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1
θ1.

Notice that, if χ(θ1) − G(θ1) > 0, then we can divide through by D(τ 1(π), π) to

conclude that τ ′2(π) = θ1. Furthermore χ(θ1) − G(θ1) > 0 if θ1 = τ 1(π), and indeed

much more generally if θ1 ∈
(
0, θF

)
. Cf. Proposition 44. But it does not hold for all

(θ1, π) ∈ W .
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Proof. As in the proof of Proposition 45, we have

∂ψ

∂θ1
τ ′2 =

∂ψ

∂θ1
τ 1 − (1 + π)

∂ψ

∂π
.

We may therefore put

D(θ1, π) =
∂ψ

∂θ1
(θ1, π)

and

N(θ1, π) =
∂ψ

∂θ1
(θ1, π) θ1 − (1 + π)

∂ψ

∂π
(θ1, π).

Equation (33) now follows on applying the formulae for ∂ψ
∂π

(θ1, π) and ∂ψ
∂θ1

(θ1, π) given

in Propositions 42 and 43.

The next step is to ensure that equation (33) can still be solved for τ ′2(π) in the

limiting case τ 2(π) ↓ θ. To this end, recall that

W =
{

(θ1, π) | θ1 ∈
(
0, θ
)
, π ∈ (0,∞) , θ2 > θ

}
,

and put

∂W =
{

(θ1, π) | θ1 ∈
(
0, θ
)
, π ∈ (0,∞) , θ2 = θ

}
.

Furthermore, for all (θ1, π) ∈ W ∪ ∂W , put

D(θ1, π) =
χ(θ1)−max {G(θ1), GL(θ1)}

θ − θ1
,

D(θ1, π) =
χ(θ1)−min {G(θ1), GL(θ1)}

θ − θ1

and

N(θ1, π) =
χ(θ1)−max {G(θ1), GL(θ1)}

θ − θ1
θ1,

N(θ1, π) =
χ(θ1)−min {G(θ1), GL(θ1)}

θ − θ1
θ1.

Then we have:
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Lemma 52. Suppose that (θ̃1, π̃) ∈ W → (θ1, π) ∈ ∂W . Then

D(θ1, π) ≤ lim inf D( θ̃1, π̃ ) ≤ lim supD( θ̃1, π̃ ) ≤ D(θ1, π)

and

N(θ1, π) ≤ lim inf N( θ̃1, π̃ ) ≤ lim supN( θ̃1, π̃ ) ≤ N(θ1, π).

Proof. Note first that χ is continuous. Hence χ( θ̃1)→ χ(θ1). On the other hand,

as in the proof of Lemma 46,

min {G(θ1), GL(θ1)} ≤ lim inf G( θ̃1)

≤ lim supG( θ̃1)

≤ max {G(θ1), GL(θ1)} .

The result follows.

The next step is to signD. This cannot be done everywhere onW∪∂W . But it can
be done when θ2 = θ and θ1 = τ 1(π). Indeed, it is enough to require that θ2 ∈

[
θ,∞

)
(i.e. we do not actually have to be on the boundary) and that ψ(θ1, π) ≤ F ( θ ) (i.e.

we do not actually have to be at an optimum). We begin with a lemma.

Lemma 53. Suppose that:

1. θ2 ∈
[
θ,∞

)
;

2. ψ(θ1) ≤ F ( θ ).

Then G(θ1) ≥ GL(θ1).

Proof. The proof is identical to the relevant part of that of Lemma 47. Since

ψ(θ1) ≤ F ( θ ), we must have θ1 < θF . Hence G′ ≥ 0 at θ1 ∈
(
0, θF

)
⊂ (0, θM).

Proposition 54. Suppose that:

1. θ2 ∈
[
θ,∞

)
;
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2. ψ(θ1) ≤ F ( θ ).

Then D(θ1, π), N(θ1, π) > 0.

Proof. Note first that, in view of Lemma 53, we have

D(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1

and

N(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1
θ1.

Second, since ψ(θ1) ≤ F ( θ ), we have θ1 < θF . Finally, Proposition 44 tells us that

χ(θ1)−G(θ1) > 0 for θ1 ∈
(
0, θF

)
.

It follows from Proposition 54 that τ ′2(π) > 0 on ∂W . In other words, whatever

the behaviour of the curve (τ 1(π), π) in W , it points into W at ∂W . I.e. it can enter,

but not exit, W at ∂W . In particular, there exists π2 ∈ (0,∞) such that τ 2(π) > θ

iff π ∈ (π2,∞).

14.3. Comparative Statics of τ 2 in the Remaining Case. At this point we

have established that there exist 0 < π1 ≤ π2 <∞ such that τ 2(π) < θ iff π ∈ [0, π1)

and τ 2(π) > θ iff π ∈ (π2,∞).14 The remaining question is therefore whether it is

possible that π1 < π2, in other words that there is a non-trivial interval (π1, π2) over

which τ 2(π) = θ.

Suppose for a contradiction that there is such an interval. Then, over this interval,

we must have both

ψ(τ 1(π), π) = F ( θ ) (34)

(because τ 1(π) is the optimal θ1) and

τ 2(π) = θ. (35)

Hence

F ( θ ) = ψ(τ 1(π), π) = Ψ( θ ; τ 1(π), π) = Ψ(τ 2(π); τ 1(π), π)

14That π1 ≤ π2 follows at once from the fact that we cannot have τ2(π) < θ and τ2(π) > θ
simultaneously.
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(by equation (34), by definition of ψ and by equation (35))

= φ(τ 1(π);π) =
1

τ 2(π)− τ 1(π)

∫ τ2(π)

τ1(π)

G(θ) dθ =
1

θ − τ 1(π)

∫ θ

τ1(π)

G(θ) dθ

(by construction ofΨ, by definition of φ, by equation (35) again). Multiplying through

by θ − τ 1(π), we therefore obtain

∫ θ

τ1(π)

G(θ) dθ = (θ − τ 1(π))F (θ).

Differentiating with respect to π, we then obtain

−G(τ 1(π)) τ ′1(π) = −τ ′1(π)F (θ)

or

(G(τ 1(π))− F (θ)) τ ′1(π) = 0.

But equation (35) implies that (1 + π) τ 1(π) = θ and therefore

τ ′1(π) = − θ1
1 + π

6= 0.

We conclude that G(τ 1(π))− F (θ) = 0. This, however, is impossible. For we have

G(τ 1(π)) = Ψ(τ 1(π); τ 1(π), π) ≤ Ψ( θF ; τ 1(π), π) < Ψ( θ ; τ 1(π), π)

(by construction of Ψ, by Proposition 18 and by Proposition 19)

= ψ(τ 1(π), π) = F (θ)

(as above). The only possible conclusion is therefore that π1 = π2.

15. Comparative Statics without A4

We divide our discussion into the same three cases that we considered in Section 12.1,

namely:
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1. ρ < 1 and G′ ≤ 0 on ( θ ,∞ );

2. ρ = 1;

3. ρ > 1 and G′ ≥ 0 on
(

0, θ
)
.

Of these, the first is by far the simplest.

Proposition 55. Suppose that ρ < 1 and G′ ≤ 0 on ( θ ,∞ ). Then τ = τ for all

π ∈ ( 0,∞ ). Furthermore there exists π1 ∈ ( 0,∞ ) such that: the maximum-penalty

constraint is strictly binding for all π ∈ ( 0, π1); and the maximum-penalty constraint

is strictly slack for all π ∈ ( π1,∞ ). Finally:

1. τ = τ is strictly decreasing on ( 0, π1); and

2. τ = τ is constant on ( π1,∞ ).

In other words, for all values of the maximum penalty π ∈ [0,∞), there is a

unique optimum within our one-parameter family. Furthermore there exists a critical

level π1 of π. Below π1, the maximum-penalty constraint is strictly binding and the

optimal savings target is strictly increasing in π. Above π1, the maximum-penalty

constraint is strictly slack and the optimal savings target is independent of π.

Proof. Since G′ ≥ 0 on ( 0, θ ) and G′ ≤ 0 on ( θ ,∞ ), we can put θM = θ. For

this choice of θM , A4 holds. Indeed: the interval [ θ, θM) is empty, and therefore G

is certainly strictly increasing on [ θ, θM)! We may therefore apply the analysis of

Sections 11-14 to conclude that there is a unique θ1 = τ 1(π) such that ψ(θ1, π) =

F ( θ ), and that τ ′1(π) < 0.

Remark 56. There is also a direct proof of Theorem 55. A sketch of this proof runs
as follows. Since G′ ≤ 0 on ( θ ,∞ ), we must have θF = θ. Furthermore we always

have θ1 < θF and θ2 > θ; and in the strictly binding case we also have θ2 < θ. Hence,

in the strictly binding case, we have

G(θ2) > F ( θ ) = ψ(θ1, π) = Ψ( θ ; θ1, π) > Ψ(θ2 ; θ1, π) = φ(θ1, π) > G(θ1).
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In particular,

G(θ2)− φ(θ1, π) > 0.

It then follows from the formulae for ∂ψ
∂π
and ∂ψ

∂θ1
given in Propositions 32 and 40 —

both of which feature the term G(θ2)− φ(θ1, π) —that

∂ψ

∂π
,
∂ψ

∂θ1
> 0.

That is, there is a unique θ1 = τ 1(π) such that ψ(θ1, π) = F ( θ ), and τ ′1(π) < 0. (The

important point here is the fact that our assumption on G allows us to sign the core

term G(θ2)− φ(θ1, π), and thereby the derivatives ∂ψ
∂π
and ∂ψ

∂θ1
, directly.)

Proposition 57. Suppose that ρ = 1. Then there exists π0 ∈ [0,∞) such that:

τ < τ for all π ∈ ( 0, π0); and τ = τ for all π ∈ (π0,∞). Furthermore there exists

π1 ∈ (π0,∞) such that: the maximum-penalty constraint is strictly binding for all

π ∈ ( 0, π1); and the maximum-penalty constraint is strictly slack for all π ∈ (π1,∞ ).

Finally:

1. τ is constant on (0, π0) and τ is strictly decreasing on (0, π0);

2. τ = τ is strictly decreasing on (π0, π1); and

3. τ = τ is constant on (π1,∞).

In other words, there are two critical levels of π, namely π0 and π1. Below π0, there

is a continuum of optima from within our one-parameter family; and, above π0, there

is a unique optimum from within our one-parameter family. Below π1, the maximum-

penalty constraint is strictly binding; and, above π1, the maximum-penalty constraint

is strictly slack. Furthermore, below π0: the smallest of the possible optimal savings

targets is strictly increasing in π; and the largest of the possible optimal savings

targets is independent of π. Between π0 and π1: there is only one optimal savings

target, and this is strictly increasing in π. And, above π1: there is again only one

optimal savings target, and this is independent of π.

Proof. This Proposition can be proved in three main steps. Fix π > 0 and

suppose that, for this π, there exist θ3, θ4 ∈
(

1
1+π

θ , θF
)
such that θ3 < θ4 and{

θ1 | ψ(θ1, π) = F ( θ )
}

= [θ3, θ4]. Then the first step is to show that:
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1. G < G(θ3) on ( 0, θ3);

2. G = G(θ3) on [ θ3, (1 + π) θ4);

3. G > G(θ3) on
(

(1 + π) θ4, θ
)
.

Furthermore G(θ3) < F ( θ ). In other words, if there is a multiplicity of optimal

savings targets, then G must have a flat. Moreover the domain of this flat consists

precisely of the half-open interval [ θ3, (1 + π) θ4), where θ3 is the smallest possible

choice of θ1 and θ4 is the highest possible choice of θ1.

Now put θ5 = (1 + π) θ4 and π0 = θ5−θ3
θ3
. Then the second step is to show that,

for all π̂ ∈ (0, π0), {
θ1 | ψ(θ1, π̂) = F ( θ )

}
=
[
θ3,

1
1+π̂

θ5
]
.

In other words, if there is some π > 0 for which there is a multiplicity of optimal

savings targets, then there is a whole range of π for which there is a multiplicity

of optimal savings targets. Furthermore both the multiplicity of optimal savings

targets and range of π for which there is a multiplicity of optimal savings targets are

associated with the same flat of G.

Finally, fix π̂, π > 0 and suppose that:

1. π̂ < π;

2. there exist θ̂3, θ̂4 ∈
(

1
1+π

θ , θF
)
such that θ̂3 < θ̂4 and

{
θ1 | ψ(θ1, π̂) = F ( θ )

}
=

[ θ̂3, θ̂4 ];

3. there exist θ3, θ4 ∈
(

1
1+π

θ , θF
)
such that θ3 < θ4 and

{
θ1 | ψ(θ1, π) = F ( θ )

}
=

[ θ3, θ4 ].

Then the thirds step is to show that θ̂3 = θ3, θ̂4 = 1+π
1+π̂

θ4 and π < π̂0 = (1+π̂)θ̂4−θ̂3
θ̂3

. In

other words, if there is a multiplicity of optimal savings targets associated with both

π̂ and π, then both multiplicities derive from the same flat of G.

Proposition 58. Suppose that ρ > 1 and G′ ≥ 0 on
(
0, θ
)
. Then there there exists

π1 ∈ (0,∞) such that: the maximum-penalty constraint is strictly binding for all

π ∈ ( 0, π1); and the maximum-penalty constraint is strictly slack for all π ∈ (π1,∞ ).

Furthermore:
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1. τ and τ are both strictly decreasing on (0, π1);

2. τ = τ is constant on (π1,∞).

In other words, there exists a critical level π1 of π. Below π1: the maximum-

penalty constraint is strictly binding; and the set of optimal savings targets is strictly

increasing in π. Above π1: the maximum-penalty constraint is strictly slack; and the

optimal savings target is independent of π.

Proof. Let L be the locus of all those (θ1, π) ∈ V such that ψ(θ1, π) = F ( θ ), let

Lθ be the projection of L onto the first coordinate, and let Lπ be the projection of

L onto the second coordinate. Then, in order to prove the result, it suffi ces to show

that there is a non-increasing function $ : Lθ → Lπ, the graph of which is L. For

then the inverse τ : Lπ → Lθ of $ is a strictly increasing correspondence.

Note first that, for all (θ1, π) ∈ V , we have

∂ψ

∂θ1
(θ1, π) =

1 + π

π θ1

θ1 + β b
(
θ1
β

)
θ2 + β b

(
θ1
β

) (G(θ2)− φ(θ1, π))

+
1

π θ1
(φ(θ1, π)−G(θ1))

S(θ2, θ )

and

∂ψ

∂π
(θ1, π) =

(
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)

)
(G(θ2)− φ(θ1, π))

−
∫

[θ2,θ ]

∂S

∂π
(h, π) dG̃(h),

where, as above, G̃ ∈ BV(
[
θ2, θ

]
,R) is given by the formulae G̃L(θ2) = φ(θ1, π) and

G̃ = G on
(
θ2, θ

]
.15

Next, since G′ ≥ 0 on
(
0, θ
)
, we must have φ(θ1, π)−G(θ1) ≥ 0, G(θ2)−φ(θ1, π) ≥

0 and G̃′ ≥ 0 on
[
θ2, θ

)
. Hence ∂ψ

∂θ1
≥ 0.

Third, if in addition if ψ(θ1, π) = F ( θ ), then we must have ∂ψ
∂π

> 0. Indeed,

it is always the case that θF < θ and G > F ( θ ) on
(
θF , θ

)
. (See Lemma 9.)

15For the definition of V , see the beginning of Section 12.
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Moreover, if ψ(θ1, π) = F ( θ ), then we also have G(θ1) < F ( θ ). Overall, then, if

ψ(θ1, π) = F ( θ ) then G is non-trivial on
(
θ1, θ

)
. Now suppose for a contradiction

that ∂ψ
∂π

= 0. Then we must have G(θ2) − φ(θ1, π) = 0 (which is the same thing as

saying that G̃′ = 0 on {θ2}) and G̃′ = 0 on
(
θ2, θ

)
. Moreover the former implies that

G(θ2) = GL(θ2) = φ(θ1, π) = G(θ1), and the latter implies that GL( θ ) = G(θ2). So

G is trivial on
(
θ1, θ

)
, which is the required contradiction.

Finally, since ∂ψ
∂π
> 0, there is a unique π = $(θ1) such that ψ(θ1, π) = F ( θ ) and

moreover

$′(θ1) = −
∂ψ
∂θ1
∂ψ
∂π

≥ 0.

This completes the proof.

Remark 59. It is interesting to compare the levels of uniqueness obtained in Propo-
sitions 55, 57 and 58. When ρ < 1, we have uniqueness for all π ∈ (0,∞). When

ρ = 1, a limited form of non-uniqueness can develop: there exists π0 ∈ [0, π1) such

that there is non-uniqueness on (0, π0) and uniqueness on (π0,∞). And, when ρ > 1,

non-uniqueness takes the form that one might expect in a convex optimization prob-

lem. However, we do at least get strict monotonicity on the whole of (0, π1).

16. Existence of a Full Optimum

Suppose that self 0 is required to pick a B satisfying Constraints 1 and 2. Then the

utility curve (u,w) that results will satisfy the following three conditions:

I (u,w) is interior, in the sense that u,w > U(0) on Θ.

M (u,w) is monotonic, in the sense that u is non-decreasing and w is non-increasing.

DE (u,w) satisfies the differential equation θ du+ β dw = 0.

If B is also convex, then (u,w) will also satisfy:

C (u,w) is continuous.

Now, the set Ω with which we have worked so far consists of utility curves (u,w)

that satisfy I, BV, DE and C, where BV is the condition:

55



Online Appendix C to “Which Early Withdrawal Penalty Attracts the
Most Deposits to a Commitment Savings Account?”

BV (u,w) is of bounded variation.

Since BV is weaker than M, this means that Ω contains all the utility curves that can

result from convex B, and more besides. We have therefore solved a relaxed version

of the convex-B problem. Since the solution of this relaxed problem is feasible in the

convex-B problem, we have therefore also solved the convex-B problem. The purpose

of the present section is to solve the general problem in which B is not required to

be convex.

Suppose accordingly that Ω consists of all (u,w) ∈ BV(Θ, ran(U))2 such that

θ du + β dw = 0. In other words, let Ω consist of utility curves (u,w) that satisfy I,

BV, DE but not C. Put X = BV(Θ,R)2, Ξ = BV(Θ, ran(U))2 and Z = BV(Θ,R).

Then the objective function M and the constraint mappings G1 and G2 continue to

make sense. The analysis of Luenberger (1969) therefore shows that x0 ∈ Ω solves

the problem
maximize M(x)

subject to


x ∈ Ω

G1(x) ≥ 0

G2(x) ≥ 0


iff there exist λ1, λ2 ∈ Z∗ such that:

1. L(x0, λ1, λ2) ≥ L(x, λ1, λ2) for all x ∈ Ω, where

L(x, λ1, λ2) = M(x) + 〈G1(x), λ1〉+ 〈G2(x), λ2〉 ;

2. G1(x) ≥ 0, λ1 ≥ 0 and 〈G1(x), λ1〉 = 0;

3. G2(x) ≥ 0, λ2 ≥ 0 and 〈G2(x), λ2〉 = 0.

In other words, there exists multipliers λ1 and λ2 such that: (1) x0 maximizes

L( · , λ1, λ2) over Ω; (2) complementary slackness holds for the first constraint; and

(3) complementary slackness holds for the second constraint.

At this point, however, we encounter an obstacle. While the dual space C(Θ,R)∗

of C(Θ,R) has a convenient representation as the space M(Θ,R), the dual space
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BV(Θ,R)∗ of BV(Θ,R) does not have a similarly convenient representation. This

makes it diffi cult to use the necessity part of the Lagrangean characterization of the

optimum. We can, however, still hope to use the suffi ciency part.

The idea here is to note that the elements of M(Θ,R) can be used to induce

continuous linear functionals on BV(Θ,R). For example, µ ∈M(Θ,R) induces µR ∈
BV(Θ,R)∗ via the formula

〈z, µR〉 =

∫
zR dµ,

where zR denotes the right-continuous version of z. However, in pursuing this idea,

it is important to note that µ also induces µL ∈ BV(Θ,R)∗ via the formula

〈z, µL〉 =

∫
zL dµ,

where zL denotes the left-continuous version of z. In other words, there is no canon-

ical association between elements of M(Θ,R) and continuous linear functionals on

BV(Θ,R).

Our plan is therefore to start from a θ1 such that Ψ
(
θ ; θ1

)
= F ( θ ), in the hope

that Ψ( · ; θ1) can be used to generate multipliers that can be used in the suffi ciency
part of the Lagrangean characterization of an optimum. Indeed, suppose that we are

given such a θ1. Then, bearing in mind that ∆Ψ(θ2; θ1) = 0, we may put dΛ̃1 =

dΨ( · ; θ1) on [ θ, θ2], dΛ2 = dΨ( · ; θ1) on
[
θ2, θ

]
and dΛ1 = 1

K′(w0)
dΛ̃1. Furthermore,

if we let λ1 and λ2 be the continuous linear functionals induced on BV(Θ,R) by dΛ1

and dΛ2 using integration with respect to the right-continuous versions of functions,

then we have

L(x, λ1, λ2) =

∫ (
θ u(θ) + w(θ)

)
dF (θ)

+

∫ (
y − C(u(θ))−K(w(θ))

)
dΛ1(θ)

+

∫ (
b
(

θ
(1+π)β

)
u(θ)− 1

ρ
a
(

θ
(1+π)β

)
− w(θ)

)
dΛ2(θ)

for all x ∈ X. Our objective is then to show that the utility curve x0 = (u0, w0)

associated with θ1 maximizes L( · , λ1, λ2).
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It suffi ces to show that, for all x1 ∈ Ω, the directional derivative ∇xL(x0, λ1, λ2)

of L at x0 in the direction x = x1 − x0 is non-positive. As in Section 6, we have

∇xL(x0, λ1, λ2) =

∫ (
θ u+ w

)
dF −

∫ (
C ′(u0)u+K ′(w0)w

)
dΛ1

+

∫ (
b
(

θ
(1+π)β

)
u− w

)
dΛ2

=

∫ (
θ u+ w

)
dF −

∫ (
C′(u0)
K′(w0)

u+ w
)
dΛ̃1

+

∫ (
b
(

θ
(1+π)β

)
u− w

)
dΛ2.

Furthermore, notwithstanding the fact that we are now working in a more general

context, we can eliminate the terms
∫
w dF ,

∫
w dΛ̃1 and

∫
w dΛ2 using integration

by parts.

Indeed, the general formula for integration by parts tells us that∫
[ θ ,θ ]

w(θ) dF (θ) = [wF ]θθ− −
∫

[ θ ,θ ]
F (θ) dw(θ) +

∑
θ∈[ θ ,θ ]

∆w(θ) ∆F (θ),

where

[wF ]θθ− = w( θ )F ( θ )− w( θ−)F ( θ−).

We therefore have ∫
w dF = [wF ]θθ− −

∫
F dw +

∑
∆w∆F

(where we have suppressed the dependence on θ and where the domains of all inter-

grals and sums are understood to be the whole of
[
θ , θ

]
)

= w( θ )F ( θ ) +

∫
F
θ

β
du−

∑ θ

β
∆u∆F

(because F ( θ−) = 0 and dw = − θ
β
du)

= w( θ )F ( θ ) +
1

β

∫
F θ du− 1

β

∑
θ∆u∆F.
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Moreover ∫
F θ du = [(F θ)u]θθ− −

∫
u d(F θ) +

∑
∆(F θ) ∆u

(applying the general formula for integration by parts to
∫
F θ du)

= θ u( θ )F ( θ )−
∫
u (θ dF + F dθ) +

∑
θ∆F ∆u

(since F ( θ−) = 0, d(F θ) = θ dF + F dθ and ∆(F θ) = θ∆F ). Overall, then,∫
w dF =

(
θ

β
u( θ ) + w( θ )

)
F ( θ )− 1

β

∫
u (θ dF + F dθ).

By the same token, and bearing in mind that we did not use the fact that ∆F = 0

in the derivation of the previous paragraph, we have∫
w dΛ̃1 =

(
θ

β
u( θ ) + w( θ )

)
Λ̃1( θ )− 1

β

∫
u (θ dΛ̃1 + Λ̃1 dθ)

and ∫
w dΛ2 =

(
θ

β
u( θ ) + w( θ )

)
Λ2( θ )− 1

β

∫
u (θ dΛ2 + Λ2 dθ).

We therefore have

∇xL(x0, λ1, λ2) =

∫
u du∗ + w( θ ) r∗

where, as in section 6 above,

du∗ = − 1

β

(
(1− β) θ dF + F dθ

)
+

1

β

((
θ − β C′(u0)

K′(w0)

)
dΛ̃1 + Λ̃1 dθ

)
+

1

β

((
θ + β b

(
θ

(1+π)β

))
dΛ2 + Λ2 dθ

)
+
θ

β

(
F ( θ )− Λ̃1( θ )− Λ2( θ )

)
dI,

r∗ = F ( θ )− Λ̃1( θ )− Λ2( θ )

and I is the distribution function of the unit mass at θ. Finally, by construction of

Λ̃1 and Λ2, we have u∗ = 0 and r∗ = 0. So in fact ∇xL(x0, λ1, λ2) = 0. In particular,

the utility curve x0 = (u0, w0) associated with θ1 does indeed maximize L( · , λ1, λ2).
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Remark 60. Great care is needed in choosing the space Z. One possible choice is
C(Θ,R), the space of all continuous functions on Θ endowed with the sup norm. This

choice has the advantage that there is a convenient representation for Z∗. However, it

also requires that Ω ⊂ C(Θ,R), and this is not an economically reasonable restriction.

Another possible choice is B(Θ,R), the space of all bounded functions on Θ endowed

with the sup norm. This choice has the advantage that it includes all economically

relevant utility curves. Unfortunately, it leads to a different problem: the measures

dΛ1 and dΛ2 associated with Ψ( · ; θ1) do not induce continuous linear functionals on
B(Θ,R), since functions in B(Θ,R) are not in general measurable. The results of

Luenberger (1969) do not therefore apply. Our solution to this double problem is to

use BV(Θ,R). This space is big enough to include all economically relevant utility

curves, but small enough that dΛ1 and dΛ2 can be used to induce continuous linear

functionals on it (albeit not in a canonical way).

17. Distributions

17.1. Beta Distribution. The density of the generalization of the Beta that we

consider is proportional to

(x− a)ζ−1(b− x)η−1

on the interval (a, b), where 0 < a < b and ζ, η > 0. It is unbounded at a if ζ < 1,

in which case we require that θ ∈ (a, b) in order to ensure that A1 is satisfied, and

unbounded at b if η < 1, in which case we require that θ ∈ (a, b) in order to ensure

that A1 is satisfied.

There are then four main cases. Three of the cases are easy to describe:

Case 1 if ζ > 1 and η ≥ 1 then A3 is satisfied for all choices of θ, θ ∈ (a, b);

Case 2 if ζ > 1 and η < 1 then A3 is again satisfied for all choices of θ, θ ∈ (a, b),

albeit for somewhat different reasons;

Case 4 if ζ < 1 and η < 1, then A3 is violated for some choices of θ, θ ∈ (a, b).

Case 3 is more involved. If ζ < 1 and η ≥ 1, then A3 is satisfied for all choices of

θ, θ ∈ (a, b) iff (√
1− ζ +

√
η − 1

√
a
b

)2
1− a

b

≥ 1 +
1

1− β . (36)
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As this inequality makes clear, A3 is more likely to be satisfied if: either (i) ζ is close

to 0 (i.e. the spike at a is very pronounced); or (ii) η is large (i.e. the density decays

very quickly towards b); or (iii) a
b
is close to 1 (i.e. the density is concentrated in a

narrow band).16 It is also worth noting that, as a
b
→ 0, the left-hand side of (36)

converges to 1 − ζ < 1. Hence A3 is violated for some choices of θ, θ ∈ (a, b) when

ζ < 1 and a
b
is small. This is in striking contrast with the standard case studied in

both Rice and Hogg et al. In that case A3 is satisfied for all θ, θ ∈ (a, b) when ζ < 1

and a
b

= 0.

Note finally that the right-hand side of (36) is strictly increasing in β. Hence, if

we fix a distribution for which ζ < 1 and η ≥ 1, then the conclusion is that A3 will be

satisfied provided that β is far enough below 1. I.e. A3 is more likely to be satisfied

when the decision maker is more time-inconsistent.

17.2. Cauchy Distribution. The density of the general form of the Cauchy

distribution is proportional to (
1 +

(
x− µ
σ

)2)−1

on R, where µ ∈ R is a location parameter and σ > 0 is a scale parameter. This

distribution satisfies A3 for all θ, θ ∈ (0,∞) iff

µ

σ
≤

√
1− (1− β)2

(1− β)2
. (37)

In other words, taking β as given, A3 is satisfied iff the distribution is not located

too far to the right. If (37) does not hold then, for some choices of θ, θ ∈ (0,∞), G is

first increasing (at θ), then decreasing, then increasing again, then finally decreasing

again (at θ).

We can also make 1− β the subject of the inequality (37). Doing so, we find that
16For the purposes of the present discussion, ζ ∈ (0, 1), η ∈ [1,∞) and a

b ∈ (0, 1).
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A3 is satisfied for all θ, θ ∈ (0,∞) iff: either µ ≤ 0; or µ > 0 and

1− β ≤
(

1 +
µ2

σ2

)− 1
2

.

In other words, taking the parameters µ and σ of the Cauchy distribution as given,

A3 is satisfied iff: either µ ≤ 0; or µ > 0 and β is suffi ciently close to 1. I.e. A3 is

more likely to be satisfied when the decision maker is less time-inconsistent.

17.3. Log-Gamma Distribution. The density of the Log-Gamma distribution

is proportional to

x−
η+1
η (log(x))ζ−1

on (1,∞), where ζ, η > 0. It is unbounded at 1 if ζ < 1, in which case we require

that θ > 1 in order to ensure that A1 is satisfied. It violates A3 for some choices of

θ, θ ∈ (1,∞) iff ζ < 1 and η > 1−β. In other words, taking β as given, A3 is violated
iff there is a singularity at 1 and the rate of decay at ∞ is suffi ciently slow.

Note finally that, if we fix a distribution for which ζ < 1, then the conclusion is

that A3 will be satisfied provided that β is far enough below 1. I.e. A3 is more likely

to be satisfied when the decision maker is more time-inconsistent.

17.4. Pareto Distribution. The density of the Pareto type II distribution is

proportional to (
1 +

x− µ
σ

)−ζ−1
on (µ,∞), where µ ∈ R is a location parameter, σ > 0 is a scale parameter and ζ > 0

is a shape parameter. It violates A3 for some choices of θ, θ ∈ (µ,∞) iff

ζ <
1

1− β (38)

and
µ

σ
>

1

ζ + 1

(
1 +

1

1− β

)
. (39)

In other words, it violates A3 iff its right-hand tail is suffi ciently fat and, taking the

fatness of the tail as given, it is located suffi ciently far to the right. In particular, if
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µ
σ
≤ 1, then the Pareto type II distribution satisfies A3 for all θ, θ ∈ (µ,∞). For in

that case: either (i) ζ ≥ 1
1−β and therefore (38) is violated; or (ii) ζ <

1
1−β , in which

case 1
ζ+1

(
1 + 1

1−β

)
> 1

ζ+1
(1 + ζ) = 1 ≥ µ

σ
and therefore (39) is violated.

We can also make 1− β the subject of these inequalities. Doing so, we find that
A3 is violated for some θ, θ ∈ (µ,∞) iff(µ

σ
(ζ + 1)− 1

)−1
< 1− β < ζ−1.

In particular, if µ
σ
> 1 and ζ > 1 (so that

(
µ
σ

(ζ + 1)− 1
)−1

< ζ−1 < 1), then A3 is

satisfied iff β is either close enough to 1 or far enough below 1.
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