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Abstract

When solving calibrated dynamic household finance models with present bias,

backwards induction generates equilibria that are highly sensitive to various

parameter choices, and hence non-robust. To address this problem, researchers

have deployed a range of methodological compromises, such as assuming suf-

ficiently little present bias or assuming substantial naivete. We show that

non-robustness can instead be eliminated by using high frequency models (i.e.,

models with small time-steps). Specifically, robust behavior emerges in a “sweet

spot” of time-steps that is consistent with empirical work studying the (psy-

chological) present-bias wedge between now and later.
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Computing Environment supported by the Institute for Quantitative Social Science in the
Faculty of Arts and Sciences at Harvard University. We acknowledge financial support from
the Pershing Square Fund for Research on the Foundations of Human Behavior.
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1 Introduction

Models with present-biased discounting have been used to explain a wide range of

household financial choices, including consumption of nondurables, expenditure on

durables, credit card and payday borrowing, mortgage refinancing, retirement sav-

ing, other forms of saving in illiquid assets, human capital investment, and program

enrollment.1 Despite these many applications, generic models with present bias are

plagued by a methodological problem that is holding back applications: predictions

are not robust to the way the “time-step” (i.e., period length) is modeled. To give an

example, model predictions are materially affected by whether the modeled time-step

is one week or one year, ceteris paribus (i.e., holding fixed all other variables, like the

annualized interest rate and the annualized volatility of shocks).

In discrete time, present-biased preferences (often called β-δ preferences) are given

by the discount function {1, βδ, βδ2, βδ3, . . .}. δ is the standard exponential discount

factor and β is the short-run discount factor. Setting β < 1 creates an additional

preference for utility “now” instead of “later.” Note, however, that β-δ preferences

alone do not specify the temporal division between “now” and “later.” Instead, that

division is determined implicitly by the modeler’s choice of the time-step, which we

henceforth denote by 4 (this is the “DELTA” in our title).

Dynamically inconsistent preferences like present bias are often modeled as an

intrapersonal game (e.g., Strotz, 1955; Phelps and Pollak, 1968; Peleg and Yaari,

1973). When analytic solutions are not obtainable in models with present bias (e.g., by

guessing and checking an equilibrium strategy), economists use backwards induction

as a solution concept and solve for equilibrium numerically. However, backwards

induction (with either partial or full sophistication) typically generates a sequence

1For some illustrative examples see Strotz (1955), Phelps and Pollak (1968), Laibson (1997), An-
geletos et al. (2001), DellaVigna and Malmendier (2004), DellaVigna and Paserman (2005), Shapiro
(2005), Amador et al. (2006), Ashraf et al. (2006), DellaVigna and Malmendier (2006), Carroll et
al. (2009), Meier and Sprenger (2010), Ganong and Noel (2019), Lockwood (2020), Gerard and
Naritomi (2021), Kuchler and Pagel (2021), Laibson et al. (2021), Allcott et al. (2022), Beshears et
al. (2023), and Lee and Maxted (2023). For a literature review, see Cohen et al. (2020).
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of policy functions that are highly sensitive to the time-step (as well as other model

parameters). This sensitivity is caused by strategic feedback that exists because

of the combination of (i) dynamically inconsistent preferences, and (ii) the ability

of the present self to choose actions that materially control the distribution of the

state variables of subsequent selves.2 If policy functions are highly dependent on

the (arbitrary) time-step that is used in a model, then model predictions are not

methodologically robust.

In this paper we analyze the consumption functions of present-biased consumers

and study the sensitivity of these policy functions to the choice of the time-step 4.

In many papers in the household finance literature, the time-step is chosen either to

match the frequency of an associated dataset or for technical convenience (e.g., com-

mon assumptions are quarterly or annual time-steps, but a rapidly growing literature

is set in continuous time). In this paper, we first show that the time-step is a critical

parameter in consumption-saving models with present-biased consumers.

To illustrate this sensitivity, Figure 1 below plots the solution to a single consumption-

saving model with present-biased consumers (β = 0.5), which has been solved with

four different time-steps (holding all other parameters fixed on an annualized basis).3

The flow of annualized consumption is reported on the vertical axis (i.e., c
4) and the

stock of cash on hand is reported on the horizontal axis. The consumption functions

in Figure 1 are all annualized so that they can be directly compared across time-steps.

The blue line reports the consumption function for the model with annual time-steps

(4 = 1). The yellow line reports the annualized consumption function for the same

model solved with semi-annual time-steps (4 = 1
2
). Similarly, the red line reports

the annualized consumption function for the same model with approximately two-

week time-steps (4 =1/25th of a year), and the dashed line reports the annualized

2For discussion of policy function sensitivity and multiple equilibria in present-biased models, see
Laibson (1994), Laibson et al. (1998), O’Donoghue and Rabin (1999), Harris and Laibson (2001,
2003), Krusell et al. (2002), Krusell and Smith Jr. (2003), and Cao and Werning (2018).

3For example, if a model with annual time-steps has a gross return of R, then the same model
with semi-annual time-steps has a gross return per time-step of R

1
2 .
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consumption function for the same model posed in continuous time (4 = dt).4

This figure illustrates clear non-robustness associated with the time-step 4. Con-

sumption in the annual model differs notably from the semi-annual model, both of

which differ again from the two-week and continuous-time models.

Figure 1: Consumption functions for a present-biased consumer (β = 0.5) as 4→ 0.
The model is presented in Sections 2 and 3 below. Section 4.2 gives calibration details.

The consumption functions in the annual and semi-annual model exhibit multiple

regions of non-monotonicity and multiple downward discontinuities. Such properties

are generally believed to be counterfactual, and as such are often referred to as “con-

sumption pathologies” (e.g., Laibson et al., 1998; Harris and Laibson, 2003; Cao and

Werning, 2018). For example, the 4 = 1 model predicts that there exist regions

of the state space where giving a consumer a one-penny windfall would cause their

annual consumption to drop by roughly 40%.

As noted above, consumption pathologies like this arise because of the game-

theoretic equilibrium concept that is used to analyze models with dynamically in-

4Our modeling of present bias in continuous time follows the Instantaneous Gratification (IG)
specification of Harris and Laibson (2013). Details are provided in Section 3.
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consistent preferences, where each “self” has preferences that are inconsistent with

the preferences of their other temporally situated selves. When agents understand

their own dynamically inconsistent preferences, strategic motives emerge in the in-

trapersonal game that is being played. Intuitively, if self t believes that self t + 1 is

prone to overconsumption, and that a little extra wealth at time t + 1 will lead self

t + 1 to spend less, then self t might be willing to save more to push self t + 1 to

spend less. Effects like this are propagated and amplified by backwards induction,

and produce the counterfactual consumption behavior that appears for 4 = 1 and

4 = 1
2

in Figure 1.5

These kinds of counterfactual parameter sensitivities raise methodological ques-

tions about how to model the choices of present-biased consumers. Various method-

ological compromises have emerged in the literature: setting β close enough to one to

make the pathologies vanish;6 incorporating enough noise in the dynamic budget con-

straint to make the pathologies vanish;7 making beliefs completely naive;8 or working

with two-period models (which prevent the pathologies from propagating in the first

place).9

5These strategic properties can arise even if agents’ understanding of their dynamic inconsistency
is only partial, as in O’Donoghue and Rabin (2001). However, completely naive agents solve a
maximization problem when deciding how to behave and consequently incorporate no strategic
considerations of this kind.

6E.g., Laibson et al. (1998) set β = 0.85 to make their policy functions well-behaved. They write:

“For the hyperbolic simulations, we would have preferred to have set β much lower –
approximately equal to 0.6 – as Laibson has done in previous work on undersaving.
Most of the experimental evidence suggests that the one-year discount rate is at least
40 percent. However, a value of 0.6 generates pathologies in discrete time simulations:
strongly nonmonotonic and noncontinuous consumption functions. Such effects are
commonplace in dynamic games such as the intrapersonal game that we consider.
In our simulations, these pathologies vanish as β approaches unity. Specifically, we
find that strong pathologies only arise for values of β below 0.8, which motivates our
decision to adopt a value of 0.85.”

Harris and Laibson (2003) prove uniqueness in the class of stationary equilibria for β in a neighbor-
hood of unity.

7Again see Harris and Laibson (2003).
8This is the approach taken e.g. in Laibson et al. (2023). See also the discussion in Section 5.1

of DellaVigna (2018).
9See Harris and Laibson (2003) for an explanation of why anomalies first start to appear when

the backward induction is iterated twice from period T.
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On the other hand, Figure 1 also highlights that the problem of policy-function

non-robustness may in fact be illusory once (many) models with present bias are

appropriately calibrated. In contrast to the non-robust predictions that are produced

for large time-steps, Figure 1 shows that robust behavior emerges for shorter time-

steps of 4 = 1
25

or 4 = dt. Indeed, the current paper demonstrates that there exists

a time-step “sweet spot” interval that ranges from zero (i.e., dt in continuous-time

notation) to roughly two weeks. We call this interval the “sweet spot” for five reasons.

First, time-steps in the sweet spot all generate essentially identical policy func-

tions, so the choice of the time-step within the sweet spot will not affect the model’s

predictions. That is, the non-robust consumption behavior that exists for large time-

steps fades away inside the sweet spot.

Second, the empirical intertemporal choice literature finds that present bias gen-

erates sharp discounting (e.g., β < 0.9) over a horizon of minutes to days (see e.g.,

McClure et al., 2007; Augenblick, 2018; Augenblick and Rabin, 2019). We call this

the psychologically relevant range of time-steps for present bias, because this repre-

sents the duration of the psychological “present.” Using computational methods, we

show that the psychologically relevant range of time-steps is a strict subset of the

sweet spot. By implication, any time-step in the sweet spot will produce policy func-

tions that approximately match the policy functions that emerge from psychologically

well-calibrated models.10

Third, the sweet spot includes the continuous-time limit, namely the Instan-

taneous Gratification (IG) specification of Harris and Laibson (2013) and Maxted

(2022). This is a particularly useful boundary for the sweet spot because it is possible

to theoretically characterize properties of this continuous-time model, including equi-

librium uniqueness and consumption-function continuity. Quantitative homogeneity

across the sweet spot implies that these desirable properties of the continuous-time

10We emphasize that our use of short time-steps only applies to “psychological” present bias, and
may not apply in other settings where it is less natural to model present bias at a high frequency,
such as time-inconsistent governmental preferences (e.g., Halac and Yared, 2014).
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case approximately characterize the entire sweet spot, which subsumes the psycho-

logically relevant range.

Fourth, researchers wishing to characterize behavior in the psychologically rele-

vant range of time-steps can use the continuous-time (IG) boundary of the sweet spot

for quantitative modeling. The IG model is particularly computationally tractable,

because it reduces to the solution of a differential equation that has desirable regular-

ity properties.11 For a recent set of papers that leverage the limiting IG specification

to tractably model the financial choices of present-biased agents, see e.g. Grenadier

and Wang (2007), Laibson et al. (2021), Acharya et al. (2022), Beshears et al. (2022),

Maxted (2022), Rivera (2022), Shigeta (2022), and Lee and Maxted (2023).

Fifth, researchers who wish to use discrete-time methods will want to use time-

steps that are maximally coarse to reduce computational burden. For example, solv-

ing a lifecycle model with five-minute time-steps may not be (currently) computa-

tionally feasible, but solving a lifecycle model with two-week time-steps typically is.

Accordingly, researchers who prefer to use discrete-time methods will generally want

to go to the outer boundary of the sweet spot for computational efficiency, even if

this boundary is outside of the psychologically relevant range of time-steps, because

policy functions are effectively homogeneous over the entire range of the sweet spot.

This paper documents these claims by studying a dynamic consumption-saving

model that can be calibrated with a flexible time-step 4. We emphasize that the

emergence of a time-step sweet spot relies on a key feature of the model: period-by-

period shocks. It is well known that strategic behavior of the sort exhibited in Figure

1 for 4 = 1 and 4 = 1
2

can be curtailed by adding more noise to the model, which

reduces the extent to which any self can precisely predict and therefore manipulate

the choices of future selves (e.g., Harris and Laibson, 2003). However, one cannot

arbitrarily add noise to a calibrated economic environment. Instead, this paper’s

11Further computational details are provided in Section 4.1 below. See Achdou et al. (2022) for an
extensive presentation of finite-difference methods for solving the sorts of Hamilton-Jacobi-Bellman
(HJB) equations that arise in consumption-saving models, and Maxted (2022) for a discussion of
how these numerical methods extend to the case of present bias.
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insight is that large time-steps – which are psychologically inappropriate in the first

place – spuriously reduce the true noise that consumers face by providing implicit

diversification. By reducing 4 to a more appropriate length, we unwind this im-

plicit diversification and reintroduce the (approximately Brownian) noise necessary

for reestablishing robust policy functions.12

The paper is organized with the following structure. In Section 2 we describe a

simple discrete-time consumption-saving model with a flexible time-step4. Section 3

presents the limiting continuous-time model. Section 4 describes our calibration and

numerical algorithm. Section 5 reports our main results, showing that the sweet spot

tends to emerge when time-steps are about two weeks or less. Comparative statics are

given in Section 6. Section 7 outlines extensions to our model, including a discussion

of naivete, and Section 8 concludes.

2 Discrete-Time Consumption-Saving Model

We begin by describing a discrete-time consumption model with present bias. The

model is set up so that it converges to a continuous-time consumption model with

present bias as the time-step4→ 0. We postpone the presentation of the continuous-

time model until Section 3.

After presenting the discrete-time model, we discuss how the calibration of the

model varies with the model’s time-step — i.e., the temporal distance between each

period of the discrete-time model. Throughout this paper we denote the time-step of

the discrete-time model by parameter 4. In most papers in the consumption-saving

literature, the choice of 4 is made either for expositional purposes or to match the

frequency of an associated dataset (e.g., annual or quarterly survey data). Our paper

studies the consequences of making 4 small.

In the limit as 4 → 0 we pass to a continuous-time model. The benefit of

12We demonstrate the importance of noise with illustrative counter-examples, and show that
without such noise there exist non-robust equilibria for arbitrarily small time-steps.
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continuous time is that it allows us to analytically characterize features of the unique

equilibrium consumption function. Though we switch to continuous time in Section

3, knowledge of continuous-time methods is not needed to understand many of this

paper’s findings. Indeed, one of our key conclusions is that the limiting continuous-

time model generates predictions that are analogous to those of discrete-time models

with psychologically appropriate time-steps, since these models all exist within the

sweet spot.

We adopt the (arbitrary) timing convention that 4 = 1 refers to a model with

annual time-steps. This annual benchmark model will be henceforth referred to as

the 4 = 1 model, or the 1-model in short. When 4 6= 1 we will refer to this as the

4-model (in practice, we will only be studying cases in which 4 < 1). We will refer

to the limiting continuous-time model as the dt-model.

2.1 The Discrete-Time Model

We now present a discrete-time model with an arbitrary time-step of 4 years. We

will characterize this model so that it is internally consistent for all values of 4 > 0.

Time periods are indexed by integers t. We emphasize that these periods have a

length that we vary. For example, if 4 = 1 then period t+ 1 is one year from period

t, while if 4 = 1
52

then period t+ 1 is one week from period t.

Dynamic Budget Constraint. Assets in period t are denoted xt. Let R denote

the gross interest rate. The dynamic budget constraint is:

xt+1 = R(xt − ct) + zt+1. (1)

Variable ct denotes consumption, and zt is a stochastic “balance-sheet process” (de-

tailed in the next paragraph). We impose a liquidity constraint that restricts the

agent from borrowing against uncertain future wealth: ct ≤ xt. The model can be

generalized to include borrowing, but we omit this generalization to simplify exposi-
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tion and minimize notation.

We assume the following reduced-form data generating process for zt:

zt = z + σεt.

z represents a deterministic income flow, and εt is an i.i.d. balance-sheet shock. Such

period-by-period balance-sheet shocks are a reduced-form modeling tool for capturing

the wide-ranging set of shocks that characterize a household’s true economic problem,

including, for example, asset return shocks, income shocks, unexpected medical costs,

broken appliances, surprising utility bills, and even taste shocks.13

As we demonstrate below, such period-by-period noise is critical for establishing

a sweet spot as 4→ 0. We assume that εt ∼ N (0, 1), but this can be generalized.14

We could also make the balance-sheet process autocorrelated, but this comes at the

cost of additional state variables and complicates exposition.

The restriction that ct ≤ xt means that assets cannot become negative under the

control of the agent. However, if σ > 0 then a sufficiently negative shock can cause

assets to fall below x = 0. In order to prevent arbitrarily negative consumption, our

model allows the agent to endogenously declare bankruptcy. Bankruptcy is modeled

as a stopping problem. Details of the endogenous bankruptcy choice are given below.

Utility and Value. The agent has sophisticated present-biased time preferences

(1, βδ, βδ2, βδ3, ...). Present-biased preferences are time-inconsistent. We model con-

sumption as a dynamic game played by different temporal selves of the consumer.

In the continuation region the agent accumulates utils through consumption, as

is standard. Upon declaring bankruptcy, we assume that the agent earns a certainty

equivalent utility flow of uB in the current and all future periods.15 Introducing

13See Strack and Taubinsky (2021).
14The important requirements are that εt is a random variable and that the sum of ε’s converges

to Brownian motion as the model’s time-step is taken to zero.
15Below, our calibrated model sets uB well below u(z̄) in order to disincentive bankruptcy. Such

a restriction is not necessary, though it is economically natural.
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notation that we use below, we let VB = uB
1−δ denote the exponentially discounted

value of bankruptcy.

Equilibrium: T -Horizon Game. Time is finite, and the consumer makes a con-

sumption/bankruptcy decision at each period t ∈ {1, 2, ..., T − 1}. We study the

behavior of the sequence of policy functions for large T . Backward induction is ap-

plied to look for strategies in each period t that comprise a Markov equilibrium in

cash on hand xt. Starting from a terminal value condition, VT , an equilibrium is

characterized by the following system of Bellman equations defined on x ∈ (−∞,∞)

and t ∈ {1, 2, ..., T − 1}:

Ct(xt) ∈ argmax
c≤xt

u(c) + βδEtVt+1(xt+1), (2)

Wt(xt) = max
{
u(Ct(xt)) + βδEtVt+1(xt+1), uB + βδVB

}
, (3)

Vt(xt) =

u(Ct(xt)) + δEtVt+1(xt+1) if xt 6∈ B∗t

VB if xt ∈ B∗t
, (4)

B∗t =
{
xt | uB + βδVB ≥ u(Ct(xt)) + βδEtVt+1(xt+1)

}
. (5)

Ct(xt) denotes an equilibrium consumption function and B∗t denotes the set of points

at which the agent chooses to declare bankruptcy.16 The agent’s continuation-value

function is given by Vt(xt). Wt(xt) is the current-value function.

In equation (2), Ct(xt) is the level of consumption that occurs during a single pe-

riod of length4 years. For example, if4 = 1
52

then Ct is the consumption expenditure

over one week. This implies that Ct is not comparable as we vary 4. Accordingly,

16The bankruptcy decision has some similarities with the sovereign debt and default model of
Eaton and Gersovitz (1981). See also Alfaro and Kanczuk (2017) for an application of quasi-
hyperbolic discounting to the Eaton and Gersovitz framework.
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we introduce a new variable, C̃t, which is the annualized rate of consumption:

C̃t(x) =
Ct(x)

4
.

Equation (3) shows that bankruptcy is chosen to maximize the current-value func-

tion Wt. We assume that bankruptcy is declared at points of indifference between

bankruptcy and continuation, and hence a weak inequality is used in equation (5).17

Our equilibrium concept requires further discussion. In discrete time we study

Markov equilibria of a finite T -horizon game, where T is large. Even when T is

large, this is not necessarily equivalent to studying stationary Markov equilibria. If

the Bellman operator of the present-biased consumer was a contraction mapping

then these two equilibrium approaches would be equivalent. However, for arbitrary

β ∈ (0, 1) the Bellman operator of the present-biased consumer is not a contraction

mapping (Harris and Laibson, 2001, 2003). Consequently, it is unknown whether or

not the T -horizon game converges to a stationary equilibrium as T →∞ (and even if

it does, that equilibrium may not be unique).18 We choose to study a T -horizon game

because backward induction from a terminal payoff is a standard solution technique.

This discussion highlights some of the difficulties that researchers can encounter

when solving discrete-time models with present-biased consumers. These complexities

again justify our4→ 0 approach, as they contrast with both continuous time – where

we prove that there exists a unique stationary Markov equilibrium (Section 3) – and

also with the sweet spot in discrete time – where the model is quantitatively close to

the unique stationary equilibrium of the continuous-time model.

17This assumption simplifies the analysis when we pass to the limiting continuous-time model.
For details, see footnote 29 in Section 3.

18Krusell and Smith Jr. (2003) and Cao and Werning (2018) show equilibrium multiplicity in
deterministic consumption models.
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2.2 Calibration with a Variable Time-Step

In many dynamic household finance models, the period length is one year or one

quarter. In this paper we let the period length vary. This means that we need to

calibrate the model in a way that is consistent with any choice of 4.

We do this in two steps. First, we describe the calibration for the annual bench-

mark case of 4 = 1. Given a calibration under the 4 = 1 benchmark, we then show

how to recalibrate the model for shorter (or longer) period lengths.

The crucial property of our time-step reduction method is that it simply involves a

recalibration of the consumption model already described. Any researcher struggling

with consumption pathologies need only recalibrate their model for an appropriate

time-step 4, while keeping the model (and accompanying numerical methods) un-

changed. This is a key observation for the applied researcher, as it implies that

shortening the time-step to enter the sweet spot is easy to implement.

Calibration when 4 = 1 (1-Model). The model described in Section 2.1 consists

of the parameters z̄, σ, R, δ, β, and uB, as well as utility function u(c). We denote the

1-model calibration of these parameters by deploying boldface font. Recall our

convention that 4 = 1 refers to annual time-steps. Thus, z is the average annual

flow of income, σ is the annual standard deviation of balance-sheet shocks, R is the

annual interest rate, δ is the annual exponential discount factor, β is the short-run

discount factor that discounts all utility experienced “later” (which here means from

one year onward), uB is the annual utility flow accrued in bankruptcy, and u(·) is

the utility function defined over an annualized consumption level.
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Generalized Calibration for Arbitrary 4. We now specify how to recalibrate

the model for any 4 so that it remains consistent with the benchmark 1-model:

z̄ = 4 z̄ (6)

σ =
√
4 σ (7)

R = R4 (8)

δ = δ4 (9)

β = β (10)

u(c) = 4u
(
c

4

)
(11)

uB = 4uB. (12)

In equation (6), per-period income z scales in proportion to 4 (e.g., when 4 = 1
52

then the consumer earns 1
52

of their average annual salary each week). In (7), the per-

period standard deviation of shocks scales in proportion to
√
4. This ensures that

the variance of shocks remains constant when aggregated to the benchmark 4 = 1

frequency. Specifically, it ensures that when 4 6= 1, the variance of cumulated shocks

over 1/4 periods equals the single-period variance of shocks in the benchmark 1-

model.19 Intuitively, the property that z̄ scales with 4 while σ scales with
√
4

means that period-by-period noise dominates period-by-period consumption as the

time-step4 shrinks. As discussed in Section 5, this property is key for our sweet-spot

result.

Setting R = R4 ensures that a stock of wealth saved for the same temporal length

earns the same return regardless of 4. Similarly, setting δ = δ4 ensures that the

discounted value of time-dated utility flows is not altered by 4.20

19Since shocks are independent, the variance of cumulated shocks in the4-model over 1/4 periods

is
∑ 1

4
1 4σ2 = σ2 (assuming that 1

4 is an integer).
20For example, when 4 = 1 then a util earned one year from now is discounted by βδ. When

4 = 1
52 , a util earned one year from now (but 52 periods from now), is discounted by β

(
δ

1
52

)52
= βδ.
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In the standard model of present bias, short-run discount factor β is independent

of time-step 4. Parameter β governs how the agent discounts “the future” relative to

“the present.” 4 governs the temporal boundary between the present and the future.

However, 4 does not affect how the agent discounts the future relative to the present.

So, β = β.

In equation (11), our 4-dependent utility function explicitly defines utility as

being based on consumption per unit of time. This is why utility is defined on c/4

(recall that c denotes a consumption level). Then, this measure of utility per unit of

time is scaled by the time-step 4 over which it is realized. Accordingly, equation (12)

scales the annual bankruptcy utility uB by the time-step 4 over which it is realized.

Discrete-Time Model Definition. The consumption-saving model presented above

can be condensed into the following definition.

Definition 1. A discrete-time consumption model is defined by the following set of

seven parameters and one utility function:

{4, z,σ,R, δ,β,uB,u(c)}.

These seven parameters and utility function, along with equations (1)–(12), describe

the discrete-time consumption model with flexible 4.

The discrete-time model is defined based on the 4 = 1 calibration of z̄, σ, R,

δ, β, uB, and u(c). As 4 varies, so do these seven inputs as defined by equations (6)

– (12). Again, we emphasize that the model presented in Section 2.1 is independent

of the time-step. As 4 varies, all that changes is the model’s calibration.

The explanation of R = R4 is similar.
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2.3 Technical Assumptions

For the remainder of this paper we impose the following set of technical assumptions.

First, the utility function u(c) has constant relative risk aversion (CRRA):

u(c) =


4 (c/4)1−ρ−1

1−ρ if ρ 6= 1 and c ≥ 0

4 ln(c/4) if ρ = 1 and c ≥ 0

−∞ if c < 0

. (13)

The assumption of CRRA utility is common in consumption-saving models. Addi-

tionally, the continuous-time model outlined below relies on CRRA utility.21

Definition 1 can now be rewritten with the following set of eight parameters:

{4, z,σ,R, δ,β,uB,ρ},

where arbitrary utility function u(c) is replaced by the CRRA parameter ρ.

Along with CRRA utility, we impose the following parameter restrictions for the

remainder of the paper:

1 > δR1−ρ, (14)

ρ > 1− β, (15)

σ > 0, (16)

−∞ < uB ≤ u(c) for some c > 0. (17)

Condition (14) ensures that every possible path of consumption leads to a present

value of utility that is well-defined. Equation (15) ensures that dynamic inconsis-

21This is not strictly true, and the appendix of Harris and Laibson (2013) discusses generalizations
of the CRRA assumption. We do not believe that our computational results depend on the CRRA
special case, but this should be verified. An analysis of non-CRRA utility is beyond the scope of
the current paper.
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tency is not “too large.”22 Condition (16) implies that the dynamic budget constraint

features noise. As will be detailed below, our 4→ 0 method for establishing a sweet

spot relies on noise. The inequalities in equation (17) imply that bankruptcy is not

infinitely aversive, but is still sufficiently aversive that it is not optimal to declare

bankruptcy at all levels of cash on hand.23

Implications for the Bankruptcy Decision. Under these technical assumptions

the optimal bankruptcy decision will be a threshold rule. There will exist a value

x∗t ≥ 0 such that bankruptcy is declared for all x ≤ x∗t and continuation is chosen for

x > x∗t . Equivalently, B∗t = (−∞, x∗t ]. The existence of a threshold rule follows from

the fact that the bankruptcy payoff uB + βδVB is independent of xt while Wt(x) is

continuous and increasing in x.

2.4 A Discussion of Consumption Pathologies

A detailed analysis of the consumption pathologies that can arise in discrete-time

models can be found in Harris and Laibson (2003).24 For intuition, consider self t’s

consumption choice (equation (2)). As is standard, the intertemporal consumption-

saving decision is characterized by the trade-off of either consuming more today in

order to increase utility u(ct), or passing more wealth to future selves in order to

increase expected continuation value EtVt+1(xt+1). But, this trade-off is complicated

by time-inconsistency. Given that self t and self t + 1 disagree about the optimal

consumption of self t + 1, the increase in continuation value that self t earns from

additional savings depends on the consumption choice of self t + 1. This creates an

incentive for self t to strategically manipulate their level of savings in order to “jump”

to parts of the state space where self t+ 1 is expected to overconsume by less. Self t’s

22As in Harris and Laibson (2013), intuitively this condition ensures that the agent’s desire to
consume immediately (1− β) is less than the desire to smooth consumption (ρ).

23The restriction −∞ < uB is necessary to make equilibrium well-defined, since when σ > 0 there
is always a chance that a negative shock pushes xt+1 < 0.

24See also Krusell and Smith Jr. (2003), Chatterjee and Eyigungor (2016), and Cao and Werning
(2018).
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choice of consumption is strategic, and is picked with the understanding that cutting

consumption today may be optimal if it jumps future selves to cash on hand levels

featuring higher future saving rates.

Building on this intuition, an important feature of this sort of strategic consump-

tion behavior is that it also begets further strategic behavior by other selves. This is

why, for example, the consumption functions for4 = 1 and4 = 1
2

in Figure 1 feature

smaller non-monotonic “waves” at first, and then larger downward discontinuities at

higher levels of cash on hand as those initial waves propagate upward.

3 The dt-Model: Passing to the Continuous-Time Limit

Having outlined our discrete-time consumption model with a flexible 4, we now

pass to the continuous-time limit (i.e., the dt-model). This section follows Harris

and Laibson (2013, henceforth HL13), making changes where necessary but avoiding

details where repetitious. As in HL13, we refer to the present-biased agent in the dt-

model as an IG agent, where IG stands for Instantaneous Gratification. We adopt this

terminology because in the 4 → 0 limit of the 4-model, the current instantaneous

self discounts all future selves by factor β.

By making the psychological “present” vanishingly short, IG preferences are a con-

venient mathematical construct rather than a realistic representation of intertemporal

decision-making. Nonetheless, the experimental literature estimates sharp discount-

ing over horizons of less than one week (e.g., McClure et al., 2007; Augenblick, 2018;

Augenblick and Rabin, 2019).25 Accordingly, a contribution of this paper relative to

HL13 is to validate their IG specification by demonstrating that it generates policy

functions that closely approximate those of discrete-time models in which the duration

of the psychological “present” is empirically realistic. This is an important property,

since a key benefit of IG preferences is that their tractability allows us to prove that

the consumption function of the dt-model is unique, continuous, and differentiable.

25For related discussions, see DellaVigna (2018) and Gottlieb and Zhang (2021).

18



The remainder of this section formalizes these results, and can be skipped without

loss of continuity by readers not familiar with continuous-time methods.

3.1 The Continuous-Time Model

We start from a discrete-time model characterized by parameters {4, z,σ,R, δ,β,uB,ρ}.

This section studies the model that results after taking 4 → 0 and passing to the

continuous-time limit.26

Dynamic Budget Constraint. Cash on hand evolves according to:

dxt = (µxt + z − c̃t)dt+ σdbt. (18)

The interest rate is given by µ = ln(R), c̃t is the consumption flow (a rate), z is

the deterministic part of the income flow, σ is a scaling term, and bt is a standard

Brownian motion. As in discrete time, the dynamic budget constraint in equation

(18) features a stochastic component (σdbt) to encapsulate the wide-ranging set of

shocks – such as income and asset return shocks – that households face.

An important feature of continuous time is that the liquidity constraint will never

bind in the interior of the wealth space. When x > 0, any finite rate of consumption

is attainable so long as it persists for a short enough period of time.

Utility and Value. In continuous time, modeling is implemented with consump-

tion rates rather than consumption levels. Flow utility is defined as follows (recall

that we use tilde notation for rates):

ũ(c̃) =


c̃1−ρ−1
1−ρ if ρ 6= 1 and c̃ ≥ 0

ln(c̃) if ρ = 1 and c̃ ≥ 0

−∞ if c̃ < 0

. (19)

26Appendix A.3 heuristically derives the limiting dt-model. See HL13 for a formal argument.
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The IG agent accumulates utils through consumption. Self t’s continuation-value

function is defined as follows:

vt = Et
∫ H

t

e−γ(s−t)ũ(c̃s)ds+ e−γ(H−t)vB.

We use H to denote the time at which bankruptcy is declared (i.e., the first-hitting

time). γ = − ln(δ) is the discount rate, and vB = uB
γ

is the exponentially discounted

value of bankruptcy.

Self t’s current-value function is given by:

wt = βvt.

As in discrete time, the IG agent discounts all future selves by β. Unlike discrete

time, in continuous time the current self lives for a single instant. Consumption of

the current instantaneous self has no measurable impact on the overall value function,

and therefore wt = βvt.
27

Equilibrium. In continuous time we study stationary Markov-perfect equilibria

directly. Cash on hand x is the single state variable. Note that this equilibrium

concept differs from the discrete-time model. In general, we would like to study

stationary Markov-perfect equilibria. But, as discussed in Section 2.1, practical issues

prevent us from always identifying such equilibria in discrete time. However, in

continuous time there exist methods that allow us to characterize and solve for the

unique stationary Markov-perfect equilibrium.

We start by describing the bankruptcy decision. In the dt-model, the equilibrium

bankruptcy region is B∗ = (−∞, 0]. Because the liquidity constraint never binds in

27Note that despite each self living for a single instant, the IG specification nonetheless preserves
dynamic inconsistency. Specifically, equation (21) below implies that each self’s consumption is
determined by ũ′(c̃) = βv′. However, this consumption choice does not maximize v, which would be
maximized if future selves were to (counterfactually) set ũ′(c̃) = v′. See Harris and Laibson (2013)
for details.
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the interior of the wealth space, the IG agent will never declare bankruptcy when

x > 0. Alternatively, the utility function in equation (19) implies that bankruptcy

will be declared whenever x < 0. Thus, v(x) = vB = uB
γ

for all x < 0. A consequence

of Brownian motion is that value matching holds at x = 0, giving v(0) = vB. As in

discrete time, we assume that bankruptcy is declared at points of indifference.

We are now prepared to define an equilibrium. A stationary Markov-perfect equi-

librium is characterized by the following Bellman equation for the IG agent. This

consists of a differential equation and an optimality condition for x > 0 (the continu-

ation region), as well as the terminal bankruptcy payoff for x ≤ 0.28 Suppressing v’s

reliance on x for notational simplicity:

γv = ũ(c̃) + (µx+ z̄ − c̃)v′ + 1

2
σ2v′′, (20)

ũ′(c̃) = βv′, (21)

v = vB for all x ≤ 0. (22)

Equation (21) defines the IG agent’s consumption. Intuitively, the IG agent chooses

consumption to equate the marginal utility of consumption, ũ′(c̃), with the marginal

value of current wealth, w′ = βv′. Importantly, the existence of the additional dis-

count factor β in equation (21) is a marker of dynamic inconsistency, and it implies

that consumption is not chosen to maximize v (see also footnote 27 above).

Continuous-Time Model Definition. We now define the limiting dt-model.

Definition 2. Given a discrete-time model {4, z,σ,R, δ,β,uB,ρ}, the associated

dt-model is defined by equations (19) – (22).

28The bankruptcy boundary condition implies that v has a convex kink at x = 0. Hence, we look
for a viscosity solution to v.
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3.2 Uniqueness in the dt-Model

To prove equilibrium uniqueness, we follow HL13 by introducing a mathematically

convenient exponential agent with a reverse-engineered utility function of û. We refer

to the agent with utility function û as the û agent. û is reverse-engineered such that

the value function of the û agent, denoted v̂, is identical to the value function v of

the IG agent. The modified utility function is:

û(ĉ) =
ψ

β
ũ

(
1

ψ
ĉ

)
+
ψ − 1

β
, where ψ =

ρ− (1− β)

ρ
. (23)

Since û(ĉ) < ũ(ĉ) for any ĉ > 0, the û utility function penalizes the consumption of

the û agent relative to the IG agent. This is because the û agent is time-consistent

and chooses ĉ to maximize v̂, while the IG agent is time-inconsistent and does not

choose c̃ to maximize v. Thus, the û utility function distorts the utility flows of the

û agent downward to ensure that v̂(x) = v(x) for all x > 0.29

The Bellman equation for the û agent is defined by the following differential equa-

tion and optimality condition for x > 0, as well as the terminal bankruptcy payoff

for x ≤ 0 :

γv̂ = û(ĉ) + (µx+ z̄ − ĉ)v̂′ + 1

2
σ2v̂′′, (24)

û′(ĉ) = v̂′, (25)

v̂ = vB for all x ≤ 0. (26)

The key difference between the Bellman equation for the IG agent and the û

agent is the consumption choice (equations (21) and (25)). Both agents equate the

marginal utility of consumption with the marginal value of current wealth, but only

the time-inconsistent IG agent discounts all future selves by β.

29In HL13 the û utility function is defined separately at x = 0 and x > 0. Here, the x = 0 boundary
is included in the stopping region. Thus, the dt-model does not require a wealth-dependent definition
of û. Instead, a Dirichlet boundary condition is imposed at x = 0.
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Proposition 1 (Value Function Equivalence). v is the value function of the IG agent

if and only if v is the value function of the û agent.

Proof. See Appendix A.1.

Proposition 2 (Uniqueness). The dt-model has a unique equilibrium.

Proof. See HL13 for full details. The intuition is given here. Optimization problems

have a unique value function. The û agent is an exponential discounter who chooses

consumption optimally to maximize v̂. Therefore v̂ is unique. Brownian motion

makes v̂ twice continuously differentiable on (0,∞). By value function equivalence

(Proposition 1), v must also be unique and twice continuously differentiable on (0,∞).

Using equation (21), continuous differentiability of v implies that the consumption

function of the IG agent will be unique for all x > 0.

3.3 IG Consumption

Value function equivalence can be used to link the IG agent’s consumption function

to that of the û agent. The is formalized below.

Corollary 1 (IG Consumption). The IG agent’s consumption function can be char-

acterized relative to the û agent’s consumption function as follows:

c̃(x) =
1

ψ
ĉ(x). (27)

Proof. This follows from equations (21) and (25), using Proposition 1 to set v = v̂.

Since ψ < 1 when β < 1, equation (27) gives the intuitive property that the IG

agent chooses a higher rate of consumption than the exponential û agent. Addition-

ally, we can characterize certain properties of the IG agent’s consumption function.

Proposition 3 (Consumption in the dt-Model).

(i) c̃ is continuously differentiable on the interior of the wealth space.
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(ii) If µ ≤ γ then c̃ is increasing on (0,∞).

(iii) If µ > γ then c̃ may be non-monotonic. Specifically, c̃ may be decreasing im-

mediately to the right of the origin, but will eventually increase and remain

increasing forever thereafter.

Proof. See Appendix A.2.

We do not formally characterize the combination of parameters that causes con-

sumption to be non-monotonic when µ > γ. However, we find numerically that non-

monotonicity tends to occur when uB is high. To understand this, note that c̃(x)

is decreasing if and only if v′′(x) > 0. From value matching, lim
x→+0

v(x) = vB = uB
γ

.

If uB is low and the stopping region is aversive, then v will be concave because the

possibility of reaching the stopping region pulls down v near x = 0. Alternatively,

if the stopping region is attractive then v may be convex because the possibility of

reaching the stopping region props up v near x = 0. Non-monotonic consumption

can also arise in models with exponential discounting (β = 1) as long as uB is large

enough.30 Appendix D provides a numerical example of non-monotonic consumption.

4 Numerical Methods and Calibration

Having presented our consumption-saving model allowing for full flexibility of the

time-step 4, we now demonstrate why this flexibility is important. We proceed

to solve our model numerically to show that consumption can be poorly behaved

and non-robust for large time-steps, but there exists a 4 sweet spot over which

consumption functions become quantitatively comparable.

4.1 Numerical Methods

Discrete Time. Since the Bellman equation of the present-biased agent (equations

(2) – (5)) is not a contraction mapping, iterative methods may not converge to a

30This follows immediately from the û construction and equation (27).
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stationary equilibrium. If they do, this equilibrium may not be unique. These issues

commonly arise in the literature on present-biased preferences (with at least partial

sophistication). In response, a goal of our sweet-spot analysis is to show that there

exists a range of time-steps over which the model is quantitatively robust to these

issues.

To solve the discrete-time model, we use a multigrid implementation of value

function iteration (Chow and Tsitsiklis, 1991; Caldara et al., 2012). Value function

iteration (VFI) is a standard technique for solving Bellman equations. Multigrid

allows us to solve our model on a dense grid with relatively shorter runtimes. This is

important as 4→ 0, because VFI methods can be slow to converge when δ ≈ 1.

In the main text we focus on calibrations with δR < 1, as our algorithm usually

converges to a stationary policy function in these cases.31 For the discrete-time model

with δR > 1, our numerical methods almost never converge nor even cycle. Indeed,

for these δR > 1 cases the consumption function can change quite drastically from

one iteration to the next. We find that this failure of convergence occurs when the

equilibrium supports expected asset accumulation. Due to additional complexities

regarding numerical methods, which are not the focus of this paper, calibrations with

δR > 1 are discussed in Appendix D.32 Nevertheless, Appendix D shows that even in

these δR > 1 cases, a sweet spot still emerges as 4→ 0.

Continuous Time. In contrast to discrete time, the continuous-time equilibrium

is unique and there exists a well-developed theory on the numerical methods for

characterizing it. The continuous-time equilibrium is computed using finite-difference

31In the δR < 1 cases where our algorithm fails to converge to a stationary solution, VFI enters
a phase in which the resulting policy functions fluctuate slightly at a small number of grid points.
These small fluctuations are inconsequential quantitatively, so, once we enter this phase, we stop the
backward induction and report an arbitrarily chosen policy function. To reflect this approximate
convergence, the consumption function that we select will be denoted C(x) rather than Ct(x).

32Specifically, equilibria that support expected asset accumulation create issues at the upper
boundary of a finite numerical grid. This can create a feedback effect in which numerical error
at the top of the grid trickles down and affects the consumption function throughout the state
space, especially in cases where consumption is non-robust in the first place.
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methods (Candler, 2001; Achdou et al., 2022). Barles and Souganidis (1991) prove

that finite-difference methods converge to the unique viscosity solution of an HJB

equation when certain conditions are satisfied. However, these conditions are violated

by the Bellman equation of the dynamically-inconsistent IG agent (Maxted, 2022). To

compute the IG agent’s equilibrium, we instead solve for the time-consistent û agent’s

equilibrium. The IG agent’s consumption function then follows from equation (27).

Appendix C provides further details on our numerical methods.

4.2 Calibration

Recall that the discrete-time consumption model is comprised of the eight exogenous

parameters {4, z,σ,R, δ,β,uB,ρ}. For the remainder of this paper, our baseline

calibration when 4 = 1 is as follows:

z = 1, σ =
1

3
, R = 1, δ = 0.95, uB = u

(
1

10
z

)
, ρ = 1.

Robustness to these parameter choices is explored in Section 6.

β does not have a baseline calibration since this paper studies a variety of β

values. However, most of our results use β = 0.5. We choose β = 0.5 for two reasons.

First, Laibson et al. (2023) estimate β to be approximately 0.5.33 Second, β = 0.5

consumption functions are poorly behaved for large 4 (see Figure 1), generating a

good test case for our 4→ 0 technique.

R = 1 in the baseline calibration for simplicity.34 δ = 0.95 is consistent with

typical values in the literature (e.g., Kaplan and Violante, 2014; Kaplan et al., 2018).

We set σ = 1
3
z̄ to conservatively capture annual balance-sheet shocks.35

33Laibson et al. (2023) assume naive present bias while this paper assumes sophistication. An
extension to naivete is presented in Section 7.2.

34Setting R = 1 circumvents minor issues regarding differences in the present value of income as
4 is varied.

35Looking at persistent income shocks alone, the commonly used wage process estimated in Floden
and Lindé (2001) features annual persistent log-wage volatility of 0.21. Households also face many
other types of shocks in addition, such as transitory income shocks, asset return shocks, unexpected
medical bills, taste shocks, etc.
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Bankruptcy utility uB is set to equal the utility accrued from consuming one-tenth

of average income. This illustrative calibration makes bankruptcy highly aversive.36

5 Results: Consumption and the 4 Sweet Spot

Figure 1 in the introduction above plots the β = 0.5 consumption function for 4 = 1,

4 = 1
2
, 4 = 1

25
, and 4 = dt (continuous time). For the larger time-steps of 4 = 1

and 4 = 1
2
, Figure 1 shows the non-robustness that can occur.37 However, for the

4 = 1
25

and 4 = dt time-steps that are closer to the psychologically relevant range,

Figure 1 also highlights the emergence of the time-step sweet spot.

We now quantify the sweet spot over which consumption functions closely replicate

one another. We take the dt-model as our benchmark and study the numerical con-

vergence of the 4-model to the dt-model as 4→ 0. This section shows that 4 = dt

provides a tractable approximation of the 4-model with psychologically appropriate

time-steps. This is a helpful property, because the continuous-time IG specification

is an appealing choice both analytically and numerically.38

We use a mean squared error metric to evaluate the distance between the con-

sumption function of the 4-model and the dt-model. Our goal from a practical

standpoint is to rule out the large and rapid variations in the consumption function

that can make present-biased preferences non-robust and hence difficult for applied

researchers to use. Squared error disproportionately punishes large deviations from

the well-behaved dt-model, which is precisely our goal.

36Our setup nests other assumptions such as a reflecting barrier at x = 0. Though such barrier
choices affect the resulting distribution of agents, this paper focuses only on policy functions.

37For similar results, see e.g. Harris and Laibson (2001, 2003), Krusell and Smith Jr. (2003),
Chatterjee and Eyigungor (2016), and Morris and Postlewaite (2020).

38Analytically, continuous time allows us to characterize properties of the consumption function
(Propositions 2 and 3). See also Laibson et al. (2021) and Maxted (2022) for further applications
that rely on the tractability of IG preferences. Numerically, finite-difference methods are typically
fast, particularly in comparison to discrete-time models with short time-steps (Achdou et al., 2022).
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Define:

4-Model Error (DME) =

∫ 20

x∗

(
C̃(x)− c̃(x)

)2
dx

20− x∗
. (28)

Recall that the tilde notation denotes rates. The DME is defined in terms of con-

sumption rates so that it is comparable across different 4’s. C̃ denotes the rate of

consumption in the discrete-time model, and c̃ denotes the rate of consumption in

the continuous-time model. We restrict the analysis to a bounded interval (x∗, 20].

Because the model features only additive noise we expect pathologies to exist at large

enough wealth levels for any 4 > 0.39

Table 1 shows the DME as a function of the time-step 4 for β ∈ {1, 0.5, 0.3}. Ta-

ble 1 exhibits substantial deviations in consumption for large 4 when β ∈ {0.5, 0.3}.

For example, when β = 0.3 the DME reaches almost 8 times z. However, our DME

metric decreases drastically for small 4. This indicates the time-step sweet spot over

which consumption functions are quantitatively homogeneous. Table 1 also shows

that the precise upper boundary of the sweet spot is calibration-dependent; e.g.,

the sweet spot roughly emerges for monthly time-steps when β = 0.5, and weekly

time-steps when β = 0.3 (well below most empirical estimates).

DME β = 1 β = 0.5 β = 0.3
4 = 1 0.0075 0.3189 2.5223
4 = 1/5 0.0003 0.0502 7.7697
4 = 1/10 0.0001 0.0047 3.8756
4 = 1/25 0.0001 0.0007 0.8111
4 = 1/50 0.0001 0.0003 0.0399

Table 1: DME values for β ∈ {1, 0.5, 0.3} and 4 ∈ {1, 1
5
, 1
10
, 1
25
, 1
50
}.

Another insight from Table 1 is that in a classical world of β = 1 the discrete-

39As the agent gets wealthier the effect of additive noise decreases. This makes future consumption
more predictable and counterfactual pathologies more likely. Shrinking 4 to zero expands the
interval on which consumption is well-behaved. In the continuous-time limit, Proposition 3 proves
that consumption is continuous on the entire domain (0,∞). The addition of stochastic asset returns,
which are multiplicative risks that scale with wealth, should also diminish this effect.
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time and continuous-time models closely approximate one another, even for annual

time-steps. This is perhaps unsurprising, and is likely the reason that the choice of

time-step has thus far received little attention in the household finance literature.

However, this property breaks down under present bias, where large time-steps can

lead to non-robust properties that do not reflect the behavior of models with time-

steps that are in the psychologically relevant range.

Intuition: The Importance of Period-by-Period Shocks. We now discuss the

intuition for why a sweet spot emerges when time-steps are brought closer to the

psychologically relevant range. For non-robust consumption pathologies like coun-

terfactual downward discontinuities to arise, the current self must be able to both

predict and control the wealth of future selves. However, as 4 → 0 the ability to

manipulate the wealth of future selves becomes overwhelmed by the high-frequency

noise in the system.

To see this effect, recall the dynamic budget constraint given by equation (1):

xt+1 = R(xt − ct) + z + σεt+1.

Self t’s ability to predict the wealth of self t + 1 depends on σ. As 4 → 0 the noise

in the model (σ) decreases in proportion to
√
4. Self t controls the wealth of future

selves through the choice of consumption level ct. As 4 → 0 consumption decreases

approximately in proportion to 4. Thus, as 4→ 0 the noise in the model dominates

each self’s ability to control the wealth of future selves.40

Though it is well known that pathologies can fade away when noise is high (Harris

and Laibson, 2003), in a calibrated model one cannot arbitrarily increase noise. This

paper’s insight is the recognition that unrealistically large time-steps provide implicit

40To check this intuition, Appendix Figure 5 studies what would happen in our 4-model if we
were to set noise parameter σ equal to 4σ rather than

√
4σ. This alternate scaling keeps the ratio

z/σ constant as 4→ 0. Appendix Figure 5 illustrates that without the requisite noise, consumption
behavior remains pathological even for shorter time-steps.
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diversification. Large time-steps thus deflate the true level of high-frequency noise

that consumers face, which spuriously allows for non-robust and highly strategic

consumption behavior to emerge. Reducing4 to a length that is more psychologically

appropriate undoes this illegitimate diversification, and allows for robust predictions

to emerge.41

This discussion highlights the importance of period-by-period noise for generating

robust policy functions as 4 → 0. To formalize this point, in Appendix B we study

a deterministic economy and construct (a continuum of) equilibria that contain an

arbitrary number of policy-function discontinuities as 4→ 0 over any finite interval

of cash on hand. This deterministic counter-example shows that noise is a necessary

assumption for our results.

6 Robustness and Comparative Statics

To show the robustness of our sweet-spot result, we fix β = 0.5 and repeat the

analysis in Table 1 under alternate calibrations. Results are provided in Table 2.

For comparison, the first column of Table 2 lists the DME for β = 0.5 under the

baseline calibration. Table 2 illustrates that the upper boundary of the sweet spot is

somewhat calibration-dependent. However, conditional on a calibration, our 4 → 0

sweet-spot result continues to apply.

First we consider ρ ∈ {0.75, 2}. On the low end we set ρ = 0.75 because this is

approximately the limit of where we can push our method for 4 ≥ 1
50

.42 On the high

end we double ρ from its baseline calibration. The DME is decreasing in ρ. Since the

EIS is given by 1
ρ
, as ρ increases the agent becomes less willing to engage in strategic

behavior because this forces deviations from a smooth path of consumption.

Next we study robustness to the volatility of balance-sheet shocks, both halving

noise to σ = 1
6

and doubling it to σ = 2
3
. As discussed in Section 5, pathologies are

41See also Pagel (2018) for a related result that time diversification makes portfolio allocations
sensitive to 4 when consumers have loss-averse utility over news.

42For β = 0.5, restriction (15) requires ρ > 0.5.
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reduced as σ increases. We also analyze robustness to the assumption that balance-

sheet shocks are Gaussian. Table 2 lists the DME under the alternate calibration

that such shocks are uniformly distributed, with ε ∼ U(−
√

3σ,
√

3σ). The uniform

distribution creates explicit cutoffs and rules out large shocks, both of which increase

the ability for self t to predict and strategically manipulate the consumption of the

next self. This increases the DME relative to the baseline.

Our baseline assumption that uB = u
(

1
10
z
)

imposes a strong bankruptcy penalty.

The last column makes bankruptcy more attractive by setting uB = u (z). This

increases the agent’s desired consumption near x∗. One effect of large time-steps

here is that they make the liquidity constraint bind over a larger region of the state

space,43 which then increases the DME for high values of uB when 4 is large.

DME Baseline ρ = 0.75 ρ = 2 σ = 1
6

σ = 2
3

ε ∼ U uB = u (z)
4 = 1 0.3189 1.2289 0.0035 0.6619 0.0510 0.5045 3.5798
4 = 1

10
0.0047 1.6543 0.0001 0.6367 0.0004 0.0125 0.5736

4 = 1
25

0.0007 0.3063 0.0001 0.2341 0.0003 0.0017 0.0584
4 = 1

50
0.0003 0.0097 0.0001 0.0014 0.0003 0.0007 0.0286

Table 2: DME values for β = 0.5 and 4 ∈ {1, 1
10
, 1
25
, 1
50
} under alternate calibrations.

7 Extensions

7.1 The û Agent in Discrete Time

In the dt-model the IG agent’s consumption is 1
ψ

times the û agent’s consumption

(equation (27)). Appendix Figure 6 shows that this property also holds approxi-

mately in the discrete-time model for small 4. This approximation result has useful

numerical applications. Because the û agent is an exponential discounter, their con-

sumption will not be subject to the sorts of strategic behavior that arises when β < 1.

43For example, when 4 = 1 the agent’s consumption is bounded by cash on hand: C(xt) ≤ xt.
For 4 = 1

50 it is still the case that consumption level C(xt) ≤ xt, but it is the consumption rate

that is important. The liquidity constraint will only bind when consumption rate C̃(xt) = 50xt, a
much weaker restriction.
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Numerical methods that are more efficient than VFI, but rely on well-behaved policy

functions, can be utilized to calculate the consumption of the û agent. For small 4,

multiplying the consumption of the û agent by 1
ψ

thus provides a computationally

efficient approximation to the consumption of the present-biased agent.

7.2 Naivete

Up to this point we have assumed that the present-biased agent is sophisticated,

meaning that they are perfectly aware of their time-inconsistency. Indeed, it is their

attempts to strategically interact with future selves that create non-robust consump-

tion behavior. An alternative to sophistication is to assume partial or complete

naivete (Akerlof, 1991; O’Donoghue and Rabin, 1999, 2001). Under naivete, self t

erroneously believes that all future selves will behave according to short run discount

factor βE > β. Partial naivete sets βE ∈ (β, 1) and complete naivete sets βE = 1.

As discussed in the introduction, naivete is one method that the literature has

adopted to circumvent non-robustness issues. Such issues typically do not arise under

complete naivete because the agent acts as if all future selves are time consistent.

However, for all but complete naivete – a strong simplification – strategic behavior

can still emerge. This section extends the model to allow for naivete.

Naivete in the Discrete-Time Model. Let β denote the agent’s true present

bias. Let βE denote their expected present bias in all future periods. Under naivete,

equations (2) and (5) become:

Ct(xt) = argmax
c≤xt

u(c) + βδEtV E
t+1(xt+1), (29)

B∗t = {xt|uB + βδVB ≥ u(Ct(xt)) + βδEtV E
t+1(xt+1)}. (30)

V E
t is the continuation-value function, characterized by equations (2) through (5),

that would obtain if the agent was sophisticated with a true short-run discount factor
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of βE. Numerically, we first compute V E
t by solving the discrete-time model for a

sophisticate with short-run discount factor βE. Given V E
t , one final iteration is then

needed to solve for the naif’s policy functions at time t (as specified by equations (29)

and (30)).

Naivete in the Continuous-Time Model. As in Laibson et al. (2021) and

Maxted (2022), the naive IG agent’s consumption is defined by

ũ′(c̃) = β
∂vE

∂x
. (31)

Similar to discrete time, vE is the value function that would obtain if the IG agent had

short-run discount factor βE instead of β. To numerically solve for the consumption

of the naive IG agent, we first solve for vE. The naive IG agent’s consumption is then

defined implicitly by equation (31).

Consumption Functions under Naivete. Table 3 examines the DME metric

under different levels of naivete. Two results are apparent. First, in all columns the

DME is decreasing as 4→ 0, signaling again the emergence of a sweet spot. Second,

for 4 = 1 the DME is large regardless of βE. Though the consumption function

of naive agents may not feature counterfactual pathologies, when written with large

time-steps it still provides a poor approximation to models with smaller time-steps.

DME Baseline βE = 0.6 βE = 0.7 βE = 0.8 βE = 0.9 βE = 1
4 = 1 0.3189 0.1248 0.2220 0.2997 0.3315 0.3389
4 = 1

10
0.0047 0.0003 0.0014 0.0023 0.0027 0.0028

4 = 1
25

0.0007 0.0001 0.0002 0.0003 0.0004 0.0004
4 = 1

50
0.0003 0.0001 0.0001 0.0002 0.0002 0.0002

Table 3: DME values for β = 0.5 and 4 ∈ {1, 1
10
, 1
25
, 1
50
} across varying naivete.
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8 Conclusion

This paper identifies a “sweet spot” of time-steps over which dynamic household

finance models with present-biased agents produce robust, quantitatively homoge-

neous, policy functions. The sweet spot spans from zero (i.e., continuous time) to

roughly two weeks, thus capturing the psychologically relevant range of present-bias

horizons.

For researchers studying present bias in discrete time, our results highlight the im-

portance of the time-step, and establish a range of time-steps over which model predic-

tions are robust. Our results also imply that researchers can leverage the tractability

of the continuous-time IG specification of present bias in order to closely approxi-

mate psychologically well-calibrated models. While our paper focuses specifically on

present bias, one interesting pathway for future exploration is the extent to which

our sweet-spot result continues to apply across the broader class of present-focused

preferences (Ericson and Laibson, 2019), including true hyperbolic discounting.

References

Acharya, Subas, David Jimenez Gomez, Dmitrii Rachinskii, and Alejandro

Rivera, “Present-Bias and the Value of Sophistication,” SSRN 3722608, 2022.

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and

Benjamin Moll, “Income and Wealth Distribution in Macroeconomics: A

Continuous-Time Approach,” The Review of Economic Studies, 2022, 89 (1), 45–86.

Akerlof, George A., “Procrastination and Obedience,” The American Economic

Review, 1991, 81 (2), 1–19.

Alfaro, Laura and Fabio Kanczuk, “Fiscal Rules and Sovereign Default,” NBER

w23370, 2017.

34



Allcott, Hunt, Joshua Kim, Dmitry Taubinsky, and Jonathan Zinman, “Are

High-Interest Loans Predatory? Theory and Evidence from Payday Lending,” The

Review of Economic Studies, 2022, 89 (3), 1041–1084.

Amador, Manuel, Iván Werning, and George-Marios Angeletos, “Commit-

ment vs. Flexibility,” Econometrica, 2006, 74 (2), 365–396.

Angeletos, George-Marios, David Laibson, Andrea Repetto, Jeremy To-

bacman, and Stephen Weinberg, “The Hyperbolic Consumption Model: Cali-

bration, Simulation, and Empirical Evaluation,” Journal of Economic Perspectives,

2001, 15 (3), 47–68.

Ashraf, Nava, Dean Karlan, and Wesley Yin, “Tying Odysseus to the Mast:

Evidence from a Commitment Savings Product in the Philippines,” The Quarterly

Journal of Economics, 2006, 121 (2), 635–672.

Augenblick, Ned, “Short-Term Time Discounting of Unpleasant Tasks,” Mimeo,

2018.

and Matthew Rabin, “An Experiment on Time Preference and Misprediction

in Unpleasant Tasks,” The Review of Economic Studies, 2019, 86 (3), 941–975.

Barles, Guy and Panagiotis E. Souganidis, “Convergence of Approximation

Schemes for Fully Nonlinear Second Order Equations,” Asymptotic Analysis, 1991,

4 (3), 271–283.

Beshears, John, James Choi, David Laibson, and Peter Maxted, “Present

Bias Causes and Then Dissipates Auto-Enrollment Savings Effects,” AEA Papers

and Proceedings, 2022, 112, 136–41.

, James J. Choi, Christopher Clayton, Christopher Harris, David Laib-

son, and Brigitte C. Madrian, “Optimal Illiquidity,” Mimeo, 2023.

35
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**ONLINE APPENDIX**

A The dt-Model

A.1 Proof of Proposition 1: Value Function Equivalence

This proof is similar to Theorem 2 of Harris and Laibson (2013), and is included

for complete detail.44 Let f(α) be the unique value of c̃ satisfying ũ′(c̃) = α. Let

h(α) = ũ(f(βα))−αf(βα). The IG consumer sets ũ′(c̃) = βv′, and therefore h(v′) =

ũ(f(βv′))− v′f(βv′) = ũ(c̃)− v′c̃. We can use h(v′) in order to rewrite the Bellman

equation of the IG agent (equations (20) – (22)) in a reduced way:

γv = (µx+ z̄)v′ +
1

2
σ2v′′ + h(v′),

v = vB for all x ≤ 0.

For the û agent, let f̂(α) be the unique value of ĉ satisfying û′(ĉ) = α. Let

ĥ(α) = û(f̂(α))−αf̂(α). The û agent sets û′(ĉ) = v̂′, and therefore ĥ(v̂′) = û(f̂(v̂′))−

v̂′f̂(v̂′) = û(ĉ)− v̂′ĉ. We can use ĥ(v̂′) to rewrite the Bellman equation of the û agent

(equations (24) – (26)) in a reduced way:

γv̂ = (µx+ z̄)v̂′ +
1

2
σ2v̂′′ + ĥ(v̂′),

v̂ = vB for all x ≤ 0.

The reduced Bellman of the IG agent and the reduced Bellman of the û agent will

have identical solutions if and only if h is the same as ĥ. One can show directly that

this is the case.

44A key difference is that Harris and Laibson (2013) use a wealth-dependent û function to account
for binding constraints. This is not necessary here because bankruptcy occurs at the x = 0 boundary.
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A.2 Proof of Proposition 3: Consumption in the dt-Model

Starting with clause (i), Brownian motion makes the value function twice continuously

differentiable. Since ũ′(c̃) = βv′ and ũ′′(c̃) ∂c̃
∂x

= βv′′, twice continuous differentiability

of v gives continuous differentiability of c̃ for x > 0.

Clauses (ii) and (iii) are proven in Harris and Laibson (2013, Online Appendix

G). See specifically Sections G.4 and G.5, and the results therein. The “once convex,

always strictly convex” and “once concave, always strictly concave” results both hold

on the interior of the wealth state space in the dt-model. The conclusion, which also

holds in our model, is as follows:

1. If µ ≤ γ then v is concave on (0,∞). Therefore c̃ is increasing on (0,∞).

2. If µ > γ then v may be convex immediately to the right of x = 0. But, v will

eventually become concave and remain concave thereafter. Therefore c̃ may be

decreasing immediately to the right of x = 0, but will eventually be increasing

and remain increasing thereafter.

The HL13 online appendix can be found here: https://scholar.harvard.edu/

files/laibson/files/instantgrat_web_appendix.pdf
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A.3 Heuristic Derivation of the dt-Model from Discrete Time

Consider the discrete-time model of Section 2, characterized by parameters {4, z,σ,R, δ,β,uB,ρ}.

To build intuition for the continuous-time model, we present a heuristic derivation

by passing to the limit as 4 → 0. See Achdou et al. (2022, Online Appendix) for a

similar exercise.

The model presented here makes four simplifying assumptions. First, we ignore

the endogenous bankruptcy decision and assume that bankruptcy is declared for all

x ≤ 0.45 Second, we ignore the liquidity constraint because it does not pass to

continuous time. Third, we impose stationary Markov equilibrium for the discrete-

time model, as this is the equilibrium selection used in the dt-model.46 Fourth, we

cast the model in terms of consumption rates (rather than consumption levels).

The dynamic budget constraint can be rewritten as:

xt+1 = R(xt −4c̃t) + z + σεt+1, (32)

where c̃t denotes the rate of consumption at time t. The Bellman equation of the

present-biased consumer is:

C̃(xt) = argmax
c̃

4ũ(c̃) + βδEtV (xt+1) (33)

W (xt) = 4ũ(C̃(xt)) + βδEtV (xt+1) (34)

V (xt) = 4ũ(C̃(xt)) + δEtV (xt+1). (35)

Note in the above expressions that C̃(xt) is a consumption rate.

45In discrete time this assumption creates a discontinuity in W (x) at x = 0. It is irrelevant in
continuous time because the borrowing constraint never binds for x > 0, and value matching holds
at x = 0.

46This ignores issues of equilibrium existence and uniqueness.
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Recall that δ = δ4 and R = R4. We can approximate δ and R for small 4 as:

δ = exp(4 ln(δ)) ≈ 1−4γ,

R = exp(4 ln(R)) ≈ 1 +4µ,

where γ = − ln(δ) and µ = ln(R). Using the approximation for R along with equation

(6), budget constraint (32) becomes

xt+1 = xt +4(µxt + z − c̃t) + σεt+1 − µ42c̃t.

Dropping higher-order terms, in the limit as 4→ 0 we obtain:

dxt = (µxt + z − c̃t)dt+ σdbt, (36)

where bt is a standard Brownian motion. This is the continuous-time dynamic budget

constraint stated in equation (18).

Next, using the approximation for δ along with equation (35) yields:

V (xt) = 4ũ(c̃t) + (1−4γ)EtV (xt+1).

Subtracting (1−4γ)V (xt) from both sides of this equation:

4γV (xt) = 4ũ(c̃t) + (1−4γ)Et [V (xt+1)− V (xt)] .

Dividing both sides by 4 and taking the limit as 4→ 0 gives:

lim
4→0

γV (xt) = lim
4→0

ũ(c̃t) + lim
4→0

(1−4γ)

[
EtV (xt+1)− V (xt)

4

]
.

The term in brackets is Et[dV (xt)]
dt

. Using Itô’s Lemma, this is given by (µxt + z̄ −

c̃t)V
′ + 1

2
σ2V ′′. We’ve now recovered differential equation (20).
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B Non-Robust Equilibria in a Deterministic Model

B.1 Deterministic Eat-the-Pie Model

Here we consider a deterministic Eat-the-Pie model of consumption. The agent begins

with a stock of wealth x0 and earns no further income (z̄ = 0). The agent has present-

biased time preferences (1, βδ, βδ2, ...) and log utility:

u(c) = 4 ln (c/4) .

For this constructed equilibrium we set β = 0.4, δ = 0.95, and R = 1. The model is

deterministic (σ = 0) and bankruptcy is never declared by the agent in equilibrium

(uB = −∞).47

B.2 Phelps-Pollak Consumption Function

This Eat-the-Pie model features a linear equilibrium which we call the Phelps-Pollak

equilibrium (Phelps and Pollak, 1968). Laibson (1994) shows that the Phelps-Pollak

equilibrium is the unique equilibrium that is selected in the limit of a finite T-horizon

game as T →∞.

The Phelps-Pollak equilibrium is characterized by the consumption rule C(x) =

λx, where λ is given by:

λ =
1− δ

1− δ(1− β)
.

Parameter λ varies with 4 since δ = δ4.

47The assumption that uB = −∞ is problematic when cash on hand is stochastic (see footnote
23). When the model is deterministic, the agent can always choose an equilibrium path that avoids
bankruptcy.

45



B.3 The Constructed Sawtooth Consumption Function

Following the logic of Krusell and Smith Jr. (2003), we now construct a continuum

of equilibria that feature a “sawtooth” consumption function. This consumption

function is shown graphically in Figure 2 below. The sawtooth consumption function

C(x) is characterized by two (dotted/dashed) rays, an upper vector ϕx and a lower

vector αx. Both ϕ and α depend on the time-step 4. At all except the countably

infinite number of points where consumption jumps from the ϕ vector down to the α

vector, the consumption function features an MPC of 1. We assume that C(x) = αx

at points of discontinuity. This means that C(x) is right-continuous (with an MPC of

1) at all wealth levels x ∈ (0,∞). Figure 2 also plots the savings function x− C(x).

Since the MPC is 1 at all non-jump points, savings is characterized by a step function

that increases discretely whenever consumption jumps from the ϕ vector down to the

α vector. We solve for α and ϕ as a function of 4 below.

Figure 2: Constructed sawtooth equilibrium for 4 = 1.

Let X denote the set of asset levels at which the sawtooth consumption function

jumps down to the α vector. The sawtooth consumption function is constructed such
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that the agent moves down from one point in X to the next, always getting closer to

the origin. When the agent consumes along the α vector, they consume α% of their

assets and pass (1 − α)% on to the next self. From any point xα ∈ X , this path of

consumption yields a value of:

V (xα) =
∞∑
s=t

δs−t4 ln

(
αxα(1− α)s−t

4

)
= 4

[
ln(α/4)

1− δ
+

ln(xα)

1− δ
+ δ

ln(1− α)

(δ − 1)2

]
.

(37)

One implication of setting the MPC equal to 1 between the α and the ϕ vector is

that (1− ϕ) = (1− α)2.48 So, our constructed equilibrium has the property that

ϕ = α(2− α). (38)

For this constructed equilibrium to hold, we impose that the current self is in-

different between consuming ϕxα versus αxα for all xα ∈ X . At each xα ∈ X our

indifference assumption yields the condition that

u(αxα) + βδV ((1− α)xα) = u(ϕxα) + βδV ((1− ϕ)xα),

where V (·) is given by equation (37). Since ϕ > α, u(αxα) < u(ϕxα) but this is offset

by V ((1 − α)xα) > V ((1 − ϕ)xα). Imposing equation (38), the above indifference

condition can be restated as

u(αxα) + βδV ((1− α)xα) = u(α(2− α)xα) + βδV ((1− α)2xα). (39)

48Consider a wealth level xα ∈ X . If the agent consumes ϕxα then they jump to a point in X that
is one point lower than the point they jump to by consuming αxα. The agent needs to consume at
rate α for two periods in order to get to wealth level (1− ϕ)xα. Consuming at rate α twice results
in a wealth level of (1− α)2xα after two periods.
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From equation (39) we can derive the following formula for α under log utility:

2− α = (1− α)−
βδ
1−δ . (40)

Equation (40) implicitly defines α for any time-step 4. Given α, ϕ is given by

equation (38).

B.4 Equilibrium

Now that we have outlined the construction of the sawtooth consumption function

shown in Figure 2, we argue that this sawtooth consumption function is an equilib-

rium of the deterministic Eat-the-Pie model. Intuitively, the agent does not want

to increase consumption because the sawtooth consumption function is designed to

punish such increases. In particular, a small increase in consumption by self t dis-

cretely increases the consumption of self t+ 1 from the α vector to the ϕ vector, and

pushes all selves t+ 2 onward to one kink-point lower than they would otherwise be.

Similarly, present bias implies that the agent does not want to cut consumption at

time t in order to increase the consumption of self t+ 1 (who has a right-MPC of 1).

In detail, let g(c, x) = max{xα ∈ X |xα ≤ x−c}. In words, function g(c, x) returns

the closest point in X that is weakly below x − c. From any level of cash on hand,

xt, the current-value function for consumption choice c is:

W (c, xt) = u(c) + βδu(xt − c− (1− α)g(c, xt)) + βδ2V ((1− α)g(c, xt)), (41)

where V (·) is given by equation (37). The interpretation of W (c, xt) is as follows.

The current self consumes c and earns utility u(c). Next, the sawtooth consumption

function implies that self t+1 will consume such that self t+2 has wealth (1−α)g(c, xt).

Self t + 1 therefore consumes (xt − c) − (1 − α)g(c, xt). From self t + 2 onwards the

agent returns to consuming along the α vector. The continuation-value function from

t+ 2 onwards is given by V ((1− α)g(c, xt)).
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Step 1: Equilibrium at Points in X . Consider a point xα ∈ X . Without loss of

generality, we set xα = 1. The equilibrium is constructed so that W (α, 1) = W (ϕ, 1).

We argue here that it is optimal for the self with wealth xα = 1 to choose either

C(1) = α or C(1) = ϕ.

First, we show that W (α, 1) > W (c, 1) for all c ∈ (α, ϕ). To start, note that

W (c, 1) is continuous for c ∈ (α, ϕ] and W (c, 1) is differentiable for c ∈ (α, ϕ). For

c ∈ (α, ϕ), function g(c, 1) = 1−ϕ and therefore ∂W (c,1)
∂c

= 1
c
−βδ 1

1−c−(1−α)(1−ϕ) . This

derivative reaches a minimum as c → ϕ. In the limit, lim
c→−ϕ

∂W (c,1)
∂c

= 1
ϕ
− βδ 1

α(1−ϕ) .

For our calibration, one can show that lim
c→−ϕ

∂W (c,1)
∂c

> 0 for all 4 ∈ (0, 1].49 Since

∂W (c,1)
∂c

> 0 for all c ∈ (α, ϕ), W (ϕ, 1) > W (c, 1) for all c ∈ (α, ϕ). Since W (α, 1) =

W (ϕ, 1) by construction, it is also the case that W (α, 1) > W (c, 1) for all c ∈ (α, ϕ).

Second, we show that W (α, 1) > W (c, 1) for all c ∈ (0, α). Again, W (c, 1) is

continuous for c ∈ (0, α] and W (c, 1) is differentiable for c ∈ (0, α). For c ∈ (0, α),

function g(c, 1) = 1 − α and therefore ∂W (c,1)
∂c

= 1
c
− βδ 1

1−c−(1−α)2 . This derivative

reaches a minimum as c → α. In the limit, lim
c→−α

∂W (c,1)
∂c

= 1
α
− βδ 1

α(1−α) . For our

calibration, one can show that lim
c→−α

∂W (α,1)
∂c

> 0 for all 4 ∈ (0, 1]. Since ∂W (c,1)
∂c

> 0

for all c ∈ (0, α), W (α, 1) > W (c, 1) for all c ∈ (0, α).

Third, we argue that W (α, 1) > W (c, 1) for all c ∈ (ϕ, 1). Since the current self

is willing to cut consumption from ϕ to α in order to increase the consumption of

future selves, the current self will not want to increase consumption above ϕ. Any

consumption above ϕ decreases the consumption of selves t + 2 onward by at least

one more kink-point, effectively reproducing the arguments above but with even less

incentive to consume at time t and more incentive to pass liquidity to the future.

Step 2: Equilibrium at Points Outside X . We’ve argued that our sawtooth

equilibrium holds for all points in X . Now we argue that the sawtooth consumption

49The important condition is β < 1
2 . Setting c = ϕ, one can show that 1

ϕ > βδ
1−ϕ−(1−α)(1−ϕ)

reduces to the condition (1 − α)2 > βδ(2 − α). Since α → 0 and δ → 1 as 4 → 0, β < 1
2 is a

necessary condition for this to hold.
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function is also optimal at all points x /∈ X .

First, we rule out any deviations from the constructed equilibrium in which the

current self increases consumption. Without loss of generality, continue to assume

that 1 ∈ X and consider a point x ∈ (1, 1
1−α).50 The benefit of increasing consumption

will be lower for all x ∈ (1, 1
1−α) than it is at x = 1. In Step 1 we showed that C(1) = α

is (weakly) optimal. Thus, it will not be optimal to increase consumption for any

x ∈ (1, 1
1−α).

Second, we rule out any deviations from the constructed equilibrium in which the

current self decreases consumption. Here the argument is similar. Without loss of

generality, continue to assume that 1 ∈ X and consider a point x ∈ (1− α, 1).51 The

benefit to decreasing consumption will be lower for all x ∈ (1− α, 1) than it is in the

limit as x →− 1. In Step 1 we showed that C(1) = ϕ is (weakly) optimal. Thus, it

will not be optimal to decrease consumption for any x ∈ (α, 1).

B.5 Equilibria as 4→ 0

For our chosen calibration of β = 0.4 and δ = 0.95 we use equations (38) and (40) to

characterize the sawtooth consumption function. We also present the linear Phelps-

Pollak equilibrium for reference. Results are given in Table 4.

4 α ϕ λ (Phelps-Pollak)

4 = 1 0.0821 0.1575 0.1163
4 = 1/4 0.0218 0.0431 0.0313
4 = 1/16 0.0055 0.0110 0.0080
4 = 1/100 8.8811 e-4 1.7754 e-3 1.2810 e-3
4 = 1/1000 8.8877 e-5 1.7775 e-4 1.2822 e-4
4 = 1/10000 8.8884 e-6 1.7777 e-5 1.2823 e-5

Table 4: Equilibrium values of α, ϕ, and λ. α, ϕ, and λ decrease approximately in
proportion with time-step 4. Additionally, λ always lies between α and ϕ.

50If there exists a discontinuity at 1, the next highest discontinuity occurs at 1
1−α .

51If there exists a discontinuity at 1, the next lowest discontinuity occurs at 1− α.
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B.6 Comment on Discrete vs. Continuous Time

The above analysis shows that the sawtooth consumption function characterized by

α and ϕ contains an arbitrary number of downward discontinuities over any finite

interval of the state space as4→ 0. In contrast, Harris and Laibson (2013) prove that

in continuous time with vanishingly small Brownian noise for asset returns, this Eat-

the-Pie problem has a unique consumption function characterized by consumption

rate λdt = − ln(δ)
β

. Note that λdt = lim
4→0

λ
4 , where λ is the discrete-time Phelps-Pollak

equilibrium defined above. Thus, the unique consumption function in the continuous-

time Instantaneous Gratification case is linear in wealth.

What this comparison highlights is that the sawtooth equilibrium exists for every

4 > 0, but it does not pass to the continuous-time Instantaneous Gratification case.

Intuitively, the sawtooth equilibrium can support lower consumption than the Phelps-

Pollak equilibrium because consumption deviations by self t will be punished by

overconsumption by self t+1. In order for this punishment to be possible, there must

exist values of x at which the sawtooth consumption function C(x) > αx. However,

in the continuous-time Instantaneous Gratification model (with vanishing Brownian

motion), such punishments do not arise.
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C Numerical Methods

C.1 Discrete Time

Here we outline the algorithm used to solve our discrete-time 4-model. We opt for

simplicity whenever possible. As discussed in Section 2.1, the numerical methods

remain the same for all 4 > 0. All that changes is the model’s calibration.

We use VFI to solve a T -horizon game for large T , and then check if the policy

functions have converged. Our VFI has two state variables: assets x and period t.

We construct a uniform grid for state variable x with a step-size denoted by xjump

and maximum grid value of xmax.52 Our grid G consists of the set {0, xjump, 2×

xjump, ..., xmax}. At each point in the grid and for each t ∈ {1, 2, ..., T − 1}, the

agent solves the following consumption problem:

Ct(xt) ∈ argmax
c

u(c) + βδEtVt+1(R(xt − c) + zt+1),

Wt(xt) = max {u(Ct(xt)) + βδEtVt+1(R(xt − Ct(xt)) + zt+1), uB + βδVB}

Vt(xt) =

u(Ct(xt)) + δEtVt+1(R(xt − Ct(xt)) + zt+1) if xt 6∈ B∗t

VB if xt ∈ B∗t
,

B∗t = {xt|uB + βδVB ≥ u(Ct(xt)) + βδEtVt+1(R(xt − Ct(xt)) + zt+1)},

subject to the restrictions that:

1. VT (xT ) =


u(z)
1−δ if xT ≥ 0

VB if xT < 0

52We use a uniform grid for three reasons. First, the general suggestion in the numerical literature
is to place more gridpoints where the consumption function has the most curvature. In addition to
placing gridpoints near the borrowing constraint, one would also ideally place grid points in areas
where the consumption function exhibits large and rapid fluctuations. As our simulations show,
this non-robust behavior is more likely to occur for large wealth values. Balancing the desire for
gridpoints near the origin and near the top of the state space, we simply choose a uniform grid.
Second, uniform grids are easy to understand. Third, with only one state variable our algorithm is
fast enough to allow for many gridpoints, even as 4 → 0. Thus, we can ignore issues of grid point
efficiency and simply use the brute-force approach of many grid points.
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2. xt − Ct(xt) ∈
{

0, xjump
R

, 2×xjump
R

, ..., xmax
R

}
Restriction 1 serves as an initial “guess” to start our Value Function Iteration.53

Restriction 2 is imposed to ensure that R(xt−Ct(xt)) lies on the grid in period t+1.54

The practical implication of Restriction 2 is that the agent chooses consumption from

a discrete choice set.

Restriction 2 also means that our discrete-time numerical methods become less

accurate as4 shrinks. This follows from the discretization of the state space into grid

G, which we keep constant regardless of 4. Restriction 2 implies that consumption

level Ct(xt) is restricted to the set {x, x− xjump
R

, x− 2×xjump
R

, ..., x− xmax
R
}. In this

paper we care about consumption rate C̃t(xt). By the same logic, C̃t(xt) is restricted

to the set { 1
4x,

1
4

(
x− xjump

R

)
, 1
4

(
x− 2×xjump

R

)
, ..., 1

4

(
x− xmax

R

)
}. As 4→ 0 the

step size between each choice for consumption rate C̃t(xt) increases. The benefit of

our multigrid algorithm is that it allows us to efficiently use a dense grid.

Stopping Criteria. We do not always achieve complete policy function conver-

gence from our value function iteration. In order for the VFI to terminate we must

therefore impose a stopping criteria. In the case where δR < 1 we stop the VFI if

either (i) the consumption function converges, or (ii) there are fewer than 40 unique

consumption functions out of the last 50 iterations. Case (i) accounts for convergence,

and case (ii) accounts for cycles.55 In the case where criteria (ii) is met, we plot the

final iteration of the consumption function. Every δR < 1 calibration of the discrete-

time model in this paper is terminated due to either (i) or (ii) (i.e., the consumption

53In defining VT we implicitly assume that the agent is infinitely lived and has a deterministic
utility flow for all periods t ≥ T . This can be generalized. Because the Bellman operator is not a
contraction mapping when β < 1, this initialization can affect the equilibrium to which we converge,
particularly in the cases where the equilibrium is non-robust.

54The restriction that x ≤ xmax means that any large positive shock that pushes xt+1 > xmax
will be wasted. So, the consumer will endogenously avoid holding assets near the top of the grid.
When δR < 1 we find that this has little effect on the resulting equilibrium, as long as xmax is
relatively large. However, our algorithm can be updated to allow the agent to accumulate off the
grid by extrapolating the payoffs for above-grid asset levels.

55These cycles are commonly found in the literature. For example, a discussion of VFI cycles can
be found in Krusell et al. (2002).
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function either converges or enters a cycle).

When δR > 1 we are no longer able to establish clean stopping criteria. Whenever

the VFI does not terminate due to (i) or (ii), we simply terminate the VFI after a

large and predefined number of runs. Results for δR > 1 cases are presented in

Appendix D.

C.2 Continuous Time

Achdou et al. (2022) provide an excellent set of resources on continuous-time finite

difference methods. We refer interested readers to their paper.

To solve for the equilibrium of the IG consumer, one needs to solve the HJB

equation of the û agent and then back out the IG agent’s consumption from the

û equilibrium. The Bellman equation of the IG agent fails to meet a monotonic-

ity condition that is required for finite difference methods to converge (Barles and

Souganidis, 1991). This failure means that one cannot directly tackle the Bellman of

the IG agent with a finite difference scheme. Since β < 1 is a necessary condition

for the failure of monotonicity, the exponential û agent provides a solution. Further

details are presented in Maxted (2022).
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D 4-Model when δR > 1

Our value function iteration rarely converges when δR > 1. In particular, the con-

sumption functions that we solve for become particularly sensitive whenever the agent

accumulates assets (in expectation) near the top of the grid. In these accumulat-

ing equilibria, consumption function Ct(xt) depends on the consumption function at

higher levels of wealth, which can be poorly behaved, and the strategic behavior that

exists at high levels of wealth then “trickles down” to lower levels of wealth. Never-

theless, our 4 → 0 method still moderates issues with equilibrium non-robustness.

However, these cases are relegated to the appendix because they require a more careful

treatment from a numerical standpoint.

D.1 Numerical Methods

We explore two calibrations with δR > 1. First, we set R = 1.07 and keep all other

parameters of the baseline calibration constant. Second, we set R = 1.07 and also

increase uB to u
(

9
10
z
)
. This high-uB calibration is included in order to generate

non-monotonic consumption in the continuous-time model. These calibrations are

illustrated in Figure 3 below.

In discrete time, the policy functions that we compute do not converge over the

entire wealth space. Because we need our algorithm to terminate, we simulate a finite

T -horizon game with a large and predefined T . Convergence is outlined in Figure 4

below. An important property of Figure 4 is that the consumption function converges

(approximately) on an expanding wealth interval as4→ 0, thus producing a growing

interval of robust behavior as the time-step shrinks. In continuous time, there exists a

stationary policy function that is easily characterized by our finite difference methods.
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D.2 Policy Functions

(a) β = 0.5 and R = 1.07

(b) β = 0.5, R = 1.07, and uB = u
(

9
10z
)

Figure 3: Consumption functions for 4 ∈ {1, 1
10
, 1
25
, 1
50
}. The blue line plots the

final iteration of the 4-model consumption function. The dashed black line plots the
dt-model consumption function. Since consumption functions do not converge in the
discrete-time model, the blue line is the (arbitrary) final iteration of the VFI.
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D.3 Policy Function Convergence

(a) β = 0.5 and R = 1.07

(b) β = 0.5, R = 1.07, and uB = u
(

9
10z
)

Figure 4: Consumption functions for 4 ∈ {1, 1
10
, 1
25
, 1
50
}. Each panel plots the t = 1,

t = 26, t = 51, and t = 76 consumption function. Consumption functions approxi-
mately converge on an interval around x = 0 that expands as 4→ 0.
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E Additional Figures

Figure 5: Consumption functions holding the z
σ

ratio constant (β = 0.5).

Figure 6: The û agent in discrete time (β = 0.5). The bottom two curves plot the û
agent’s consumption for 4 ∈ {1, 1

25
}. The dotted red line is 1

ψ
times the consumption

of the û agent for 4 = 1
25

. The dashed black line is the consumption of the present-
biased agent (β = 0.5) for 4 = 1

25
.
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