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This online appendix discusses some additional issues. Appendix B contains details and

derivations for the Perloff-Salop, Sattinger, and Hart models. Appendix C endogenizes the

degree of product differentiation / obfuscation. Appendix D contains proofs that are omitted

from the main paper. Appendix E derives second-order equilibrium conditions for the Perloff-

Salop, Sattinger and Hart models.

Appendix B Random-Utility Models

This section provides details for the derivation of the markup expressions for the three random

utility models analyzed in this paper.

Perloff-Salop

Recall from (4) that in the Perloff-Salop model, the demand function for good i is the proba-

bility that difference between the demand shock and the price is maximized by good i:

D (p1, ..., pn; i) = P
(
Xi − pi ≥ max

j 6=i
Xj − pj

)
= EXi

[∏
j 6=i

P (x− pi ≥ Xj − pj | Xi = x)

]

= EXi

[∏
j 6=i

F (x− pi + pj)

]

=

∫ wu

wl

f (x)
∏
j 6=i

F (x− pi + pj) dx.
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Using D (pi, p;n) to denote the demand for good i at price pi when all other firms set price p

and using D1 (pi, p;n) to denote ∂D (pi, p;n) /∂pi, we may calculate

D (pi, p;n) =

∫ wu

wl

f (x)F n−1 (x− pi + p) dx

D1 (pi, p;n) = − (n− 1)

∫ wu

wl

f (x) f (x− pi + p)F n−2 (x− pi + p) dx.

Note that in a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx = 1/n,

D1(p, p;n) = − (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx.

It follows that the Perloff-Salop markup µPSn is

p− c = − D(p, p;n)

D1(p, p;n)
=

1

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

To interpret the Perloff-Salop markup equation, use the notation Mn−1 (the largest of the

n− 1 noise realizations: Mn−1 ≡ maxj∈{1,...,n},j 6=iXj). Then, D (p, p;n) = P (Xi > Mn−1), so

D (p, p;n) = E
[
F (Mn−1)

]
. (19)

This formulation emphasizes that the demand for good i is driven by the properties of the

right-hand tail of the cumulative distribution function F̄ , as Mn−1 is likely to be large.

Sattinger (1984)

Under the utility specification (10), goods from the monopolistically competitive (MC) mar-

ket are perfect substitutes. The consumer optimizes by buying only one monopolistically

competitive good: the good i which maximizes eXi/pi. The consumer’s utility function is

thus Cobb-Douglas in the composite good and the chosen MC good. It is then easy to show

that the consumer spends fraction θ of his income on the chosen MC good. Without loss of

generality, normalize the consumer’s endowment y to equal 1/θ, so that the consumer always

spends 1 unit of income on the MC good. The demand function of firm i is the probability
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that the good i has a higher attraction-price ratio than all other goods, multiplied by the

purchased quantity 1/pi of the chosen good i; so

D (p1, ..., pn; i) =
1

pi
P
(
eXi

pi
= max

j=1,...,n

eXj

pj

)
=

1

pi
P
(
Xi − ln pi = max

j=1,...,n
Xj − ln pj

)
. (20)

We may rewrite this expression as

D (p1, ..., pn; i) =
1

pi

∫
f(x)

∏
j 6=i

F (x− ln pi + ln pj) dx.

Proceeding as in the case of the Perloff-Salop model, we get

D (pi, p;n) =
1

pi

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = − 1

p2
i

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx

− (n− 1)

p2
i

∫ wu

wl

f (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx

In a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx =
1

pn
,

D1(p, p;n) = − 1

p2

(
1

n
+ (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx

)
After some simple calculations, we may show that the Sattinger markup µSattn is

p− c = − D(p, p;n)

D1(p, p;n)
=

c

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

Hart (1985)

Recall that the consumer’s objective is to choose quantities to maximize:

max
i=1...n

max
Qi≥0

U =
ψ + 1

ψ

(
n∑
i=1

eXiQi

)ψ/(ψ+1)

−
n∑
i=1

piQi. (21)
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As in the Sattinger case, it is clear that because goods are perfect substitutes, the consumer

will purchase only from one firm, which we denote by i. The first-order condition of the

consumer’s problem is then

0 =
d

dQi

[
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

]
= eXiψ/(ψ+1)Q

−1/(ψ+1)
i − pi

which gives us the optimal quantity for the chosen good i: Qi = eXiψi /p1+ψ
i , and the total net

utility is:

Vi =
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

=

(
ψ + 1

ψ
− 1

)
piQi =

1

ψ
pie

Xiψ
i /p1+ψ

i =
1

ψ

(
eXii
pi

)ψ
The consumer chooses the good that maximizes his net utility, i.e. arg maxi

(
eXi/pi

)
. We may

then calculate the demand function for good i as

D(p1, ..., pn; i) = E

[
eψXi

p1+ψ
i

I{eXi/pi=maxj=1,...,n e
Xj /pj}

]
(22)

= E

[
eψXi

p1+ψ
i

I{Xi−ln pi=maxj=1,...,nXj−ln pj}

]
(23)

where I {·} is the indicator function. Writing out the expectation and differentiating gives

D (pi, p;n) =
1

p1+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = −1 + ψ

p2+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx

− n− 1

p2+ψ
i

∫ wu

wl

eψxf (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx.

In a symmetric equilibrium

D(p, p;n) =
1

p1+ψ

∫ wu

wl

eψxf (x)F n−1 (x) dx

D1(p, p;n) = − 1

p2+ψ

(
(1 + ψ)

∫ wu

wl

eψxf (x)F n−1 (x) dx+ (n− 1)

∫ wu

wl

eψxf 2 (x)F n−2 (x) dx

)
.
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With some simple calculations, we may show that the Hart markup µHartn is

p− c = − D(p, p;n)

D1(p, p;n)

= c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x) dx∫
eψxf (x)F n−1 (x) dx

)−1

.

Appendix C Endogenous Product Differentiation

So far, we have assumed that the variance of the noise term is exogenous. We now relax this

assumption and allow firms to choose the degree of product differentiation (in the traditional

economic interpretation), or the degree of obfuscation / “confusion ” (in a complementary

behavioral interpretation). Assume that firms can choose the degree to which their own

product is differentiated from the rest of the market; specifically, assume that each firm i can

choose σi at a cost c (σi) so that the firm’s taste shock is Xi = σiX, where X has CDF F .

The game then has the following timing:

1. Firms simultaneously choose (pi, σi)

2. Random taste shocks are realized

3. Consumers make purchase decisions

4. Profits are realized

Firm i’s profit function is given by

π ((pi, σi) , (p, σ) ;n) = (pi − c (σi))D ((pi, σi) , (p, σ) ;n)

in step 1, where D ((pi, σi) , (p, σ) ;n) is the demand for good i when the firm chooses (pi, σi)

and the remaining n − 1 firms choose (p, σ). Each firm i then chooses (pi, σi) to maximize

π ((pi, σi) , (p, σ) ;n). The symmetric equilibrium is characterized by

(p, σ) = arg max
(p′,σ′)

π ((p′, σ′) , (p, σ) ;n) .

Our techniques allow us to analyze the symmetric equilibrium for each of the Perloff-Salop,

Sattinger and Hart models.
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Proposition C1. Consider the Perloff-Salop, Sattinger and Hart models where firms si-

multaneously choose p and σ, under the same assumptions as Theorem 2. Assume that

wu > 0.28 Further, in the Perloff-Salop and Sattinger cases, assume that xf 2 (x) is (wl, wu)-

integrable, and that c′ > 0, c′′ > 0, limt→∞ c
′ (t) = ∞. In the Hart case, assume that

c′ > 0, (ln c)′′ > 0, limt→∞ (ln c (t))′ =∞.

Then the equilibrium outcome with n firms is asymptotically, as n→∞

µPSn (σn) =
µSattn (σn)

cSatt (σn)
∼ µHartn (σn)

cHart (σn)
∼ σn

nf
(
F−1

(
1− 1

n

))
Γ (γ + 2)

,

cPS
′

(σn) =
cSatt

′
(σn)

cSatt (σn)
∼ cHart

′
(σn)

cHart (σn)
∼

{
F
−1

(1/n) : wu <∞
F
−1

(1/n)
Γ(γ+2)

: wu =∞
.

In other words, at the symmetric equilibrium, the normalized marginal cost of σ – that is

c′ (σn) in the Perloff-Salop case and c′ (σn) /c (σn) in the Sattinger and Hart cases – asymp-

totically equals F
−1 ( 1

n

)
, up to a scaling constant. In particular, the normalized marginal

cost of σ goes closer to the upper bound of the distribution as the number of firms increases.

Hence, Proposition C1 quantitatively characterizes the monotonic relationship between the

number of firms and the degree of endogenous product differentiation (in the traditional eco-

nomic interpretation), and/or the relationship between the number of firms and the degree

of endogenous confusion (in the behavioral interpretation). This effect of competition on the

supply of confusion or noise is potentially important in understanding imperfect competition

(see e.g., Gabaix and Laibson 2006, Spiegler 2006, Carlin 2009, and Ellison and Ellison 2009).

We can use the limit pricing heuristic from Section 2.4 to obtain an intuition for this result.

Consider the Perloff-Salop case. Since the firm engages in limit pricing, it can charge a markup

of σMn − σ∗Sn where σ is the firm’s product differentiation choice and σ∗ is the choice of all

other firms, which we take as given. The marginal value of an additional unit of noise σ is

thus Mn ' F
−1 ( 1

n

)
.

28This assumption that the largest possible realization of Xi is positive (possibly infinite) makes the firm’s
problem economically sensible. If, on the contrary, wu ≤ 0, then each realization of Xi would be negative
with probability 1. In that case, increasing σ would reduce the attractiveness of the firm’s product to the
consumer. To eliminate this possibility, we assume wu > 0.
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Appendix D Proofs Omitted from the Paper

Proof of Lemma A1.

1. Follows by inversion of Resnick (1987, Prop. 0.5).

2. This fact follows from the observation that for g(s(x))
g(h(x))

=
g( s(x)h(x)

h(x))
g(h(x))

∼
(
s(x)
h(x)

)ρ
→x→0 1

where we can take the limit as x→ 0 because of Lemma A1.1. Going into more detail,

choose δ (·) such that limt→0 δ (t) = 0 and |s (t′) /h (t′)− 1| < δ (t) for t′ < t. Such

δ (·) exists by our assumptions on s and h. Choose ε (·, ·) such that limt→0 ε (t, δ) =

limδ→0 ε (t, δ) = 0 and |g (xt′) /g (t′)− xρ| < ε (t, δ) for x ∈ (1− δ, 1 + δ) and t′ < t.

Lemma A1.1 ensures that such ε (·, ·) exists. Then

|g (s (t′)) /g (h (t′))− 1| =
∣∣∣∣g( s (t′)

h (t′)
h (t′)

)
/g (h (t′))− 1

∣∣∣∣ < ε (h (t′) , δ (t)) + ρO (δ (t))

for t′ < t. Since the RHS goes to zero as t→ 0, the result follows.

3. Since limt→0
g(xt)
g(t)

= xa and limt→0
h(xt)
h(t)

= xb, we have limt→0
g(xt)h(xt)
g(t)h(t)

= xa+b.

4. Follows by inversion of Resnick (1987, Prop. 0.8, iv).

5. Follows by inversion of Resnick (1987, Prop. 0.8, v).

6. Both parts follow by inversion of Resnick (1987, Th. 0.6, a).

7. Follows from Resnick (1987, Prop. 0.7) and by inversion.

8. Follows from Resnick (1987, Prop. 0.8, ii) and by inversion.

To prove Proposition 2, we introduce a lemma that links differences between the two top

order statistics to the behavior of the top tail statistics, and hence allows us to apply our

general results.

Lemma D2. Call Mn and Sn, respectively, the largest and second largest realizations of

n i.i.d. random variables with CDF F and density f = F ′, and G a function such that∫
G (x) f (x) dx <∞, limx→F−1(0) G (x)F (x) = limx→F−1(1)G (x)F (x) = 0. Then:

E [G (Mn)−G (Sn)] = E
[
G′ (Mn)F (Mn)

f (Mn)

]
(24)
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Proof. Recall that the density of Mn is nf (x)F n−1 (x), and the density of Sn is

n (n− 1) f (x)F (x)F n−2 (x) .

So

E [G (Sn)] =

∫
n (n− 1)G (x) f (x)F (x)F n−2 (x) dx

= n
[
G (x)F (x)F n−1 (x)

]F−1(1)

F−1(0)
−
∫
n
(
G (x)F (x)

)′
F n−1 (x) dx

= 0 +

∫
nG (x) f (x)F n−1 (x) dx−

∫
n
G′ (x)F (x)

f (x)
f (x)F n−1 (x) dx

= E [G (Mn)]− E
[
G′ (Mn)F (Mn)

f (Mn)

]
Proof of Proposition 2. Proposition 2 is simply an application of Lemma D2 to the special

case G (x) = x. As f(F
−1

(t)) ∈ RV 0
1+γ, t/f(F

−1
(t)) ∈ RV 0

−γ, and we may apply Theorem 3

to obtain the desired result.

Proof of Theorem 2. As with Theorem 1, the Sattinger case follows immediately from

Proposition 3. We omit those calculations and focus on the Hart case. Applying Propo-

sition 3 to (13), we immediately infer that

µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(γ+2−ψa)
Γ(1−ψa)

under the conditions of the theorem. We will use the fact that anf
(
F
−1

(1/n)
)
∼ 1, which

holds because

lim
n→∞

1

nf
(
F
−1

(1/n)
) = lim

x→wu

F (x)

f (x)
= a.

Consider first the case where a = 0. Then nf
(
F
−1

(1/n)
)
→∞, and the expression simplifies

to

µHartn

c
∼ 1

nf
(
F
−1

(1/n)
)[

ψ

nf
(
F
−1

(1/n)
) + Γ(γ+2−ψa)

Γ(1−ψa)

] ∼ 1

nf
(
F
−1

(1/n)
)

Γ (γ + 2)
.
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Next, consider the case 0 < a <∞, which implies γ = 0. We have

µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(2−ψa)
Γ(1−ψa)

=
1

ψ + nf
(
F
−1

(1/n)
)

(1− ψa)

=
1

ψ
(

1− anf
(
F
−1

(1/n)
))

+ nf
(
F
−1

(1/n)
)

∼ 1

nf
(
F
−1

(1/n)
) =

1

nf
(
F
−1

(1/n)
)

Γ (2 + γ)

when γ = 0.

Proof of Proposition C1. First, some notation: π ((p, σ) , (p∗, σ∗) ;n) denotes the profit

function of a firm that chooses (p, σ) when the remaining n − 1 firms choose (p∗, σ∗). Also,

π (p, σ;n) denotes the profit function of a firm when all n firms choose (p, σ).

Perloff-Salop Case Call σ∗ and p∗ the equilibrium choices of the other firms:

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))P
(
σX1 − p ≥ max

j 6=i
σ∗Xj − p∗

)
= (p− c (σ))P

(
σ

σ∗
Xi +

p∗ − p
σ∗

≥ max
j 6=i

Xj

)
= (p− c (σ))

∫
f (x)F n−1

(
σ

σ∗
x+

p∗ − p
σ∗

)
dx.

The first-order conditions for profit maximization are as follows. Differentiating with respect

to p yields

p− c (σ) =

∫
f (x)F n−1 (x) dx

1
σ

(n− 1)
∫
f 2 (x)F n−2 (x) dx

and differentiating with respect to σ gives

c′ (σ)

∫
f (x)F n−1 (x) dx = (n− 1) (p− c (σ))

∫
xf 2 (x)F n−2 (x) dx

1

σ
.

Some manipulation reveals

c′ (σ) =

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

.
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Now we consider two cases: wu <∞ and wu =∞. If wu <∞, then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=
n−1wuf

(
F
−1

(1/n)
)

Γ (γ + 2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
+ o (1) = wu + o (1) .

If wu =∞ then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

∼
n−1F

−1
(1/n) f

(
F
−1

(1/n)
)

Γ (2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
∼ F

−1
(1/n)

Γ (γ + 2)
.

Sattinger Case We have

π ((p, σ) , (p∗, σ∗) ;n) =
p− c (σ)

p
P
(
eσXi

p
≥ max

j 6=i

eσ
∗Xj

p∗

)
=
p− c (σ)

p

∫
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c
′ (σ)

p

∫
f (x)F n−1 (x) dx+

p− c (σ)

σp
(n− 1)

∫
xf 2 (x)F n−2 (x) dx

and

0 = π1 (p, σ;n) =
c (σ)

p2

∫
f (x)F n−1 (x) dx− p− c (σ)

σp2
(n− 1)

∫
f 2 (x)F n−2 (x) dx

Rearranging, we get
p− c (σ)

c (σ)
=

σ

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

and

c′ (σ) =

p−c(σ)
σp

(n− 1)
∫
xf 2 (x)F n−2 (x) dx∫

f (x)F n−1 (x) dx
,
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so

c′ (σ)

c (σ)
=

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=

 F
−1

(1/n) + o
(
F
−1

(1/n)
)

= wu + o (1) : wu <∞
F
−1

(1/n)+o
(
F
−1

(1/n)
)

Γ(γ+2)
: wu =∞

as calculated in the Perloff-Salop case.

Hart Case We have

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))E

[
eψσXi

p1+ψ
I{

eσXi
p
≥maxj 6=i

e
σ∗Xj
p∗

}
]

= (p− c (σ))E
[
eψσXi

p1+ψ
I{ σ

σ∗Xi+
log p∗−log p

σ∗ =maxj 6=iXj}

]
= (p− c (σ))

∫
eψσx

p1+ψ
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c′ (σ)

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx+(p− c (σ))

{ ∫
ψx e

ψσx

p1+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
x e

ψσx

p1+ψ
f 2 (x)F n−2 (x) dx

}

and

0 = π1 (p, σ;n) =

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx− (p− c (σ))

{
(1 + ψ)

∫
eψσx

p2+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
eψσx

p2+ψ
f 2 (x)F n−2 (x) dx

}

so
p− c (σ)

c (σ)
=

∫
eψσxf (x)F n−1 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

and

c′ (σ)

c (σ)
=
p− c (σ)

c (σ)

∫
ψxeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx∫

eψσxf (x)F n−1 (x) dx

=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

.
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Now we consider two cases: wu < ∞ and wu = ∞. If wu < ∞, then (noting that a = 0 in

this case)

c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

=
ψn−1wue

σψwuΓ (1) + 1
σ
wue

σψwuf
(
F
−1

(1/n)
)

Γ (γ + k)

ψn−1eσψwuΓ (1) + 1
σ
eσψwuf

(
F
−1

(1/n)
)

Γ (γ + k)
+ o (1)

= wu + o (1) .

If wu =∞, then noting that γ = 0 and denoting Un = F
−1

(1/n),

c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

∼
ψn−1Une

σψUnΓ (1− ψa) + 1
σ
ψUnf (Un) eσψUnΓ (2− ψa)

ψn−1eσψUnΓ (1− ψa) + 1
σ
ψf (Un) eσψUnΓ (2 + γ − ψa)

= Un.

Appendix E Second-Order Conditions for Profit Max-

imization

Recall that the profit function π (pi, p) for firm i when it sets price pi and all other firms set

price p is

π (pi, p) = (pi − c)D (pi, p)−K. (25)

So far, we have analyzed the first-order condition for profit maximization, π1 (p, p;n) = 0,

which is necessary but not sufficient to ensure equilibrium. Anderson, De Palma, and Thisse

(1992) show (Prop. 6.5, p.171 and Prop. 6.9, p.184) that symmetric price equilibria exist in

the Perloff-Salop, Sattinger and Hart models when f is log-concave. Thus in these cases (25)

defines the unique symmetric price equilibrium. However, their results do not cover distri-

butions where f is not log-concave. We are unable to derive global conditions for existence

of equilibrium in these cases. Instead, we verify in this appendix that the markups we study

satisfy the second-order conditions for profit-maximization. The following three propositions

show that the symmetric equilibrium markup expression (3) which we use in our calculations
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also satisfies the second-order condition for profit maximization, π11 (p, p;n) < 0. It is useful

to note that, via simple calculations, the second order condition is

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) < 0. (26)

Proposition E2. Assume that F satisfies the conditions for Theorem 1, that f 3 (x) is (wl, wu)-

integrable, and that

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ < 0.64. Then the second-order condition for profit maximization

is satisfied in the symmetric equilibrium of the Perloff-Salop model.

Note that Proposition E2 covers all distributions with thin (−1 ≤ γ ≤ 0) and medium fat

tails (γ = 0), and all the heavy tailed distributions with a finite variance, i.e. γ ∈ (0, 1/2].

Proposition E3. Assume that F satisfies the conditions for Theorem 1, that f 3 (x) is (wl, wu)-

integrable, and that either γ > 0 or

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ ≤ 0. Then the second-order condition for profit maximization is

satisfied in the symmetric equilibrium of the Sattinger model.

Proposition E4. Assume that the conditions for Theorem 1 are satisfied, and that eψxf 3 (x)

is (wl, wu)-integrable. Then the second-order condition for profit maximization is satisfied in

the symmetric equilibrium of the Hart model.

Proof of Proposition E2. We denote Un = F
−1

(1/n) in several of the proofs below. Note,

from Section B in this Appendix, that

D (pi, p) =

∫
f (x)F n−1 (x+ p− pi) dx and

D1 (pi, p) = − (n− 1)

∫
f (x) f (x+ p− pi)F n−2 (x+ p− pi) dx,

from which we may calculate

D11 (p, p) =
(n− 1) (n− 2)

2

∫
f 3 (x)F n−3 (x) dx+

n− 1

2
f 2 (x)F n−2 (x)

∣∣∣∣∞
−∞

13



where the last term on the RHS vanishes. So, applying Proposition 3,

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n− 2)
∫
f 3 (x)F n−3 (x) dx

2n
∫
f 2 (x)F n−2 (x) dx

∼ −2f (Un) Γ (γ + 2) +
f (Un) Γ (2γ + 3)

2Γ (γ + 2)

=
f (Un)

2Γ (γ + 2)

(
−4Γ (γ + 2)2 + Γ (2γ + 3)

)
.

We can easily verify numerically that −4Γ (γ + 2)2 + Γ (2γ + 3) < 0 for −1.45 < γ ≤ 0; it

follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0.64] .

Proof of Proposition E3. Without loss of generality, let θy = 1. Then, from Section B in

this Appendix,

D (pi, p) =
1

pi

∫
f (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2
i

∫
f (x)F n−1 (x+ ln p− ln pi) dx

− n− 1

p2
i

∫
f (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx,

from which we may calculate

D11 (p, p) =
2

p3

∫
f (x)F n−1 (x) dx+ 3

n− 1

p3

∫
f 2 (x)F n−2 (x) dx

+
(n− 1) (n− 2)

2p3

∫
f 3 (x)F n−3 (x) dx+

n− 1

2p3

[
f 2 (x)F n−2 (x)

]∞
−∞

where the last term on the RHS vanishes. We may then substitute our expressions for

D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (26) and apply Proposition 3. The asymptotic ex-
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pression simplifies to

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= − 2

p2

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)

+

(
2
∫
f (x)F n−1 (x) dx+ 3 (n− 1)

∫
f 2 (x)F n−2 (x) dx

+ (n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

)
p2n

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)
=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

In the case nf (Un) = o (1), which implies γ ≥ 0 and f (wu) = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + 2+3nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)

=
p−2

n

(
− nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)
< 0.

In the case limn→∞ nf (Un) ∈ (0,∞), which implies γ = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un)) +

2 + 3nf (Un) + (nf (Un))2

1 + nf (Un)
+ o (nf (Un))

)

=
p−2

n
(−nf (Un) + o (nf (Un)))

< 0.
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In the case limn→∞ nf (Un) =∞, which implies γ ≤ 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (nf (Un) Γ (γ + 2)) + o (nf (Un))

+
1
2

(nf(Un))2Γ(2γ+3)+o(nf(Un))2

nf(Un)Γ(γ+2)+o(nf(Un))

)

= p−2f (Un)

(
−2Γ (γ + 2) +

1

2

Γ (2γ + 3)

Γ (γ + 2)

)
;

since we can easily verify numerically that −2Γ (γ + 2) + 1
2

Γ(2γ+3)+1
Γ(γ+2)

< 0 for −1.45 < γ ≤ 0,

it follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0] .

Proof of Proposition E4. Note that in the Hart case, we are restricted to γ ∈ [−1, 0]. We

have, from Section B in this Appendix,

D (pi, p) =
1

p1+ψ
i

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2+ψ
i

{
(1 + ψ)

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx

+ (n− 1)
∫
eψxf (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx

}
,

from which we may calculate

D11 (p, p) =
1

p3+ψ


(1 + ψ) (2 + ψ)

∫
eψxf (x)F n−1 (x) dx

+3
(
1 + ψ

2

)
(n− 1)

∫
eψxf 2 (x)F n−2 (x) dx

+1
2

(n− 1) (n− 2)
∫
eψxf 3 (x)F n−3 (x) dx

 .

We may then substitute our expressions for D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (26) and

apply Proposition 3. This gives us

2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) =

eψUn

p2+ψ
i

(A+B) ,
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where

A ∼ −2 (1 + ψ) Γ (1− aψ)− 2nf (Un) Γ (γ + 2− aψ) , and

B ∼ Γ (1− aψ)


(1 + ψ) (2 + ψ) Γ (1− aψ)

+3
(
1 + ψ

2

)
nf (Un) Γ (γ + 2− aψ)

+1
2

(nf (Un))2 Γ (2γ + 3− aψ)


(1 + ψ) Γ (1− aψ) + nf (Un) Γ (γ + 2− aψ)

After some tedious but straightforward calculations: if a = 0, then nf (Un) →n→∞ ∞, and

the asymptotic expression simplifies to

π11 (p, p;n)

∼ eψUn

p2+ψ
i

nf (Un)

(
−2Γ (γ + 2) +

Γ (2γ + 3)

2Γ (γ + 2)

)
< 0 for γ ∈ [−1, 0]

Since we can verify that −2Γ (γ + 2) + Γ(2γ+3)
2Γ(γ+2)

< 0 for γ ∈ [−1, 0], our claim holds in the case

a = 0. If 0 < a <∞, then γ = 0, nUn → 1/a and the asymptotic expression simplifies to

π11 (p, p;n) ∼ eψUn

p2+ψ
i

Γ (1− aψ)

−2 (1 + 1/a) +

{
(1 + ψ) (2 + ψ) + 3 (1 + ψ/2) (1/a− ψ)

+1
2

(2/a− ψ) (1/a− ψ)

}
1 + 1/a


= −e

ψUn

p2+ψ
i

Γ (1− aψ)

a
< 0.
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