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1. Introduction

Everyday speech has many terms that describe the drive for immediate rewards. We say

that consumers seek ‘instant gratification’ and ‘immediate gratification’; that they ‘live only

for the moment’; or that they ‘want it now.’

Robert Strotz (1956) was the first to model instant gratification mathematically. He

pointed out that two ingredients are essential to a successful theory. First, the discount

function should depend on the difference between the current time and the future time at

which the discounted reward is consumed. Second, the discount function should not be

exponential.1 He went on to conjecture that empirical discount rates would decrease with

the time horizon.2 In other words, delaying current consumption by one period produces

proportionately more devaluation than delaying future consumption by one period. Most

experimental studies of time preference have supported Strotz’s conjecture (Ainslie 1992,

Loewenstein and Read 2001), although debate continues about the shape and even the

existence of a single discount function (Frederick, Loewenstein and O’Donoghue 2002).

To parameterize these discounting properties and the taste for instant gratification, Laib-

son (1997a) adopted the discrete-time discount function {1, β δ, β δ2, β δ3, ...}–which Phelps

and Pollak (1968) had previously used to model intergenerational time preferences. With

β < 1, this so called ‘quasi-hyperbolic’ discount function generates a gap between a high

short-run discount rate and a low long-run rate. O’Donoghue and Rabin (1999a, 1999b)

call these ‘present-biased’ time preferences, emphasizing the heightened weight they place

on current consumption. In the last several years, the quasi-hyperbolic discount function

has been used to study a wide range of behaviors, including consumption, procrastination,

addiction and job search.3

The quasi-hyperbolic discounting model has at least three significant drawbacks. First,

it generates multiple equilibria, raising questions about its empirical usefulness.4 A model

that cannot be pinned down to a single equilibrium prediction is hard to falsify. Second,

it generates counterfactual policy functions. Consumption functions in quasi-hyperbolic

1Strotz (1956, p. 165 and Section V).
2Strotz (1956, p. 177) states that special attention should be given to discount functions that depart from

the exponential case by overvaluing "the more proximate satisfactions relative to the more distant ones".
Moreover footnote 1 on the same page makes clear that this statement applies to discount rates. Figure 3
on p. 175 is misleading. (It depicts a discount function for which discount rates are initially increasing in
the time difference.)

3For some examples, see Angeletos, Laibson, Repetto, Tobacman and Weinberg (2001), O’Donoghue and
Rabin (1999a, 1999b), Della Vigna and Paserman (2000), DellaVigna and Malmendier (2004).

4See Krusell and Smith (2000) for a proof of non-uniqueness.
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models need not be globally monotonic in wealth, and may even drop discontinuously at a

countable number of points.5 Figure 1 plots examples of such ‘pathological’ consumption

functions from discrete-time models. Third, it does not generate an obvious welfare criterion,

since different selves have conflicting preferences.

The current paper shows how to model the taste for instant gratification in continuous

time, and shows that the continuous-time model has a natural limit case that eliminates all

of the problems summarized above.6

The general version of our continuous-time model captures the qualitative properties of

the original discrete-time quasi-hyperbolic model. It makes a clear distinction between the

‘present’ and the ‘future’, a psychological contrast supported by recent fMRI brain-imaging

evidence.7 We assume that the present is valued discretely more than the future, mirroring

the one-time drop in valuation implied by the discrete-time quasi-hyperbolic discount func-

tion (Phelps and Pollak 1998, Laibson 1997) and its continuous-time generalizations (Barro

1999, Luttmer and Mariotti 2000). We also assume that the transition from the present to

the future is determined by a constant hazard rate. This simplifying assumption enables

us to reduce the Bellman equation for our problem to a system of two stationary ordinary

differential equations that characterize present and future value functions.

The limit version of our continuous-time model is derived by making the present vanish-

ingly short. This version is analytically tractable and psychologically relevant. By focusing

on this psychologically important case, we take the phrase ‘instant gratification’ literally: in

our model, individuals prefer gratification in the present instant discretely more than con-

sumption in the only slightly delayed future. Hence, the limit case reflects sharp short-run

discounting, a pattern of behavior that has been documented in laboratory experiments.8

We call the limit version of our model the instantaneous-gratification model, or IG model

5See Laibson (1997b), Morris and Postlewaite (1997), O’Donoghue and Rabin (1999a), Harris and Laibson
(2001b), and Krusell and Smith (2000).

6Two other solutions to the first three of these problem have been proposed. First, Harris and Laibson
(2001b) point out that pathologies occur only in a limited region of the parameter space (notably when the
coefficient of relative risk aversion lies well below unity and when β is sufficiently far below unity). Second,
O’Donoghue and Rabin (1999a) point out that pathologies do not arise if consumers naively believe that their
preferences are dynamically consistent. However, even partial knowledge of future dynamic inconsistency
reinstates the pathologies.

7McClure, Laibson, Loewenstein, and Cohen (2004) find that the limbic and para-limbic cortical systems
are activated when subjects evaluate immediate rewards and not when subjects evaluate delayed rewards.
This implies that the emotional/affective (i.e., limbic) system only makes a distinction between present and
future rewards, instead of showing a gradual gradient with respect to time delay.

8Add citations here. Michel et al (1975), Ainslie (1991), etc...
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Figure 1: Consumption functions for β ∈ {0.1,0.2,...,0.7}*

β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.5
β = 0.6
β = 0.7

*These consumption functions are taken from discrete time simulations in Harris and Laibson (2001b).  These simulations assume iid income, a risk-free asset, and CRRA.                        
The short-run discount factor is βδ.  The long-run discount factor is δ=.95.  The plotted consumption functions are shifted upward (in increments of .1) so they do not overlap. 
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for short. We show that the IG model, which is dynamically inconsistent, shares the same

value function as a related dynamically-consistent optimization problem with a wealth-

contingent utility function. Using this partial equivalence, we can show both existence and

uniqueness of the IG equilibrium. However, our model is not observationally equivalent to

the related dynamically consistent optimization problem: the partial equivalence applies to

the value functions but not to the policy functions.

We also show that the equilibrium consumption function of the IG model is continuous

and monotonic in wealth. The monotonicity property relies on the condition that the long-

run discount rate is weakly greater than the interest rate.

The IG model has these superior regularity properties – i.e., well-behaved policy func-

tions and uniqueness of equilibrium – because the IG model carves out a special niche be-

tween dynamically-inconsistent models and dynamically-consistent models. The IG model

features dynamically-inconsistent behavior and rational expectations. So each moment the

individual acts strategically with regard to her future preferences. Nevertheless, the fact

that the IG value function coincides with the value function of a related dynamically consis-

tent optimization problem, implies that the IG problem inherits many standard regularity

properties.

The IG model also features a single welfare criterion even though the model generates

dynamically inconsistent behavioral choices. Because the present is valued discretely more

than the future, the current self has an incentive to overconsume; but the discretely higher

value of the present only lasts for an instant, so this overvaluation doesn’t affect the wel-

fare criterion. Hence, the model simultaneously features a single welfare function and a

behavioral tendency toward overconsumption.

In summary, we argue that the continuous-time IG model is superior to the discrete-time

quasi-hyperbolic model. The IG model is more tractable, makes more sensible predictions,

supports a unique equilibrium, and identifies a single, sensible welfare criterion.

Two other sets of authors have analyzed quasi-hyperbolic preferences in continuous time.

Barro (1999) analyzes the choices of quasi-hyperbolic agents with constant relative risk aver-

sion. He focuses on the general-equilibrium implications of quasi-hyperbolic discounting and

the ways in which quasi-hyperbolic economies may be observationally equivalent to expo-

nential economies. Luttmer and Mariotti (2003) analyze the choices of agents with arbitrary

discount functions, constant relative risk aversion, and stochastic asset returns. Luttmer-

Mariotti generalize Barro’s observational-equivalence result, but also identify particular en-

dowment processes for which the quasi-hyperbolic model has interesting new asset-pricing
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implications (e.g., an elevated equity premium). Luttmer and Mariotti work with general

discount functions and consider numerous special cases. They have identified some proper-

ties of the particular case in which the present is vanishingly short. However, their findings

do not overlap with ours.

Barro and Luttmer-Mariotti both restrict their analysis to linear policy rules. The ex-

istence of a linear equilibrium depends on special preference assumptions (constant relative

risk aversion) and market assumptions (e.g., no liquidity constraints). We do not make

restrictive assumptions of this kind: we work with a broad class of preferences; and we in-

troduce a market imperfection: liquidity constraints. We pursue these generalizations for

greater realism. Our problem does not admit a linear equilibrium. We have to contend with

the problems that arise in our general setting, but do not arise under the Barro/Luttmer-

Mariotti simplifying assumptions in either discrete or continuous time.

Our results also differ from Barro and Luttmer-Mariotti in that we are able to prove

uniqueness of Markov equilibrium in the class of all policy rules. This is a desirable and

unexpected result, since the hyperbolic model is a dynamic game, and can therefore generate

non-uniqueness. Indeed, Krusell and Smith (2000) have shown that quasi-hyperbolic Markov

equilibria are not unique in a deterministic discrete-time setting. In the current paper, we

provide two uniqueness results. First, we prove uniqueness in the case in which asset returns

are stochastic. Second, we propose a refinement that uses the unique equilibrium of the

stochastic setting to select a unique sensible equilibrium in the deterministic setting. This

refinement takes the natural approach of selecting the limiting equilibrium obtained as the

noise in the asset returns vanishes.

The rest of the paper formalizes these claims. In Section 2 we present our general

continuous-time model and formulate some of the properties of this model. In Section 3

we present the consumption model that will provide the principal application of the paper.

In Section 4 we describe an important limit case of our model. We call this limit case the

Instantaneous-Gratification (IG) model. In Section 5 we show that the IG model has the

same Bellman equation as a related dynamically-consistent optimization problem. However,

note that the IG problem is not observationally equivalent to the dynamically-consistent

optimization problem. The two problems share the same long-run discount rate and the

same value function, but they have different instantaneous utility functions and different

equilibrium policy functions.9 In Section 7, we use our partial equivalence result to derive

9By contrast, see Barro (1999), Laibson (1996) and Luttmer and Mariotti (2000) for the special case
(namely log utility and no liquidity constraints) in which observational equivalence of the policy functions
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several important properties of the IG problem, including equilibrium existence, equilibrium

uniqueness, consumption-function continuity, and consumption-function monotonicity. In

Section 7 we also derive the deterministic version of the IG model, and provide a complete

analysis of the case of constant relative risk aversion. In Section 8 we further generalize our

results, and in Section 9 we conclude.

2. Time Preferences

2.1. The Basic Model of Time Preferences. In the standard discrete-time formu-

lation of quasi-hyperbolic time preferences, it is natural to divide time into two intervals:

the present, which consists of the current period only; and the future, which consists of all

subsequent periods. All periods, present and future, are discounted exponentially with the

discount factor 0 < δ < 1. Furthermore, future periods are discounted by the additional

factor 0 < β ≤ 1. Overall, the present period is discounted with the discount factor 1, and
a period n ≥ 1 steps into the future is discounted with the discount factor β δn (Phelps and
Pollak 1968, Laibson 1997).

This model can be generalized in two ways. First, instead of the present lasting for exactly

one period, it can last for an arbitrary length of time. Second, instead of the duration of

the present being deterministic, it can be random. Moreover the generalized model has a

natural continuous-time analogue.

Consider an economic self born at date s0. The preferences of this self are divided into

two intervals: a ‘present’, which lasts from s0 to s0 + τ 0; and a ‘future’, which lasts from

date s0 + τ 0 to ∞. Think of the present as the interval during which control is exercised

by the current self, and of the future as the interval during which control is exercised by

subsequent selves. The length τ 0 of the present is stochastic, and is distributed exponentially

with parameter λ ∈ [0,∞). That is, λ is the hazard rate of the transition from the present

to the future.

When the future of self s0 commences at s0 + τ 0, a new self is born and takes control

of decision-making. Call this self s1 = s0 + τ 0. The preferences of this new self can also

be divided into two intervals. Self s1 has a present that lasts from date s1 to date s1 + τ 1,

and a future that lasts from s1 + τ 1 to ∞. Extending this idea, we assume that at each

juncture of present and future a new self is born, yielding a sequence of selves born at dates

{s0, s1, s2, ...}, with respective present intervals of duration {τ 0, τ1, τ 2, ...}.
We assume that all selves discount exponentially with discount factor 0 < δ < 1. Fur-

does hold.
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thermore, they value their future discretely less than their present, discounting their future

by the additional factor 0 < β ≤ 1. For example, consider the self that is born at date 0,
and which has a present of duration τ . Because the transition date τ is stochastic, self 0

has a stochastic discount function,

D(t) =

(
δt if t ∈ [0, τ)
β δt if t ∈ [τ ,∞)

)
. (1)

D(t) decays exponentially at rate γ = − ln(δ) up to time τ , drops discontinuously at τ to a
fraction β of its level just prior to τ , and decays exponentially at rate γ thereafter. Hence,

self 0 discounts all flows in her future – i.e., flows that come after time τ – by the extra

factor β.

This example illustrates the intertemporal preferences of the self born at date 0. More

generally, the formula for D(t) in equation (1) represents the discount factor that self s

applies to utility flows that arrive t periods in the future.

This continuous-time formalization is close to some of the deterministic discount functions

used in Barro (1999) and Luttmer and Mariotti (2003). However, we assume that τ is

stochastic. Figure 2 plots a single realization of this discount function, with τ = 3.4.

As λ→ 0, our discount function reduces to the standard exponential discount function:

lim
λ→0

D(t) = δt for all t ∈ [0,∞).

As λ → ∞, the discount function converges to a deterministic jump function with a jump
at t = 0:

lim
λ→∞

D(t) =

(
1 if t = 0

β δt if t ∈ (0,∞)

)
.

We shall return to the latter case below.

2.2. An Alternative Model of Time Preferences. The arguments in this paper are

consistent with a second interpretation of the time preferences described above. In particu-

lar, one can assume that a new self is born every instant, and that each self has a deterministic

discount function equal to the expected value of the stochastic discount function described

above. Recalling that γ = − ln δ, the expectation of the stochastic discount function D(t)

is given by

D(t) = E
£
D(t)

¤
= e−λ t e−γ t + (1− e−λ t)β e−γ t.
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In other words, D(t) is the sum of two terms. The first term is the probability e−λ t with

which the drop in D occurs after time t, times the discount factor e−γ t that applies prior

to the drop. The second term is the probability 1− e−λ t with which the drop in D occurs

before time t, times the discount factor β e−γ t that applies after the drop.

The instantaneous discount rate associated with the deterministic discount function D

is then

− D
0
(t)

D(t)
= γ +

λ e−λ t (1− β) e−γ t

D(t)
.

In other words, the instantaneous discount rate is the sum of two terms. The first term is

just the long-run (exponential) discount rate γ. The second term is the ratio of the expected

drop in D at time t to the level of D at time t. Indeed: λ e−λ t is the flow probability with

which the drop in D occurs at time t; and (1− β) e−γ t is the size of the drop in D if the

drop occurs at t.

Notice that the instantaneous discount rate decreases from γ + λ (1− β) at t = 0 to γ

at t =∞. Figure 3 plots D(t) for λ ∈ {0, 0.1, 1, 10,∞}.

2.3. Comparison of the Two Models. At first sight, the basic and alternative models

described in subsections 2.1 and 2.2 are quite distinct. After all, the basic model uses a sto-

chastic discount function with a present of non-infinitesimal duration τ , while the alternative

model uses a deterministic discount function with a present of infinitesimal duration dt. The

basic model involves a countable number of non-infinitesimal selves, while the alternative

model involves a continuum of infinitesimal selves. The two models are, however, equivalent.

To see why, note that the current self s in the basic model is dynamically consistent.

It therefore makes no difference whether we regard her as a single non-infinitesimal agent,

which decides once and for all at the outset of the interval [s, s + τ) how it will behave

throughout this interval, or whether we regard her as a continuum of infinitesimal agents,

each of which decides how it will behave at the instant t ∈ [s, s + τ) at which it acts.

Moreover, if we regard the current self as a continuum of infinitesimal agents, and if we

assume that τ is independent of the other stochastic elements of the model, then we can take

expectations conditional on those other stochastic elements to conclude that the preferences

of the infinitesimal agents of the non-infinitesimal selves of the basic model coincide with

the preferences of the infinitesimal selves of the alternative model.

The basic model has two advantages over the alternative model. First, it can be set up

using only standard ingredients. Second, in order to analyze this model, we only have to
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take one limit, namely that obtained as λ goes to infinity. In doing so, we simultaneously

pass from non-infinitesimal to infinitesimal selves and from the finite-λ discount function to

the infinite-λ discount function that is the ultimate focus of the paper. By contrast, in order

to set up the alternative model, we would first have to formalize the idea of an infinitesimal

self. This would involve taking the limit as the span of control of a non-infinitesimal self

goes to zero. We would then have to let λ go to infinity, in order to pass from the finite-λ

discount function to the infinite-λ discount function.

We therefore focus on the basic model in this paper. It should, however, be borne in

mind that the alternative model is ultimately the more general model.

3. A Continuous-Time Consumption Model

Two important qualitative features of consumers’ planning problems are liquidity constraints

and labor-income uncertainty. Cf. Deaton (1991) and Carroll (1992, 1997). We include

liquidity constraints in our consumption model, since they make an important difference to

the analysis. We exclude labor-income uncertainty, since it complicates the notation and

does not affect our conclusions.

3.1. The Dynamics. At any given point in time t ∈ [0,∞), the consumer has stock
of wealth x ∈ [0,∞) and receives a flow of labor income y ∈ (0,∞). If x > 0 then the

consumer is not liquidity constrained, and she may choose any consumption level c ∈ (0,∞).
Indeed, wealth is a stock and consumption is a flow. Any finite consumption level is therefore

achievable provided that it is not maintained for too long. If x = 0 then the consumer is

liquidity constrained, and she may only choose a consumption level c ∈ (0, y]. Indeed, she
has no wealth and she cannot borrow. She cannot therefore consume more than her labor

income.

Whatever the consumer does not consume is invested in an asset, the returns on which are

distributed normally with mean µdt and variance σ2 dt, where µ ∈ (−∞,∞) and σ ∈ (0,∞).
The change in her wealth at time t is therefore

dx = (µx+ y − c) dt+ σ x dz,

where z is a standard Wiener process.

We could easily generalize this framework by adding a stochastic source of labor income.

For example, we could assume that – in addition to her basic flow of labor income y – the

agent sporadically receives lump-sum bonuses. To preserve stationarity, such bonuses would
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need to arrive with a constant hazard rate and be drawn from a fixed distribution. We could

even allow for non-stationary labor income, at the expense of an extra state variable. We

do not pursue these generalizations, since they would not qualitatively change the analysis

that follows.

3.2. Preferences. As discussed above, the consumer is modeled as a sequence of au-

tonomous selves. Each self controls consumption in the present and cares about – but does

not directly control – consumption in the future. Now suppose that c : [0,∞)→ (0,∞) is a
stationary consumption function which takes wealth as its argument; let x : [s,∞)→ [0,∞)
be the stochastic timepath of wealth starting at xs when the consumption function is c;10 and

suppose that u : (0,∞)→ R is a utility function which takes consumption as its argument.
Then the preferences of self s are given by

Es
h R∞

s
D(t− s)u(c(x(t))) dt

i
= Es

h R s+τ
s

δt−s u(c(x(t))) dt| {z }
present

+ β
R∞
s+τ

δt−s u(c(x(t))) dt| {z }
future

i
.

We therefore define the continuation-value function v : [0,∞)→ R of self s by the formula

v(xs+τ) = Es+τ
h R∞

s+τ
δt−s−τ u(c(x(t))) dt

i
;

10The noise in the asset returns ensures that the dynamics are uniquely soluble from all initial wealth
levels for a very wide class of consumption functions. Indeed, suppose that we begin with a Borel measurable
function c : (0,∞)→ (0,∞) that is locally integrable in (0,∞). Then, for any x0 ∈ (0,∞), the dynamics are
uniquely soluble up to the first time that x hits 0. The only question is therefore what happens when x0 = 0.
In order to answer this question, let G be the first hitting time of 0. (It is entirely possible that G =∞, in
which case x need not go anywhere near 0.) Then there are two mutually exclusive and exhaustive cases.
In the first case, lim inft→G− x(t) = ∞ with probability one for all x0 ∈ (0,∞). In this case we are free to
pick any c(0) ∈ (0, y]. For c(0) ∈ (0, y), the dynamics will be uniquely soluble starting at 0. This solution
will have the property that x(t) > 0 for all t > 0, and it will be independent of the exact choice of c(0).
For c(0) = y, the dynamics will have a continuum of solutions. At one extreme, x(t) > 0 for all t > 0. In
this case, the solution coincides with that obtained when c(0) ∈ (0, y). At the other extreme, x(t) = 0 for
all t ≥ 0. In between, there will be an exponentially distributed time H such that x(t) = 0 for t ≤ H and
x(t) > 0 for t > H. In the second case, lim inft→G− x(t) = 0 with probability one for all x0 ∈ (0,∞). In this
case we are compelled to put c(0) = y if we want the dynamics to have a solution at all. The first case can
be thought of as the case of certain accumulation. In this case, it makes sense to require that c(0) < y. The
second case can be thought of as the case of possible decumulation. In this case, it makes sense to require
that c(0) = y. Indeed, with these conventions, the dynamics are uniquely soluble for all initial wealth levels.
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and we define the current-value function w : [0,∞)→ R of self s by the formula

w(xs) = Es
h R s+τ

s
δt−s u(c(x(t))) dt| {z }

present

+ β δτ v(x(s+ τ))| {z }
future

i
.

The continuation-value function v discounts utility flows by the standard exponential dis-

count factor. The current-value function w discounts utility flows up to the stochastic tran-

sition time τ by the standard exponential discount factor, and it discounts the continuation-

value obtained at τ by the composite discount factor β δτ . The component β reflects the

one-time discounting that arises from the transition from the present to the future. The

component δτ reflects standard exponential discounting.

3.3. Equilibrium. Using the notation from the previous subsection, we define equilib-

rium as follows.11

Definition 1. A consumption function c is an equilibrium of the finite-λ model iff:

1. For all consumption functions ec and all x0 ∈ [0,∞), we have
w(x0) ≥ E

h R τ
0
e−γ t u(ec(ex(t))) dt+ β e−γ τ v(ex(τ))i,

where ex : [0,∞)→ [0,∞) is the stochastic timepath of wealth starting at x0 when the
consumption function is ec.

2. For all x0 ∈ [0,∞), we have v(x0) ≥ 1
γ
u(y).

The first condition in this definition of equilibrium reflects the fact that the current self

maintains control of consumption for the duration of the present – i.e., until the next sto-

chastic transition date τ periods in the future. It could be summarized by saying that, if

all future players use the consumption function c then, for all initial wealth levels x0, the

consumption function c is itself a best response for the current self. The second condition,

which is purely technical, requires that equilibrium continuation-payoff functions be bounded

11Our equilibrium concept is essentially perfect equilibrium in stationary Markov strategies. However, we
depart from the usual definition in only allowing deviations to stationary Markov strategies. (The standard
definition allows deviations to arbitrary non-stationary and history-dependent strategies.) We do this for
expositional convenience. (It should be intuitively clear that the set of equilibria is unaffected.)
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below by the payoff function associated with the myopic policy “always consume determin-

istic labor income y”. This requirement rules out equilibria supported by policy functions

that generate expected utility of −∞. Such infinitely bad policy functions can technically
be equilibria since no single self has an incentive to deviate.12

3.4. Characterization of Equilibrium. In this section we give a heuristic derivation

of the Bellman system for our problem. There are three parts to this Bellman system: an

equation for the continuation-value function of the current self, an equation for the current-

value function of the current self, and an instantaneous optimality condition determining

the consumption chosen by the current self. Our derivation can be made rigorous in the

standard way.

We begin with the equation for the continuation-value function v. Suppose that the

current state is x. Then v(x) has two components, namely the current payoff u(c(x)) dt and

the expected discounted continuation payoff E[e−γ dt v(x+ dx)]. We therefore have

v(x) = u(c(x)) dt+E
£
e−γ dt v(x+ dx)

¤
.

Multiplying through by eγ dt and subtracting v(x) from both sides, we obtain

(eγ dt − 1) v(x) = eγ dt u(c(x)) dt+E
£
v(x+ dx)− v(x)

¤
.

Now

eγ dt = 1 + γ dt+O(dt2)

and

E
£
v(x+ dx)− v(x)

¤
= ((µx+ y − c(x)) v0(x) + 1

2
σ2 x2 v00(x)) dt+O(dt2)

(cf. Itô’s Lemma). Hence, dividing through by dt, letting dt → 0 and suppressing the

dependence of v and c on x, we obtain

γ v = u(c) + (µx+ y − c) v0 + 1
2
σ2 x2 v00. (2)

The term γ v represents the expected value of instantaneous changes in v arising from expo-

nential discounting at rate γ; the term u(c) is the flow of utility derived from the consumption

12It may be possible to replace the second condition by the weaker requirement that there exists η ∈ (0, y)
such that, for all x0 ∈ [0,∞), we have v(x0) ≥ 1

γ u(η).
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c; the term (µx+ y − c) v0 is the expected value of instantaneous changes in v arising from

the deterministic component of the returns process; and the term 1
2
σ2 x2 v00 is the expected

value of instantaneous changes in v arising from the stochastic component of the returns

process.

Next, we derive the equation for the current-value function w. The derivation is analogous

to that of the equation for the continuation-value function v. Suppose that the current

state is x. Then we can decompose w(x) into a current payoff and an expected discounted

continuation payoff. The current payoff is u(c(x)) dt as before; but the continuation payoff

now depends on whether the transition between the present and the future occurs or not. If

this transition does not occur, then the continuation value is w(x+dx). If the transition does

occur, the continuation value is β v(x + dx). Since the probabilities of these two outcomes

are e−λdt and 1− e−λdt respectively, and since the transition is independent of the evolution

of wealth, we have

w(x) = u(c(x)) dt+ e−λdt E
£
e−γ dtw(x+ dx)

¤
+(1− e−λdt) E

£
e−γ dt β v(x+ dx)

¤
.

Proceeding as in the derivation of the equation for v,13 we therefore obtain

γ w = u(c) + (µx+ y − c)w0 + 1
2
σ2 x2w00 + λ (β v − w). (3)

The only difference between equation (3) and equation (2) is that equation (3) contains the

additional term λ (β v −w). This term is the expected value of the instantaneous change in

w arising from the stochastic arrival, with hazard rate λ, of a transition between the present,

with current value w, and the future, with continuation value β v.

Finally, we derive an equation for the consumption function c. Suppose that the current

state is x. Then consumption is chosen by the current self to maximize the sum of her

current payoff and her expected discounted continuation payoff. That is,

c(x) = argmaxec
©
u(ec) dt+ e−λdt E

£
e−γ dtw(x+ dex)¤

+(1− e−λdt) E
£
e−γ dt β v(x+ dex)¤ª ,

13Specifically: multiply through by eγ dt; subtract w(x) from both sides; note that
β v(x + dx) − w(x) = β (v(x + dx) − v(x)) + β v(x) − w(x); expand eγ dt, e−λ dt, E[w(x + dx) − w(x)] and
E[v(x+ dx)− v(x)]; rearrange; divide through by dt; let dt→ 0; and suppress the dependence of v, w and c
on x!
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where

dex = (µx+ y − ec) dt+ σ x dz.

Proceeding as in the derivation of the equation for w,14 we therefore obtain

c = argmaxec
©
u(ec) + (µx+ y − ec)w0 + 1

2
σ2 x2w00 + λ (β v − w)

ª
.

However, in the present case we can simplify further: the objective is unaffected if we subtract

off all the terms that do not depend on ec. We therefore arrive at
c = argmaxec {u(ec)− ecw0} .

It follows at once from the first-order conditions for this maximization that

u0(c) = w0 (4)

when x > 0, since in this case c is unconstrained; and that

u0(c) = max {w0, u0(y)} (5)

when x = 0, since in this case c ≤ y. In other words, when x > 0, consumption is chosen

so as to equate the marginal utility of consumption to the marginal value of wealth in the

hands of the current self (as measured by the current-value function w); and, when x = 0,

consumption is chosen so as to equate the marginal utility of consumption to the marginal

value of wealth in the hands of the current self, or to u0(y), whichever is the higher.

Combining equations (2-5), we arrive at the following definition:

Definition 2. The Bellman system of the finite-λ model consists of the pair of ordinary

differential equations

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c), (6)

0 = 1
2
σ2 x2w00 + (µx+ y − c)w0 − γ w + u(c) + λ (β v − w) (7)

14The key point to note is that the objective is unaffected by the positive affine transformations involved
in the derivation of the equation for w, namely multiplying by eγ dt, subtracting w(x) and dividing by dt.
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and the instantaneous optimality condition

u0(c) =

(
w0 if x > 0

max {w0, u0(y)} if x = 0

)
. (8)

3.5. Equilibrium in the Alternative Model. In this section, we define equilibrium in,

and describe the Bellman system of, the alternative model in which the stochastic discount

function D of the finite-λ model is replaced by the deterministic discount function D. The

reader who is not interested in the alternative model may wish to jump immediately to the

next section.

Suppose that c : [0,∞) → (0,∞) is a consumption function. Then we may define a
‘discounted value function’ Z : [0,∞)2 → R by the formula

Z(s, xs) = E
h R∞

s
D(t)u(c(x(t))) dt

i
,

where x : [s,∞) → [0,∞) is the timepath of wealth starting at xs when the consumption
function is c.15 The value function Z disregards utility flows prior to time s, and it discounts

utility flows from time s onwards back to time 0 using the discount factor D(s). It can be

thought of as the value to self 0 of self s having wealth xs. More generally, given that the

model is stationary, it can be thought of as the value to self t of self t+ s having wealth xs.

Arguing along the same lines as in Section 3.4 above, it can be shown that Z satisfies

the partial differential equation

0 = Du(c) +
∂Z

∂s
+ (µx+ y − c)

∂Z

∂x
+ 1

2
σ2 x2

∂2Z

∂x2
, (9)

where we have suppressed the dependence of Z on s and x, the dependence of D on s and

the dependence of c on x. Similarly, since c is chosen by the current self, it satisfies the

equation

u0(c(x)) =

(
∂Z
∂x
(0, x) if x > 0

max
©
∂Z
∂x
(0, x), u0(y)

ª
if x = 0

)
. (10)

In other words, when x > 0, consumption is chosen so as to equate the marginal utility

of consumption to the marginal value of wealth in the hands of self 0; and, when x = 0,

consumption is chosen so as to equate the marginal utility of consumption to the marginal

15As explained in footnote 10 above, the dynamics are soluble for a very wide class of consumption
functions.
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value of wealth in the hands of self 0, or to u0(y), whichever is the higher.

These considerations motivate the following definitions.

Definition 3. A consumption function c is an equilibrium of the alternative model iff:

1. For all x ∈ [0,∞), u0(c(x)) =
(

∂Z
∂x
(0, x) if x > 0

max
©
∂Z
∂x
(0, x), u0(y)

ª
if x = 0

)
.

2. For all s, x ∈ [0,∞), Z(s, x) ≥ R∞
s

D(t)u(y) dt.

In other words, while the definition of equilibrium in the finite-λ model involves a full

optimality condition and a lower bound on the value function, the definition of equilibrium

in the alternative model involves an instantaneous optimality condition and a lower bound

on the value function.

Definition 4. The Bellman system of the alternative model consists of the partial differen-
tial equation

0 = Du(c) +
∂Z

∂s
+ (µx+ y − c)

∂Z

∂x
+ 1

2
σ2 x2

∂2Z

∂x2

and the optimality condition

u0(c(x)) =

(
∂Z
∂x
(0, x) if x > 0

max
©
∂Z
∂x
(0, x), u0(y)

ª
if x = 0

)
.

In other words, while the definition of the Bellman system of the finite-λ model involves

a pair of ordinary differential equations and an instantaneous optimality condition, the defi-

nition of the Bellman system of the alternative model involves a partial differential equation

and an instantaneous optimality condition.

Finally, recall that D(s) = e−λ s e−γ s + (1− e−λ s)β e−γ s. (We have not used this fact in

arriving at Definitions 3 and 4, which are valid for all discount functions.) Using this, it is

easy to show that

Z(s, x) = e−λ s e−γ sw(x) + (1− e−λ s)β e−γ s v(x),

and hence
∂Z

∂x
(0, x) = w0(x).
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We can therefore exploit the characterization of equilibrium in the finite-λ model in terms

of the Bellman system of the finite-λ model to see that c is an equilibrium of the finite-λ

model if and only if it is an equilibrium of the alternative model.16

4. The Instantaneous-Gratification Model

The continuous-time consumption model presented in the last subsection has an immedi-

ate advantage over its discrete-time analogue: in the continuous-time model equilibrium

consumption functions are everywhere continuous. However, the principal pathology of the

discrete-time hyperbolic consumption model remains: there may be intervals on which the

consumption function is downward sloping.17

Fortunately, we need not focus on the general case of the model. The urge for instant

gratification suggests that the present – i.e. the interval [t, t+τ) during which consumption

is highly valued – is very short. Since the arrival rate of τ is λ, this is the same as saying

that λ is very large. We are therefore led to consider the limiting case λ→∞, which serves
as a proxy for the case where τ is small. We refer to the limiting case as the instantaneous-

gratification case, or IG case for short.

Suppose that the triple (vλ, wλ, cλ) solves the Bellman system of the finite-λ model.

Suppose further that (vλ, wλ, cλ) → (v, w, c) as λ → ∞. Then, letting λ → ∞ in equation

(6), we obtain

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c). (11)

In other words, v is the expected present discounted value obtained when the discount rate is

γ, and when consumption is chosen according to the exogenously given consumption function

c. Next, dividing equation (7) through by λ and rearranging, we obtain

wλ − β vλ =
1
λ

¡
1
2
σ2 x2w00λ + (µx+ y − cλ)w

0
λ − γ wλ + u(cλ)

¢
.

Hence, letting λ→∞,
w − β v = 0. (12)

16As far as the lower bound on the value functions is concerned, if v(x) ≥ 1
γ u(y) then, since the current

self can always choose c = y, we must have w(x) ≥ γ+λβ
γ (γ+λ) u(y). Combining these two inequalities, we obtain

Z(s, x) ≥ R∞
s

D(t)u(y) dt. Conversely, if Z(s, x) ≥ R∞
s

D(t)u(y) dt then, multiplying both sides by eγ s and
letting s→∞, we obtain v(x) ≥ 1

γ u(y).
17The jumps that can occur in equilibrium consumption functions of the discrete-time model are always

downward. As such, they are simply mathematically extreme versions of downward slopes. The Brownian
noise in the continuous-time model eliminates the mathematical pathology of jumps, but fails to eliminate
the economic pathology of downward slopes.
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This reflects the fact that, as λ → ∞, the discount function drops essentially immediately
to a fraction β of its initial value, and that the current-value function w is therefore β times

the continuation-value function v. Finally, letting λ→∞ in equation (8), we obtain

u0(c) =

(
w0 if x > 0

max {w0, u0(y)} if x = 0

)
. (13)

In other words, when x > 0, consumption is chosen so as to equate the marginal utility of

consumption to the marginal value of wealth in the hands of the current self (as measured by

the current-value function w); and, when x = 0, consumption is chosen so as to equate the

marginal utility of consumption to the marginal value of wealth in the hands of the current

self, or to u0(y), whichever is the higher.

This derivation motivates the following definition:

Definition 5. The Bellman system of the IG model consists of the ordinary differential

equation

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c), (14)

and the instantaneous optimality condition

u0(c) =

(
β v0 if x > 0

max {β v0, u0(y)} if x = 0

)
. (15)

Equation (14) is identical to equation (11). Equation (15) is obtained by substituting

for w in terms of v using equation (12), (i.e. by replacing w with β v). Notice that, in the

special case in which β = 1, the Bellman system of the IG model is precisely the Bellman

system of an exponential consumer with utility function u and discount rate γ.

5. Bellman-Equation Equivalence

In the present section, we show that there exists a new utility function bu such that the
Bellman equation of the IG consumer with the original utility function u is identical to the

Bellman equation of the exponential consumer with utility function bu. We refer to this
new consumer as the bu-consumer. Bellman-equation equivalence (between the IG consumer
and the bu-consumer) is the key argument in our existence and uniqueness proofs for the IG
equilibrium (see Section 6).

The current section sets out the technical assumptions of the paper, develops many of the
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important technical lemmas, and includes the discussion of convex duality that motivates

our construction of the bu utility function. Some readers may nonetheless wish to skip to
Section 6, since the important existence, uniqueness and characterization theorems that can

be established using the background machinery developed in the current section can all be

found in that section and in Section 7. Doing so will not result in any loss of continuity.

5.1. Assumptions. We shall need the following assumptions:

A1 u : (0,∞)→ R is three times continuously differentiable;

A2 u0(c) > 0 for all c > 0;

A3 there exist 0 < ρ ≤ ρ <∞ such that ρ ≤ −c u00(c)
u0(c) ≤ ρ for all c > 0;

A4 there exist −∞ < π ≤ π <∞ such that π ≤ −c u000(c)
u00(c) ≤ π for all c > 0;

A5 β + ρ− 1 > 0;

A6 (2− β) ρ− (1− β)π > 0;

A7 γ > maxρ∈[ρbu,ρbu](1− ρ)(µ− 1
2
ρσ2), where

ρbu = (β + ρ− 1) ρ
(2− β) ρ− (1− β)π

and ρbu = (β + ρ− 1) ρ
(2− β) ρ− (1− β) π

.

Assumption A1 is needed for technical reasons. Assumption A2 means that marginal utility

is strictly positive. Assumption A3 means that the relative risk aversion of the consumer may

vary with consumption, but is globally bounded. This can be expressed by saying that the

consumer has bounded relative risk aversion, or BRRA for short. Analogously, assumption

A4 means that the consumer has bounded relative prudence (cf. Kimball 1990), or BRP for

short. Assumptions A5 and A6 ensure that the dynamic inconsistency of the IG consumer

(as measured by 1−β) is not too great relative to the bounds on ρ and π.18 Taken together,

they ensure that we can construct a utility function bu with the necessary properties. When
they are not satisfied, it may happen that the equilibrium consumption rate is infinite. In

18It is easy to see that Assumption A5 can be written in the form 1− β < ρ. Moreover it can be shown
that, if π < ρ, then Assumption A6 can be written in the form 1−β > − ρ

ρ−π ; and, if π > ρ, then Assumption

A6 can be written in the form 1− β <
ρ

π−ρ .
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other words, the current self may consume all the wealth in a single lump-sum binge, forcing

future selves to the subsistence level of consumption.19 Assumption A7 ensures that the

discount rate γ exceeds the rate of growth of the utility of wealth when wealth grows at the

risk-adjusted rate of return µ − 1
2
ρ σ2. It thereby guarantees that expected utility is well

defined.20

Assumptions A1-A7 simplify dramatically if the consumer has constant relative risk aver-

sion ρ. In that case we have ρ = ρ = ρ, π = π = ρ+1 and ρbu = ρbu = ρ. Hence Assumptions

A1-A7 reduce to:

B1 ρ > 0;

B2 β + ρ− 1 > 0;

B3 γ > (1− ρ)(µ− 1
2
ρ σ2).

Assumption B1 means that the utility function is strictly concave. Assumption B2 ensures

that the dynamic inconsistency of the IG consumer (as measured by 1 − β) is not too

great relative to the relevant parameter of the utility function (namely ρ). This assumption

would be satisfied in a standard calibration: empirical estimates of the coefficient of relative

risk aversion ρ typically lie between 1
2
and 5; and the short-run discount factor β is typically

thought to lie between 1
2
and 1.21 However, for completeness, we discuss the case β+ρ−1 < 0

in Section 8.2. Assumption B3 ensures that the discount rate γ exceeds the rate of growth

of the utility of wealth when wealth grows at the risk-adjusted rate of return µ− 1
2
ρ σ2.

5.2. The Bellman Equation of the IG Consumer. The Bellman equation of the IG

consumer is simply the equation obtained by eliminating c from the Bellman system of the

IG consumer. In order to derive this equation, let the functions f+ : (0,∞) → (0,∞) and
19A sufficient condition for this to occur is that Assumptions A5 and A6 are strongly reversed, in the sense

that β + ρ− 1 < 0 and (2− β) ρ− (1− β)π < 0. See Section 8.2 below.
20There are really only two cases involved here. In the first case, ρ < 1. In this case, the utility function

is unbounded above. Expected utility could therefore be positively infinite if the risk-adjusted rate of return
is large and positive. Requiring that γ is large enough compensates for the potentially rapid increase in
utility. In the second case, ρ > 1. In this case, the utility function is unbounded below. Expected utility
could therefore be negatively infinite if the risk-adjusted rate of return is large and negative. Requiring that
γ is large enough compensates for the potentially rapid decrease in utility. In the presence of labor income
y, this second case should not arise. So Assumption A7 can probably be dispensed with in this case.
21See Laibson et al (1998) and Ainslie (1992).
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f0 : (−∞,∞)→ (0, y] be defined implicitly by the equations

u0(f+(φ)) = φ,

u0(f0(φ)) = max {φ, u0(y)} .

In other words, let f+(φ) be the consumption chosen by an exponential consumer who is not

liquidity constrained (x > 0) and who has marginal value of wealth φ; and let be f0(φ) be

the consumption chosen by an exponential consumer who is liquidity constrained (x = 0)

and who has marginal value of wealth φ. Then f+(β φ) is the consumption chosen by an IG

consumer who is not liquidity constrained and who has marginal continuation-value of wealth

φ; and f0(β φ) is the consumption chosen by an IG consumer who is liquidity constrained

and who has marginal continuation-value of wealth φ.

Furthermore, let the functions h+ : (0,∞) → R and h0 : (−∞,∞) → R be defined by
the formulae

h+(φ) = u(f+(β φ))− φ f+(β φ),

h0(φ) = u(f0(β φ))− φf0(β φ).

In other words, let h+(φ) be the flow utility of consumption u(f+(β φ)), less the flow cost

of spending down wealth f+(β φ)φ, for an agent who is not liquidity constrained. Similarly,

let h0(φ) be the flow utility of consumption u(f0(β φ)), less the flow cost of spending down

wealth f0(β φ)φ, for an agent who is liquidity constrained. Notice that, in both cases,

the flow cost of spending down wealth is evaluated using the marginal continuation-value

of wealth, not the marginal current-value of wealth: we are evaluating the impact of the

consumption decisions of future selves on the current self.

Then, using f+ to eliminate c from equations (14-15), and taking advantage of the nota-

tion h+, we obtain

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c)

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + u(c)− c v0

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + u(f+(β v

0))− f+(β v
0) v0

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + h+(v

0). (16)

Similarly, using f0 to eliminate c from equation (14-15), and taking advantage of the notation
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h0, we obtain

0 = y v0 − γ v + h0(v
0). (17)

Equation (16), with boundary condition (17), is the Bellman equation of the IG consumer.

5.3. The Idea Behind Value-Function Equivalence. Consider a second consumer

who is identical to the IG consumer except that she has: (i) utility function eu instead of u;
and (ii) present bias 1 / eβ = 1 instead of 1 / β (in other words, she is dynamically consistent).
Call this consumer the eu-consumer.
Let eh+ and eh0 be the analogues, for the eu-consumer, of the functions h+ and h0. Then,

proceeding exactly as above, we can show that her value function ev solves the equation
0 = 1

2
σ2 x2 ev00 + (µx+ y) ev0 − γ ev + eh+(ev0) (18)

with boundary condition (at x = 0)

0 = y ev0 − γ ev + eh0(ev0). (19)

Comparing equations (18-19) with equations (16-17), we see that the only difference between

the Bellman equation of the eu-consumer and the Bellman equation of the IG consumer is

that the former involves the functions eh+ and eh0, whereas the latter involves the functions
h+ and h0.

What we would like to do, then, is to choose eu in such a way that eh+ = h+ and eh0 = h0.

For then the Bellman equations of the two consumers are identical, and hence their solutionsev and v coincide. Unfortunately, this is not possible: we can choose eu in such a way thateh+ = h+, or we can choose eu in such a way that eh0 = h0, but we cannot choose eu in such a
way that both eh+ = h+ and eh0 = h0. Fortunately, we can get around this problem. Let bu+
be the choice of eu for which eh+ = h+; let bu0 be the choice of eu for which eh0 = h0; and let bu be
the wealth-dependent utility function that coincides with bu+ when x > 0 and with bu0 when
x = 0. Then – as we shall explain in more detail in the following sections – the Bellman

equation of the bu-consumer is identical to the Bellman equation of the IG consumer.
5.4. The Bellman Equation of the bu-Consumer. In order to make the idea of Section

5.3 precise, begin from a pair of utility functions bu+ : (0,∞)→ R and bu0 : (0, y]→ R. Define
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the wealth-dependent utility function bu by the formula
bu(x, c) ≡ ( bu+(c) if x > 0 and c ∈ (0,∞)bu0(c) if x = 0 and c ∈ (0, y]

)
.

Consider the exponential consumer with utility function bu and discount rate γ. Call this
consumer the bu-consumer.
Arguing as in Section 3.4 above, it is easy to see that the value function bv of the bu-

consumer satisfies the equation

0 = max
c∈(0,∞)

1
2
σ2 x2 bv00 + (µx+ y − c) bv0 − γ bv + bu+(c) (20)

with boundary condition (at x = 0)

0 = max
c∈(0,y]

(y − c) bv0 − γ bv + bu0(c). (21)

Define the functions bh+ : (0,∞)→ R and bh0 : (−∞,∞)→ R by the formulae

bh+(φ) = max
c∈(0,∞)

bu+(c)− φ c,

bh0(φ) = max
c∈(0,y]

bu0(c)− φ c.

Then we see that equation (20) with boundary condition (21) can be written in the form

0 = 1
2
σ2 x2 bv00 + (µx+ y) bv0 − γ bv + bh+(bv0) (22)

with boundary condition (at x = 0)

0 = y bv0 − γ bv + bh0(bv0). (23)

Equation (22) with boundary condition (23) is the Bellman equation of the bu-consumer.
Comparing equations (22-23) with equations (16-17), we can see that the only difference be-

tween the Bellman equation of the bu-consumer and the Bellman equation of the IG consumer
is that the former involves the functions bh+ and bh0, whereas the latter involves the functions
h+ and h0.22

22The difference between the Bellman equation of the eu-consumer and the Bellman equation of the bu-
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5.5. Choosing bu+. We need to choose bu+ in such a way that bh+ = h+. To this end,

recall that bh+ is defined by the formula
bh+(φ) = max

c∈(0,∞)
bu+(c)− φ c.

In other words, bh+ is the dual – in the sense of convex analysis – of bu+. In order to ensure
that bh+ = h+, it therefore suffices to let bu+ be the dual of h+. In other words, it suffices to
define bu+ : (0,∞)→ R by the formula

bu+(c) = min
φ∈(0,∞)

h+(φ) + c φ. (24)

For then bh+ is the double dual of h+, and therefore equal to h+.
In order to verify that this approach works, we need three lemmas.

Lemma 6. We have:

1. h+ : (0,∞)→ R is twice continuously differentiable;

2. h0+(φ) < 0 for all φ ∈ (0,∞);

3. ρ−1bu ≤ −φh00+(φ)
h0+(φ)

≤ ρ−1bu for all φ ∈ (0,∞).

In particular: h+ is strictly decreasing and strictly convex; h0+(φ) → −∞ as φ → 0+;

h0+(φ)→ 0 as φ→∞−; and h+ is BRRA.

Proof. See Appendix A.1.

Remark 7. It is Assumption A5 which ensures that h0+ < 0, and Assumption A6 which

ensures that h00+ > 0.

Lemma 8. We have:

1. bu+ : (0,∞)→ R is twice continuously differentiable;

2. bu0+(c) > 0 for all c ∈ (0,∞);
3. ρbu ≤ −c bu00+(c)bu0+(c) ≤ ρbu for all c ∈ (0,∞).

consumer is that eh+ and eh0 are derived from the same wealth-independent utility function eu, whereas bh+
and bh0 are derived from two different wealth-independent utility functions bu+ and bu0.
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In particular: the dual bu+ of h+ is strictly increasing and strictly concave; bu0+(c) → ∞
as c→ 0+; bu0+(c)→ 0 as c→∞−; and bu+ is BRRA.
Proof. See Appendix A.2.

Remark 9. Because the slope of h+ lies in the interval (−∞, 0), bu+(c) is well defined if and
only if c ∈ (0,∞).

Finally, we have:

Lemma 10. Suppose that bu+ is defined by the formula (24). Then bh+ = h+.

Proof. As implied in the text, this is an instance of Fenchel’s convex-duality Theorem.

(Cf Rockafellar 1970, Section 31.)

5.6. Choosing bu0. We also need to choose bu0 in such a way that bh0 = h0. We proceed

exactly as in Section 5.5. We recall that bh0 is defined by the formula
bh0(φ) = max

c∈(0,y]
bu0(c)− φ c.

In other words, bh0 is the dual of bu0. We therefore define bu0 : (0, y]→ R by the formula

bu0(c) = min
φ∈(−∞,∞)

h0(φ) + c φ. (25)

In other words, we take bu0 to be the dual of h0. Finally, we note that bh0 is then the double
dual of h0, and therefore equal to h0.

In order to verify that this approach works, we again need three lemmas.

Lemma 11. We have:

h0(φ) =

(
u(y)− φy if φ ∈ ¡−∞, 1

β
u0(y)

¤
h+(φ) if φ ∈ £ 1

β
u0(y),∞¢

)
.

Moreover h00
¡
1
β
u0(y)−¢ ≤ h00

¡
1
β
u0(y) +

¢
.

In other words: h0 is affine on
¡−∞, 1

β
u0(y)

¤
with slope −y; h0 coincides with h+ on£

1
β
u0(y),∞¢; and there is a non-negative jump in the slope of h0 at 1

β
u0(y). In particular,

h0 is strictly decreasing and convex.

Proof. See Appendix A.3.
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Remark 12. There is a strictly positive jump in the slope of h0 at 1
β
u0(y) if and only if

β < 1.

Lemma 13. We have

bu0(c) = ( bu+(c) if c ∈ (0, ψ(y) y]bu+(ψ(y) y) + (c− ψ(y) y) bu0+(ψ(y) y) if c ∈ (ψ(y) y, y]

)
,

where

ψ(y) =
β + ρ(y)− 1

ρ(y)
∈ (0, 1)

and ρ(y) = −y u00(y) / u0(y). Moreover bu0(y) = u(y).

In other words: bu0 coincides with bu+ on (0, ψ(y) y]; bu0 is affine on [ψ(y) y, y] with slopebu0+(ψ(y) y); and bu0 coincides with u at y. In particular, bu0 is strictly increasing and concave.
Proof. See Appendix A.4.

Remark 14. Because the slope of h0 lies in the interval [−y, 0), bu0(c) is well defined if and
only if c ∈ (0, y].

Finally, we have:

Lemma 15. Suppose that bu+ is defined by the formula (25). Then bh0 = h0.

Proof. As implied in the text, this is an instance of Fenchel’s convex-duality Theorem.

(Cf Rockafellar 1970, Section 31.)

Remark 16. The bu-consumer can be thought of as a consumer who has utility function bu+,
but who receives a utility boost if x = 0 and c ∈ (ψ(y) y, y].

6. Existence and Uniqueness

Recall that in Section 5 we constructed a utility function bu such that a consumer with this
utility function and exponential discount rate γ will have exactly the same Bellman equation

as the IG consumer (with utility function u, exponential discount rate γ and present bias

1 / β). This utility function had to be wealth-contingent: bu = bu0 when x = 0, and bu = bu+
when x > 0. The following theorem draws together the findings relating the Bellman equation

associated with the IG model and the Bellman equation associated with the (dynamically

consistent) bu-consumer.
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Theorem 17 [Bellman-Equation Equivalence]. The Bellman equation of the IG consumer
is identical to the Bellman equation of the bu-consumer.
Proof. Let the functions h+ : (0,∞) → (0,∞) and h0 : (−∞,∞) → (0,∞) be defined
as in Section 5.2. Let the functions bu+ : (0,∞) → R and bu0 : (0, y] → R be the convex
duals of h+ and h0, as in Sections 5.5 and 5.6. Let the functions bh+ : (0,∞) → (0,∞) andbh0 : (−∞,∞)→ (0,∞) be the convex duals of bu+ and bu0, as in Section 5.4. Then bh+ = h+

and bh0 = h0, by Lemmas 10 and 15. In particular, the Bellman equation of the IG consumer

is identical to the Bellman equation of the bu-consumer.
Armed with Bellman-equation equivalence, it is easy to prove the key theorem of this

section. This theorem exploits the fact that any property of the Bellman equation of the bu-
consumer must also hold for the Bellman equation of the IG consumer, since the two Bellman

equations coincide. In particular, many good properties of the dynamically-consistent opti-

mization problem of the bu-consumer all carry over to the dynamically-inconsistent problem
of the IG consumer.

Theorem 18. The IG model has a unique equilibrium. Moreover the equilibrium value

function of the IG consumer coincides with the value function of the bu-consumer.
Proof. Since the problem of the bu-consumer is a standard optimization problem, the
Bellman equation of the bu-consumer has a unique solution bv. This solution must also be a
solution of the Bellman equation of the IG consumer. That is, equilibrium exists in the IG

problem. On the other hand, any solution v of the Bellman equation of the IG consumer is

also a solution of the Bellman equation of the bu-consumer. Since bv is the unique solution of
the Bellman equation of the bu-consumer, we must have v = bv. In particular, the equilibrium
value function of the IG consumer is unique.

This is undoubtedly a powerful result. It means that we can reduce the study of the

problem of the IG consumer, which is game-theoretic in nature, to the study of the problem

of the bu-consumer, which is decision-theoretic in nature. However, it must be used with
care. Although the two consumers share a common value function, they do not share a

common consumption function. In particular, value-function equivalence does not translate

into observational equivalence. Instead, consumption of the IG consumer will generally

exceed consumption of the bu-consumer, a point that we develop in Section 7.2.
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6.1. The Utility Functions of the Two Consumers. In this section, we characterize

the relationship between the utility function u of the IG consumer and the utility functionbu of the bu-consumer.
Consider the perspective of a consumer with utility function u who discounts exponen-

tially with discount rate γ and is forced to adopt the (inefficient) equilibrium consumption

levels of the IG consumer. Note that the value function v is constructed from exactly this

perspective: v represents the integral of exponentially discounted expected utility flows that

would be experienced by a consumer with utility function u who was forced to implement

the IG consumption rule.

Now consider the perspective of the bu-consumer. By construction, the value functionbv represents the exponentially discounted integral of expected utility flows that would be
experienced by the bu-consumer who implements her optimal policy.
Suppose (counterfactually) that bu were equal to u. Then bv > v, since bv is based on the

optimal policy for bu, while v is based on the suboptimal (IG) policy for u. Of course bv > v

is a contradiction, since bu was constructed so that bv = v.

This reasoning suggests that bu must be less than u. Intuitively, since bv = v, the utility

function bu must be less than the utility function u to compensate for the fact that the policy
that supports bv is chosen optimally while the policy that supports v is suboptimal.
The following two lemmas confirm this intuition.

Lemma 19. bu+(c) < u(c) for all c ∈ (0,∞).

Intuitively speaking, the IG consumption function exhibits overconsumption whenever

x > 0. Hence u(c) must be strictly larger than bu+(c) to compensate.
Proof. See Appendix A.5.

Lemma 20. bu0(c) ≤ u(c) for all c ∈ (0, y], with equality if and only if c = y.

Intuitively speaking, the IG consumption function exhibits overconsumption when x = 0

and c < y. Hence u(c) must be strictly larger than bu0(c) when c < y.

Proof. See Appendix A.6.

6.2. The Case in which u is CRRA. When u has constant relative risk aversion, we

can derive a closed-form solution for bu. Specifically, suppose that u is given by
u(c) = 1

1−ρ c
1−ρ
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with ρ 6= 1, and that β < 1.23 Then it is easy to check that

bu+(c) = ψρ

β
u(c) (26)

bu0(c) = ( ψρ

β
u(c) if c ∈ (0, ψ y]

ψρ

β

¡
u(ψ y) + (c− ψ y)u0(ψ y)

¢
if c ∈ (ψ y, y]

)
,

where

ψ =
β + ρ− 1

ρ
.

Moreover ψ ∈ (0, 1), since β < 1 and β + ρ − 1 > 0. In other words, the bu-consumer can
be thought of as an exponential consumer who has utility function ψρ

β
u and discount rate γ,

but who receives a utility boost if x = 0 and c ∈ (ψ y, y].24 Figure 4 depicts u, bu+ and bu0 in
the case β = 0.7 and ρ = 2. Among other things, it confirms the relationship among u, bu+
and bu0 predicted by Lemmas 19 and 20.

7. Some Features of Consumption in the IG Model

In the present section, we investigate the IGmodel in more detail. We establish the continuity

of the consumption function in the interior of the wealth space, we establish a sufficient

condition for the monotonicity of the consumption function, and we derive a generalized

Euler equation governing the evolution of the marginal utility of consumption. Assumptions

A1-A7 will be in force throughout the section.

7.1. Continuity of the Consumption Function. Let v be the value function of the IG

consumer, and let c be her consumption function. When x > 0, there is non-trivial Wiener

noise. Hence v0 must be continuous. Moreover u is strictly concave. Hence c is uniquely

determined by the first-order condition u0(c) = β v0, and c inherits continuity from v0.

The only remaining question is therefore whether c is continuous at x = 0, the point

where the liquidity constraint binds.25 The answer to this question depends on the discount

rate γ. There is a critical value γ1 of γ such that: if γ < γ1, then c(0) < y; and, if γ > γ1,

then c(0) = y. In other words: if the IG consumer is patient, then she chooses to save

23Ee can also derive a closed-form solution for bu in the case of log utility.
24The positive scalar ψρ

β has no behavioral implications. The bu-consumer therefore differs from a standard
exponential consumer with utility function u and discount rate γ only inasmuch as she receives a utility
boost when x = 0 and c ∈ (ψ y, y].
25Discontinuity in consumption at the moment at which the liquidity constraint starts to bind does not

seem empirically counterfactual to us.
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when x = 0; and, if she is impatient, then she chooses to consume her labor income forever

when x = 0. In the case when she is patient, we have c(0) = c(0+). In other words, her

consumption behavior at x = 0 is simply the limiting case of her consumption behavior when

x is small but positive. However, in the case when she is impatient, we have c(0) < c(0+).

In other words, when she has a small but positive amount of wealth, she consumes at an

unsustainable rate that is sharply curtailed when she runs out of wealth.

More precisely, we have the following theorem that shows that c is always continuous

when cash-on-hand is strictly positive, but that c may be discontinuous at the moment the

liquidity constraint starts to bind.

Theorem 21. There exist γ1 ∈ (0,∞) and c ∈ (y,∞) such that:

1. if γ < γ1, then c is continuous on [0,∞);

2. if γ > γ1, then c(0) = y, c(0+) = c > y and c is continuous on (0,∞).

Moreover c is the larger of the two solutions of the equation

u0(c) = β
u(c)− u(y)

c− y
. (27)

Equation (27) can be understood as follows. Let us refer to the moment at which wealth

runs out as the ‘crunch’. Suppose that the consumption level of the pre-crunch self is c. Then

the cost to the pre-crunch self of putting aside an extra dx units of wealth is u0(c) dx. On the

other hand, if the post-crunch self receives a windfall consisting of an extra dx units of wealth,

then she can raise her consumption level from y to c for a length of time dt = dx / (c− y).

The benefit to the post-crunch self of this increase in consumption is (u(c)−u(y)) dt, and the
benefit to the pre-crunch self is β (u(c)−u(y)) dt. The pre-crunch self is therefore indifferent
between putting aside the extra dx units of wealth and not putting them aside if and only if

u0(c) dx = β (u(c)− u(y)) dt.

Substituting for dt and dividing through by dx, we obtain equation (27).

Proof. See Appendix A.7.

7.2. Monotonicity of the Consumption Function. The analysis of Section 7.1 shows

that c is always non-decreasing at x = 0, in the sense that any jump in c at 0 must be non-

negative. The main question is therefore whether c is non-decreasing when x > 0.



INSTANTANEOUS GRATIFICATION 31

In order to answer this question, let bc be the consumption function of the bu-consumer.
Then c and bc satisfy the first-order conditions u0(c) = β v0 and bu0+(bc) = v0. Multiplying the

second condition through by β and eliminating β v0, we obtain

u0(c) = β bu0+(bc). (28)

Since u0 and bu0+ are both strictly decreasing, it follows that c is non-decreasing if and only ifbc is non-decreasing.
Now consider the point of view of the bu-consumer. Intuitively speaking, this consumer

will be torn between two options. The first option is to dissave, with a view to bringing

forward the time at which she benefits from the utility boost she obtains by consuming only

her labor income when her wealth runs out. The second option is to save, with a view to

settling into a pattern of steady wealth accumulation. The choice between these two options

can be expected to depend on both γ and x. If γ is small, then she can be expected to

choose to save for all x; and if γ is large, then she can be expected to choose to dissave for

all x. However, for intermediate γ, she can be expected to be torn between the two options.

She is more likely to choose to dissave if x small, since she can run down her wealth fairly

quickly; and she is more likely to choose to save if x is large, since she can reach the pattern

of steady wealth accumulation fairly quickly. Moreover, as x increases and she makes the

transition from dissaving to saving, her average propensity to consume can be expected to

fall. If this fall is steep enough, it could cause bc itself to fall.
Insofar as these considerations relate to the monotonicity of bc, equation (28) implies that

they carry over to c. Specifically, for γ small and γ large, c can be expected to be strictly

increasing; and, for intermediate γ and x, c could fall. However, insofar as they relate to

whether the bu-consumer saves or dissaves, they need not carry over. To see why note that,
if γ < γ1, then it follows from Appendix A.1 and part 1 of Theorem 21 that

c = 1
ψ(c)

bc for all x ≥ 0,
where

ψ(c) = β+ρ(c)−1
ρ(c)

∈ (0, 1),

ρ(c) = −c u00(c)
u0(c) .

Since, ψ(c) is less than unity as long as β < 1, it follows that Naturally, when u is in the class
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of utility functions with constant relative risk aversion, then ρ(c) and ψ(c) will not depend

on c, so we can express c as an explicit function of bc
c = 1

ψ
bc for all x ≥ 0.

Similarly, if γ > γ1, then it follows from Appendix A.1 and part 2 of Theorem 21 that

c(0) = bc(0) = y,

c = 1
ψ(c)

bc for all x > 0.

Overall, then, c ≥ bc (with strict inequality if x > 0). It follows that dissaving by thebu-consumer translates into dissaving by the IG consumer, but that saving by the bu-consumer
need not translate into saving by the IG consumer.

The following theorem confirms that, if γ is greater than the interest rate µ, then c is

indeed strictly increasing. The theorem is presented as a sufficient condition for monotonicity.

Once we have derived the deterministic version of the IG model, it will be possible to show

that this sufficient condition is also necessary in the deterministic model when γ is near µ.

See Section 7.6 below.

Theorem 22. Suppose that γ ≥ µ. Then c0 > 0 when x > 0.

Proof. See Appendix A.8.

7.3. Overconsumption when u is CRRA. Let us take as our reference point the

exponential consumer who has utility function ψρ

β
u and discount rate γ, but who does not

receive a utility boost at the origin. Since the factor ψρ

β
has no behavioral significance, this

consumer is simply the standard consumer of the standard buffer-stock model. Call her the

reference consumer.

Now consider the bu-consumer. If γ < γ1, then bc(0) ≤ ψ y. In other words, she never takes

advantage of the utility boost at x = 0. Her consumption function is therefore identical to

that of the reference consumer. If γ > γ1, then bc(0) = y. In other words, she takes full

advantage of the utility boost at x = 0. This has two consequences. First, when x = 0,

her consumption must be at least as high as that of the reference consumer. Second, when

x > 0, she will increase her consumption above that of the reference consumer, in order to

bring forward the time at which she obtains the utility boost. The consumption function of
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the bu-consumer is therefore greater than that of the reference consumer, and strictly greater
for all x > 0.

Finally, consider the IG consumer. If γ < γ1, then it follows from the discussion of

Section 7.2 that

c = 1
ψ
bc for all x ≥ 0,

where

ψ = β+ρ−1
ρ
∈ (0, 1).

In other words, c is simply a scalar multiple of bc. Similarly, if γ > γ1, then

c(0) = bc(0) = y,

and

c = 1
ψ
bc for all x > 0.

Overall, then, c ≥ bc (with strict inequality if x > 0).

7.4. The Generalized Euler Equation. Since u0(c) may have a discontinuity at 0, we

cannot use Itô’s Lemma to study its dynamics. We can, however, use Itô’s Lemma to study

the dynamics of m = β v0. These dynamics are very closely related to those of u0(c). Indeed,

u0(c) = m when x > 0. Moreover:

1. if c(0+) = c(0), then the dynamics of m are identical to those of u0(c);

2. if c(0+) > c(0) and x(0) ∈ (0,∞), and if T is the first time that x hits 0, then the

dynamics of m are identical to those of u0(c) on the interval (0, T ); and

3. if c(0+) > c(0) and x(0) = 0, then the dynamics of m are identical to those of u0(c).

The two dynamics only differ if c(0+) > c(0) and x(0) ∈ (0,∞), in which case u0(c) jumps
up at T (whereas m does not jump).

Theorem 23. We have:

dm

m
=

µ
γ − µ+ σ2 ρ(c)

x c0

c
+ (1− β) c0

¶
dt− σ ρ(c)

x c0

c
dz
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if either x > 0 or x = 0 and c(0+) = c(0); and

dm

m
= 0

if x = 0 and c(0+) > c(0).

This theorem gives an exact expression for the rate of growth ofm. The equation includes

deterministic terms (i.e. the terms which include dt) and a stochastic term (i.e. the final

term, which includes dz). The stochastic term captures the negative effect that positive

wealth shocks have on marginal utility.

The term γ dt implies that marginal utility rises more quickly the higher the long-run

discount rate γ. The term −µdt implies that marginal utility rises more slowly the higher
the rate of return µ. The term σ2 ρ(c) x c

0
c
dt captures two separate effects. First, asset income

uncertainty σ2 affects the savings decision. Second, since marginal utility is non-linear in

consumption, asset income uncertainty affects the average value of future marginal utility.

The net impact of these two effects is always positive. The term (1 − β) c0 dt captures the

effect of hyperbolic discounting. Naturally, when β = 1, this effect vanishes and the model

coincides with the standard exponential discounting case.

Proof. See Appendix A.9.

7.5. The Deterministic IG Model. Up to now we have assumed that the standard

deviation of asset returns σ > 0. In other words, we have been focussing on the stochastic

IG model. In the present section, we investigate the case σ = 0. In other words, we focus

on the deterministic IG model. We show that, by viewing the deterministic IG model as

a limiting case of the stochastic IG model, we are able to pinpoint a unique value function

for the deterministic IG model. More precisely, we have the following theorem. The proof,

which follows standard lines, is omitted.

Theorem 24. Let vσ be the value function of the stochastic IG model. Then:

1. there is a continuous function v : [0,∞)→ R such that vσ → v uniformly on compact

subsets of [0,∞) as σ → 0+;

2. v is the unique viscosity solution26 of the ordinary differential equation

0 = (µx+ y) v0 − γ v + bh+(v0) (29)
26See Crandall et al (1992) for a “user’s guide” to viscosity solutions.
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with boundary condition

0 = y v0 − γ v + bh0(v0) (30)

at x = 0.

Equation (29) with boundary condition (30) is the Bellman equation of the deterministic

IG model.

The equilibrium consumption function c of the deterministic IG model can be determined

from the value function v using the first-order condition. More precisely, we have

u0(c) =

(
β v0 if x > 0

max {β v0, u0(y)} if x = 0

)
.

In other words, by letting σ → 0+ in the stochastic IG model, we select a unique sensible

equilibrium of the deterministic IG model.

Remark 25. Krusell and Smith (2000) consider a deterministic discrete-time hyperbolic
consumption model. They show that equilibrium is indeterminate in their model. Our

results suggest that this indeterminacy could be resolved by a refinement analogous to the

one that we have used here.

Remark 26. The Bellman equation of the deterministic IG model is simpler than than

that of the stochastic IG model: it is a first-order ordinary differential equation, whereas the

latter is a second-order ordinary differential equation.

7.6. The Deterministic IG Model when u is CRRA. In the present section, we

shall investigate the deterministic IG model in the case that u is CRRA. More precisely, we

shall make the following assumptions:27

C1 σ = 0;

C2 u(c) takes the form 1
1−ρ c

1−ρ with ρ 6= 1;

C3 µ > 0.

27Assumptions C1-C3 are made in addition to the standing assumptions A1-A7. The latter accordingly
reduce to Assumptions B1-B3.
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Under these assumptions, the Bellman equation possesses a symmetry that allows us to trans-

form it from a non-autonomous ordinary differential equation into an autonomous ordinary

differential equation. We are therefore able to provide a complete analysis of equilibrium in

this case.

Among other things, this analysis shows that there there are critical values γ1 and γ2
of the discount rate γ such that, if γ < γ1 or γ > γ2, then c is strictly increasing; and if

γ1 < γ < γ2, then c first increases, then decreases, then increases again. Indeed, it shows

that γ1 = β µ and γ2 = µ. It also shows that, for γ < γ2, the IG consumer chooses to dissave.

In particular, c exceeds bc by enough to turn saving by the bu-consumer into dissaving by the
IG consumer when γ1 < γ < γ2.

In the deterministic IG model, total income is µx+y. If c is the equilibrium consumption

function, we therefore define the average propensity to consume APC of the IG consumer

by the formula

APC(x) =
c(x)

µx+ y
.

We then have:

Theorem 27. Suppose that Assumptions C1-C3 hold. Then there exists γ3 ∈ (µ,∞) such
that:

1. If γ ∈ ((1− ρ)µ, β µ), then APC is constant and strictly less than 1. In particular, c

is strictly increasing and affine.

2. If γ ∈ (β µ, µ), then there exists x1 ∈ (0,∞) such that APC jumps up at 0, is strictly

decreasing and strictly greater than 1 on (0, x1), jumps down at x1, and is constant

and strictly greater than 1 on (x1,∞). Moreover c jumps up at 0, is strictly decreasing
on (0, x1), jumps down at x1, and is strictly increasing and affine on (x1,∞).

3. If γ ∈ (µ, γ3), then APC jumps up at 0, and is strictly decreasing and strictly greater

than 1 on (0,∞). Moreover c jumps up at 0, and is strictly increasing on (0,∞).

4. If γ ∈ (γ3,∞), then APC jumps up at 0, and is strictly increasing and strictly greater
than 1 on (0,∞). Moreover c jumps up at 0, and is strictly increasing on (0,∞).

In particular, the condition γ ≥ µ used in the proof of monotonicity of the consumption

function is necessary.

Proof. See Appendix A.10
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Remark 28. The analysis of this section can easily be extended to the cover the case ρ = 1.

Remark 29. There is a unique solution to the dynamics even when γ ∈ (β µ, µ). Indeed,
in this case we have APC > 1, and x therefore decreases strictly with time.

8. Derivation of the IG Model Revisited

8.1. A Limit Theorem. Our derivation of the IG model from the finite-λ model in

Section 4 was deliberately heuristic. The relationship between the two models can, however,

be made rigorous. The following theorem, which we state without proof, gives the flavor of

the link between the two models.

Theorem 30. Suppose that Assumptions A1-A7 hold. Then there exists λ0 ∈ (0,∞) such
that, for all λ ∈ [λ0,∞), the finite-λ model possesses a unique equilibrium cλ. If wλ is the

current-value function associated with cλ, then wλ is continuous on [0,∞). Moreover 1
β
wλ

converges uniformly on compact subsets of [0,∞) as λ→∞ to a limit function v, which is

the unique viscosity solution28 of the Bellman equation (16) for x ∈ (0,∞), with boundary
condition (17) at x = 0.

8.2. A Complementary Theorem. Theorem 30 covers the case in which u has constant

relative risk aversion ρ > 1− β. It is also possible to prove a limit theorem that covers the

case in which u has constant relative risk aversion ρ < 1− β. In order to formulate such a

theorem, we introduce the following assumptions, which complement Assumptions A5 and

A6:

A50 β + ρ− 1 < 0;

A60 (2− β)ρ− (1− β)π < 0.

The theorem, which we state without proof, is then as follows.

Theorem 31. Suppose that Assumptions A1-A4, A50, A60 and A7 hold. Then there exists
λ0 ∈ (0,∞) such that, for all λ ∈ [λ0,∞), the finite-λ model possesses a unique equilibrium
cλ. If wλ is the current-value function associated with cλ, then wλ is continuous on [0,∞).
Moreover 1

β
wλ → 1

γ
u(y) uniformly on compact subsets of [0,∞) as λ→∞.

28See Crandall et al (1992) for a “user’s guide” to viscosity solutions.
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This theorem reflects the following behavior. For large λ, the consumer quickly consumes

all her wealth. Thereafter, she consumes her labor income. Because her utility function has

the property that 1
c
u(c) → 0 as c → ∞, the initial consumption binge does not contribute

much to the expected present discounted value of her consumption flow. It is the subsequent

consumption of her labor income that matters. The expected present discounted value of

this consumption is of course simply 1
γ
u(y).

This behavior arises because, when ρ < 1−β, the utility function is not sufficiently bowed
to dampen the feedback effects that arise in hyperbolic models. Instead, these feedback

effects drive consumption to infinity. In effect, the current self knows that subsequent selves

are going to consume at a very high rate, and therefore chooses to consume at a very high

rate herself in order to preempt the consumption by the later selves.

8.3. A Stronger Limit Theorem. Finally, note that Theorem 30 continues to hold

when Assumptions A5 and A6 are replaced by the following, significantly weaker, assump-

tions:

A500 β + lim infc→∞ ρ(c)− 1 > 0;

A600 (2− β) lim infc→∞ ρ(c)− (1− β) lim supc→∞ π(c) > 0.

These assumptions ensure that bh+ is decreasing and convex near 0. This is enough to ensure
that consumption remains bounded as λ→∞. These assumptions are, however, consistent
with bh+ being increasing or concave away from 0. In other words, for some BRRA utility

functions, the IG problem is not value-function equivalent to any exponential consumption

problem.

9. Conclusions

We have described a continuous-time model of quasi-hyperbolic discounting. Our model al-

lows for a general class of preferences, includes liquidity constraints, and places no restrictions

on equilibrium policy functions. The model is also psychologically relevant. We take the

phrase ‘instantaneous gratification’ literally. We analyze a model in which individuals prefer

gratification in the present instant discretely more than consumption in the momentarily

delayed future. In this simple setting, equilibrium is unique and the consumption function

is continuous. When the long-run discount rate weakly exceeds the interest rate, the con-

sumption function is also monotonic. All of the pathologies that characterize discrete-time

quasi-hyperbolic models vanish.
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A. Appendix

A.1. Proof of Lemma 6. Let the function eh+ : (0,∞) → (0,∞) be defined by the
formula eh+(φ) = u(f+(φ))− φf+(φ).

(This notation is consistent with the notation of Section 5.3 if we put eu = u.) Then:

h+(φ) = u(f+(β φ))− f+(β φ)φ

= u(f+(β φ))− β f+(β φ)φ− (1− β) f+(β φ)φ

= eh+(β φ)− (1− β) f+(β φ)φ.

Hence

h0+(φ) = β eh0+ − (1− β) f+ − (1− β)β f 0+ φ

= −β f+ − (1− β) f+ − (1− β)β f 0+ φ

= −f+ − (1− β) f 0+ β φ

= −f+
µ
1 + (1− β)

f 0+ β φ
f+

¶
= −f+

µ
1 + (1− β)

u0(f+)
f+ u00(f+)

¶
= −f+

µ
1− 1− β

ρ(f+)

¶
=
−(β + ρ(f+)− 1) f+

ρ(f+)

where we have suppressed the dependence of eh+ and f+ on β φ. Assumption A5 therefore

implies that h0+ < 0.

Second, in the course of the previous paragraph we showed that

h0+(φ) = −f+ − (1− β) f 0+ β φ.
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Hence

h00+(φ) = −β f 0+ − (1− β) f 0+ β − (1− β)β f 00+ β φ

= −β f 0+
µ
1 + (1− β)

µ
1 +

f 00+ β φ
f 0+

¶¶
=

−β
u00(f+)

µ
1 + (1− β)

µ
1− u000(f+)u0(f+)

u00(f+)2

¶¶
=

−β
u00(f+)

µ
1 + (1− β)

µ
1− π(f+)

ρ(f+)

¶¶
=

−β
u00(f+) ρ(f+)

((2− β) ρ(f+)− (1− β)π(f+)) .

Assumption A6 therefore implies that h00+(φ) > 0.

Third, using the final expressions obtained above for h0+(φ) and h00+(φ), we have

−φh00+(φ)
h0+(φ)

=
(2− β) ρ(f+)− (1− β)π(f+)

(β + ρ(f+)− 1) ρ(f+) .

Hence

ρ−1bu ≤ −φh
00
+(φ)

h0+(φ)
≤ ρ−1bu ,

as required.

A.2. Proof of Lemma 8. Put

g+(c) = argminφ∈(0,∞) h+(φ) + c φ.

Then

bu0+(c) = g+(c),bu00+(c) = −1 / h00+(g+(c))

and −c bu00+(c)bu0+(c) =
h0+(g+(c))

−g+(c)h00+(g+(c))
.
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We may therefore apply part 3 of Lemma 6 to conclude that

ρbu ≤ −c bu00+(c)bu0+(c) ≤ ρbu,
as required.

A.3. Proof of Lemma 11. The first statement is immediate from the definition of h0.

It implies that

h00(
1
β
u0(y)+) = h0+(

1
β
u0(y)) =

−(β + ρ(f+(u
0(y)))− 1) f+(u0(y))

ρ(f+(u0(y)))

= −
µ
β + ρ(y)− 1

ρ(y)

¶
y ≥ −y = h00(

1
β
u0(y)−).

This completes the proof of the lemma.

A.4. Proof of Lemma 13. We have

h0(φ) =

(
u(y)− φy if φ ∈ ¡−∞, 1

β
u0(y)

¤
h+(φ) if φ ∈ £ 1

β
u0(y),∞¢

)

and

h00(φ)


= −y if φ ∈ ¡−∞, 1

β
u0(y)

¢
∈ [−y,−ψ y] if φ = 1

β
u0(y)

= h0+(φ) if φ ∈ ¡ 1
β
u0(y),∞¢

 .

Hence bu0(c) = min
φ∈(−∞,∞)

h+(φ) + c φ = bu+(c)
if c ∈ (0, ψ y) and

bu0(c) = h+
¡
1
β
u0(y)

¢
+ c 1

β
u0(y)

= h+
¡
1
β
u0(y)

¢
+ ψ y 1

β
u0(y) + (c− ψ y) 1

β
u0(y)

= bu+(ψ y) + (c− ψ y) bu0+(ψ y)



INSTANTANEOUS GRATIFICATION 44

if c ∈ [ψ y, y]. Finally,

bu0(y) = h+
¡
1
β
u0(y)

¢
+ y 1

β
u0(y)

= u(y)− y 1
β
u0(y) + y 1

β
u0(y)

= u(y).

This completes the proof of the lemma.

A.5. Proof of Lemma 19. Let the function eh+ : (0,∞) → (0,∞) be defined by the
formula eh+(φ) = u(f+(φ))− φf+(φ).

(This notation is consistent with the notation of Section 5.3 if we put eu = u.) Then:

h+(φ) = u(f+(β φ))− φf+(β φ) < u(f+(φ))− φ f+(φ) = eh+(φ)
(by definition of h+, since f+(φ) is the unique value of c that maximizes u(c) − φ c and by

definition of eh+, respectively); and hence
bu+(c) = min

φ∈(0,∞)
h+(φ) + c φ < min

φ∈(0,∞)
eh+(φ) + c φ = u(c)

(by definition of bu+, because eh+ > h+ and by convex duality, respectively).

A.6. Proof of Lemma 20. Let the function eh0 : (−∞,∞) → R be defined by the

formula eh0(φ) = u(f0(φ))− φ f0(φ).

(This notation is consistent with the notation of Section 5.3 if we put eu = u.) Then

h0(φ) = u(f0(β φ))− φ f0(β φ) ≤ u(f0(φ))− φf0(φ) = eh0(φ),
with equality if and only if φ ∈ (−∞, u0(y)). Hence

bu0(c) = min
φ∈(−∞,∞)

h0(φ) + c φ ≤ min
φ∈(−∞,∞)

eh0(φ) + c φ = u(c).
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Now, suppose that c ∈ (0, y). Then u(c) is attained for a φ∗ for which eh0(φ∗) > h0(φ∗).

Hence

u(c) = eh0(φ∗) + c φ∗ > h0(φ∗) + c φ∗ ≥ bu0(c).
On the other hand, if c = y then bu0(c) is attained for a φ∗ for which eh0(φ∗) > h0(φ∗).

(Specifically, bu0(c) is attained for any φ∗ ≤ u0(y).) A fortiori, u(c) is also attained for any

such φ∗. Hence

u(c) = eh0(φ∗) + c φ∗ = h0(φ∗) + c φ∗ = bu0(c).
Overall, then, bu0(c) = u(c) if and only if c = y.

A.7. Proof of Theorem 21. Put φ = v0(0). Then (since v0(0) is by definition the limit

of v0(x) as x→ 0) we must have both

0 = y φ− γ v(0) + h+(φ)

(from equation (16)) and

0 = y φ− γ v(0) + h0(φ).

(from equation (17)). Eliminating γ v(0) between these two equations, we obtain

y φ+ h0(φ) = y φ+ h+(φ).

This equation has a single isolated solution φ = φ ∈ ¡0, 1
β
u0(y)

¢
, and a continuum of solutions

φ ∈ £ 1
β
u0(y),∞¢. The isolated solution corresponds to the case in which the consumer is

impatient, and chooses to consume her labor income at x = 0. The continuum of solutions

correspond to the case in which the consumer is patient, and chooses to save at x = 0. At

the isolated solution, we have

γ v(0) = y φ+ h0(φ) = y φ+ u(y)− φ y = u(y)

(cf. Lemma 11). At a solution in the continuum, we have

γ v(0) = y φ+ h+(φ).

In particular, γ v(0) is strictly increasing in φ.

Next, consider the point of view of the bu-consumer. She is a standard optimizer. It is
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therefore obvious that the flow equivalent γ v(0) of the value to her of having x = 0 is non-

decreasing in γ. Moreover, there must be a critical value γ1 of her discount rate γ such that:

γ v(0) is strictly decreasing in γ for γ < γ1; and γ v(0) is constant and equal to u(y) when

γ > γ1. In other words, for γ < γ1 we will obtain the appropriate solution φ ∈
¡
1
β
u0(y),∞¢,

and for γ > γ1 we will obtain the isolated solution φ = φ.

Finally, put c = f+(β φ) and consider the point of view of the IG consumer. If γ < γ1,

then we have

c(0) = f0(β φ) = f+(β φ) = c(0+).

If γ > γ1, then we have

c(0) = f0(β φ) = y

c(0+) = f+(β φ) = c.

Now,

y φ+ h0(φ) =

(
u(y) if φ ∈ ¡0, 1

β
u0(y)

¢
y φ+ h+(φ) if φ ∈ £ 1

β
u0(y),∞¢

)
.

Hence φ is the smaller of the two solutions of the equation

u(y) = y φ+ h+(φ).

Noting that h+(φ) = u(f+(β φ))− φf+(β φ), making the substitution φ = 1
β
u0(c) and rear-

ranging, this equation can be written in the form (27). Since u0 is strictly decreasing, c is

the larger of the two solutions of this equation.

A.8. Proof of Theorem 22. As explained in the text, it suffices to show that bc0 > 0

when x > 0. As a first step, note that bc satisfies the first-order condition bu0+(bc) = v0 when

x > 0. Hence bu00+(bc)bc0 = v00. Hence bc0 > 0 if and only if v00 < 0. Next, differentiating equation
(22) with respect to x, we obtain

0 = 1
2
σ2 x2 v000 + (µx+ y) v00 − γ v0 + σ2 x v00 + µ v0 + bh0+(v0) v00

or

v000 =
2

σ2 x2
((γ − µ) v0 − ((µ+ σ2)x+ y + bh0+(v0)) v00).
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In particular, if v00 = 0, then

v000 =
2

σ2 x2
(γ − µ) v0 ≥ 0.

Hence, if there exists x1 ∈ (0,∞) such that v00(x1) ≥ 0, then v00 ≥ 0 on (x1,∞). In other
words, v grows at least linearly. But this is impossible. Under our standing assumptions,

there exists k1 > 0 such that bu0 and bu+ are dominated by the CRRA utility function

u : (0,∞)→ R given by the formula

u(c) = k1

³
1 + 1

1−ρbu c1−ρbu
´
.

Moreover standard considerations show that there exists k2 > 0 such that the value function

v : [0,∞)→ R of an exponential consumer with utility function u is dominated by a function
of the form

x 7→ k2
³
1 + 1

1−ρbu x1−ρbu
´
.

In particular, v cannot grow linearly. Now v ≤ v, since bu0, bu+ ≤ u. Hence v cannot grow

linearly either. We must therefore have v00 < 0 on (0,∞).

A.9. Proof of Theorem 23. We begin by applying Itô’s Lemma to m to obtain

dm = (1
2
σ2 x2m00 + (µx+ y − c)m0)dt+ σ xm0 dz.

Next, we put ec = f(m). Then, differentiating equation (11) with respect to x, we have

1
2
σ2 x2m00 + (µx+ y − ec)m0 − γ m+ σ2 xm0 + µm− ec0m+ β u0(ec)ec0 = 0

when x > 0. Moreover this equality extends by continuity to the case x = 0. Hence

1
2
σ2 x2m00 + (µx+ y − c)m0 = 1

2
σ2 x2m00 + (µx+ y − ec)m0 + (ec− c)m0

= γ m− σ2 xm0 − µm+ ec0m− β u0(ec)ec0 + (ec− c)m0

= γ m− σ2 xm0 − µm+ ec0m− β mec0 + (ec− c)m0

= (γ − µ+ (1− β)ec0)m− (σ2 x− (ec− c))m0
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and

dm

m
=

µ
γ − µ+ (1− β)ec0 − σ2 x

m0

m
+ (ec− c)

m0

m

¶
dt+ σ x

m0

m
dz

=

µ
γ − µ+ (1− β)ec0 + σ2 ρ(ec) xec0ec − (ec− c) ρ(ec) ec0ec

¶
dt− σ ρ(ec) xec0ec dz

since
m0

m
=

u00(ec)ec0
u0(ec) =

ec u00(ec)
u0(ec) ec0ec = −ρ(ec) ec0ec .

In particular, we have the first statement of the theorem.

As for the second statement, note that if x = 0 and c(0+) > c(0) then c(0) = y. Wealth

therefore remains constant at 0 forever, m = u0(y) forever and dm = 0.

A.10. Proof of Theorem 27. We proceed in steps. First, put X = log(µx + y),

v(x) = (µx+ y)1−ρ V (X), c = log(y) and, in a slight abuse of notation,

h0(φ, y) =

(
u(y)− φ y if φ ∈ ¡−∞, 1

β
u0(y)

¤
h+(φ) if φ ∈ ¡ 1

β
u0(y),∞¢

)
.

Then

0 = (µx+ y) v0 − γ v + h+(v
0)

(using the Bellman equation of the deterministic IG model, namely (29))

= (µx+ y)1−ρ (µV 0 + (1− ρ)µV − γ V ) + h+((µx+ y)−ρ (µV 0 + (1− ρ)µV ))

(since v0 = (µx+ y)−ρ (µV 0 + (1− ρ)µV ))

= (µx+ y)1−ρ (µV 0 + (1− ρ)µV − γ V + h+(µV
0 + (1− ρ)µV ))

(because h+ is homogeneous of degree 1− 1
ρ
). Also

0 = y v0(0)− γ v(0) + h0(v
0(0), y)

(using the boundary condition of the deterministic IG model, namely (30))

= y1−ρ (µV 0(c) + (1− ρ)µV (c)− γ V (c)) + h0(y
−ρ (µV 0(c) + (1− ρ)µV (c)), y)
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(since v0(0) = y−ρ (µV 0(c) + (1− ρ)µV (c)))

= y1−ρ (µV 0(c) + (1− ρ)µV (c)− γ V (c) + h0(µV
0(c) + (1− ρ)µV (c), 1)) .

Hence v is the value function of the deterministic IG model iff V satisfies the Bellman

equation

0 = µV 0 + (1− ρ)µV − γ V + h+(µV
0 + (1− ρ)µV ) (31)

for X ∈ (c,∞) with boundary condition

0 = µV 0 + (1− ρ)µV − γ V + h0(µV
0 + (1− ρ)µV, 1) (32)

at X = c.

Second, put ζ = µV 0+(1−ρ)µV . Then equation (31) determines a curve C+ in (V 0, V )-

space parametrized by ζ ∈ (0,∞). If ρ < 1, then: for ζ ∈ (0, bu0+(1)), V 0 is increasing in ζ

and V is decreasing in ζ; and, for ζ ∈ (bu0+(1),∞), both V 0 and V are increasing in ζ. If

ρ > 1, and if we put

a =
γ − (1− ρ)µ

(ρ− 1)µ > 1,

then: for ζ ∈ (0, bu0+(a)), both V 0 and V are decreasing in ζ;29 for ζ ∈ (bu0+(a), bu0+(1)), V 0

is increasing in ζ and V is decreasing in ζ; and, for ζ ∈ (bu0+(1),∞), both V 0 and V are

increasing in ζ.

Third, V is minimized when ζ = bu0+(1), at which point V = bu+(1). Hence there are two
points on C+ at which V = u(1) > bu+(1). We denote the corresponding values of ζ by bu0+(ψ)
and bu0+(ψ).30 It is easy to verify that

ψ =
β + ρ− 1

ρ
< 1 < ψ,

but there is no closed-form expression for ψ.

Fourth, equation (32) determines a curve C0 in (V 0, V )-space parametrized by ζ ∈
(−∞,∞). For ζ ∈ (−∞, bu0+(ψ)), V 0 is increasing in ζ and V is constant and equal to

u(1); and, for ζ ∈ (bu0+(ψ),∞), C0 coincides with C+ (in particular, both V 0 and V are

increasing in ζ).

29Since V, V 0 → 0− as ζ → 0+, we have V 0 < 0 for ζ ∈ (0, bu0+(A)).
30The points ψ and ψ are the two solutions of the equation bu+(bc) + (1− bc) bu0+(bc) = u(1).
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Fifth, there is a unique point on C+ at which V 0 = 0. We denote the corresponding value

of ζ by bu0+(b). It is easy to verify that
b =

γ − (1− ρ)µ

ρµ
.

It can also be shown that V 0 = γ−β µ
γ µ

bu0+(ψ) when ζ = bu0+(ψ), V 0 = γ−µ
γ µ
bu0+(1) when ζ = bu0+(1),

V 0 = γ−(1−ρ)µ−ρµψ
γ µ

bu0+(ψ) when ζ = bu0+(ψ), and, if ρ > 1, then V 0 = γ−(1−ρ)µ
γ (1−ρ)µ bu0+(a) < 0 when

ζ = bu0+(a).31
Sixth, it is easy to verify that b is increasing in γ. Moreover there exists γ3 ∈ (µ,∞) such

that: b ∈ (0, ψ) iff γ ∈ ((1 − ρ)µ, β µ); b ∈ (ψ, 1) iff γ ∈ (β µ, µ); b ∈ (1, ψ) iff γ ∈ (µ, γ3);
and b ∈ (ψ,∞) iff γ ∈ (γ3,∞).32
Seventh, we complete the analysis of APC using a phase diagram. Equation (31) is a

first-order autonomous ordinary differential equation. A one-dimensional phase diagram (in

V -space) would therefore appear to be appropriate. However, there may be upward jumps

in V 0.33 It is therefore preferable to work with a two-dimensional phase diagram (in (V 0, V )-

space). The phase curve corresponding to the equilibrium starts on the curve C0, is confined

to the curve C+, and converges to the steady state V 0 = 0 as X →∞.
Eighth, we complete the analysis of c by noting that, when x > 0: the first-order condition

of the equivalent exponential problem gives bu00+(bc)bc0 = v00; and the Bellman equation of the

deterministic IG model gives 0 = (µx+ y − bc) v00 − (γ − µ) v0. We therefore have

bc0 = (γ − µ) v0

(µx+ y) (1−[APC) bu00+(bc) ,
where [APC = bc

(µx+y)
.

31These values of V 0 are found from the formula V 0 = γ−(1−ρ)µ−ρµ bc
γ µ bu0+(bc). The corresponding values of

V can be found from the formula V = 1−ρ+ρ bcbc bu+(bc).
32The critical value of γ can be found by solving the equation γ

αµ =
³
γ−(1−ρ)µ

ψ ρµ

´ρ
. This equation has two

solutions, αµ and γ3.
33There are no downward jumps. Intuitively speaking, this is because V is the upper envelope of smooth

functions, and can therefore have convex kinks but not concave kinks.




