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E. The Alternative Approach to Deriving the IG Model

In the PF model, there is a sequence of selves {0, 1, 2, ...}, each of whom has a strictly

positive span of control. In the IG model there is a continuum of selves [0,∞), each
of whom has an infinitesimal span of control. In formulating the objective of the IG

consumer, it is therefore important to bear in mind that her span of control is an instant,

and that changes in her behavior have only an infinitesimal effect on her objective. Careful

track must be kept of such infinitesimal effects.

Consider self s ∈ [0,∞), and suppose that all future selves use the consumption
function ec : [0,∞)→ (0,∞). Then the continuation-value function of self s is exactly the
same as the continuation-value function of the PF consumer, namely v. In particular, v

satisfies the differential equation

0 = 1
2
σ2 x2 v00 + (µx+ y − ec ) v0 − γ v + u(ec ) (36)

for x ∈ [0,∞), where we have suppressed the dependence of v and ec on x.

Suppose further that self s has wealth x, and that she chooses the consumption level

c ∈ (0,∞). Then the current value of self s is

w(x) = Es
£
u(c) dt+ β exp(−γ dt) v(x+ dx)

¤
.

Now, Itô’s Lemma implies that exp(−γ dt) = 1− γ dt and

v(x+ dx) = v(x) + v0(x) dx+ 1
2
v00(x) (dx)2.

Moreover dx = (µx+ y − c) dt+ σ x dz and (dx)2 = σ2 x2 dt. Hence

w(x) = Es

·
u(c) dt+ β v(x) + β

³
v0(x) dx+ 1

2
v00(x) (dx)2 − γ v(x) dt

´¸
= β v(x) +

³
β
¡
1
2
σ2 x2v00(x) + (µx+ y − c) v0(x)− γ v(x)

¢
+ u(c)

´
dt.

In other words, there are two contributions to the current value of self s: the non-

infinitesimal contribution β v(x), and the infinitesimal contribution³
β
¡
1
2
σ2 x2v00(x) + (µx+ y − c) v0(x)− γ v(x)

¢
+ u(c)

´
dt. (37)
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It follows at once that w(x) = β v(x).

Furthermore the infinitesimal contribution (37) depends on c only via the term

(u(c)− β v0(x) c) dt.

Hence, in order to maximize her current value, self s need only choose c to maximize this

expression. Bearing in mind that self s is free to choose any c ∈ (0,∞) when x > 0, and

that she must choose c ∈ (0, y] when x = 0, it follows that c must satisfy the optimality

condition (
u0(c) = β v0 if x > 0

u0(c) = max{u0(y), β v0} if x = 0

)
, (38)

where we have suppressed the dependence of v0 on x.

Next, assuming that u is bounded below, then — just as in Section 3.3 — v is bounded

below by 1
γ
u(0). Furthermore v is bounded above by the value function v of a consumer

who: (i) has utility function u; and (ii) discounts the future exponentially at rate γ. Hence

1
γ
u(0) ≤ v ≤ v (39)

for all x ∈ [0,∞).
Next, in a stationary equilibrium we must have c = ec. Using this observation to

eliminate ec from (36), we arrive at the following definition:

Definition 12. Suppose that u is bounded below. Then the Bellman equation of the
IG consumer with global lower bound 1

γ
u(0) consists of the differential equation

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c) (40)

for all x ∈ [0,∞), the optimality condition(
u0(c) = β v0 if x > 0

u0(c) = max{u0(y), β v0} if x = 0

)
(41)

and the global bounds
1
γ
u(0) ≤ v ≤ v (42)

for all x ∈ [0,∞).
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Notice that the difference between the earlier Definition 3 (of the Bellman equation of

the IG consumer) and this new Definition 12 (of the Bellman equation of the IG consumer

with global lower bound 1
γ
u(0)) is that the global lower bound in Definition 3 (namely

1
γ
u(y)) has been replaced by the weaker global lower bound 1

γ
u(0). The final step is

therefore to show that, if u is bounded below, then any solution of the Bellman equation

of the IG consumer with global lower bound 1
γ
u(0) is in fact a solution of the Bellman

equation of the IG consumer.

This is easily done. Indeed, provided that u is bounded below, the whole of the exis-

tence and uniqueness machinery developed in Section 5 applies to the Bellman equation

of the IG consumer with global lower bound 1
γ
u(0). In particular, any solution of the

Bellman equation of the IG consumer with global lower bound 1
γ
u(0) is a solution of the

Bellman equation of the bu consumer with global lower bound 1
γ
u(0). Now, since the bu

consumer is a straight optimizer, it is easy to see that the value function of the bu consumer
must in fact satisfy the tighter global lower bound 1

γ
u(y). Overall, then, any solution of

the Bellman equation of the IG consumer with global lower bound 1
γ
u(0) is a solution of

the Bellman equation of the IG consumer, as required.

F. Solution of the PF Model with y = 0

Substituting for v and c in equation (21) and equating the constant term to 0, we get

Θ = 1
γ
. Equation (21) then simplifies to

0 = µ− α− 1
2
ρ σ2 + γ u

³α
θ

´
. (43)

Second, substituting for v, w and c in equation (22) and equating the constant term to 0,

we get Φ = γ+β λ
γ (γ+λ)

. Equation (22) then simplifies to

0 = µ− α− 1
2
ρ σ2 + (γ + λ)

µ
γ

γ + β λ
u

µ
α

φ

¶
+

β λ

γ + β λ
u

µ
θ

φ

¶¶
. (44)

Last, substituting for w and c in equation (23), we get

u0(α) =
γ + β λ

γ (γ + λ)
φu0(φ). (45)

Now, for all ρ, u satisfies the functional equation (1 − ρ)u(z) = z u0(z) − 1. Hence,
multiplying equation (43) through by 1− ρ, putting m(z) = z u0(z) and rearranging, we
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obtain
m(α)

m(θ)
=

γ − (1− ρ) (µ− α− 1
2
ρ σ2)

γ
. (46)

Similarly, from equation (44), we obtain

γ

γ + β λ

m(α)

m(φ)
+

β λ

γ + β λ

m(θ)

m(φ)
=

γ + λ− (1− ρ) (µ− α− 1
2
ρ σ2)

γ + λ
. (47)

Last, multiplying (45) through by α and dividing through by φu0(φ), we obtain

m(α)

m(φ)
=

γ + β λ

γ (γ + λ)
α. (48)

Using equations (46) and (48), we can eliminate m(α)
m(φ)

and m(θ)
m(φ)

= (m(α)
m(φ)

)/(m(α)
m(θ)

) from

(47) to obtain the quadratic (24) given in the main text, namely

0 =
λ

1 + λ
((ρ+ β − 1) α− eγ) + 1

1 + λ

¡
ρ (1− ρ)α2 + (2 ρ− 1) eγ α− eγ2¢ ,

where eγ = γ − (1− ρ) (µ− 1
2
ρ σ2).

This quadratic is a convex combination of the affine term

(ρ+ β − 1) α− eγ
and the quadratic term

ρ (1− ρ)α2 + (2 ρ− 1)eγ α− eγ2.
Moreover the quadratic term is convex when ρ ≤ 1 and concave when ρ ≥ 1.
In the case in which ρ < 1, one can take advantage of the convexity of the quadratic

term to show that there are two solutions of (24). The first is always positive, varying

from γ
ρ
when λ = 0 to γ

ρ+β−1 when λ =∞. The second is always negative, varying from
− γ
1−ρ when λ = 0 to −∞ when λ =∞. Since the second solution gives rise to a negative

average propensity to consume, the first solution is the only relevant one.

In the case in which ρ = 1, the quadratic term degenerates into an affine term and the

unique solution of (24) is γ̃ (γ̃+λ)
γ̃+β λ

. This varies from eγ when λ = 0 to γ
β
when λ =∞.

In the case in which ρ > 1, one can take advantage of the concavity of the quadratic
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term to show that there are again two solutions of (24). Both solutions are always positive.

The first varies from γ
ρ
when λ = 0 to γ

ρ+β−1 when λ = ∞. The second varies from γ
ρ−1

when λ = 0 to +∞ when λ = ∞. Since the right-hand side of equation (46) can be
written in the form γ−(ρ−1)α

γ
, the second solution would force m(θ) ≤ 0 (with equality iff

λ = 0). The first solution is therefore the only relevant one.

Finally, note that the relevant solution of the quadratic can be written in the form

α =
2 ρ γ̃ + λ (β + ρ− 1)− γ̃ −

q
(λ (β + ρ− 1)− γ̃)2 + 4λβ ρ γ̃

2 ρ (ρ− 1) .

Moreover equations (46) and (48) yield

m(θ) =
γ m(α)

γ̃ + (1− ρ)α
, m(φ) =

γ (γ + λ)m(α)

(γ + β λ)α
.

The behavior of the value functions v(x) = 1
γ
u(θ x) and w(x) = γ+β λ

γ (γ+λ)
u(φx) as a function

of λ can therefore be deduced from that of α.

G. Proof of Theorems 9, 10 and 11: Characterization of the

Consumption Function in the Case y > 0

In this appendix, we outline the proof of Theorems 9, 10 and 11.

G.1. Some background information. In this section we begin by recalling that, by

definition of equilibrium in the IG model, the value function v satisfies the global bounds

1
γ
u(y) ≤ v ≤ v (49)

for all x ∈ [0,∞), where v is the value function of a consumer who: (i) has utility function
u; and (ii) discounts the future exponentially at rate γ. The main significance of these

bounds for our current purposes is that v is strictly concave, and therefore v cannot be

convex.

We now state without proof two results that will help to organize the subsequent dis-

cussion on the form of the consumption function. Our first result concerns the smoothness

of v.

Proposition 13. Suppose that β < 1. Then v is infinitely differentiable on [0,∞).
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In particular, the discontinuity in bu at x = 0 (i.e. the fact that bu+ 6= bu0) does not
translate into a discontinuity in v or any of its derivatives at x = 0. On the contrary,

Proposition 13 actually depends on this discontinuity: when β = 1 (and therefore bu+ =bu0), v is not smooth at x = 0 when µ < γ. The discontinuity in bu at x = 0 does, however,
give rise to a different kind of discontinuity: as we shall see below, v0(0) does not always

vary continuously with µ. In fact, there exists µ1 ∈ (γ, µ) such that v0(0) jumps up from
v0L = bu0+(ψ c) < bu0+(y) to v0R = bu0+(ψ y) > bu0+(y) as µ crosses µ1. (Recall that ψ = ρ−(1−β)

ρ

and that c is the unique solution of the equation u0(c) = β u(c)−u(y)
c−y .)

Our second result states that the shadow value of wealth is always strictly positive:

Proposition 14. v0 > 0 on [0,∞).

This is economically obvious: the bu consumer can always consume more in its current
span of control.

G.2. A mathematical intuition. Recall that the utility function of the bu consumer
has two parts: bu(bc, x) = bu0(bc) when x = 0; and bu(bc, x) = bu+(bc) when x > 0. Moreoverbu0(bc) ≥ bu+(bc) for all bc ∈ (0, y], with strict inequality when bc ∈ (ψ y, y]. (See Figure 4.) In

other words, the bu consumer obtains a utility premium when x = 0.

This suggests that, at any given wealth level, the bu consumer must choose between
two strategies. The first, high-consumption, strategy is to dissave until her wealth runs

out, and then enjoy the utility premium that she obtains at x = 0. The second, low-

consumption, strategy is to save forever in order to take advantage of the higher asset

income associated with higher financial wealth. Which of these two strategies is better

will depend on µ. If µ is low, then the high-consumption strategy will be better no matter

how large the wealth of the bu consumer. Similarly, if µ is high, then the low-consumption
strategy will be better no matter how small the wealth of the bu consumer. However, if µ is
intermediate then the high-consumption strategy will be better when wealth is low (and

therefore the utility premium will be enjoyed after a relatively short wait) and the low-

consumption strategy will be better when wealth is high (and therefore the prospect of

the utility premium is too distant). Moreover consumption may in principle decrease with

wealth over an intermediate range of wealth levels, as the bu consumer adjusts from the

high-consumption strategy associated with low wealth to the low-consumption strategy

associated with high wealth.
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G.3. The boundary condition at x = 0. The value function v must satisfy two

related conditions at x = 0. To derive the first of these conditions, note that the Bellman

equation of the bu consumer takes the form
0 = 1

2
σ2 x2 v00 + (µx+ y) v0 − γ v + bh+(v0) (50)

for x > 0. Letting x ↓ 0 in this equation, taking advantage of Proposition 13 and
rearranging yields

v(0) = 1
γ

³
y v0(0) + bh+(v0(0))´ . (51)

The second of these conditions is simply the Bellman equation of the bu consumer at x = 0
which, on rearrangement, becomes

v(0) = 1
γ

³
y v0(0) + bh0(v0(0))´ . (52)

Figures 6a, 6b and 6c illustrate the locus of points (v0(0), v(0)) satisfying equation (51),

the locus of points (v0(0), v(0)) satisfying equation (52) and the locus of points (v0(0), v(0))

satisfying both equations.

As Figure 6c shows, there are two possible boundary configurations. First, the bu
consumer may opt for the utility premium and set bc(0) = y. In this case v(0) = 1

γ
bu0(y),

and v0(0) must take on the low value v0L = bu0+(ψ c) < bu0+(y) in order to justify the bu
consumer’s high consumption level for small x > 0. Second, the bu consumer may forgo
the utility premium and set bc(0) ≤ ψ y. In this case v(0) ≥ 1

γ
bu0(y), and we must have

v0(0) ≥ v0R = bu0+(ψ y) > bu0+(y) in order to justify the bu consumer’s low consumption level
at x = 0. We refer to these two configurations as the low-shadow-value and high-shadow-

value boundary configurations respectively.

Our next major objective is to show that there exists µ1 ∈ (γ, µ) such that the low-
shadow-value boundary configuration occurs when µ < µ1 and the high-shadow-value

boundary configuration occurs when µ > µ1. To this end, we shall need several supporting

results.

G.4. Once convex, always strictly convex. The following result only uses the fact

that v satisfies the Bellman equation of the bu consumer in the interior of the wealth space.
Proposition 15. Suppose that µ < γ and that either

1. there exists x0 ≥ 0 such that v00(x0) > 0, or
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2. there exists x0 > 0 such that v00(x0) ≥ 0.

Then v00(x) > 0 for all x > x0.

Proof. Differentiating the Bellman equation of the bu consumer (i.e. equation (50))
with respect to x, we obtain

0 = 1
2
σ2 x2 v000 + ((σ2 + µ) x+ y − bc) v00 − (γ − µ) v0. (53)

Now suppose that there exists x0 ≥ 0 such that v00(x0) > 0, and suppose for a contradiction
that there exists x1 > x0 such that v00(x1) ≤ 0. Let x2 be the leftmost point in (x0, x1] such
that v00(x2) ≤ 0. Since v00 > 0 on [x0, x2), we must actually have v00(x2) = 0. Equation

(53) then yields

v000(x2) =
(γ − µ) v0(x2)

1
2
σ2 x22

, (54)

and the latter expression is strictly positive because γ > µ (by assumption), v0(x2) > 0

(by Proposition 14) and x2 > 0 (by construction). We therefore have v00 < 0 to the left of

x2, which is the required contradiction.

It remains to consider the case in which there exist x0 > 0 such that v00(x0) = 0. In

that case (54) imples that v000(x0) > 0. But then there exists ex0 > x0 such that v00(ex0) > 0.
We are then back in the previous case.

Combining this result with the fact that v satisfies the Bellman equation of the bu
consumer on the boundary of the wealth space, we obtain the following corollary.

Corollary 16. Suppose that µ < γ. Then v00 < 0 for all x ≥ 0.

In particular, bc0 > 0 on (0,∞). This is the case in which the bu consumer chooses the
high-consumption strategy at all wealth levels.

Proof. Suppose for a contradiction that there exists x0 > 0 such that v00(x0) ≥ 0.

Then Proposition 15 implies that v is convex on [x0,∞). This contradicts inequalities
(49), which tell us that v is bounded above by the strictly concave function v. We therefore

have v00 < 0 for all x > 0. This in turn implies that v00(0) ≤ 0. Now, letting x ↓ 0 in
equation (53) and rearranging, we obtain

v00(0) =
(γ − µ) v0(0)
y − bc(0+) .



Instantaneous Gratification: Online Appendices 9

So: either v0(0) = v0L, in which case y−bc(0+) < 0 and therefore v00(0) < 0; or v0(0) ≥ v0R, in

which case y−bc(0+) > 0 and therefore v00(0) > 0. (Recall that γ−µ > 0 by assumption.)

Since v00(0) ≤ 0, we must be in the first of these two cases. In particular, v00(0) < 0. This
completes the proof.

Actually, the proof of Corollary 16 shows more:

Corollary 17. Suppose that µ < γ. Then v0(0) = v0L.

In other words, if µ < γ then the low-shadow-value boundary configuration obtains.

In particular, bc(0+) = ψ c > bc(0) = y.

G.5. Once concave, always strictly concave. The following result likewise only

uses the fact that v satisfies the Bellman equation of the bu consumer in the interior of the
wealth space.

Proposition 18. Suppose that µ > γ and that either

1. there exists x0 ≥ 0 such that v00(x0) < 0, or

2. there exists x0 > 0 such that v00(x0) ≤ 0.

Then v00(x) < 0 for all x > x0.

Proof. The proof is completely analogous to that of Proposition 15.

Combining this result with the fact that v satisfies the Bellman equation of the bu
consumer on the boundary of the wealth space, we obtain the following corollary.

Corollary 19. Suppose that µ > γ. Then either

1. there exists x ∈ (0,∞) such that v00 > 0 on (0, x), and v00 < 0 on (x,∞); or

2. v00 < 0 for all x ≥ 0.

In particular: either there exists x ∈ (0,∞) such that bc0 < 0 on (0, x), and bc0 > 0 on
(x,∞); or bc0 > 0 on [0,∞). The first case is the case in which the bu consumer chooses
the high-consumption strategy at low wealth levels and the low-consumption strategy at
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high wealth levels. The second case is the case in which the bu consumer chooses the
low-consumption strategy at all wealth levels.45

Proof. Let X0 be the set of all x0 ∈ [0,∞) such that v00(x0) ≤ 0. Inequalities (49)
imply that we cannot have v00 > 0 for all x ≥ 0, so X0 is non-empty. Let x be the smallest

element of X0. There are then two possibilities: either x > 0 or x = 0. If x > 0, then

v00 > 0 for all x ∈ [0, x). Hence v00(x) = 0, and Proposition 18 implies that v00 < 0 for

all x ∈ (x,∞). On the other hand, if x = 0 then our construction of x yields only that
v00(0) ≤ 0. However, as in the proof of Corollary 16, we have

v00(0) =
(γ − µ) v0(0)
y − bc(0+) .

Moreover: either v0(0) = v0L, in which case y − bc(0+) < 0 and therefore v00(0) > 0; or

v0(0) ≥ v0R, in which case y−bc(0+) > 0 and therefore v00(0) < 0. (Recall that we now have
γ − µ < 0.) Since v00(0) ≤ 0, we must be in the second of these two cases. In particular,
v00(0) < 0. We conclude that v00 < 0 for all x ≥ 0 when x = 0.

Actually, the proof of Corollary 19 shows slightly more:

Corollary 20. Suppose that µ > γ. Then either

1. v0(0) = v0L, in which case v
00(0) > 0; or

2. v0(0) ≥ v0R, in which case v
00(0) < 0.

In other words, if µ > γ then either the low-shadow-value boundary configuration

occurs, in which case bc0 < 0 for small positive x, or the high-shadow-value boundary

configuration occurs, in which case bc0 > 0 for all positive x. If the low-shadow-value

boundary configuration obtains then bc(0+) = ψ c > bc(0) = y. The main surprise in this

case is the way in which: (i) the initial increase in consumption is confined to a single

upward jump in bc at x = 0; and (ii) the decrease in consumption — as the consumer adjusts
45Notice that, in the first case, we have x > 0 and bc0(x) = 0. One might therefore have expected to find

a knife-edge case between the first and second cases in which x = 0, bc0(0) = 0 and bc0(x) > 0 for all x > 0.
This possibility is ruled out by Corollary 19. The reason why it does not arise is that bc0(0) does not vary
continuously as the parameters of the model vary. Specifically, if x ↓ 0 as the parameter vector converges
to an appropriate limit, then bc0(0) jumps up at the limit (and v00(0) jumps down). To put the same point
another way, away from the limit the low-shadow-value boundary configuration obtains, but at the limit
the high-shadow-value boundary configuration obtains. Moreover it cannot happen that both boundary
configurations obtain simultaneously.
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to the low-consumption strategy — begins immediately to the right of x = 0. On the other

hand, if the high-shadow-value boundary configuration obtains, then bc(0+) = bc(0) ≤ ψ y.

G.6. The bu+ consumer. Combining Corollaries 16, 17, 19 and 20, we can tentatively

identify three cases:

1. µ < γ and the low-shadow-value boundary configuration obtains.

2. µ > γ and the low-shadow-value boundary configuration obtains.

3. µ > γ and the high-shadow-value boundary configuration obtains.

However, we have not yet identified the borderline between cases 2 and 3. In order to

locate this borderline, it will be helpful to consider a consumer who

• discounts the future exponentially at rate γ,

• faces the same wealth dynamics as the IG consumer and

• has the wealth-independent utility function bu+.
We call this consumer the bu+ consumer.
Let the value function of the bu+ consumer be bv+ = bv+(x;µ), where we have made

explicit the dependence of bv+ on the parameter µ. Then:
Proposition 21.

1. The low-shadow-value boundary configuration obtains if and only if bv+(0;µ) <
1
γ
bu0(y).

2. The high-shadow-value boundary configuration obtains if and only if bv+(0;µ) ≥
1
γ
bu0(y). ¥

The point here is that the bu consumer effectively has two options when x = 0: either

exploit the utility premium available at x = 0 to the full, by consuming y and remaining

at 0; or dispense with the utility premium altogether. The first option yields 1
γ
bu0(y), and

the second yields bv+(0;µ). If the first option is strictly better than the second, then the
low-shadow-value boundary configuration obtains. If the second option is at least as good
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as the first, then the high-shadow-value boundary configuration obtains. It should also

be noted that

v(0;µ) = max{ 1
γ
bu0(y), bv+(0;µ)},

where we have made explicit the dependence of v on the parameter µ.

Since bv+ is the value function of a standard optimization problem, we can use standard
arguments to find those of its properties that are relevant to us. These properties are

summarized in the following proposition.

Proposition 22.

1. bv+(0;µ) is non-decreasing and continuous in µ for µ ∈ (−∞, µ).

2. bv+(0;µ) = 1
γ
bu+(y) for all µ ∈ (−∞, γ].

3. bv+(0;µ) is strictly increasing in µ for µ ∈ [γ, µ).

4. bv+(0;µ) ↑ 1
γ
bu+(∞) as µ ↑ µ. ¥

Noting that bu+(y) < bu0(y) < bu+(∞), we see that there is a unique µ1 ∈ (γ, µ) such
that: (i) bv+(0;µ) < 1

γ
bu0(y) for µ < µ1; (ii) bv+(0;µ1) = 1

γ
bu0(y); and (iii) bv+(0;µ) > 1

γ
bu0(y)

for µ > µ1. The borderline between cases 2 and 3 therefore occurs at µ = µ1.

G.7. From bc to c. At this point we have shown that there exists µ1 ∈ (γ, µ) such
that:

1. If µ < γ then the low-shadow-value boundary configuration holds. I.e. v(0) =
1
γ
bu0(y) and v0(0) = v0L = bu0+(ψ c) < bu0+(y). This implies that bc(0+) = ψ c > bc(0) =

y. We also have: v00(0) < 0; and bc0 > 0 on (0,∞).
2. If γ < µ < µ1 then the low-shadow-value boundary configuration still holds. I.e.

we still have v(0) = 1
γ
bu0(y) and v0(0) = v0L = bu0+(ψ c) < bu0+(y). This implies thatbc(0+) = ψ c > bc(0) = y, as before. However, we now have: v00(0) > 0; and there

exists x ∈ (0,∞) such that bc0 < 0 on (0, x) and bc0 > 0 on (x,∞).
3. If µ > µ1 then the high-shadow-value boundary configuration holds, i.e. v(0) >

1
γ
bu0(y) and v0(0) > v0R = bu0+(ψ y) > bu0+(y). This implies that bc(0+) = bc(0) < ψ y.

We also have: v00(0) < 0; and bc0 > 0 on (0,∞).
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In order to deduce the behaviour of c in these three cases, note that:

• For x > 0, c is determined by u0(c) = β v0 and bc is determined by bu0+(bc) = v0. Also,

the formula for bu+ given in the proof of Theorem 4 implies that

bu0+(bc) = 1
β
u0( 1

ψ
bc). (55)

Hence u0(c) = β v0 = β bu0+(bc) = u0( 1
ψ
bc). Hence c = 1

ψ
bc.

• For x = 0, c is determined by u0(c) = max{u0(y), β v0} and bc is determined bybc ∈ argmaxc∈(0,y]{bu0(bc)−v0 bc}. Now β v0 > u0(y) iff v0 > bu0+(ψ y), because bu0+(ψ y) =
1
β
u0(y) by (55). And, in this case, u0(c) = β v0 and bu00(bc) = bu0+(bc) = v0. Hence

c = 1
ψ
bc. Similarly, β v0 < u0(y) iff v0 < bu0+(ψ y). However, in this case, c = bc = y.

• Provided that µ 6= µ1, we have either

v0(0) = v0L = bu0+(ψ c) = 1
β
u0(c) < 1

β
u0(y)

or

v0(0) > v0R = bu0+(ψ y) = 1
β
u0(y).

In particular, the case β v0(0) = u0(y) does not arise.

Combining these observations with points 1-3 above, we conclude that:

1. If µ < γ then c(0+) = 1
ψ
bc(0+) = c > y = c(0) and c0 = 1

ψ
bc0 > 0 on (0,∞).

2. If γ < µ < µ1 then we still have c(0+) = 1
ψ
bc(0+) = c > y = c(0). But now

c0 = 1
ψ
bc0 < 0 on (0, x) and c0 = 1

ψ
bc0 > 0 on (x,∞).

3. If µ > µ1 then c(0+) =
1
ψ
bc(0+) = 1

ψ
bc(0) < y. We also have c0 = 1

ψ
bc0 > 0 on (0,∞).

The point is that, in the three cases (i) x > 0, (ii) x ↓ 0 and (iii) x = 0 and the high-
shadow-value boundary configuration obtains, the behaviour of c can be deduced from

that of bc via the simple formula c = 1
ψ
bc. (Since ψ < 1, this formula captures the idea that

the IG consumer will overconsume compared with the bu consumer.) And, when x = 0 and
the low-shadow-value boundary configuration obtains, we have c = bc = y. This completes

the proof of Theorems 9, 11 and 10.
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G.8. The borderline cases µ = γ and µ = µ1. Up to now we have said relatively

little about the borderline cases. The case µ = γ has several interesting features. First,

letting µ ↑ γ, we see that v00 ≤ 0 and bc0 ≥ 0 on [0,∞). Second, again letting µ ↑ γ,

we obtain bv+(0) = 1
γ
bu+(y) < 1

γ
bu0(y). It follows that the low-shadow-value boundary

configuration obtains. This in turn implies that bc(0+) = ψ c > y. Letting x ↓ 0 in
equation (53) then yields 0 = (y − bc(0+)) v00(0). It follows that v00(0) = 0. Third, by

considering higher-order analogues of equation (53), one can go on to show that v(n)(0) = 0

for all n ≥ 3 as well. In other words, the only non-zero coefficients in the Taylor expansion
for v at x = 0 are v(0) and v0(0). At first sight this would seem to suggest that v is linear.

However, this would contradict inequalities (49). The resolution lies in the fact that, while

v is smooth at 0, it is not analytic at 0. Rather, v0 (and therefore bc) are so called ‘flat
functions’. (In other words, they are smooth functions, all the Taylor coefficients of which

vanish except the first.) This terminology turns out to be apt: simulations show that v0

and bc are nearly constant for a significant interval of wealth starting at x = 0.
The case µ = µ1 involves a number of subtleties. First, even though µ1 is the point

at which we switch from the left- to the high-shadow-value boundary configuration, only

the high-shadow-value boundary configuration can occur when µ = µ1. This is because

v0(0) is essentially the limit v0(0+), and as such is determined by behavior in the interior

of the wealth space. Moreover, in the interior of the wealth space, the low-consumption

strategy is the preferred strategy of the bu consumer. The bu consumer does, however, have
two equally good options at x = 0: since v0(0) = bu0+(ψ y) and bu0 has slope bu0+(ψ y) on

[ψ y, y], she is indifferent between bc(0) = ψ y and bc(0) = y. (She is in fact indifferent

among all bc(0) ∈ [ψ y, y], but the intermediate options should be seen as the result of

strictly randomizing between ψ y and y. Moreover they all lead to the same outcome

as ψ y: the dynamics move immediately into the interior of the wealth space.) If she

chooses bc(0) = ψ y, then she embarks immediately on the low-consumption strategy. If

she chooses bc(0) = y, then she remains forever with wealth 0. Either way, she ends up

with the payoff v(0) = 1
γ
bu0(y). Second, as µ ↑ µ1, the length of the interval over which bc

decreases — which is always an open interval with left-hand endpoint 0 — converges to 0.

(So, in effect, bc jumps up from y to ψ c at 0 and then decreases very rapidly back down

to something close to ψ y.) In other words, a boundary layer develops near x = 0.
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H. Generalizing the Utility Function

The core results of our paper, namely the Value-Function Equivalence Theorem (Theo-

rem 4) and the Existence and Uniqueness Theorem (Theorem 5), can be proved under

assumptions much weaker than A1-A3. The purpose of this appendix is to describe these

weaker assumptions, and to explain briefly why Theorems 4 and 5 continue hold under

them. For a more detailed discussion, see the 2011 draft of our paper (Harris and Laibson

(2011): “Instantaneous Gratification,” Harvard University mimeo).

H.1. The Weaker Assumptions. Our weaker assumptions are formulated in terms

of the (non-constant) relative risk aversion and the (non-constant) relative prudence (Kim-

ball 1990) of u, namely

ρ(c) ≡ − c u00(c)
u0(c)

and π(c) ≡ − c u000(c)
u00(c)

.

Notice that both ρ and π are functions: for each consumption level c, they tell us the

coefficient of relative risk aversion and the coefficient of relative prudence at c. The weaker

assumptions are:

B1 There exist constants ρ, ρ ∈ (0,∞) such that ρ ≤ ρ(c) ≤ ρ and ρ+ 1 ≤ π(c) ≤ ρ+ 1

for all c ∈ (0,∞).

B2 1− β <
ρ

1 + ρ− ρ
.

B3 µ <
1

1− ρ
γ + 1

2
ρ σ2 if ρ < 1.

Assumption B1 is less restrictive than it might appear at first sight. Indeed, if 0 < ρ ≤
ρ ≤ ρ < ∞ and 1 < π ≤ π ≤ π < ∞, then it can be shown that in fact ρ ≥ π − 1 and
ρ ≤ π − 1. In other words, as long as we know that relative risk aversion is bounded at
all, then we know that it is bounded in terms of the bounds on relative prudence. There

is therefore no loss of generality in putting ρ = π − 1 and ρ = π − 1 or, as we have done
here, π = ρ+ 1 and π = ρ+ 1. Assumption B2 requires that the dynamic inconsistency

of the IG consumer (as measured by 1− β) must be smaller: (i) the lower the minimum

possible coefficient of relative risk aversion (as measured by ρ); and (ii) the larger the

fluctuations in the coefficients of relative risk aversion and relative prudence (as measured

by ρ − ρ). Assumption B3 requires that the expected return on the financial asset (as
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measured by µ) be smaller, the lower the minimum possible coefficient of relative risk

aversion (as measured by ρ). This is because, the lower ρ, the faster the potential growth

of u.

Assumptions B1-B3 are much weaker than Assumptions A1-A3, and they are only

marginally more complicated to state. (That they are strictly weaker follows form the

fact that they reduce to Assumptions A1-A3 in the CRRA case, namely the case ρ = ρ.)

H.2. Extending the Analysis. Under Assumptions B1-B3, we have the following

generalization of the Value-Function Equivalence Theorem (Theorem 4).

Theorem 23 [Generalization of Value-Function Equivalence]. Theorem 4 holds as stated
under the weaker Assumptions B1-B3.

The key point of the proof is to show that, even under the weaker Assumptions B1-B3,

we can still find a wealth-dependent utility function bu such that the Bellman equation of
the IG consumer is identical to the Bellman equation of the bu consumer.
Proof. The first step is to construct bu+ : (0,∞) → R. As in the proof of Theorem 4,

we begin by defining a function h+ : (0,∞)→ R by the formula

h+(α) = u(f+(β α))− αf+(β α),

where f+(α) is the unique c satisfying u0(c) = α. Assumptions B1-B2 then imply:46

H1 h0+(α) < 0 and h00+(α) > 0 for all α > 0; and

H2 there exist 0 < θ ≤ θ <∞ such that θ ≤ − αh00+(α)
h0+(α)

≤ θ for all α > 0.

Next, we define a function bu+ : (0,∞)→ R by the formula

bu+(bc) = min
α∈(0,∞)

h+(α) + bc α.
It can be verified that

U1 bu0+(bc) > 0 and bu00+(bc) < 0 for all bc > 0; and
U2 θ

−1 ≤ − bc bu00+(bc)bu0+(bc) ≤ θ−1 for all bc > 0.
46For a brief explanation of why Assumptions B1-B2 imply H1-H2, see Section H.3 below.
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Finally, we define a function bh+ : (0,∞)→ R by the formula

bh+(α) = max
c∈(0,∞)

bu+(bc)− αbc
for all α > 0.

The second step is to construct bu0 : (0, y] → R. We begin by defining a function
h0 : (−∞,∞)→ R by the formula

h0(α) = u(f0(β α))− α f0(β α),

where f0(α) is the unique c satisfying u0(c) = max{u0(y), α}. It is easy to check that

h0(α) =

(
u(y)− αy for α ∈ (−∞, 1

β
u0(y)]

h+(α) for α ∈ [ 1
β
u0(y),∞)

)
.

Next, we define a function bu0 : (0, y]→ R by the formula

bu0(bc) = min
α∈(−∞,∞)

h0(α) + bc α.
It can be verified that

bu0(bc) = ( bu+(bc) for bc ∈ (0, ψ(y) y]bu+(ψ(y) y) + (bc− ψ(y) y) bu0+(ψ(y) y) for bc ∈ [ψ(y) y, y]
)
,

where

ψ(y) =
ρ(y)− (1− β)

ρ(y)

and ρ(y) is the relative risk aversion of u at y. Finally, we define a function bh0 :
(−∞,∞)→ R by the formula

bh0(α) = max
c∈(0,y]

bu0(bc)− αbc
for all α ∈ (−∞,∞).
The third and final step is to note that, because h+ and h0 are both convex, it follows

that bh+ = h+ and bh0 = h0. This is an instance of convex duality, the basic reference for

which is Rockafellar (1970). In particular, the Bellman equation of the IG consumer and
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the Bellman equation of the bu consumer coincide.
Armed with Theorem 23, we can immediately deduce the following theorem using the

same arguments that we used to deduce Theorem 5 from Theorem 4.

Theorem 24 [Generalization of Existence and Uniqueness]. Theorem 5 holds as stated

under the weaker Assumptions B1-B3. ¥

H.3. Proof that Assumptions B1-B2 Imply Assumptions H1-H2. It can be

verified by direct calculation that

h0+ = −
(ρ(f+)− (1− β)) f+

ρ(f+)

and

h00+ = −
β

u00(f+) ρ(f+)
((2− β) ρ(f+)− (1− β)π(f+)) ,

where h+ = h+(α) and f+ = f+(β α). Hence

− αh00+
h0+

=
(2− β) ρ(f+)− (1− β)π(f+)

(ρ(f+)− (1− β)) ρ(f+)
,

where we have used the fact that

− αβ

u00(f+) f+
= − u0(f+)

u00(f+) f+
=

1

ρ(f+)
.

Now, considering the numerator in the expression for h0+, we have

ρ(f+)− (1− β) ≥ ρ− (1− β) ≥ ρ

1 + ρ− ρ
− (1− β) > 0,

where the first inequality follows from Assumption B1, the second from the fact that

ρ− ρ ≥ 0 and the third from Assumption B2. Hence h0+ < 0. Similarly, considering the

term in parentheses in the expression for h00+, we have

(2− β) ρ(f+)− (1− β)π(f+) ≥ (2− β) ρ− (1− β) (ρ+ 1)

= ρ− (1− β) (1 + ρ− ρ)

> 0
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where the first relation follows from Assumption B1 and the third from Assumption B2.

Hence h00+ < 0. Finally, again considering the numerator in the expression for h0+ and the

term in parentheses in the expression for h00+, we have

ρ(f+)− (1− β) ≤ ρ− (1− β)

and

(2− β) ρ(f+)− (1− β)π(f+) ≤ (2− β) ρ− (1− β) (ρ+ 1).

Hence

θ ≤ − αh00+(α)
h0+(α)

≤ θ,

where

θ =
(2− β) ρ− (1− β) (ρ+ 1)

ρ− (1− β)
and θ =

(2− β) ρ− (1− β) (ρ+ 1)

ρ− (1− β)
.




