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Mental Accounts, Self-Control, and an
Intrapersonal Principal-Agent Problem

David Laibson!

I analyze the problem of an agent with dynamically inconsistent pref-
erences (hyperbolic discount functions) who has access to a “binding au-
tomaton:” a machine which enables the agent to perfectly commit herself
to contingent rules linking observable states to observable actions. I assume
that effort is not observable, generating an intra-personal principal-agent
problem. In equilibrium, the agent exhibits a high marginal propensity to
consume (MPC) out of effort-related income (e.g. labor income) and a rel-
atively low MPC out of income which is independent of effort (e.g. capital
gains). I interpret this as a partial explanation of mental accounts (Thaler,
1990) and of self-reward/self-punishment.
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1 Introduction

When an individual’s preferences are dynamically inconsistent she strictly
prefers to constrain her own future choices (Strotz, 1956). Consider the
following fanciful advice for a decision-maker who is looking for a way to
achieve such commitment: Build a machine to follow you wherever you go,
and program the machine to generate extremely aversive stimuli whenever
you “misbehave.” Let’s call the machine a “binding automaton.”

At first inspection the advice is absurd. But we do have access to social
institutions which approximate the operations of the hypothesized machine.
Parents, friends, supervisors, religious leaders, and spouses help us make
commitments in ways which mimic the working of a binding automaton. I
can promise my spouse to be home by eight. I can promise my workplace
supervisor to finish a project in two weeks. Such communications implicitly
generate a system of incentives which helps commit me to honor my promise.

In general, any organization/group in which I am a member has a seem-
ingly endless and often unspoken list of expectations /rules/norms to which
I commit when I join the group. For example, my friends see me wearing
a very luxurious new coat, and ask me about it. If I acknowledge that I
spent $400 dollars on the coat they call me a spendthrift and effectively
censure me. If I tell them that I found it on sale, they complement me on
my good taste. Hence, membership in my social group is associated with
strong incentives to not purchase luxurious clothing at retail prices.

This analysis suggests a theory of organizations and groups based on the
commitment value of these institutions. Examples would includé firms and
schools (committing me to be productive), religions and marriage (com-
mitting me to be “virtuous”), twelve-step groups (committing me to be
abstemious), etc. With these examples in mind, it may be reasonable to as-
sume that individuals have access to social institutions which act effectively
as binding automata. This is a strong assumption, but one which is worth



considering as an important benchmark. The analysis which follows takes
this assumption as a starting point and sees where it leads. Specifically,
I analyze the behavior of an agent who has access to a binding automa-
ton which enables her to perfectly commit to any contingent rule linking
observable states to observable actions.

In a world where all states and actions are observable, the binding au-
tomaton assumption dramatically simplifies analysis. Actions are simply the
optimal contingent rules from the perspective of the self that builds the bind-
ing automaton. However, in an economy where some actions and/or states
are not observable the analysis is more complex, and that is the world which
I will analyze. Specifically, I assume that the binding automaton can not
directly observe effort.

The problem that I consider is an intra-personal principal-agent problem.
The principal is the early self who builds the binding automaton. The agent
is the later self who exerts effort in response to the incentive system created
by the binding automaton. I assume that both the principal and the agent
have a hyperbolic discount function.? This discount structure implies that
the principal prefers relatively less consumption and relatively more effort
during the agent’s period of control than does the agent.

This intra-personal principal-agent problem can be compared and con-
trasted with the standard principal-agent problem from the industrial orga-
nization literature (e.g., Shavell (1979), Holmstrém (1979), Grossman and
Hart (1983)). In both problems effort is not observable, and the principal
sets up an incentive system to motivate effort. However, in the intra-personal
principal-agent model the utility of the principal and the agent are linked in
a way which bears no resemblance to the utility relationship in the standard
principal-agent model.

In the intra-personal principal-agent problem, the principal is forced to

3See my first two chapters for an overview of hyperbolic discount functions.



strike a balance between consumption smoothing, which the principal wants,
and instantaneous gratification, which is used to motivate the agent to exert
high effort. This fundamental tension explains many heretofore puzzling
anomalies, including self-reward/self-punishment and some mental accounts.
The principal, or early self, would like the later self to exert high effort and
smooth consumption. But in order to extract high effort, the principal has
to give the later self a strong incentive. The incentive takes the form of the
following norm: if you (the later self) obtain a good-effort related outcome,
then you can splurge. Hence, the equilibrium path is characterized by a
high marginal propensity to consume out of labor income. This is self-
reward. However, the early self does not need to reward the later self for
good outcomes that are independent of effort. So when asset stocks are
high, consumption responds modestly (according to the wishes of the early
self). Hence on the equilibrium path, the marginal propensity to consume
out of assets is low when compared to the marginal propensity to consume
out of labor income. This pattern replicates some of the mental accounting
behavior documented by Richard Thaler (1990).

The body of the paper formalizes these claims. Section 2 lays out the
model. Equilibrium outcomes are characterized in Section 3. A numeri-
cal example is illustrated in Section 4. Section 5 concludes with a critical

evaluation and a discussion of ongoing work.

2 An Intra-personal Principal-Agent Model

The model has three critical components. First, the individual is assumed to
have a hyperbolic discount function. This sets up an intra-personal conflict.
Second, the individual has access to a costless binding automaton. This
implies that the initial self can perfectly commit the observable actions of
future selves. These commitments take the form of contingent rules, where

the contingencies are based on observable states. Third, I assume that effort
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is not observable, but effort is positively correlated with good outcomes. The
details of the model follow.

The individual makes decisions over three periods, ¢ € {1,2,3}. I adopt
the semantic convention used in my previous chapters, and refer to self t
as the self in control at time t. During period 1 the binding automaton is
built by self 1 to maximize the welfare of self 1. In period 2, self 2 chooses
effort, receives labor income (a stochastic function of effort), and consumes
according to the instructions of the binding automaton. In period 3, self 3
consumes whatever assets are left.?

The individual is assumed to have a hyperbolic discount function. I
capture the properties of the hyperbolic discount function by assuming that
the one period discount factor is 86, (0 < 8 < 1), and assuming that the two-
period discount factor is B62. This implies that the discount rate is falling.
The utility functions of the three selves are given by,

Self 1: u, + PBblu(c:)—e] + Béu(cs)
Self 2: [u(cs) —€] + Bbu(cs)
Self 3: u(cs)

where u, is a constant, v’ > 0, u" < 0. The production technologies in
the economy are very simple. Effort (chosen in period 2) takes one of two
values, e € {¢,€}, & < & Income (realized in period 1) is also drawn from
a two-point set: ¥y € {yr,ya}, yr < y@. The distribution of income is a
function of the chosen effort level. Specifically,

Prob(ygle)=P>p= Prob(ymle),

31t is possible to also let self 3 consume according to rules of the binding automaton,
but those rules will generally dictate that self 3 consume all remaining assets anyway.
The only exception to this pattern arises when the optimal contingent rules in period 2
constitute a border solution. In that case it may be ez ante optimal to instruct self 3
to consume less than the remaining asset stock contingent on a low income realization in
period 2.



which implies that Prob(yz|€) = 1 — P, and Prob(ygle) = 1 — p. Finally, the
gross interest rate, R characterizes the storage technology. For simplicity, I
set R =1.

We are now in a position to discuss explicitly the construction of the
binding automaton. The only observable state in period 2 will be the realized
income level, y. So the consumption rule for period 2 can only be a function
of y. Since y can only take on two values, it is possible to represent the
consumption rule as an ordered pair: {cz,cn}, where ¢y, is the consumption

level when yy, is realized, and cj is the consumption level when yg is realized.

3 Equilibrium

Self 2’s problem must be solved first. Let, W(cL,cq) =

(7 — p) [u(cr) + Béu(ym — cg) — u(cr) — Béu(yL —cL)] — (€-¢),

which is the difference between self 2’s payoff given e = € and self 2’s payoff
given e = e. Self 2 must select an effort level e*. She sets e* =€ fw >0,
e* = e if W < 0, and is assumed to choose whatever effort level is preferred
by self 1if W = 0.

Self 1’s decision problem is less simple. Let U(cL,cql€) =

plu(cr) + Béu(ym — cg)]+ (1 - P) [u(cr) + Bdu(yL — cL)] - &

and let U(cr,cmle) represent the same object with P replaced by p and €
replaced by e. Hence, U(cr,cql|€) is the payoff to self 1, given e = €, and
U(cr,cmle) is the payoff to self 1, given e = e.

Self 1’s decision process requires self 1 to solve two subproblems and

compare the solutions.



L maxy, ., Ules,cale)
st. W(cL,cg) 20

II. maxg, ..} U(er,cale)
st. W(eL,eg) <0
Let C! (C!7) represent the set of ordered pairs which are the solutions
to program I (IT). Let C* represent the set of ordered pairs which are the
solutions to self 1’s global problem.

oo | ¢ vz UEe)
cHl otherwise

3.1 Self 1’s first-best solution

The first goal of this section is to simplify self 1's decision problem. To do
this it is helpful to discuss a benchmark case: the first-best solution from
the perspective of self 1. Consider the problem in which self 1 chooses the
ordered pair {cz,cg} and also directly chooses the effort level, e. It is trivial
to show that there exists a unique ordered pair, C = {ér,ég} which solves
this first-best problem. This ordered pair is determined by the first-order
conditions:

v'(én) = 6v'(ym - &m),
u'(éL) = §v'(yL — éL).

The effort level, é, which solves self 1’s first-best problem is given by,

e=
otherwise

) {e if U(Cle) 2 U(Cle)
e

The following lemma will be used in several of the results which follow.



Lemma 1: yg — ég > yr - ¢L.

Proof: Suppose yg —ég < yr —¢ér, and look for a contradiction. By FOC’s
of first-best problem,

u'(ég) = §u'(yg — ém) 2 6u'(yL — éL) = v'(éL),

where the inequality follows from the assumption, yg — ég < yr — éz. The
inequality u'(ég) > u/(ér) implies ég < ér. So,

én +(yg —ém) < éL+(yL — éL),

implying, yg < yr, which is a contradiction. O

3.2 Simplifying self 1’s problem

We are now ready to simplify self 1’s decision rule. In particular, it is possible
to solve self 1’s problem without solving program II. The following lemma

is used to prove this result.

Lemma 2: If U(C![e) < U(CH|e), then C* = C.

Proof: Suppose U(CI|e) < U(C!|e), and C* # C, and look for contra-
diction. Recall that in general C* is a solution set. It is easy to show
that C* # C implies that C* # €. Continuing with the proof, note that
W(C) must be greater than zero, (since C* = CI, CI! is the solution set
of program I, C* # C, and U(Cle) > U(C*|e)). W(C) > 0 implies that,

U(Cle) < U(C'[e) S U(Cle) < U(Cle)

8



Combining, W(C) > 0 with U(C[¢) < U(Cle) yields,
u(yr — cr) 2 ulym — cA),
which contradicts lemma 1. O

The following proposition shows that self 1’s optimal decision can be

calculated without solving program II.

Proposition 1: Let

o _ [ T HUCTD 2UCle)
) ¢ otherwise

Then C** = C*.

Proof: First, suppose U(C![€) < U(C*!|e). Then C* = C!! and by Lemma
2, CclI = C. Hence, for this case the proposition is true. Now WLOG, as-
sume, U(CTje) > U(CHle). ¥ ¢! = ¢, the proposition is true. So WLOG,
assume, CIf # C. This implies, W(C) > 0, which implies that clI=2C.
Hence,

U(c’le) = U(Cle) > U(Cle),
where the last inequality is derived by combining Lemma 1 with W(C) > 0.
Hence, C** = CI, completing the proof. O
3.3 Characterizing the solution

This subsection characterizes the set of solutions to self 1’s problem. This
characterization is useful for two reasons. First, it helps to develop intuition
about the solutions. Second, it enables me to prove that second order condi-

tions are satisfied. Program 1 is not concave over the entire solution space.

9



However, the solutions of the problem can be shown to exist in a subspace
in which sufficient conditions are satisfied. I will return to these issues in

the next subsection. I use the following notation in the claims below:

U L _0U L W OW

H= — _— = — = —.
Ocy’ L=%e B= 3¢’ L=

Proposition 2: In equilibrium u'(cg) > Béu'(ya — cH)-

Proof: If C* = C, the proposition follows immediately, (since 3 < 1). So,
WLOG, assume C* # C. This implies (by Proposition 1) that C* = clL.
The Kuhn-Tucker necessary conditions associated with program I are given
below:

Ug + A\Wg =0,

UL+ AW =0,
A>0, W20, AW =0.

Note that the proposition is equivalent to the claim that in equilibrium
Wxg > 0. Assume that in equilibrium Wg < 0, and look for a contradiction.
Note that Ug = Wg — (1 — 8)6v'(yg — cr), so Wy < 0 implies Uy < 0,
which implies A < 0, which contradicts the necessary conditions. O

Proposition 3: In equilibrium u'(cg) < 6u'(yg — cH)-

Proof: Using the same argument as above, assume WLOG C* # C, and
hence, C* = C!. Recall the Kuhn-Tucker conditions associated with program
I. Note that Wg > 0 (by Proposition 2), and A > 0 implies Uy < 0, which
completes the proof. O

10



Lemma 3: In equilibrium, u'(cz) > §u'(yL - cr) or u'(cr) <
Béu'(yL — cL)-

Proof: Using the same argument as above, assume WLOG C* # C, and
hence, C* = C!. Recall the Kuhn-Tucker conditions associated with program
I. Note that u'(ez) < éu'(yr —cL) implies U < 0, which implies, W > 0,
(since A > 0). O

Lemma 4: In equilibrium, u'(cL) 2 Béu!'(yL — cL)-

Proof: Using the same argument as above, assume WLOG C* # C, and
hence, C* = C!. Fix any equilibrium cz. Suppose, w'(er) < BéW'(yL —cL),
and look for a contradiction. Note that u(z) + Béu(yr — =) is concave in z
with a maximum at z : v/(z) = f6u/(yr — z). Note that u(0) + Bbu(yr) <
u(yr) + B6u(0). So there exists a ér <ecg s.t.

u(é) + BoulyL —éL) = u(cr) + Béu(yr — cL)-

Note that u(yr — €z) > u(yr — cL)- Combining this observation with the
previous line yields,

w(ér) + Su(yr — €r) > ul(er) + Bbulyr - cL),

which implies that self 1 is made strictly better off by switching from ¢, to
&1, which violates the original equilibrium assumption. O

11



Proposition 4: In equilibrium u'(cL) > §u'(yg — cL).

Proof: The proposition follows from Lemma 3 and Lemma 4. O

Proposition 5: In equilibrium,

C_H:.iILSL
YH — YL

Proof: If C* = C then the Proposition follows from Lemma 1. WLOG
assume C* = C! # C. This implies that W(C*) = 0. Note that any pertur-
bation of C* must make self 1 no better off. Consider perturbations to C*
which lead self 2 to choose ¢ instead of € Such perturbations are possible
since W(C*) = 0. Optimality of C* requires that,

U(C*[e) - U(C*le) 2 0.
Subtracting W(C*) = 0 from the LHS of this expression, yields,
§(1 - B)(® - p) [u(yg — cr) — u(yL — c1)] 2 0.

This implies that (yg — cg) 2 (yz — ¢z) which completes the proof. O

3.4 Sufficient Conditions

It is now possible to derive a sufficiency theorem.

Proposition 8: There ezists at most one solution to program I.
If a solution ezists, it is in the region described by Propositions

12



2-4, and it is the only point in this region which satisfies the
Kuhn-Tucker conditions of program I.

Proof: The proposition is trivial to confirm if W(C) > 0. WLOG assume
W(C) < 0. Then at any solution, W = 0. So the solution set of program I
(under these assumptions) is equivalent to the solution set of the following

program, (in which the constraint binds).

IB. maxc, cy} U(CL,CHE)
s.t. W(er,cq)=0

Define a subspace § of the non-negative orthant of R3, such that elements
of S are ordered triplets, {cr,cq, A} which satisfy the properties,

§u'(yr — cz) < v'(er),

Béu'(yg ~ cg) < v'(cq) < 8u'(ym — cr),

,\5-1—'—.

P—p
Note that by Propositions 2-4 and the Kuhn-Tucker conditions of program I,
any solution to program I must be an element of S. Moreover, since program
I and program IB have the same solution set and the same Kuhn-Tucker

conditions, all solutions of program IB must also be in S.

-

The next step of the proof is to show that the bordered Hessian associ-
ated with program IB has a positive determinant in §. Let,

?U U ?U

Unm = e U = 3’ Unr = 551

and represent the second derivatives of W in an analogous way. Let A be

the Lagrange multiplier associated with the constraint in program IB. Then

13



the bordered Hessian of program IB is,

0 Wa Wi
H=| Wg Ugg+A\Wgg Unpr+AWaL
Wr Ugp+AWgr UL+ AW

Note that Urg = 0, and Wgz = 0. So the determinant of the bordered

Hessian is,
|| = - [Wh(Uss + AWiz) + WE(Unn + \Waz)]

Note that (Ugg + A\WWgg) < 0in S, (since Ugg < 0, A>0,and Wgg <0
in §). Hence, to show [H| > 0, it is sufficient to show ULz + AW =

(1 - P) [u"(c) + 6u"(yz — 1)) — AP - p) [v"(e) + Béu"(yr — cL)] < 0,

in §. This inequality follows from the properties, 3 < 1, and A < %{E.

Hence, the determinant of the bordered Hessian is positive in S, so there
exists a unique point in § which satisfies the Kuhn-Tucker conditions of
program IB. (Note, there must exist at least one point in § which satisfies
the Kuhn-Tucker conditions, since S contains all solutions of program IB.)
Since all solutions of program IB satisfy the Kuhn-Tucker conditions, and a
unique point in S satisfies the Kuhn-Tucker conditions, and all solutions of
program IB are in S, there exists a unique solution of program IB. Hence,
program I must also have a unique solution.

Note that the solution to program IB satisfies the Kuhn-Tucker con-
ditions of program I. Now it only remains to show that the Kuhn-Tucker
conditions of program I admit no other solutions in S. Let C be the unique
maximum of the two programs. Let C’ be any point in § which satisfies the
Kuhn-Tucker conditions of program I. If W(C') = 0 then C' also satisfies

14



the Kuhn-Tucker conditions of program IB, implying that C' = C (since
have shown that C is the only point in § which satisfies the Kuhn-Tucker
conditions of program IB). So WLOG assume that W(C') > 0. Then A = 0,
and C' = €, contradicting the assumption W(C) < 0. O

3.5 Comparative Statics

This model suggests a natural measure of the marginal propensity to con-

sume out of labor income:

MPpCv = SE—CL
Yy — YL

Note that 3 measures the degree of congruence between the interests of self
1 and self 2. When 3 = 1 those interests are perfectly aligned, and the
principal-agent problem collapses to the first-best problem of self 1. As 8
goes to zero the interests of self 1 and self 2 are maximally unaligned. At
the limit, self 2 desires complete instantaneous gratification.

Proposition 7: Let C(B) be the (unique) solution to self 1’s
problem, given a particular value of B. IfC(B) # C,

aMPCY(B)
—-———-a 3 < 0.

Proof: C(B) # C implies that W(C(B)) = 0, so the inequality constraint in
program I binds. Hence, in equilibrium the following equations hold (derived
from the Kuhn-Tucker conditions): UgWr = ULWH, and W = 0. Applying
the implicit differentiation theorem and eliminating zero terms yields,

dcm _ WilUsWis - UrWas) — We[UsWir — ULLWH]
3B H] ’

15



e _ ~WylUnWis — UyWapg) + WalUngaWi — Uy Wan]
% ]
Recall (from previous proof) that |H| is the determinant of the bordered
Hessian. Combining the previous two equations yields, ﬂﬂﬁi‘-’l =

(Wr+Wg)[UaWirs—UrWrp|-WalUsWirL—UrtWr+UraWiL - UrWgn]
|H|

I've already shown (see previous proof) that |H| is positive at all optima.
Hence, it is sufficient to sign the numerator of this expression. I proceed
term by term.

Note that,

-Wi v'(yg —cn)
Wg Wg  u'(yL—cL)

u'(cz )-Béu'(yr—c
= uyp—cp

uw(epr)—Pbu'(ygr—c

v

u(yg—cy

u'(c \
I ey B
- u'(e,
w(yn—cm) Bé

> 1

where the first inequality follows from Proposition 5, and the last inequal-
ity follows from Proposition 3 and Proposition 4. Note that Wg > 0 by
Proposition 2. Multiplying the last line by Wy yields,

W+ Wi <0.

16



Note that,

“UtWrs _ -WrWag
UrWys WaWis

u'(er)~Bév'(yr.—cL
_ “'ZIIL"CL;
= u!(ey)-Béu'(yyg—~c
lep) oo s

< -1

The first inequality follows from substitution of the Kuhn-Tucker conditions,
and the last inequality follows from the arguments made in the previous
derivation. Note that UgWrs < 0 by Proposition 3. Multiplying the last
line by UgWg yields,

UagWig — ULWpgg > 0.

Note that,
UsWir _ -UWLL
UtWa WrUrL

w(cr) — §u'(yp —er)  u"(cz) +BSu"(yr — c1)
w(cr) - Bw'(yr —cz)  w'(cr) +8u"(yr — cz)

The first inequality follows from substitution of the Kuhn-Tucker conditions,
and the last inequality follows from 8 < 1, and Proposition 4. Note that

17



UrrWg < 0, by Proposition 2. Multiplying the last line by UrtWx yields,
UgWir — UtWg > 0.

The remaining terms can be signed directly. Note that Ws > 0 by
Proposition 5, Uz > 0 by Proposition 4, Wz < 0 by Proposition 4, and
Urn,Wgn < 0. So,

UggWtr - ULWgg > 0.

Together these observations imply that M PC¥(p) is falling in 8. O

This long proof establishes a very simple result. As self 2’s interests
move closer to self 1’s interests, self 1 needs to sanction less instantaneous
gratification to motivate self 2. Put differently, self-reward is used less and
less for self-motivation as 3 goes to unity.

8.6 Mental Accounts

I am now in a position to return to the discussion of mental accounts. The
goal of this subsection is to propose a meaningful way of comparing the
MPC out of labor income—M PCV—with the M PC out of assets, hence-
forth represented as M PCA. The first order of business is to define M PCA,

To simplify analysis I will propose a definition of M PCA which is inde-
pendent of the effort incentive problem. Modify the earlier intra-personal
principal-agent problem by setting 5 = p. This modified problem is a lim-
iting case of the original problem. Note that the modified problem has no
meaningful effort decision. Income in the modified problem is uncorrelated
with the effort decision. So the agent trivially chooses low effort. In this set-
ting income can be interpreted as asset windfalls (e.g. capital gains). Define

18



MPCA to be the MPC which arises in the modified problem. Specifically,

MPCA = SE— L
yE - YL’

where cg and cr, are the equilibrium contingent consumption levels associ-
ated with the modified problem.*

Proposition 8: Let MPC4 be the equilibrivm MPC of the
limiting principal-agent problem with p = p. Let MPC%p be
the MPC associated with the first-best solution of the original
principal-agent problem. Let MPCY(1) be the equilibrium MPC
of the original principal-agent problem with p = 1. Let M PCY(B)
be the equilibrium MPC of the original principal-agent prob-
lem with B < 1. Then, if C* is the equilibrium in the original
principal-agent problem, and C* # C,

MPCA = MPCY%yz = MPC¥(1) < MPC¥(B).

Proof: It is straightforward to confirm that the agency problems associated
with MPCA, MPC%g, and MPC¥(1), all have solution {cm,cL} = C. The
first two inequalities follow immediately from this observation. The last
inequality is implied by Propositions 3 and 4, and C* # ¢. o.

4QOther sensible definitions are possible. In particular, I originally worked with the
definition

Az lm L _wier
MPC —waA-i-(l U)OA‘

where w is a weighting function (e.9. w =P, or w = }), and A represents an income
component which is in both yx and yz. This approach generated the same qualitative
results as the one pursued in the paper, but with far less clarity and simplicity.
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4 An illustration

I have shown that the MPC out of labor income (i.e. income which is
positively correlated with effort) is higher than the M PC out of asset income
(i.e. income which is uncorrelated with effort). But I haven’t discussed the
magnitude of this difference. The following example provides an arbitrary
illustration of the magnitude of these effects. The example is calibrated by
setting u(:) =In(-),§ =1, yg =6,y =5,p= 2, p=1ande—e=.116.
All of these parameters and specifications were chosen independently, except
€—e, which was chosen so that there would be a range of 3 values over which
self 1 would induce self 2 to select the high effort level.

Figure 1 graphs cg and cz as functions of 8. The unit interval of 3
values can be broken down into three subintervals of interest: 8 € [0,.1002],
B € [.1002,.9087), and B € [.9087,1]. I will refer to these as intervals A,
B, and C. In interval A, 3 is close to zero, and the interests of self 1 and
self 2 are highly divergent. Self 1 would like self 2 to exert high effort, but
setting up an incentive scheme to induce self 2 to do so is too costly from
the perspective of self 1. So self 1 choose C* = C and self 2 chooses e* = ¢.
In interval B, 3 takes on intermediate values. Now, from self 1’s perspective
it is desirable to set up an incentive scheme to induce self 2 to exert high
effort. Because self 2’s interests are still sufficiently divergent from self 1’s
interest, self 2 must be rewarded to motivate a high effort choice. Hence in
interval B, ¢}y > ég, and ¢} < ér. In interval C, 3 is sufficiently close to one
that self 1 does not need to create any (extra) incentive to motivate self 2
to choose €. So in this region, C* = C, and e* = &.

Figure 2 graphs, MPCY(B) = 55—%):—3'-(—3). MPCY should be contrasted
with M PCA; the latter is equal to .5 for all 8 values. Finally, note that the
drop in M PCY at low 3 values is a consequence of the discrete effort assump-
tion. I conjecture that a model with continuous effort choice will generate
an equilibrium M PCYV which rises everywhere as 3 falls. Preliminary work
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with such a model supports this observation.

5 Evaluation

The intrapersonal principal agent problem in these notes explains mental
accounts in a novel way. In my story, mental accounts represent a sophisti-
cated tradeoff between the desire for consumption smoothing and the need to
motivate effort with instantaneous gratification/punishment. I acknowledge
that not all mental account phenomena fit naturally into this paradigm. In
particular, the most problematic mental account phenomenon for my intra-
personal agency model is the high measured MPC out of exogenous, liquid
wealth windfalls (see Thaler, 1990). Such behavior can be shoe-horned into
my intra-personal agency model in either of two ways. First, one can assume
that no liquid wealth shocks are truly independent of effort, or at least that
if such exogenous shocks do exist, they are sufficiently rare or difficult to
identify that we do not even bother creating norms to handle them. Second,
one can assume that the high measured MPC out of liquid wealth shocks
reflects an incentive scheme that was historically highly successful but has
ceased to be useful due to a weakening of the connection between recent
effort and liquid wealth. There may have been a time when all liquid wealth
shocks were effort-related—e.g., in a hunter-gatherer society—and that is
when these norms evolved. |

While I find both of these stories intriguing, I believe that my intra-
personal agency model does not satisfactorily explain the high measured
MPC out of exogenous liquid wealth windfalls. However, any model with lig-
uidity constraints (endogenous or exogenous), can explain the liquid wealth
anomaly (e.g. see the second chapter of this thesis). Hencé, I am comfort-
able separating the liquid wealth anomaly from the body of other mental
accounting phenomena that my intra-personal agency model does readily
explain: a high MPC out of income/wealth that is effort related (e.g. labor
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income) and a relatively low MPC out of income/wealth that is indepen-
dent of effort (e.g. capital gains). For example, my agency model explains
why passive investors have a lower MPC out of capital gains than active in-
vestors. The agency model explains why students reward themselves when
they get back a successful exam. The agency model explains why shop-
pers reward themselves for finding a needed item on sale (by splurging the
“saved” money on something frivolous). The agency model explains why
many people punish themselves when something “bad” happens, like losing
an airplane ticket or getting fined for speeding.

Future work on my intra-personal agency model of mental accounts will
focus in two areas. First, I hope to extend the model to a multi-period
framework. Such an extension will make the model more closely map ob-
served mental account phenomena by increasing the gap between the MPC
out of effort-independent wealth and the MPC out of effort-related wealth.
Second, I hope to weaken my assumption about the effectiveness of the
binding automaton. I have assumed that the binding automaton can be
used to perfectly commit the agent to any contingent rule linking observ-
able actions to observable states. Weakening this assumption is analogous
to weakening the complete contracts assumption in the standard principal-
agent literature. Preliminary work suggests that such a weakening will pave
the way for a rich theory of organizations and norms based on the value of

commitment.
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