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ABSTRACT

How does an economy behave if (1) fundamentals are truly hump-shaped, exhibiting momentum in
the short run and partial mean reversion in the long run, and (2) agents do not know that fundamentals
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excess optimism. Second, asset prices will be highly volatile and exhibit partial mean reversion—i.e.,
overreaction. Excess returns will be negatively predicted by lagged excess returns, P/E ratios, and
consumption growth. Third, real economic activity will have amplified cycles. For example, consumption
growth will be negatively auto-correlated in the medium run. Fourth, the equity premium will be large.
Agents will perceive that equities are very risky when in fact long-run equity returns will co-vary only
weakly with long-run consumption growth. If agents had rational expectations, the equity premium
would be close to zero. Fifth, sophisticated agents—i.e., those who are assumed to know the true model—will
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will follow a counter-cyclical asset allocation policy. These predicted effects are qualitatively confirmed
in U.S. data.
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1 Introduction

Most macroeconomic models assume that people know the true model of the economy – i.e.,

rational expectations. In this paper, we follow a different tradition and assume that agents use

simple prediction models that are estimated using historical data.1 In other words, agents adopt

a parsimonious model that fits the available data. In general, this parsimonious model will not nest

the true model (though the true model may nest the parsimonious model). Following Fuster,

Laibson, and Mendel (2010), we call the resulting beliefs natural expectations.2 We assume that

agents use simplified models because economists and non-economists—statisticians, professional

forecasters, and firms— regularly make such simplifications.

People use simple models for a wide range of good reasons. Simple models are easier to

understand, easier to explain, and easier to employ. Simplicity also reduces the risks of overfitting,

which is the reasoning that underlies many formal model selection criteria. Whatever the mix of

reasons—pragmatic, psychological/suboptimal, and statistical—economic agents usually do use

simple models to understand economic dynamics.

We study a class of parsimonious models that generates empirically observed patterns in asset

prices and macroeconomic dynamics. To illustrate this claim, we study an economy in which fun-

damentals are hump-shaped, exhibiting momentum in the short run and partial mean reversion

in the long run. Hump-shaped dynamics are controversial in the sense that economists continue

to debate whether such cyclical dynamics are present in aggregate fluctuations.3 This debate is

consistent with our claims, since we only want to argue that hump-shaped dynamics are plausi-

ble. Hump-shaped dynamics match the point estimates from ARIMA models of various economic

time series, though standard errors are large enough that the data do not rule out alternative dy-

namics.4

We will ask, “How would an economy behave if (1) fundamentals were truly hump-shaped,

and (2) agents adopted a parsimonious model of the fundamental process, fit to the available

1For example, Barberis, Shleifer, and Vishny (1998), Hong, Stein, and Yu (2007), and Branch and Evans (2010) study
settings in which agents estimate a misspecified model and optimize against that model.

2The current paper is more parsimonious since it zeros out a weighting parameter that is used in Fuster, Laibson,
and Mendel (2010).

3See Campbell and Mankiw (1987), Cochrane (1988), Morley, Nelson, and Zivot (2003), and Perron and Wada (2009)
for a range of opinions.

4Fuster, Laibson, and Mendel (2010) provide some empirical evidence for hump-shaped dynamics in different eco-
nomic time series.
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data?”5 We embed these two assumptions—hump-shaped fundamentals and natural expectations—

in a consumption/asset-pricing model.6 We use a habit model to generate slow adjustment in con-

sumption; however, as we combine habit formation with CARA preferences (Alessie and Lusardi,

1997), these habits do not produce counter-cyclical variation in risk premia.7

The following five sets of results emerge from our analysis. Some of these results are com-

parative: how does equilibrium behavior in an economy with natural expectations compare to

equilibrium behavior that would have arisen if agents knew the true model—i.e., if agents had

rational expectations?

First, simple models robustly pick up the short-term momentum in fundamentals but often

fail to capture the full extent of long-run mean reversion. Under natural expectations, beliefs will

often be characterized by endogenous extrapolation bias in levels. Forecasts about fundamentals

will be too persistent, such that beliefs will be too optimistic in good times and too pessimistic in

bad times, relative to the rational expectations benchmark.

Second, under natural expectations, asset prices will be highly volatile (LeRoy and Porter,

1981; Shiller, 1981) and exhibit partial mean reversion—i.e., overreaction. Excess returns will be

negatively predicted by lagged excess returns (Fama and French, 1988a; Poterba and Summers,

1988), price/earnings ratios (Campbell and Shiller, 1988a, 2005), and consumption growth. Ex-

cess returns will be positively predicted by lagged ‘cay’, a measure of transitory deviations of

consumption from wealth (Lettau and Ludvigson, 2001).8

Third, real economic activity will have amplified cycles. For example, consumption growth

will be positively auto-correlated in the short run and negatively auto-correlated in the medium

run. Consumption growth will be weakly negatively predicted by lagged excess returns and P/E

ratios.

Fourth, the equity premium will be large. Agents will perceive that equities are very risky

5The agents in our model behave as if they thought their model represented the truth; i.e., their decisions do not
take into account the possibility of misspecification or display a concern for “robustness” (cf. Hansen, 2007; Hansen
and Sargent, 2007, 2010). We hope to explore the differences between models with natural expectations and models of
robustness in future work.

6To keep the analysis in our paper maximally tractable, we abstract away from learning and give agents a fixed
simple model that is estimated from data available in 2011. Adding learning would complicate the analysis, but not
change the qualitative results.

7In contrast, Campbell and Cochrane (1999) use a habit model that generates counter-cyclical risk premia, thereby
explaining numerous asset pricing regularities.

8When ‘cay’ is low, wealth is transitorily high. In our economy, this predicts low future excess returns.
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when in fact long-run equity returns will co-vary only weakly with long-run consumption growth.

The covariance of consumption growth and asset returns will be close to zero over short-run hori-

zons (because of slow adjustment in consumption), it will be higher over medium-run horizons

(as consumption catches up with asset prices), and it will fall again over long-run horizons (as

asset prices and consumption both mean revert). If agents had rational expectations, the equity

premium in our economy would be close to zero.

Fifth, sophisticated agents—i.e., those who are assumed to know the true model—will hold

far more equity than investors with natural expectations. Moreover, sophisticated agents will be

“value” investors, following a counter-cyclical investment policy.

These five sets of predicted effects are qualitatively confirmed in U.S. data. An economy

in which agents estimate simple models—e.g., an AR(10) in earnings growth, when the data-

generating process is assumed to be AR(40)—generates simulated behavior that quantitatively

matches the point estimates observed in U.S. data. However, the moments that we study have

large standard errors because of the limited span of available data. It is therefore not possible to

reject classical models in which excess returns are unpredictable and consumption is consistent

with rational expectations.

The body of the paper is divided into six sections; appendices are used for derivations. Section

2 discusses the econometric and psychological motivations for natural expectations, as well as the

related literature. Section 3 solves and calibrates a consumption-based asset pricing model, which

generalizes the model in Fuster, Laibson, and Mendel (2010). Section 4 reports model simulations

and compares these simulations to the empirical evidence from U.S. We focus on eight moments

that summarize the key properties of the model. We show that a parsimonious version of the

model matches these moments. Section 5 discusses the behavior of sophisticated agents. Section

6 concludes and identifies directions for future work.

2 The Appeal of Simple Models

The premise of our approach to understanding macroeconomic and financial dynamics is that

economic agents tend to make forecasts based on statistical or mental models that are reasonable

given the data available to them, but “too simple” to fully capture the long-term dynamics of
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many economic time series.

In this section, we motivate our assumptions both on statistical and psychological grounds,

though we believe that the psychological motivations are more important.9 We will also discuss

how simple models lead agents to overestimate the persistence of shocks when the true process

is hump-shaped. Finally, we summarize evidence from different settings that are related to our

approach.

2.1 Statistical Perspective

Choosing the right model to forecast an economic time series is by no means a trivial task, and

there is no single generally accepted way of doing so. When choosing how many parameters

to include, a modeler faces a trade-off between improving the fit of the model in-sample and

the risk of overfitting the available data, which may result in poor out-of-sample forecasts. A

number of formal statistical criteria have been proposed to formalize the trade-off between fit and

parsimony. The best-known and most popular ones are the Akaike Information Criterion (AIC)

and the Schwarz or Bayesian Information Criterion (BIC).10 These criteria are both asymptotically

optimal, but in different ways. If the set of candidate models is not presumed to contain the true

model (perhaps because the true model is of infinite dimension), the AIC is efficient in that it will

select the candidate model with minimum mean squared error distribution with probability 1 as

the sample size grows to infinity. If instead the true model is among the set of candidate models,

the BIC will select it with probability 1 asymptotically (the BIC is consistent), while the AIC will

tend to result in an overparametrized model (Hannan, 1980).

When the likelihood function is Gaussian, the two criteria can be written as follows:

AIC = ln(σ̂2) +
2k

T

BIC = ln(σ̂2) +
ln(T) · k

T

where σ̂2 is the error variance estimated by maximum likelihood, k the number of parameters

9Brav and Heaton (2002) emphasize that when explaining “financial anomalies,” behavioral theories and rational
theories with structural uncertainty are often very similar mathematically and also in terms of predictions. We remain
relatively agnostic as to whether the reliance on models that fail to capture long-term dynamics is “behavioral” or
“rational” in our setting, and focus on the implications.

10McQuarrie and Tsai (1998) provide an overview of these and other selection criteria.
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(including the constant), and T the number of observations. One is supposed to pick the model

with the smallest value of the preferred criterion. Both criteria trade off fit and parsimony: as k

increases, σ̂2 decreases, but the second (“penalty”) term increases. Generally, the BIC imposes a

larger penalty for increasing the number of parameters, and thus will tend to select models with

fewer parameters than the AIC. A relatively recent literature based on extensive simulation studies

has argued that a version of the AIC corrected for small sample sizes, the AICc, tends to perform

well (in various senses) and, relative to the AIC, reduces the likelihood of overfitting.11

It is not clear which criterion should be preferred. If one believes that the true model is among

the candidate models, and as T → ∞, there seems to be a clear case for the BIC. Yet, in practice,

these conditions are rarely met, and it appears that which criterion is preferred is to some extent

a matter of taste.12 While strictly speaking, each criteria picks one model, a reasonable pragmatic

strategy would be to choose a model that is close to the best model according to different criteria,

or perhaps to make forecasts based on averaging the predictions of different models.

For the purpose of our work, what matters is whether a modeler who is presented with a

time series of length equal to the typical macroeconomic time series (e.g., 250 quarters) and who

relies on (one of) these information criteria will generally pick a model that correctly captures

the properties of the data-generating process. In particular, we are interested in time series that

feature hump-shaped dynamics, in the sense that they are characterized by momentum (positive

autocorrelation in growth rates) in the short run but (partially) revert back to the mean in the

long run. To our knowledge, this is not a question that has been formally analyzed in the existing

literature, so we now present some suggestive evidence from Monte Carlo simulations to shed

light on this question.

Assume that the true data-generating process is an ARIMA(0,1,16), and for simplicity assume

that the modeler considers univariate models of the ARIMA(p, 1, 0) and ARIMA(0, 1, q) classes.

The process we study has a hump-shaped impulse response function with a long-term persistence

11The AICc can be written as ln(σ̂2) + T+k−1
T−k−1 .

12McQuarrie and Tsai (1998) indicate that “AIC is probably the most commonly used model selection criterion for
time series data” (p. 2). On the other hand, Neath and Cavanaugh (1997) note that BIC “is often preferred over
AIC by practitioners who find appeal in either its Bayesian justification or its tendency to choose more parsimo-
nious models than AIC” (p. 559) For an interesting discussion on this topic from an online forum for “statisticians,
data analysts, data miners and data visualization experts,” see http://stats.stackexchange.com/questions/577/

is-there-any-reason-to-prefer-the-aic-or-bic-over-the-other.
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of 0.5.13 We draw 100 samples of length 255 (which is the number of observations we will use in

the estimation of the aggregate earnings process) and estimate AR(p, 1, 0) models for p = 1, ..., 25

and MA(0, 1, q) models for q = 4, 8, 12, 16, 20, 24.14

In our 100 simulations, the AICc selects an AR(1), AR(2), or AR(3) in 60 cases; the BIC does so

in all cases. The average estimated long-term persistence of a shock implied by the AICc-selected

model equals 1.02, and is below 0.8 only in 25% of cases. For the BIC-selected model, it is never

below 1. Thus, in the vast majority of cases, a modeler who considers this set of candidate models

and selects based on AICc or BIC would grossly overestimate the persistence of shocks to the

process. Note that while it appears difficult to capture the mean-reversion in a sample of this

length, it is not impossible: for instance, the implied persistence from an estimated MA(16) (the

true model order) averages 0.56 and is below 0.8 in 88% of cases.15 Yet the improvement that the

MA(16) brings in terms of fit relative to, for example, an AR(2) rarely justifies the large increase in

the number of parameters (an MA(q) with q ≥ 16 is selected nine times by the AICc).

In large part, the difficulty that these models have in detecting mean reversion seems due to the

relatively short sample length. If we repeat the same exercise but with 1255 observations instead

of 255, the AICc selects the MA(16) in 75% of cases, and the mean long-term persistence of a shock

estimated by the preferred model decreases to 0.53, i.e. very close to the actual persistence of the

data-generating process.

We have conducted similar simulations with other data-generating processes. With somewhat

less complicated hump-shape patterns, the AICc often does well in terms of selecting a model

that gets the long-term persistence approximately right, while the BIC tends to select low-order

models (with 5 coefficients or less) in the vast majority of cases. Overall, our simulations suggest

13The MA coefficients are: +0.15, +0.1, -0.02, -0.05, -0.05, -0.05, -0.05, -0.05, -0.06, -0.06, -0.06, -0.06, -0.06, -0.06, -0.06,
-0.06. The long-term persistence of an ARIMA(p, 1, q) process is given by (1+sum of MA coefficients)/(1-sum of AR
coefficients).

14Estimating MA models with a large number of terms is computationally demanding, which is why we only estimate
a subset of the possible models one might consider. In our simulations the maximum likelihood estimation of MA
models sometimes failed to converge, or the maximum likelihood estimator of the root (i.e., the negative of the sum of
the lagged MA coefficients) “piled up” at a value of 1, which means that the predicted long-term persistence of a shock
equaled 0. This pileup occurs because the sample likelihood function is locally flat at an MA root of 1, so that it is a
local maximum of the likelihood function and may be the global maximum in finite samples, even if the true MA root
is less than unity (see Campbell and Mankiw, 1987 or Stock, 1994 for discussions). It seems likely that a modeler would
be highly skeptical of such a result. Also, our modeler does not consider ARIMA(p, 1, q) models with both p and q > 0.
While such models are often estimated in practice, based on our results and some additional smaller-scale simulations,
it seems very unlikely that estimating more models would change our qualitative conclusions.

15For these calculations, we drop simulations in which the sum of MA coefficients equalled exactly −1 (cf. previous
footnote).
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that even a sophisticated modeler who goes through the trouble of estimating and comparing a

wide range of candidate models may well end up with a model that vastly overestimates the long-

term persistence of shocks.16 To be clear, we are not claiming that it is impossible to find a model

that gets the long-term dynamics right. One could use more sophisticated methods than ARIMAs

(e.g., multivariate models), add more ex-ante imposed structure to the model, or attempt to form

unbiased estimates of long-term persistence at the expense of one-period-ahead forecast accuracy.

We argue that these practices are neither straightforward nor widespread.

So far, we have discussed the model selection problem under the assumption that the stochas-

tic process of interest is stable over time and that economic agents should use all the historical data

that is available to them in estimating a model, and weigh all observations equally. However, it is

possible that the properties of the data-generating process change over time, and so it may well be

optimal for an agent to down-weight or discard old data.17 While we will not attempt a normative

analysis of optimal model selection under the possibility that parameters of the data-generating

process (such as the mean growth rate of earnings) change over time, it seems intuitive that in

such a world, agents would tend to use shorter effective samples to estimate their models, and

this would increase the likelihood of picking a low-order model.

2.2 Psychological Perspective

Psychological factors also lead agents to adopt simple models. In fact, we believe that psycholog-

ical considerations are far more important in driving preferences for simplicity than the statistical

considerations reviewed above. Even if non-parsimonious, complicated models were statistically

optimal, real people would probably not adopt such models.

Constraints on memory and cognition make it difficult for agents to work with complicated

models, leading decision-makers to adopt simplifications and heuristics (e.g., Tversky and Kah-

neman, 1974; Gigerenzer and Goldstein, 1996; Gabaix et al., 2006; Gabaix, 2011). Simple models

are relatively easy to comprehend, use, revise, and explain. Complicated “black-box” models

are viewed with a degree of suspicion; programmers themselves are boundedly rational so high-

16The spectral formulas derived by ? for understanding the consequences of misspecification in regression provide a
useful way of thinking about our agents’ problem. This point is developed in a note by Lawrence Christiano, available
at http://faculty.wcas.northwestern.edu/~lchrist/finc520/note_on_fhl.pdf.

17A large literature in statistics and economics studies methods to detect regime switching or structural breaks.
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dimensional computational models often have subtle programming errors and other unintended

or poorly understood features that make such models unreliable. Even when people do use com-

plicated models, the conclusions are rarely taken at face value and usually tempered with “com-

mon sense” about how the world works.

The ‘psychological’ motives for simplicity can also be interpreted through a rational lens. If

complicated models tend to induce confusion or mistakes, then simple models may be the lesser

of two evils. Complicated models also engender high costs for agents with costly cognition18,

providing another rational explanation for choosing simple models.

There are also specific psychological biases that reinforce our approach. The heuristic of rep-

resentativeness (Kahneman and Tversky, 1973; Tversky and Kahneman, 1974) leads people to be-

lieve that small samples are representative of the world at large. Representativeness has two

implications for our analysis. First, recent observations are viewed as representative of the future.

Thus representativeness leads agents to underestimate the degree of mean reversion (Kahneman

and Tversky, 1973).

Second, representativeness leads agents to mistakenly believe that the properties of population

samples will be reliably observed in small samples (e.g., Rabin, 2002; Rabin and Vayanos, 2010).

This is sometimes referred to as the (psychological) ‘law of small numbers.’ Agents mistakenly

believe that the ergodic properties of a time series can be inferred by studying a short sub-sample

(e.g., 20 years of data). In addition, a willingness to rely on short sub-samples implicitly reinforces

the tendency to rely on models without long lag effects.

The availability heuristic (Tversky and Kahneman, 1973) also reinforces our modeling ap-

proach. Availability leads people to overweight information that is easily accessible and salient.

Hence, availability bias also implies that people will excessively overweight recent data and un-

derweight data from the distant past.

Some observers have argued that related biases play an important role in driving aggregate

dynamics. For instance, Reinhart and Rogoff (2009) document how investors time and time again

fall prey to the belief that “this time is different” and that this belief causes recurrent financial

crises. Relatedly, Shiller (2005) points out the lure of “new era” stories and how they are associated

with episodes of bubbles in asset markets. Barberis (2010) notes that over-extrapolation of past

18For example, see Sims (1998, 2003); Gabaix et al. (2006); Woodford (2009).
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price changes may have been an important psychological driving force during the run-up to the

Great Recession. We now turn to a large body of related economic research.

2.3 Additional Related Literature

There is a small but growing body of evidence on deviations from rational expectations. For in-

stance, lab experiments in which subjects forecast financial or other time series find that extrapola-

tive expectations or “trend following” provide a good description of observed beliefs (De Bondt,

1993; Hey, 1994) and may be a driving force behind the bubbles that are observed in asset-market

experiments (Haruvy, Lahav, and Noussair, 2007, Hommes et al., 2008). On the other hand, Dwyer

et al. (1993) finds that subjects’ forecasts of a random walk (in which growth has no persistence)

do not deviate systematically from the rational expectations forecast. This is consistent with our

model, where extrapolation is not “baked in” but depends on the predictions generated by esti-

mating simple models on the available data.

In field data, a number of papers have argued that asset allocation choices are affected by

extrapolation of recent price appreciation (Chevalier and Ellison, 1997; Sirri and Tufano, 1998;

Benartzi, 2001; Choi et al., 2004, 2009; Benartzi and Thaler, 2007; Chalmers and Reuter, 2009; Pre-

vitero, 2010; Malmendier and Nagel, 2011). One could argue that biases in expectations have little

or no effect on asset prices because investors with biased beliefs are relatively poor, while wealth-

ier market participants may be more rational. However, Vissing-Jorgensen (2003) documents that

at the peak of the market in 2000-01, even wealthy investors expected continuously high stock

returns. Bacchetta, Mertens, and van Wincoop (2009) conduct a similar exercise and find that, in

several asset markets, (institutional or wealthy individual) investors’ expectational errors about

future returns are predicted by the same variables that predict excess returns.

One might alternatively think that the expectations held (and made public) by financial ana-

lysts, which may have a strong influence on asset prices, are not biased. However, De Bondt and

Thaler (1990) argue that security analysts overreact and make earnings-per-share forecasts that

are too extreme.19 Most of the studies on analyst forecasts look at relatively short-run forecasts,

while our model mostly has implications for long-run forecasts. Bulkley and Harris (1997) study

19Other studies instead find that analysts underreact. Easterwood and Nutt (1999) argue that analysts overreact to
positive information but underreact to negative information. Lim (2001) argues that considering analysts’ objective
function can “rationalize” their biases.
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five-years earnings forecasts for about 500 U.S. companies and report results which are consistent

with our model: i) analysts appear to extrapolate past growth in earnings when forecasting fu-

ture growth, even though there is pronounced negative serial correlation in earnings growth over

five-year periods, and ii) analysts’ forecasts and excess returns over the subsequent five years are

significantly negatively correlated.20 Chan, Karceski, and Lakonishok (2003) provide further evi-

dence that there is little predictability of long-term earnings growth rates, but that investors and

analysts behave as if recent growth rates were positive predictors of future growth.

A significant literature in behavioral finance has accumulated evidence on cross-sectional stock

return patterns that are consistent with such biases in expectations having strong effects on prices:

De Bondt and Thaler (1985, 1989) and Lakonishok et al. (1994) are among the best-known examples

of such work.21 Baker and Wurgler (2007) document that empirical measures of investor sentiment

predict cross-sectional return patterns and also aggregate returns.

Apart from stock markets, other asset markets may also be influenced by biased beliefs. For

instance, Greenwood and Hanson (2010) document patterns in bond risk premia that can be ex-

plained by investors extrapolating recent returns or default rates. Periods of high returns on cor-

porate bonds are followed by a decline in issuer quality and low or negative excess returns on

corporate debt in a highly predictable manner. Also, biased (extrapolative) beliefs have been ad-

vanced as a key explanation behind the recent housing bubble as well as earlier boom-bust cycles

(Abraham and Hendershott, 1996; Muellbauer and Murphy, 1997; Case and Shiller, 2003; Ger-

ardi et al., 2008; Goetzmann, Peng, and Yen, 2009; Piazzesi and Schneider, 2009; Glaeser, Gottlieb,

and Gyourko, 2010). Finally, Ball (2000) and Tortorice (2011) show that misspecified models can

explain empirically observed inflation persistence and unemployment expectations, respectively.

A variety of “behavioral” models have been proposed to explain stock return patterns, in-

cluding DeLong et al. (1990), Barberis et al. (1998), Daniel, Hirshleifer, and Subrahmanya (1998)

and Hong and Stein (1999). Closely related are models in which investors continuously update

20La Porta (1996) finds a negative relation between analysts’ long-term growth estimates and future one-year risk-
adjusted returns. Bergman and Roychowdhury (2008) document a positive relation between the consumer confidence
index (a proxy for market sentiment) and the error in long-horizon earnings estimates of financial analysts, consistent
with the idea that when times are good, market participants may insufficiently adjust for subsequent mean reversion.

21More recently, Chen, Moise, and Zhao (2009) argue that myopic extrapolation can also explain momentum, if in-
vestors completely miss the hump-shaped dynamics of firm-specific earnings shocks and simply treat current earnings
shocks as permanent. They point out that apart from cognitive biases, the practice of pricing securities using earnings
multiples can also contribute to this phenomenon.
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their belief about future dividend growth or other parameters. This learning, which can be inter-

preted as behavioral or fully rational (similar to our model), generates predictability in returns as

well as excess volatility. Among the best-known papers in this literature are Barsky and DeLong

(1993) and Timmermann (1993). While our approach is closely related to these earlier papers,

most previous authors consider simpler setups (often partial equiliibrium valuation models with-

out consumption) to illustrate the consequences of biased beliefs or learning, and do not study the

interrelation between asset prices and other macroeconomic variables. An exception to this, and

similar in spirit to our exercise, is a paper by Cecchetti, Lam, and Mark (2000). They show that dis-

torted beliefs about the growth rate of the aggregate endowment can generate high, volatile, and

predictable excess returns on equity, as in the data.22 Similarly, Lansing (2006), Choi (2006) and

Adam and Marcet (2010) study economies where some or all investors hold extrapolative beliefs,

or learn about the return process, in otherwise standard Lucas tree economies with CRRA utility,

and show that this can generate realistic asset price dynamics.

More generally, a large literature in macroeconomics and finance, surveyed by Sargent (1993),

Evans and Honkapohja (2001, 2011), and Pastor and Veronesi (2009), assumes that agents are ratio-

nal (in the sense that they form their beliefs in the statistically optimal way) but need to learn the

relevant parameters of the reduced form equations governing the economy over time.23 While the

early papers in this literature mostly focused on whether expectations would ultimately converge

to the rational expectations equilibrium, more recent work has considered what happens if agents

have misspecified models or down-weight older data, and finds that this can generate additional

volatility and persistence of shocks in asset prices and/or the economy (e.g., Branch and Evans,

2007, 2010; Hong, Stein, and Yu, 2007; Huang, Liu, and Zha, 2009; Eusepi and Preston, 2011). In

these models, “misspecification” means that agents omit a relevant variable from their forecasting

equation, while in our model, it means that they may not include enough lags of the variable they

are trying to forecast.24

An alternative modeling approach assumes that agents evaluate different forecasting mod-

22The type of distortion that Cecchetti et al. focus on has agents underestimate the persistence of good and bad shocks
to endowment growth (see Gourinchas and Tornell, 2004 for a related model in an international finance context), while
our “natural expectations” agents will overestimate the persistence of shocks to earnings growth.

23For an early example, see Friedman (1979).
24The downweighting of old data is often captured by assuming “constant gain” rather than “decreasing gain” (least

squares) learning. Some papers, such as Marcet and Nicolini (2003), endogenize agents’ choice between constant and
decreasing gain based on recent prediction errors.
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els’ past performance in order to (probabilistically) select among these models. This approach

is frequently used in the agent-based literature (for example, LeBaron, Arthur, and Palmer, 1999;

Tesfatsion and Judd, 2006; De Grauwe, 2010; LeBaron, 2010). An advantage of such models, which

are usually analyzed computationally, is that they generate heterogeneity in beliefs across agents,

something that is not present in our model. Such heterogeneity allows for instance the study of

wealth dynamics and trading volume.25

Finally, there is a very large literature that studies asset pricing and macroeconomic dynamics

under the assumption of perfect rationality and knowledge of the economy’s structure.26 While

basic rational models are rather unsuccessful in generating realistic asset pricing patterns, more

elaborate versions can generate a high equity premium, volatile asset prices, and predictable ex-

cess returns. Perhaps the most successful and influential consumption-based models over the

past fifteen years are a) Campbell and Cochrane’s (1999) habit model, which matches many of

the main observed empirical asset pricing phenomena through counter-cyclical and (on average)

high effective risk aversion, and b) the “long-run risks” model by Bansal and Yaron (2004), who

engage in an exercise somewhat similar to ours: they assume that the world is characterized by

a driving process for which evidence is statistically rather weak (namely, a consumption growth

process with a small predictable component as well as time-varying volatility) and study the im-

plications for asset pricing (in their case, using Epstein-Zin-Weil preferences with an elasticity of

intertemporal substitution above 1).

3 Consumption Model with Asset Pricing

We now illustrate our approach by characterizing equilibrium in an economy in which agents

hold natural expectations. This is an extension of the model analyzed in ?27

We study an open endowment economy with two assets. The first asset is foreign debt, bt,

which is borrowed at a fixed international (gross) interest rate R.28 We introduce foreign debt

25See Hong and Stein (2007) for a discussion of models of disagreement in a finance context.
26See Campbell (2003) and Cochrane (2007) for surveys of the rational asset pricing literature.
27The current model differs in five ways. We now assume CARA preferences instead of limiting risk neutral prefer-

ences (in the quadratic utility class). We now assume a consumption habit. We now assume a general ARIMA(p,1,0)
process for the dividend tree instead of an AR(2). We also allow our natural expectations agents to have general
ARIMA(p′,1,0) beliefs, instead of ARIMA(1,1,0) beliefs. Finally, we introduce a zero measure of agents with rational
expectations.

28In a closed version of our economy, the risk-free rate would also be nearly constant, since, in our preferred calibra-
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since we do not want a mechanistic linkage between production and consumption. The second

asset is a Lucas-style domestic equity tree, which generates a dividend, dt, that is stationary in first

differences. In other words, ∆dt follows an AR(n) process,

∆dt = ρ1∆dt−1 + ... + ρn∆dt−n + σεt

where εt is an iid Gaussian shock with unit variance.29 We assume that the equity tree must be held

by domestic agents.30 We will distinguish between the “true” data-generating process for divi-

dends, and the perceived data-generating process for dividends. When the true data-generating

process matches the perceived data-generating process, agents hold rational expectations. Our

focus, however, is on cases in which the perceived data-generating process has fewer lags than the

true data-generating processes. As discussed in Section 2, this can occur for various reasons, and

we will refer to this as “natural expectations.”

Our timing conventions and wealth definitions follow. Period t is divided into the following

sequential subperiods. We describe the model using a “quarterly” frequency, since this is the

calibration that we will use, but the model can be calibrated for any period of observation.

1. On the first day of the quarter – “January 1” – households start with debt, bt, and θt−1 units

of claims to the risky asset.

2. Time passes and production occurs from January 1 to March 31. Households make no addi-

tional choices until the end of the quarter: March 31.

3. At the end of the quarter – March 31 – the dividend of the equity tree is realized and paid to

households: dt per unit of claim. So each household receives θt−1dt units of output.

4. The tree is priced (ex-dividend): pt per unit of claim (where output units are the numeraire).

So households can sell the tree for θt−1pt units of output.

tions, agents (mistakenly) perceive the endowment to be approximately a random walk with drift.
29Without loss of generality, we assume that the process has no deterministic drift. Adding deterministic drift would

not change any of our results on comovement.
30If the equity tree were held by foreign investors, this would drastically dilute the associated risk. Domestic owner-

ship can be motivated by home bias.
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5. Wealth, wt, is measured at the end of the quarter,

wt = −Rbt + θt−1dt + θt−1pt.

Wealth is measured after production has occurred in the period but before consumption is

chosen.

6. Consumption is chosen: ct.

7. Asset allocation takes place: agent buys θt units of equity at price pt.

8. End-of-quarter debt, after these transactions, is

bt+1 = ct + θt pt − wt.

9. Households start the next quarter (beginning on April 1, which is period t + 1), with this

level of debt.

Period t + 1 continues and the cycle of subperiods restarts.

3.1 Preferences and the Bellman Equation

We have two desiderata for preferences. We want preferences that generate a closed form solu-

tion. We also want preferences—or technology—that will generate slow aggregate adjustment in

consumption without assuming procyclical risk tolerance. For evidence on the slow adjustment of

consumption when responding to wealth shocks, see Dynan and Maki (2001), Gabaix and Laibson

(2002), Parker (2001), and Carroll, Sommer, and Slacalek (2011).

Motivated by these goals, we use exponential preferences (e.g., Caballero, 1990) with habits,

as introduced by Alessie and Lusardi (1997):

u(ct, ct−1) = −
1

α
exp (−α [ct − γct−1])

The parameter γ ∈ [0, 1] reflects the strength of the habit. As we show below, in this formulation

habits only serve to slow down consumption adjustments. If we did not include habits, our model
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would imply counterfactually rapid adjustment in consumption. Our habits are not operating as

in Campbell and Cochrane (1999), where the habit is constructed in a way that generates counter-

cyclical relative risk aversion.

Utility flows are weighted with discount factor δ, so that lifetime utility is given by:

∞

∑
s=0

δsu(ct+s, ct+s−1).

Lifetime utility is maximized with respect to the dynamic budgets constraints summarized above.

Here is the decentralized Bellman Equation, which includes the state variables that we have al-

ready introduced as well as the vector of historical dividends, ~dt:

V
(

ct−1, wt, pt, ~dt

)
= sup

θt,ct

u(ct, ct−1) + Et

[
δV
(

ct, (wt − ct − θt pt) R +

+ θt (dt+1 + pt+1) , pt+1, ~dt+1

)]
,

since

wt+1 = (wt − ct − θt pt) R + θt (dt+1 + pt+1) .

For now, we will not pin down the conditional expectation operator, Et. It depends only on the per-

ceived data-generating process for dividends. We will study the predictions of the model under

rational expectations and a large set of specifications for natural expectations.

The social planner’s Bellman Equation (which eliminates the asset allocation issue and elimi-

nates price-based wealth measurement) is the following:

V
(

ct−1, bt, ~dt

)
= sup

ct

u(ct, ct−1) + Et

[
δV
(

ct, (ct + Rbt − dt) , ~dt+1

) ]
,

since

bt+1 = ct + Rbt − dt.

3.2 Value Functions, Policy Functions, and Asset Pricing

We first study the representative household’s problem, since we here assume that the economy

is populated by homogeneous households. In Section 5, we introduce a zero measure of rational
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expectations agents and study their policy functions.

For the representative agent’s problem, we can ignore the asset allocation decision as well as

asset pricing. Appendix A shows that:

ct =
γ

R
ct−1 +

(
1 −

γ

R

)
xt − ψ, (1)

where

xt =
R − 1

R

[
−Rbt +

∞

∑
s=0

Etdt+s

Rs

]

ψ =
1

R − 1

[
1

α
ln(Rδ) +

α

2
Vart(∆ct+1)

]
.

This implies that consumption is a weighted average of lagged consumption and the (risk-neutral)

annuity value of perceived future dividends, xt, down-shifted by an additive constant ψ (a pre-

cautionary savings effect).

For the planner, the value function takes a simple form:

V
(

ct−1, bt, ~dt

)
= −

R

α(R − 1)
exp (−α [ct − γct−1])

where ct is given by equation (1).

To calculate the equilibrium price of the Lucas tree, we consider the asset-allocation problem

(as opposed to the planner’s problem). We then solve for the asset price that leads the represen-

tative agent to hold one unit of the equity tree. These calculations are provided in Appendix B,

where we show that the equilibrium price of the Lucas tree is given by:

pt =
∞

∑
s=1

Etdt+s

Rs
−

Rα × Vart(∆ct+1)(
1 − γ

R

)
(R − 1)2

.

Appendix B also provides a closed form expression as a function of the dividend history. Note that

this is not bounded below, since earnings are not bounded below in this arithmetic (exponential

utility) model.

Using the asset pricing relationship it is possible to re-express the consumption function in

terms of total wealth, wt = −Rbt + dt + pt. Here we are studying a representative agent economy
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so that θt = 1 for all t.

ct =
γ

R
ct−1 +

(
1 −

γ

R

)
xt − ψ

=
γ

R
ct−1 +

(
1 −

γ

R

)(R − 1

R

[

−Rbt + dt + pt +
Rα × Vart(∆ct+1)(

1 − γ
R

)
(R − 1)2

])

− ψ

=
γ

R
ct−1 +

(
1 −

γ

R

)(R − 1

R

)
wt + Λ

where

Λ =
α

2

Vart(∆ct+1)

R − 1
−

1

R − 1

1

α
ln(Rδ).

We can rewrite the value function in the following simplified form (redefining the earlier value

function notation):

V (ct−1, wt) = −
R

α(R − 1)
exp (−α [ct − γct−1])

Relative risk aversion is given by:

CRRA = −
w Vww

Vw

= w α
∂ct

∂wt

= wα
(

1 −
γ

R

)(R − 1

R

)

≃ cα
(

1 −
γ

R

)
.

3.3 Calibration

To match historical data, we assume that the quarterly risk free (world) interest rate is R = 1.0025,

implying that the annualized (net) rate is 0.01. We set the product of the discount factor and the

gross interest rate to unity: δR = 1. The (quarterly) habit parameter is set to γ = 0.9, implying a

half-life of adjustment of about 6 quarters. Finally, we set the curvature of the utility function so
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that relative risk aversion (at initialization) is approximately four:31

α =
4

d0

(
1 − γ

R

) .

The curvature of the utility function only affects three of the moments that we study: the equity

premium, the standard deviation of equity returns, and the standard deviation of consumption

growth. Hence, this parameter is not important for most of what follows.

The stochastic driving process is exogenous capital income, which is calibrated using real cap-

ital income from the NIPA accounts.32 We use capital income from the NIPA accounts because it

is seasonally adjusted (unlike corporate earnings) and is not artificially smoothed (like corporate

dividends33). Figure 1 plots the natural log of real capital income at a quarterly frequency from

1947:1 to 2010:3.

Using this data, Figure 2 plots the impulse response functions resulting from estimating a

range of ARIMA(p,1,0) models, with p = 1, 10, 20, 30, 40. We will henceforth refer to these as

AR(p) models, omitting the full notation ARIMA(p,1,0). Figure 2 reveals that the order of the

model is critical in determining inferences about persistence. Low-order models (p = 1 and 10)

generate persistence estimates that are greater than or equal to 1. As the order of the model in-

creases, estimated persistence falls dramatically. For an AR(40) model, estimated persistence after

40 quarters is about 1/3.

For AR(p) models with p ≤ 20, there is a substantial gap between the persistence implied by

the estimated model and the persistence implied by what we are assuming to be the true model,

the AR(40). Hence, parsimonious AR(p) models yield a form of extrapolation bias in levels (not

growth rates). In other words, “low-order” AR(p) models imply that shocks are far more persistent

than they are actually likely to be; low-order models imply excess optimism in good times and

excess pessimism in bad times.

31At initialization, with b0 = 0, relative risk aversion in our CARA economy is

(
R − 1

R

)
wα
(

1 −
γ

R

)
≃ c0α

(
1 −

γ

R

)
≃ d0α

(
1 −

γ

R

)
.

32Specifically, we study the natural log of real net operating surplus of private enterprises as reported in the U.S.
National Income and Product Accounts (Bureau of Economic Analysis, 1947:1 to 2010:3). The net operating surplus of
private enterprises is reported in NIPA Table 1.10, line 12. This definition is net of capital depreciation. To adjust for
inflation, we use the GDP deflator.

33Dividends also have the problem that they miss cash flow that is returned to shareholders through buy-backs.
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The associated coefficient estimates from the five AR(p) models in Figure 2 are reported in

Table 1. There are few significant coefficients after the 10th lag.34

In what follows, we will always assume that the true data-generating process is the AR(40) es-

timated in the final column of Table 1 and plotted as an impulse response function in Figure 2.

We are not loyal to this particular specification. It is merely a convenient way of capturing hump-

shaped dynamics: short-run momentum and long-run partial mean reversion. We will assume

that this is the true data-generating process because this case is interesting, and not because we

believe that there is strong evidence for this specification. We only wish to argue that this hump-

shaped process—the point estimate from the AR(40) case—is plausible.

The only remaining task is to specify is the beliefs of the agents in the economy. We don’t

have strong views about this either. We will therefore study the beliefs generated by every AR(p)

model with p = 1, 2, ..., 40. In other words, we will assume that the true model is the AR(40)

estimate in the last column of Table 1, but that agents believe some AR(p) model which may not

be the AR(40) model. We will study the properties of all of these belief assumptions: p = 1, ..., 40.

When we assume p = 40, we are implicitly assuming that the agents know the true model; p = 40

is the rational expectations benchmark. When p < 40, we are assuming that agents use a simpler

model than the true model.

The agents in our model act as if the model on which their beliefs are based is the true model,

even though it is actually misspecified. This dogmatic belief in the wrong model is a limiting case

of overconfidence (e.g. Lichtenstein et al., 1982). An alternative approach, which would be more

realistic and less tractable, would be to assume that agents take the possibility of misspecification

into account when making decisions (for such an approach, see the literature on robustness; e.g.,

Hansen, 2007; Hansen and Sargent, 2007, 2010).

4 Simulation and Empirical Evaluation

To characterize the qualitative predictions of our model, we begin by reporting two impulse re-

sponse functions—one for asset returns and one for consumption—that summarize the key mech-

34It is well-known that estimating AR coefficients in small samples yields biased coefficients (e.g., Shaman and Stine,
1988). Monte Carlo simulations indicate that with our sample size, this does not significantly affect estimated persis-
tence.
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anisms in the model. We then describe eight empirical moments that enable us to quantitatively

evaluate the model’s predictions. These empirical moments characterize the joint evolution of

asset prices and consumption. The moments are chosen to test the anomalous predictions that

the model makes—e.g., cyclical fluctuations in asset returns and consumption growth. We find

that these anomalous predictions match the empirical evidence well. Specifically, when agents

hold beliefs generated by an AR(p) process with p ≤ 20, and unlike in the rational expectations

benchmark, the model provides a good quantitative fit to the empirical moments.

4.1 Impulse Response Functions

We begin by reporting the impulse response function for cumulative excess returns. In our econ-

omy with exponential (CARA) utility, the excess return is more naturally expressed as an “excess

gain,” gt, which is defined as:

gt = pt + dt − Rpt−1. (2)

Note that:

gt

pt−1
=

pt + dt − Rpt−1

pt−1

=
pt + dt

pt−1
− R, (3)

which is the standard definition of excess return, since R is the gross risk-free rate. We study

gt, without dividing through by scaling factor pt−1 since prices can fall below zero in our CARA

economy (assuming no free disposal of negative earnings), so the usual definition of excess return

(3) is not appropriate. Henceforth, we will refer to excess gains—equation (2)—when studying

asset returns in our model, but the reader should intuitively think of excess gains as excess returns,

since excess gains are an appropriately rescaled version of excess returns.

Figure 3 reports the impulse response function for the ‘cumulative excess gain’ following a

positive (one-unit) shock to the earnings process at date zero. The cumulative excess gain is de-

fined as:

cumulative excess gain t periods after the shock =
t

∑
s=0

gs.

The cumulative excess gain is the CARA analog of the cumulative excess return from date 0 to
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date t.

In Figure 3, the impulse response function is reported for five simulated economies. In every

case, the true process for earnings growth is the same—the AR(40) model described in section 3.3.

The economies differ only with respect to the beliefs that agents hold. Figure 3 analyzes economies

in which agents generate forecasts using the following AR(p) models for earnings growth: p =

1, 10, 20, 30, 40.

Since the true data-generating process is an AR(40), let’s start with the rational expectations

case in which agents use the same model, an AR(40), to form beliefs. The impulse response func-

tion in this economy is the flat line in Figure 3; i.e., the cumulative excess gain jumps up at date

zero and immediately plateaus. In the rational expectations case, an impulse at date zero does not

forecast additional excess returns in periods after date zero.

When agents generate beliefs from an AR(p) model with p < 40, the natural expectations

case, excess gains become more volatile and predictable. For example, when agents use an AR(1)

model, they mistakenly infer that earnings impulses are highly persistent (cf. Figure 2). This belief

in persistence causes the asset price to jump up more than it should at date zero. Thereafter, the

asset price tends to decline, and this decline is not foreseen by the agents. This decline is easy to

see on the impulse response function, since there is only one impulse at date 0 and no impulse at

any other point in time. In a full-blown simulation of the economy, the stream of negative excess

gains would be largely masked by subsequent shocks in the economy. Hence, the predictable

negative excess gains would be hard to infer.

As the order of the estimated AR(p) model rises from p = 1 to p = 40, the impulse response

functions look more and more like the rational expectations impulse response function. As p rises,

the initial jump in the asset price becomes smaller, since agents with high-order models correctly

anticipate more mean reversion in the true data-generating process. As p rises, the magnitude of

the negative excess returns gets smaller.

Hence, models with low levels of p are characterized by a high degree of overreaction in asset

prices. Models with p equal to or near 40 are characterized by little or no overreaction and little or

no predictability of excess gains.

Figure 4 reports the impulse response function for consumption following a positive (one-

unit) shock to the earnings process at date zero, and mimics the reporting conventions of Figure 3.

22



Specifically, the impulse response function is reported for five simulated economies. In every case,

the true process for earnings growth is the AR(40) model described in section 3.3, while agents

generate forecasts using an AR(p) model. We again plot the cases p = 1, 10, 20, 30, 40.

Let’s again start with the case in which agents have AR(40) beliefs, which is the rational expec-

tations case. In this world, a shock at date 0 would forecast a slow rise in consumption because the

agents in our setting have a preference for slow adjustment, due to the habit term in their utility

function. On the other hand, if the habit parameter, γ, were zero, the consumption series would

jump up at date zero and immediately plateau.

When agents have natural expectations (i.e. they hold beliefs generated from an AR(p) model

with p < 40), the impulse response function for consumption tends to become hump-shaped. For

example, when agents use an AR(1) model, they mistakenly infer that the earnings impulse is

highly persistent, leading them to overreact to the earnings impulse (despite their preference for

slow adjustment). About ten quarters after the initial impulse, they realize that they have gone too

far and begin to reduce consumption. Over the long run, consumption falls from its peak level as

households realize that their wealth is not as great as they initially thought (mirroring the negative

excess gains in Figure 3). Since the NPV of these consumption responses must be the same across

the p values— a consequence of the budget constraint—the long-run consumption asymptotes are

different, reflecting pay-back for the short-run over-consumption.

As the estimated AR(p) model rises from p = 1 to p = 40 in Figure 4, the impulse response

functions again move towards the rational expectations benchmark. The initial growth in con-

sumption becomes smaller, since agents that use high-p models believe in more mean reversion in

the earnings process and therefore don’t believe that the impulse to earnings has made them much

more wealthy. Therefore, as p increases, the magnitude of the predictable fall in consumption also

gets smaller.

In summary, models with low levels of p generate overreaction of consumption. Models with

p equal to or near 40 are characterized by little or no overreaction and little or no eventual declines

in consumption.
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4.2 Empirical Moments for Model Evaluation

We use the following eight moments to evaluate the empirical performance of our model under

different assumptions. All data is annual, and goes from 1929 to 2010 (we use annual data so we

can go further back in time, as the quarterly series in NIPA only start in 1947). To distinguish this

annual data from the quarterly observation frequency of the model/calibration, we use the new

time subscript τ.

The moments reveal evidence for reversals that start around two years after an initial impulse.

Our model predicts that these reversals will be delayed for two reasons. First, equity prices won’t

mean revert until agents start to notice a break between their forecasts and the realizations of

earnings (see Figure 2). For the simple models that we estimate, this divergence tends to occur

about two years after an initial impulse. Second, consumption growth in the short-run is positively

auto-correlated because of habits (see Figure 4). The presence of habits delays the onset of mean

reversion in consumption and slows down the process of mean reversion. Because it takes longer

for the consumption dynamics to play out, we always extend the consumption analysis an extra

year beyond the window of the asset price analysis. After an initial impulse at date τ, the asset

price dynamics are measured from τ + 2 to τ + 5. The consumption dynamics are measured from

τ + 2 to τ + 6. The key empirical moments we study are:

1. The correlation between excess returns of equity over the risk-free rate in year τ and cumu-

lative excess returns from year τ + 2 to year τ + 5. This equals −0.22.35

2. The correlation between the ratio of S&P price at the end of year τ and average earnings

over years τ − 9 to τ (the P/E10 ratio) and excess returns from year τ + 2 to year τ + 5. This

equals −0.38.36

3. The correlation between the one-year change in log consumption (i.e., ln(cτ)− ln(cτ−1)) and

35Excess returns are defined as “the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from CRSP)
minus the one-month Treasury bill rate (from Ibbotson Associates).” (source: Ken French’s online data library). Early
evidence on long-term mean reversion in stock prices was presented in Fama and French (1988a) and Poterba and Sum-
mers (1988). The significance of this evidence was subsequently challenged on statistical grounds, e.g. by Richardson
(1993). Cutler, Poterba, and Summers (1991) look at a variety of stocks, bonds and foreign exchange markets and find
a relatively slight negative autocorrelation in returns in many markets over a horizons of 3 to 5 years. Balvers, Wu,
and Gilliland (2000) consider a panel of 18 countries and document strong mean reversion in national equity indexes
relative to the world index.

36Data on stock prices and earnings come from Robert Shiller’s website. Earnings and dividend yields as predictors
of future returns are studied by e.g. Campbell and Shiller (1988a,b, 2005) and Fama and French (1988b).
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cumulative excess returns from year τ + 2 to year τ + 5. This equals −0.30.37

4. The correlation between the P/E10 ratio and the change in log consumption from year τ + 2

to year τ + 6 (i.e., ln(cτ+6)− ln(cτ+2)). This equals −0.17.

5. The correlation between ln(cτ)− ln(cτ−1) and ln(cτ+6) − ln(cτ+2). This equals −0.25.

6. The mean annual excess return of equity over the risk-free rate (the “equity premium”). This

equals 7.44%.

7. The standard deviation of annual excess return of equity over the risk-free rate. This equals

20.83%.

8. The standard deviation of ln(cτ) − ln(cτ−1). This equals 0.022.

While the directions and magnitudes of the correlations reported under 1) to 5) are suggestive,

one has to be careful with the interpretation: as investigated in the finance literature by Stambaugh

(1999), Valkanov (2003) and others, predictive regressions in short samples and with overlapping

data can yield biased coefficients, and standard statistical inference may not be valid.38

To get an idea of the statistical significance of our results as well as the magnitude of a potential

bias, we conduct a series of bootstrap exercises (similar to e.g. Nelson and Kim, 1993). For mo-

ment 1), we draw repeatedly (with replacement) from the observed realization of excess returns

under the assumption that excess returns are not serially correlated, and construct the measure

of subsequent cumulative excess returns that we use in the empirical data. We then calculate the

correlation between the two series and repeat this 10,000 times for samples of length 75 (corre-

sponding to our empirical sample size), so we can construct a confidence interval under the null

of independent returns. For moment 5), we instead assume one-period log consumption growth

follows an AR(1) process.39 We estimate this process and then simulate time series of consump-

tion (of length equal to our empirical sample) by repeatedly drawing from the residuals. From this

37For our consumption measure, we use real per capita expenditures on non-durable consumption and services, from
NIPA. The nominal data on expenditures are in NIPA table 2.3.5, while price indices are in table 2.3.4. The population
data come from table 2.1. Consumption growth is a relatively little studied predictor for excess returns. However, in
recent work, Moller (2008) and Moller and Rangvid (2011) show that high consumption growth between quarters 3 and
4 significantly predicts low excess returns over the following year.

38See Lettau and Ludvigson (2010) for an overview of the issues as well as potential remedies.
39This is the approximate process that consumption growth should follow when a consumer has habit preferences;

see e.g. Dynan (2000).
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series, we construct the change in log consumption between years τ + 2 and τ + 6, and correlate

it with the one-period change in log consumption. Again, this is repeated 10,000 times, and we

construct confidence intervals based on the obtained correlations.

For moments 2) to 4), we proceed in a similar manner: e.g. for 2), i) we assume and estimate an

AR(1) process for P/E10 (accounting for the small-sample bias in the autoregression coefficient);

ii) we assume that excess returns are independently distributed (the null); and iii) draw residual

pairs under the null (with replacement), construct the predicted variable we use in the data (for

a sample of equal length to our data), and estimate the correlation between the two series. We

again repeat this 10,000 times and construct 90% and 95% confidence intervals for the correlation

coefficient.

The results in Table 2 show that the correlations 3) and 5) are outside of the 90% confidence

interval constructed under the null, but not outside the 95% interval. The “long-horizon autocor-

relation” of excess returns (1) as well as the correlation of P/E10 with subsequent excess returns (2)

are not quite significant at 10%, while the correlation between P/E and subsequent consumption

growth (4) is far from significant.40

These relatively “weak” results do not come as a surprise, as a large literature in finance has

established that predictability patterns that had appeared highly statistically significant in the

early (1980s) literature are much less significant once statistical complications are accounted for.

That said, our use of annual rather than quarterly data (as is more common in the literature)

presumably weakens our statistical power. Furthermore, there exist more sophisticated ways of

testing for predictability, and overall the finance literature seems to have concluded that “despite

complexities with statistical inference in return predictability regressions, it is difficult to reconcile

the historical behavior of the U.S. stock market without admitting some degree of predictability

in excess returns” (Lettau and Ludvigson, 2010, p. 620). Finally, even where we cannot reject

the null hypothesis of no predictability, we certainly also cannot reject an alternative null with

economically high predictability—the currently available data just do not allow us to know.

40The wide confidence intervals for 2) and 4) may seem surprising; they are due to the high persistence of the
P/E10 and the use of overlapping data for consumption growth and excess returns (see Boudoukh, Richardson, and
Whiltelaw, 2008).
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4.3 Asset Return Predictability

For the next eight exhibits, we will illustrate the implications of the model for the full range of

natural expectations cases. Specifically, beliefs about earnings are generated for all AR(p) mod-

els, for p = 1, ..., 40. As usual, we always assume that the true model generating earnings is

an AR(40). The rational expectations case therefore coincides with the case p = 40; natural ex-

pectations correspond to the cases 1 ≤ p < 40. It turns out that when p is between 10 and 20 the

natural expectations model does a good job of matching the point estimates for the eight empirical

moments.

In the exhibits that follow, we always study simulations with 328 periods of quarterly data,

matching the duration of our available empirical data (annual U.S. data since 1929). We then cal-

culate the eight moments on these 328 simulated periods. We repeat this exercise 200 times and

average the eight moments over these 200 (independent) simulations. We match the sample du-

ration of our empirical data and the sample duration of our simulated data to make finite sample

biases comparable across the empirical and simulated moments.

Figure 5 studies the correlation between excess returns in year τ and cumulative excess returns

from year τ + 2 to τ + 5. The empirical correlation is −0.22. For low values of p, the simulated

moment is about −0.3, rising to about −0.15 as p rises to 20. For the rational expectations case,

p = 40, the correlation is approximately41 zero.

Similarly, Figure 6 studies the correlation between the P/E10 ratio at year-end τ and cumulative

excess returns from year τ + 2 to τ + 5. The empirical correlation is −0.38. For low values of

p, the simulated moment is about −0.5, rising to about −0.35 as p rises to 20. For the rational

expectations case, p = 40, the correlation is again approximately zero.

The natural expectations model matches these moments, because good earnings news at date

zero generates overreaction in asset prices (and increase the P/E10 ratio, since the denominator is

relatively unresponsive given that it is averaged over 40 quarters). Over the next five years, some

of that initial return will be reversed as agents discover that the good earnings news was not as

persistent as they had anticipated.

In our model, Lettau and Ludvigson’s (2001) cay variable is positively correlated with ex-

41The rational expectations benchmark is slightly below zero due to a variant of Hurwicz bias.
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cess returns (for the same reason that P/E predicts future excess returns). The cay variable is

constructed by identifying the co-integration residual between consumption and wealth: cayt =

ct − Ψwt. In our model, a positive earnings shock raises asset values but does relatively little to

consumption in the short run (due to slow adjustment). Thus a positive earnings shock causes cay

to fall. Over the next five years, asset returns will tend to be low, due to unanticipated mean rever-

sion in earnings. Hence, our model provides an alternative explanation for the observed positive

correlation between cay and future excess returns.42

Figure 7 studies the correlation between consumption growth at year τ and equity returns

from year τ + 2 to τ + 5. The empirical correlation is −0.30. For low values of p, the simulated

moment is about −0.5, rising to about −0.35 as p rises to 20. For the rational expectations case,

p = 40, the correlation is approximately zero.43 A high level of lagged consumption growth is a

proxy for a positive earnings shock (at that date or some preceding date). Natural expectations

agents subsequently discover that the earnings news was not as persistent as they had anticipated,

leading to below average excess gains/returns.

4.4 Consumption Growth Predictability

Figure 8 studies the correlation between the P/E10 ratio at year-end τ and consumption growth

from year τ + 2 to τ + 6. The empirical correlation is −0.17. For low values of p, the simulated

moment is about −0.35, rising to about −0.15 as p rises to 20. For the rational expectations case,

p = 40, the simulated correlation is approximately +0.25; this large positive value in the rational

expectations case is due to habit formation and slow adjustment in consumption. For the natural

expectations agents, p < 40, the negative correlations arise because unanticipated mean rever-

sion in earnings swamps the effects of habit formation. Good earnings news increases the P/E

ratio, since the denominator is relatively unresponsive given that it is averaged over 40 quarters.

Over the next five years, some of that initial return will be reversed as natural expectations agents

discover that the earnings news was not as persistent as they had anticipated. This causes con-

sumption to decline from year τ + 2 to τ + 6 for the natural expectations agents. This decline is

42The classical explanation, derived from the intertemporal budget constraint, is that rational, forward-looking con-
sumers will consume little today relative to their wealth if they expect future returns to be low. In our model, cay
correlates with future excess returns only because expectations overreact to shocks; the future returns expected by our
agents are always constant.

43Once again, Hurwicz bias lowers the rational expectations correlation below zero.
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strong enough to overcome the positive correlation that would otherwise arise because of habit

formation. The consumption impulse response function—Figure 4—illustrates the effects of the

countervailing forces of unanticipated mean reversion and habit formation. For the natural expec-

tations agents, unanticipated mean reversion offsets the pure effects of habit formation.

Figure 9 studies the correlation between consumption growth at year τ and consumption

growth from year τ + 2 to τ + 6. The empirical correlation is −0.25. For low values of p, the sim-

ulated moment is about −0.3, rising to about −0.2 as p rises to 20. For the rational expectations

case, p = 40, the simulated correlation is approximately +0.15; once again, the positive correlation

in the rational expectations case is due to habit formation. The consumption of natural expecta-

tions agents (p < 40) initially overreacts to a positive earnings shock. Subsequently, they realize

that the initial positive earnings shock was not as persistent as they had anticipated, which in turn

causes consumption to decline from year τ + 2 to τ + 6. This decline is strong enough to overcome

the positive correlation that would otherwise arise because of slow habit-based adjustment.

The fact that consumption growth is only relatively weakly predicted by lagged equity prices

is a strength of our model.44 Beeler and Campbell (2009) point out that Bansal and Yaron’s (2004)

long-run risks model is problematic because it implies much more predictability of consumption

growth from lagged price/dividend ratios than is present in the data, while at the same time

generating too little excess return predictability.45 Beeler and Campbell also note the empirical

evidence for medium-run mean reversion in the level of consumption, while the long-run risks

model implies that all autocorrelations of consumption growth should be positive.

4.5 The Equity Premium and Standard Deviations

In the natural expectations economy, agents perceive that equities are much riskier than they ac-

tually are. Specifically, agents with natural expectations believe in asset-price dynamics that imply

that long-run risk in equity markets, cov(∆hct+h, R̃t,t+h)/h, is an order of magnitude larger than it

actually is (for large h).46 In our calibrated simulations this normalized covariance (cov(∆hct+h, R̃t,t+h)/h)

44On the other hand, as there is only one source of shocks in our model, equity returns and consumption growth, as
well as the P/E ratio and consumption growth, display a higher contemporaneous correlation than in the data. A more
realistic model would incorporate other aggregate shocks (e.g., labor income) which would reduce these correlations
without qualitatively changing the economy’s other properties.

45For an alternative view, see Bansal, Kiku, and Yaron (2009), who argue that consumption growth becomes much
more predictable once additional predictor variables are considered.

46In this expression, ∆hct+h is the h-year growth rate in consumption and R̃t,t+h is the h-year excess return.
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rises steeply for h ≤ 4, and then falls as h rises beyond this horizon, generating a strong hump-

shaped pattern. The normalized covariance falls at long horizons, because earnings mean revert

more than anticipated by the agents in the economy. Mean reverting asset prices and mean re-

verting consumption jointly pull down the long-horizon (large h) normalized covariance. Actual

U.S. data also displays a hump-shaped pattern for the normalized covariance.47 In contrast, in the

rational expectations version of our economy (with or without habits), the normalized covariance

rises monotonically with h, which is empirically counterfactual.

As explained above, agents believe that earnings innovations are highly persistent, equity re-

turns are highly volatile, and consumption growth will therefore covary strongly with equity re-

turns in the long run. This leads agents with low values of p to require a high premium to hold

equities. By contrast, when p = 40 – the rational expectations case – the equity premium is only

1/10 of 1%. Figure 10 plots the (annual) equity premium for different values of p as well as the

historical premium of 7.4%.48

Finally, we are able to roughly match the equity premium without generating counterfactually

high levels of asset return volatility – see Figure 11 – or consumption volatility – see Figure 12. No

matter what the order of the forecasting model, the standard deviation of consumption volatility

is less than the historical standard deviation of consumption volatility. We don’t see this as a

substantial problem for two reasons. First, we can raise the standard deviation of consumption

changes by lowering the (high) level of the habit: e.g., set γ = 0.75 rather than the calibrated value

of 0.9. Second, the post-War variation in consumption is substantially lower than the full-sample

variation, which is used to generate the empirical line in the figure.

5 Agents with Rational Expectations

Starting with the natural expectations economy described above (with p < 40), we now add a

vanishingly small measure of agents with rational expectations. These ‘RE agents’ know all of

the coefficients in the true data-generating process for dividends—the AR(40) model. This perfect

47In the annual U.S. data we use throughout, the normalized covariance takes on the following values for h =
1, 2, ..., 10 years: 0.0006, 0.0015, 0.0019, 0.0013, 0.0007, 0.0002, −0.0004, −0.0006, −0.0006, −0.0006. See related analyses in
Parker (2001), and Gabaix and Laibson (2002).

48See Appendix B for the formulae that we use to calculate the equity premium. The X marks on the upper edge of
Figure 10 represent equity premia that exceed the vertical scale of the figure.
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knowledge is meant to proxy for the more plausible assumption that these new agents have a high

degree of sophistication relative to the agents with natural expectations.

We solve for the behavior of the RE agents assuming that they have no effect on equilibrium

prices. This small mass assumption is made for tractability. Future work should consider equilibria

in which the rational agents are wealthy enough to influence equilibrium prices. The current

analysis is a limit case of the results that will apply in that more realistic case.

Appendix C derives the optimal asset allocation and consumption policy functions of the RE

agents. Later in this section, we present the optimal policy rules for the RE agent. Those policy

rules take a large set of other objects as inputs. We now discuss and define those inputs before

turning to the key result of this section.

Let Φ be the vector of true autoregressive coefficients in the earnings process, which as always

is an AR(40) process. Let Φ̂ be the vector of autoregressive coefficients in the earnings process

as perceived by the NE agents. Let σε be the true standard deviation of shocks to the dividend

process. Let σ̂2
c be the conditional variance of consumption changes as perceived by the NE agents.

Let e1,p = [1 0 0 ... 0]′ be a standard basis vector of length p. We define the following variables,

which will appear in the policy functions:

σg =
R

R − 1
σεe

′
1,p

(
I −

1

R
Φ̂

)−1

e1,p.

µ =
Rα

(1 − γ
R )(R − 1)

σ̂2
c .

M =
R

R − 1
e′1,p

[

Φ − Φ̂

(
I −

1

R
Φ̂

)−1(
I −

1

R
Φ

)]

.
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1

2R
(
1 − γ

R

)
ασ2

g

∞

∑
k=0

R−kΦ̂′k M′MΦ̂k.

A′ =
2µ

Rσg

(
1

2(1 − γ
R )ασg

M + σεe
′
1,pBΦ̂

)(
I −

1

R
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)−1

.
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R
)σ2

ε e′1,pBe1,p
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1 + 2αλ

2(R − 1)
(
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)
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σg(R − 1)
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1
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R )

ln (1 + 2αλ).
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We can now describe the policy function of RE agents. We introduce a new variable, θt, which

is the quantity of units of the Lucas tree held by an RE agent. By comparison, the quantity of units

of the Lucas tree held by an NE agent is normalized to one. Hence, when θt > 1, each RE agent

holds more equities than each NE agent.

Theorem 1 For an agent with rational expectations, the optimal asset allocation, θt, is given by

θt =
R

R − 1

1

σg

(
µ + M∆~dt(
1 − γ

R

)
ασg

+
2µσ2

ε

σg
e′1,pBe1,p − σε A′e1,p − 2σεe

′
1,pBΦ̂∆~dt

)
,

and the optimal consumption rule is given by:

ct =
(

1 −
γ

R

)(R − 1

R
wt + A′∆~dt + ∆~d′t B∆~dt + q

)
+

γ

R
ct−1.

The proof is provided in Appendix C. The consumption policy rule implies that consumption

is still a weighted average of the annuity value of wealth and lagged consumption, with weights
(
1 − γ

R

)
and γ

R . There are two additional terms in the consumption policy, reflecting the impact

of dividend shocks beyond their direct effect on prices and hence wealth. These two additional

terms represent the ability of the fully informed investor to predict future “returns” (gains), and

adjust consumption accordingly. In our setting, the rational agent knows about mean reversion

that is not “priced in” to asset prices. In our calibration, the first order effect (A′∆~dt) tends to

partially offset the effect of wealth shocks: a rational agent changes her consumption less than a

wealth shock would imply since the agent recognizes that mean reversion will reverse part of the

original wealth shock. The second order effect (∆~d′tB∆~dt) is strictly positive and increasing in the

scale of ∆~dt, because the benefit of being able to predict returns is greater when large shocks have

occurred in the past.

The asset allocation result is harder to interpret than the consumption rule, though it is also

a linear function of the dividend history. However, we can derive a simple lower bound on the

average equity holding:

Corollary 2 On average, rational agents will hold a quantity of equities greater than

θmin =
σ̂2

ε

σ2
ε

.
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Note that σ̂2
ε

σ2
ε

is the ratio of variances of impulses to earnings. The numerator, σ̂2
ε , is the variance

perceived by the NE agents. The denominator, σ2
ε , is the variance perceived by the RE agents. Since

the NE agents estimate a simpler model than the (true) model used by the RE agents, it follows

that σ̂2
ε > σ2

ε .

The average value of θt (given in Appendix C) includes two terms related to the consumption

policy matrices A and B. These terms reflect the contrarian nature of the consumption policy:

because dividend shocks have a muted effect on consumption via A, and because shocks of any

sort increase consumption via B, the Lucas tree is less risky for the rational investors than would

otherwise be the case, and the equilibrium outcome is for them to hold even more equities than

the natural expectations agents. Because both of these terms have a positive impact on average

equity holdings, discarding them generates the lower bound described above.

The lower bound can also be interpreted as the policy of an agent who knows there is an equity

premium, but is not able to time returns. In our framework, this would occur if σ̂ε > σε but M = 0.

In Figure 13, we report the average asset allocation, and this lower bound, over different model

orders chosen by the NE agents. The extent to which NE agents choose low-order models de-

termines both the excessive variance they perceive, and the ability of rational agents to predict

returns, and it is therefore unsurprising that the equity holdings for rational agents is generally

decreasing in the order of model chosen by the NE agents.

Finally, RE agents will make counter-cyclical equity investments. Because of overreaction

among the NE agents, the (rational) expected return on equities falls after positive shocks, lead-

ing the RE agents to lower their equity exposure during good times. Conversely the RE agents

increase their equity exposure during bad times.

6 Conclusion

This paper examines an open endowment economy in which (1) fundamentals have hump-shaped

dynamics (momentum in the short run and partial mean reversion in the long run), and (2) agents

don’t know these dynamics and generate beliefs by fitting parsimonious models. We show that

these two assumptions have a large set of empirically valid implications: endogenous extrapola-

tion bias; pro-cyclical excess optimism; overreaction in asset pricing; mean reversion in returns;
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amplified dynamics in consumption; cyclical dynamics in consumption; a high equity premium;

relatively highly levered equity exposure among sophisticated investors; and counter-cyclical as-

set allocation among sophisticated investors. The framework that we have described provides a

parsimonious and psychologically plausible explanation for these stylized facts.

We believe that our two assumptions also characterize other ‘macro’ markets. For example,

the same approach could be used to study dynamics in housing prices, residential investment,

non-residential investment, inventory accumulation, international capital flows, bond markets, or

commodity prices.49 Wherever our two assumptions apply, markets will be characterized by am-

plified cycles, overreaction, excess volatility, and asset returns that are negatively autocorrelated

over the medium-run.

Finally, we wish to highlight a gap in our analysis. Our model is about belief formation, but all

of our evidence about beliefs is indirect – for instance, consumption and asset price dynamics. We

believe that researchers should also measure beliefs directly. Some research on bubbles has moved

in this direction (e.g., Case and Shiller, 2003; Vissing-Jorgensen, 2003; Shiller, 2005; Piazzesi and

Schneider, 2009, 2011) and we hope that more will do so in the future.

49For some alternative approaches, see for example Lansing (2009), Hassan and Mertens (2010), Adam and Marcet
(2010), LeBaron (2010), Burnside, Eichenbaum, and Rebelo (2011), and Piazzesi and Schneider (2011).
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Appendices

A Matrix Representation of Consumption Model

In this section, we solve for the optimal consumption policy for beliefs based on an ARIMA(p,1,0)
model:

∆dt = Φ(L)∆dt + σεεt

We can represent this system as an AR(1) system with evolution operator Φ:





∆dt

∆dt−1

...
∆dt−p+1



 =





φ1 φ2 ... φp

1 0 ... 0
0 1 ... 0
...
0 0 ... 0









∆dt−1

∆dt−2

...
∆dt−p



+





σε

0
...
0



 εt

There is also the foreign debt variable, bt, which evolves as

bt+1 = ct + Rbt − dt − y.

Here we analyze a slightly more general version of the model, which includes constant labor
income y. We also assume that R is constant. Define the AR(1) representation state vector:

zt =
[
bt ct−1 1 y dt ∆dt ∆dt−1 ... ∆dt−p+1

]′

We use CARA utility with habits, as in Alessie and Lusardi (1997):

u(ct, ct−1) = −
1

α
exp(−α(ct − γct−1))

Now, guess a linear policy function, ct = P′zt. Because the policy function is linear, we can define
the AR(1) evolution operator:

M = M̄ + NP′ =





R 0 0 −1 −1 ~0

0 0 0 0 0 ~0′

0 0 1 0 0 ~0′

0 0 0 1 0 ~0′

0 0 0 0 1 e′1,pΦ

~0 ~0 ~0 ~0 ~0 Φ





+ (e1,p+5 + e2,p+5)P′,

where ei,n is the i′th basis vector of length n. This satisfies

zt = Mzt−1 + Cεt,

where C =
(
e5,p+5 + e6,p+5

)
σε, i.e. C is a column vector that applies the random shock to dt and

∆dt and is otherwise empty. An alternative evolution equation is

zt = M̄zt−1 + Nct−1 + Cεt.
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We guess that the value function is of the form

V(zt) = −
Ψ

α
exp(−α(ct − γct−1))

Define P̃ = P − γe2,p+5, and plug into the Bellman equation:

−
Ψ

α
e−αP̃′zt = −

1

α
e−αP̃′zt + δE

[
−

Ψ

α
e−αP̃′zt+1

]

The expectation for P̃′zt+1 is P̃′Mzt, and the variance is C′P̃P̃′C. So the Bellman equation simplifies
to:

−
Ψ

α
e−αP̃′zt = −

1

α
e−αP̃′zt − δ

Ψ

α
e−α(P̃′Mzt− α

2 C′ P̃P̃′C)

Now, without worrying about optimality, we solve the Bellman equation. Dividing through by
common terms,

Ψ = 1 + δΨe−α(P̃′(M−I)zt− α
2 C′ P̃P̃′C)

For this equation to be solved for all zt, it must be that for some constant κ,

P̃′(M − I)zt = κ

Next, we need to derive an optimality condition for ct. The first-order condition is that

exp(−αP̃′zt) + δE[Ψ exp(−αP̃′zt+1)P̃′N] = 0

Expanding the expectation, and noting that P̃′N is a scalar constant,

exp(−αP̃′zt) + δΨP̃′N exp(−α(P̃′Mzt −
α

2
C′P̃P̃′C) = 0

Dividing through,

0 = 1 + δΨP̃′N exp(−α(P̃′(M − I)zt −
α

2
C′P̃P̃′C)

Again, note that if P̃(M − I)zt = κ for all t, this equation can be satisfied for some constant Ψ.
Combining the two equations, we can see that

0 = 1 + P̃′N(Ψ − 1)

Solving,

Ψ = 1 −
1

P̃′N

At this point, we will try to guess P and show that our guess satisfies the equations above. For
some constants K and Q,

P =





−(R − 1)(1 − γ
R )

γ
R
Q

R−γ
R

R−γ
R[

Ke′1,p(I − 1
R Φ)−1 1

R Φ
]′





43



We can first solve for P̃′N.

P̃′N = (P − γe2,p+5)N = −(R − 1)(1 −
γ

R
) +

γ

R
− γ = 1 − R

Therefore,

Ψ = 1 −
1

1 − R
=

R

R − 1

Returning to the first order condition,

0 = 1 − Rδe−α(P̃′(M−I)zt− α
2 C′ P̃P̃′C)

Next, we need to confirm that P̃′(M − I)zt = κ for all t.

M − I = M̄ − I + NP′ =





R − 1 0 0 −1 −1 ~0

0 −1 0 0 0 ~0′

0 0 0 0 0 ~0′

0 0 0 0 0 ~0′

0 0 0 0 0 e′1,pΦ

~0 ~0 ~0 ~0 ~0 Φ − I





+ NP′

NP′ =





−(R − 1)(1 − γ
R ) γ

R Q R−γ
R

R−γ
R Ke′1,p(I − 1

R Φ)−1 1
R Φ

−(R − 1)(1 − γ
R ) γ

R Q R−γ
R

R−γ
R Ke′1,p(I − 1

R Φ)−1 1
R Φ

0 0 0 0 0 ~0′

0 0 0 0 0 ~0′

0 0 0 0 0 ~0′

~0 ~0 ~0 ~0 ~0 0





M − I =





(R − 1) γ
R

γ
R Q −γ

R
−γ
R Ke′1,p(I − 1

R Φ)−1 1
R Φ

−(R − 1)(1 − γ
R ) −R+γ

R Q R−γ
R

R−γ
R Ke′1,p(I − 1

R Φ)−1 1
R Φ

0 0 0 0 0 ~0′

0 0 0 0 0 ~0′

0 0 0 0 0 e′1,pΦ

~0 ~0 ~0 ~0 ~0 Φ − I





P̃′(M − I) =





0
0

−Q(R − 1)
0
0[

−(R − 1)Ke′1,p(I − 1
R Φ)−1 1

R Φ + R−γ
R e′1,pΦ+

+ Ke′1,p(I − 1
R Φ)−1 1

R Φ(Φ − I)

]′





′

We need to solve for K so that the last element becomes zero. Simplifying,

0 = −RKe′1,p

(
I −

1

R
Φ

)−1 1

R
Φ +

R − γ

R
e′1,pΦ + RKe′1,p

(
I −

1

R
Φ

)−1 1

R
Φ

1

R
Φ
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Noting that (
I −

1

R
Φ

)−1 1

R
Φ

1

R
Φ =

(
I −

1

R
Φ

)−1 1

R
Φ −

1

R
Φ

We can simplify to

0 =
R − γ

R
e′1,pΦ − RKe′1,p

1

R
Φ

Solving,

K =
R − γ

R
=
(

1 −
γ

R

)

For this value of K, and any value of Q, P̃(M − I)zt = κ = −Q(R − 1) for all t. To solve for Q, we
can rewrite the FOC, replacing for our value of Ψ,

0 = 1 − exp

(
α

[
1

α
ln(Rδ) + Q(R − 1) +

α

2
C′P̃P̃′C

])

P̃′C = σε

(
1 −

γ

R

)
e′1,p

(
I −

1

R
Φ

)−1

e1,p = σc

Q =
1

R − 1

[
−

1

α
ln(Rδ)−

α

2
σ2

c

]

We have now fully solved for the linear policy function, and shown that it is optimal. In the body
of the paper we impose the additional restriction, yt = 0.

B Asset Pricing

Next, we derive a price for the dividend stream. Our timing convention is that the price at time
t does not include the dividend at time t. To calculate the equilibrium price of the Lucas tree, we
consider the asset allocation problem (as opposed to the planner’s problem). We then solve for
the asset price that leads the representative agent to hold one unit of the equity tree.

Start with the Bellman Equation:

V
(

ct−1, wt, pt, ~dt

)
= sup

θt,ct

u(ct, ct−1) + EtδV
(

ct, (wt − ct − θt pt) R +

+ θt (dt+1 + pt+1) , pt+1, ~dt+1

)
,

or alternatively

V
(

ct−1, xt, pt, ~dt

)
=

−R

α(R − 1)
exp (−α [ct − γct−1]) ,

where
ct =

γ

R
ct−1 +

(
1 −

γ

R

)
xt − ψ.

Consumption is a weighted average of lagged consumption and the (risk-neutral) annuity value
of future dividends, xt, shifted down by an additive constant ψ. Let’s write xt so that we allow the
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agent to buy more or less of the risky tree. Buying more means raising θ above unity.

xt =
R − 1

R

[

−Rbt − (θ − 1) pt + dt + θ
∞

∑
s=1

Etdt+s

Rs

]

ψ =
1

R − 1

[
1

α
ln(Rδ) +

α

2
Vart(∆ct+1)

]
.

In equilibrium, θ = 1 (supply equals demand). The associated first-order condition is:

dV

dθ
= 0 at θ = 1

We can expand this derivative:

dV

dθ
=

∂V

∂ct

[
∂ct

∂xt

∂xt

∂θ
+

∂ct

∂ψ

∂ψ

∂θ

]
= 0,

which implies that the asset price, pt, is chosen such that

∂ct

∂xt

∂xt

∂θ
+

∂ct

∂ψ

∂ψ

∂θ
= 0 at θ = 1 (4)

Let’s evaluate each of these partial derivatives in turn:

∂ct

∂xt
=

(
1 −

γ

R

)

∂xt

∂θ
=

R − 1

R

[
−pt +

∞

∑
s=1

Etdt+s

Rs

]

∂ct

∂ψ
= −1

∂ψ

∂θt
=

1

R − 1

α

2

∂Vart(∆ct+1)

∂θ

=
1

R − 1

α

2
2θVart(∆ct+1)

Now we are ready to use our equilibrium condition (equation (4)):

∂ct

∂x

∂x

∂θ
= −

∂ct

∂ψ

∂ψ

∂θ
(evaluated at θ = 1)

(
1 −

γ

R

) R − 1

R

[

−pt +
∞

∑
s=1

Etdt+s

Rs

]

=
1

R − 1

α

2
2Vart(∆ct+1)

Rearrange to get

−pt +
∞

∑
s=1

Etdt+s

Rs
=

Rα × Vart(∆ct+1)(
1 − γ

R

)
(R − 1)2

pt =
∞

∑
s=1

Etdt+s

Rs
−

Rα × Vart(∆ct+1)(
1 − γ

R

)
(R − 1)2
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We can also express the expectation of the discounted stream of dividends using our earlier matrix
notation, implying that

pt =
1

R − 1
dt +

R

R − 1
e′1,p

(
I −

1

R
Φ

)−1 1

R
Φ∆~dt −

Rα

(1 − γ
R )(R − 1)2

σ2
c

B.1 Equity Premium

The mathematical expectation of the equity premium does not exist in our economy, since equity
prices are not bounded below by zero. Instead of characterizing the expected equity premium,
we characterize the equity premium conditional on a history in which all dividends take on their

expected value. Specifically, assume that dt = d and ∆~dt = 0. The average quarterly return
conditional on this history is d

pt
, where

pt =
d

R − 1
−

Rα

(1 − γ
R )(R − 1)2

σ2
c .

Hence,
d

p
=

d
d

R−1 −
Rα

(1− γ
R)(R−1)2

σ2
c

Therefore the annualized equity premium when dividends have a flat history (i.e., ∆~dt = 0) is
given by

4 ×



 d
d

R−1 −
Rα

(1− γ
R)(R−1)2

σ2
c

− (R − 1)





C Rational Expectations Investors

C.1 Excess Gains with Natural Expectations

We start with the definition of the price in the natural expectations framework:

pt =
1

R − 1
dt +

R

R − 1
e′1,p

(
I −

1

R
Φ

)−1 1

R
Φ∆~dt −

Rα

(1 − γ
R )(R − 1)2

σ2
c

We would like to understand the gains process, defined as

gt+1 = pt+1 + dt+1 − Rpt

We replace the Φ matrix and σc with their ‘hat’ equivalents, to denote misspecification. Expanding
the definitions of pt and pt+1, we find that

gt+1 = dt+1 +
1

R − 1
(dt+1 − Rdt)+

R

R − 1
e′1,p

(
I −

1

R
Φ̂

)−1 1

R
Φ̂
(

∆~dt+1 − R∆~dt

)
+

Rα

(1 − γ
R )(R − 1)

σ̂2
c
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Define

µ =
Rα

(1 − γ
R )(R − 1)

σ̂2
c

Using the definition of the AR process driving dt, we can rewrite this as

gt+1 =
R

R − 1
e′1,p

(
Φ∆~dt + σeεt+1e1,p

)
+

+
R

R − 1
e′1,p

(
I −

1

R
Φ̂

)−1

Φ̂

(
1

R
Φ∆~dt − ∆~dt +

1

R
σεεt+1e1,p

)
+ µ

Regrouping terms,

gt+1 =
R

R − 1
e′1,p

(
Φ − Φ̂

(
I −

1

R
Φ̂

)−1(
I −

1

R
Φ

))
∆~dt+

+
R

R − 1
σεe

′
1,p

(
I −

1

R
Φ̂

)−1

e1,pεt+1 + µ

We can define the vector M and constant σg so that the equation above is

gt+1 = M∆~dt + σgεt+1 + µ

C.2 Budget Constraint

Let wt be the agent’s wealth in period t before consumption is chosen. Assume the agent can hold
either risk-free assets with return R, or a risky asset. There are no shorting/leverage constraints.
The agent’s budget constraint is

wt+1 = (wt + y − ct − θt pt)R + θt(dt+1 + pt+1)

= (wt + y − ct)R + θtgt+1,

where the choice variables are consumption (ct) and dollar amount in the risky asset (θt). We can
rewrite the budget constraint in terms of the evolution of gt,

wt+1 = R(wt + y − ct) + θt M∆~dt + θtσgεt+1 + θtµ.

It will be helpful to solve for an inter-temporal budget constraint. The transversality condition is

lim
k→∞

Et[R
−kwt+k] = 0

Seeing that

Et[wt+2] = Et[R(wt+1 − ct+1 + y) + θt+1M∆~dt+1 + θt+1µ]

= Et[R
2(wt − ct + y) + R(−ct+1 + y)θt+1M∆~dt+1 +

+ θt+1µ + Rθt M∆~dt + Rµ]
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We conjecture that

Et[R
−kwt+k] = wt +

1

R

k−1

∑
j=0

R−jEt[θt+j M∆~dt+j + θt+jµ − Rct+j + Ry]

This holds trivially for k = 1 and k = 2. Assume it holds for k > 1:

Et[R
−k−1wt+k+1] = Et

[
R−kwt+k − R−kct+k + R−ky +

+ R−k−1θt+k M∆~dt+k + R−k−1θt+kµ
]

= wt +
1

R

k

∑
j=0

R−jEt[θt+j M∆~dt+j + θt+jµ − Rct+j + Ry]

By induction, it holds in the limit, and therefore the inter-temporal budget constraint is

∞

∑
j=0

Et[R
−jct+j] = wt +

R

R − 1
y +

∞

∑
j=0

Et[R
−j−1θt+jM∆~dt+j + R−j−1θt+jµ]

We can rewrite the sum of ct+j in terms of ĉt+j = ct+j − γct+j−1.

∞

∑
j=0

Et[R
−jct+j] =

∞

∑
j=0

Et[R
−j(ĉt+j + γct+j−1)]

= γct−1 +
∞

∑
j=0

Et[R
−j ĉt+j] +

γ

R

∞

∑
j=1

Et[R
−j+1ct+j−1]

= γct−1 +
∞

∑
j=0

Et[R
−j ĉt+j] +

γ

R

∞

∑
k=0

Et[R
−kct+k]

We can then solve to see that

∞

∑
j=0

Et[R
−jct+j] =

1

1 − γ
R

(γct−1 +
∞

∑
j=0

Et[R
−jĉt+j])

Rewriting the inter-temporal budget constraint,

∞

∑
j=0

Et[R
−j ĉt+j] = −γct−1 +

(
1 −

γ

R

)(
wt +

R

R − 1
y

+
∞

∑
j=0

Et[R
−j−1θt+j M∆~dt+j + R−j−1θt+jµ]

)

(5)

C.3 Utility and Value Functions

The agent has flow utility of the form

u(ct, ct−1) = −
1

α
e−α(ct−γct−1)
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It is convenient to define
ĉt = ct − γct−1

The state is captured entirely by wt, ct−1, and ∆~dt. The Bellman equation is

V(wt, ct−1, ∆~dt) = max
ĉt,θt

u(ĉt) + δEt[V(wt+1, ĉt + γct−1, ∆~dt+1)]

The first order conditions are

u′(ĉt) = δEt

[
R

∂Vt+1

∂wt+1
−

∂Vt+1

∂ct

]
(6)

and

δEt

[
∂Vt+1

∂wt+1

(
M∆~dt + µ + σgεt+1

)]
= 0

The envelope condition for wt is
∂Vt

∂wt
= δEt

[
∂Vt+1

∂wt+1
R

]
(7)

From the inter-temporal budget constraint (5),

∂Vt

∂ct−1
=

−γ

1 − γ
R

∂Vt

∂wt

We use this to derive the Euler equations, which will be verified after deriving a solution.
Rewriting (6), and then using (7),

u′(ĉt) = δEt

[
R

∂Vt+1

∂wt+1
+

γ

1 − γ
R

∂Vt+1

∂wt+1

]

(
1 −

γ

R

)
u′(ĉt) = δEt

[
R

∂Vt+1

∂wt+1

]
=

∂Vt

∂wt

Advancing time by one unit, and taking expectations,

(
1 −

γ

R

)
Et

[
u′(ĉt+1)

]
= Et

[
∂Vt+1

∂wt+1

]

The consumption Euler equation, assuming δR = 1, is therefore

u′(ĉt) = Et

[
u′(ĉt+1)

]

The asset Euler equation is

0 = Et

[(
1 −

γ

R

)
u′(ĉt+1)

(
M∆~dt + µ + σgεt+1

)]
(8)

C.4 Guess and Check

We guess that

ĉt = Dct−1 +
(

1 −
γ

R

)(R − 1

R
wt + A′∆~dt + ∆~d′tB∆~dt + q

)
, (9)
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where A is a vector and B is a matrix. From this guess, it follows that

ĉt+1 = Dct +
(

1 −
γ

R

)(R − 1

R
wt+1 + A′∆~dt+1 + ∆~d′t+1B∆~dt+1 + q

)
(10)

From the budget constraint and the evolution of ∆~dt,

ĉt+1 = Dct+

(
1 −

γ

R

)



R−1

R

(
R(wt − ct) + θt M∆~dt + θtµ + θtσgεt+1

)
+ A′Φ∆~dt+

+ A′e1,pσεεt+1 +
(

Φ∆~dt + e1,pσεεt+1

)′
B
(

Φ∆~dt + e1,pσεεt+1

)
+ q





Taking expectations,

Et[ĉt+1] = Dct +
(

1 −
γ

R

) [ R−1
R

(
R(wt − ct) + θt M∆~dt + θtµ

)
+ A′Φ∆~dt+

+ ∆~d′tΦ
′BΦ∆~dt + σ2

e e′1,pBe1,p + q

]

We can then write

ĉt+1 = E[ĉt+1]+

(
1 −

γ

R

) [
(

R−1
R θtσg + σε A′e1,p + σεe

′
1,pBΦ∆~dt + σε∆~d′tΦ

′Be1,p

)
εt+1+

− σ2
ε e′1,pBe1,p + σ2

ε e′1,pBe1,pε2
t+1

]

Define the following constants:

kt =
(

1 −
γ

R

)(R − 1

R
θtσg + σε A′e1,p + σεe

′
1,pBΦ∆~dt + σε∆~d′tΦ

′Be1,p

)

λ =
(

1 −
γ

R

)
σ2

ε e′1,pBe1,p.

We can rewrite u′(ĉt+1) as

u′(ĉt+1) = e−α(E[ĉt+1]−λ+ktε t+1+λε2
t+1),

and compute expectations to get

E[u′(ĉt+1)] = e−α(E[ĉt+1]−λ) ×
∫ ∞

−∞

1√
2π

e−αktx−αλx2
e−

x2

2 dx

Define another constant,

s =

√
1

1 + 2αλ

We can complete the square on the integral as follows:

−αktx − αλx2 − 0.5x2 = −
x2 + 2αkts

2x

2s2
= −

(x + αkts
2)2

2s2
+

α2

2
k2

t s2

E[u′(ĉt+1)] = e−α(E[ĉt+1]−λ− 1
2 αk2

t s2)s
∫ ∞

−∞

1√
2πs2

e
−

(x+αkts2)
2

2s2 dx
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We therefore conclude that

E[u′(ĉt+1)] = e−α(E[ĉt+1]−λ− 1
2 αk2

t s2− 1
2α ln s2)

Next, consider the integral from the second Euler equation.

E[u′(ĉt+1)σgεt+1] = e−α(E[ĉt+1]−λ− 1
2 αk2

t s2) ×
∫ ∞

−∞

1√
2π

σgxe
− (x+αkts2)

2

2s2 dx

For the integral, use the following transformation:

u =
x + αkts

2

s

∫ ∞

−∞

1√
2π

σgxe
−

(x+αkts2)
2

2s2 dx =
∫ ∞

−∞

1√
2π

σg(s u − αkts
2)e−

u2

2 sdu = −ασgkts
3

We combine (8) and the equation above to see that

e−α(Et[ĉt+1]−λ− 1
2 αk2

t s2− 1
2α ln s2)(µ + M∆~dt) = e−α(Et[ĉt+1]−λ− 1

2 αk2
t s2)ασgkts

3

Simplifying,

µ + M∆~dt = ασgkts
2

C.5 Solving for the Policy Rules

Next, we use consumption Euler equation to see that

ĉt = Et[ĉt+1]− λ −
1

2
αk2

t s2 −
1

2α
ln s2

From our conjecture about ĉt (equation (10)), we can expand ĉt+1:

ĉt + λ +
1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(R − 1

R
Et[wt+1] + A′Et[∆~dt+1] + Et[∆~d′t+1B∆~dt+1] + q

)
+ Dct

or

ĉt +
1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(R − 1

R
Et[wt+1] + A′Φ∆~dt + ∆~d′tΦ

′BΦ∆~dt + q

)
+ Dct

Expanding using the budget constraint,

ĉt − Dct +
1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(R − 1

R
Et[gt+1]θt + (R − 1)(wt − ct) + A′Φ∆~dt + ∆~d′tΦ

′BΦ∆~dt + q

)
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Simplifying, and replacing ct with ĉt + γct−1,

ĉt

(
1 − D +

(
1 −

γ

R

)
(R − 1)

)
+

+
((

1 −
γ

R

)
(R − 1) − D

)
γct−1 +

1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(R − 1

R
(M∆~dt + µ)θt + (R − 1)wt + A′Φ∆~dt + ∆~d′tΦ

′BΦ∆~dt + q

)

Let Q = 1 − D + (1 − γ
R )(R − 1). Simplifying, and expanding the terms of ĉt,

((Q − 1)γ + QD)ct−1 + Q
(

1 −
γ

R

)(R − 1

R
wt + A′∆~dt + Q∆~d′t B∆~dt + Qq

)
+

+
1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(
(R − 1)wt +

R − 1

R
(M∆~dt + µ)θt + A′Φ∆~dt + ∆~d′tΦ

′BΦ∆~dt + q

)

We guess that

D =
γ

R
− γ,

and see that this simplifies nicely:

Q = R

(Q − 1)γ + QD = 0

Therefore, noting that wt cancels,

R
(

1 −
γ

R

) (
A′∆~dt + ∆~d′tB∆~dt + q

)
+

1

2
αk2

t s2 +
1

2α
ln s2 =

(
1 −

γ

R

)(R − 1

R
(M∆~dt + µ)θt + A′Φ∆~dt + ∆~d′tΦ

′BΦ∆~dt + q

)

Using the asset allocation Euler result, we see that

1

2
αk2

t s2 =
1

2ασ2
g s2

(
µ2 + 2µM∆~dt + ∆~d′t M′M∆~dt

)

Expanding using the definition of s,

1

2
αk2

t s2 =
1 + 2αλ

2ασ2
g

(
µ2 + 2µM∆~dt + ∆~d′t M′M∆~dt

)

We also need to replace θt using the asset allocation Euler equation:

µ + M∆~dt = ασgs2kt =
(

1 −
γ

R

)
ασgs2

(
(R − 1)

R
θtσg + σε A′e1,p + σee

′
1,pBΦ∆~dt + σε∆~d′tΦ

′Be1,p

)
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Solving,

θt =
R

R − 1

1

σg

(
µ + M∆~dt

(1 − γ
R )ασgs2

− σε A′e1,p − σεe
′
1,pBΦ∆~dt − σe∆~d′tΦ

′Be1,p

)

To replace the term in the consumption equation,

R − 1

R
(M∆~dt + µ)θt =

1(
1 − γ

R

)
ασ2

g s2

(
µ2 + 2µM∆~dt + ∆~d′t M′M∆~dt

)
−

−
µσε

σg
A′e1,p −

σε

σg

(
A′e1,pM + µe′1,p(B + B′)Φ

)
∆~dt −

−
σε

σg
∆~d′t M′e′1,pBΦ∆~dt −

σε

σg
∆~d′tΦ

′Be1,pM∆~dt

We can now substitute all of these results:

R
(

1 −
γ

R

) (
A′∆~dt + ∆~d′tB∆~dt + q

)
+

1

2
αk2

t s2 +
1

2α
ln s2 = αk2

t s2+

(
1 −

γ

R

)



− µσε

σg
A′e1,p − σε

σg
(A′e1,pM + µe′1,p(B + B′)Φ)∆~dt−

− σε
σg

∆~d′t M′e′1,pBΦ∆~dt − σε
σg

∆~d′tΦ
′Be1,pM∆~dt+

+ A′Φ∆~dt + ∆~d′tΦ
′BΦ∆~dt + q





The final version of the system is:

R
(

1 −
γ

R

)
(A′∆~dt + ∆~d′t B∆~dt + q) +

1

2α
ln s2 =

1 + 2αλ

2ασ2
g

(µ2 + 2µM∆~dt + ∆~d′t M′M∆~dt)+

(
1 −

γ

R

)




− µσε

σg
A′e1,p − σε

σg

(
A′e1,pM + µe′1,p(B + B′)Φ

)
∆~dt+

+ ∆~d′t(Φ − σε
σg

e1,pM)′BΦ∆~dt + ∆~d′tΦ
′B(Φ − σε

σg
e1,pM)∆~dt−

− ∆~d′tΦ
′BΦ∆~dt + A′Φ∆~dt + q



 (11)

This equation must hold for all value of ∆~dt, so we use term matching. Note that λ is actually the
upper left element of B, scaled by (1 − γ

R )σ2
ε . Beginning with the second order terms,

∆~d′t

(
RB −

1 + 2αλ

2
(
1 − γ

R

)
ασ2

g

M′M − (Φ −
σε

σg
e1,pM)′BΦ

− Φ′B(Φ −
σε

σg
e1,pM) + Φ′BΦ

)
∆~dt = 0

Define
Λ = Φ − Φ̂
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and note that

M =
R

R − 1
e′1,p

[
Φ − Φ̂

(
I −

1

R
Φ̂

)−1(
I −

1

R
Φ

)]

=
R

R − 1
e′1,p

[
Λ + Φ̂ − Φ̂

(
I −

1

R
Φ̂

)−1(
I −

1

R
Φ̂ −

1

R
Λ

)]

=
R

R − 1
e′1,p

[
Λ + Φ̂

(
I −

1

R
Φ̂

)−1 1

R
Λ

]

=
R

R − 1
e′1,p

(
I −

1

R
Φ̂

)−1

Λ

Because Λ has non-zeros only in the top row, and e1,pe′1,p has non-zeros only in the upper left
element, which is one,

Λ = e1,pe′1,pΛ

Therefore,

e1,pM =
R

R − 1
e1,pe′1,p

(
I −

1

R
Φ̂

)−1

e1,pe′1,pΛ

=
σg

σε
Λ

and
Φ −

σε

σg
e1,pM = Φ − Λ = Φ̂

The equation for B can be rewritten:

∆~d′t

(

RB −
1 + 2αλ

2
(
1 − γ

R

)
ασ2

g

M′M − Φ̂′BΦ − Φ′BΦ̂ + Φ′BΦ

)

∆~dt = 0

Substituting for λ and regrouping terms,

∆~d′t

(

RB −
1

2
(
1 − γ

R

)
ασ2

g

M′M −
σ2

ε

σ2
g

M′e′1,pBe1,pM − Φ̂′BΦ̂ + Λ′BΛ

)

∆~dt = 0

By our earlier result relating e1,pM and Λ, and assuming that this holds for all ∆~dt,

B =
1

2R
(
1 − γ

R

)
ασ2

g

M′M +
1

R
Φ̂′BΦ̂

This is a discrete time Lyapunov equation. We can apply the standard convergence results to see
that, because the eigenvalues of 1√

R
Φ̂ are entirely less than 1 (no unit root), convergence is certain.

Therefore,

B =
1

2R(1 − γ
R )ασ2

g

∞

∑
k=0

R−kΦ̂′k M′MΦ̂k
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From this, we can easily solve for

λ =
(

1 −
γ

R

)
σ2

ε e′1,pBe1,p

Moving on to the first order terms in equation (11), and using the symmetry of B,

(

R
(

1 −
γ

R

)
A′ −

1 + 2αλ

2ασ2
g

2µM −
(

1 −
γ

R

)
A′Φ

+
(

1 −
γ

R

) σε

σg
(e′1,pAM + 2µe′1,pBΦ)

)
∆~dt = 0

Subsituting for λ, and regrouping,

(

RA′ −
1

2
(
1 − γ

R

)
ασ2

g

2µM −
2µσε

σg

σε

σg
e′1,pBe1,pM − A′Φ

+
σε

σg
A′e1,pM +

2µσe

σg
e′1,pBΦ

)
∆~dt = 0

Again using the relation between e1,pM and Λ,

(

RA′(I −
1

R
Φ̂) −

1

2
(
1 − γ

R

)
ασ2

g

2µM +
2µσε

σg
e′1,pBΦ̂

)

∆~dt = 0

This is solved by inversion:

A′ =
2µ

Rσg

(
1

2(1 − γ
R )ασg

M + σεe
′
1,pBΦ̂

)(
I −

1

R
Φ̂

)−1

Finally, we solve for the constants:

(R − 1)
(

1 −
γ

R

)
q −

1 + 2αλ

2ασ2
g

µ2 +
(

1 −
γ

R

) µσε

σg
A′e1,p +

1

2α
ln s2 = 0

Consequently,

q =
1 + 2αλ

2(R − 1)
(
1 − γ

R

)
ασ2

g

µ2 −
µσε

σg(R − 1)
A′e1,p +

1

2α(R − 1)
(
1 − γ

R

) ln (1 + 2αλ).

Thus, we have proved that our guess for ct (equation (9)) was correct, with A, B, D and q as solved
for in this section.

Next, it is worth simplifying the expression for asset allocation:

θt =
R

R − 1

1

σg

(
µ + M∆~dt(

1 − γ
R

)
ασgs2

− σe A′e1,p − 2σεe
′
1,pBΦ∆~dt

)
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Applying the standard substitution for s and then λ, we can write the optimal asset allocation as

θt =
R

R − 1

1

σg

(
µ + M∆~dt(
1 − γ

R

)
ασg

+
2µσ2

ε

σg
e′1,pBe1,p − σε A′e1,p − 2σεe

′
1,pBΦ̂∆~dt

)

The average value of θ (assuming ∆~dt = 0) is

θ̄ =
R

R − 1

µ(
1 − γ

R

)
ασ2

g

+
R

R − 1

2µσ2
ε

σ2
g

e′1,pBe1,p −
R

R − 1

σε

σg
A′e1,p

Using results from appendices A and B, we can show that,

µ =
Rα(

1 − γ
R

)
(R − 1)

σ̂2
c

σ̂c =
R − 1

R

(
1 −

γ

R

) σ̂ε

σε
σg.

Using these results, we can rewrite the average asset allocation as

θ̄ =
σ̂2

ε

σ2
ε

+
R

R − 1

2µσ2
ε

σ2
g

e′1,pBe1,p −
R

R − 1

σε

σg
A′e1,p.
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Table 1: Estimated Coefficients from AR(p) Models of Earnings Growth

AR(1) AR(10) AR(20) AR(30) AR(40)
Coeff. t Coeff. t Coeff. t Coeff. t Coeff. t

Coeff. on lag 1 0.201 3.27 0.184 2.83 0.189 2.80 0.182 2.57 0.211 2.79
2 0.032 0.48 0.016 0.23 0.011 0.15 -0.049 -0.64
3 0.124 1.93 0.112 1.64 0.157 2.19 0.197 2.57
4 -0.101 -1.57 -0.080 -1.16 -0.079 -1.11 -0.128 -1.64
5 -0.149 -2.31 -0.162 -2.36 -0.191 -2.68 -0.106 -1.35
6 -0.090 -1.41 -0.028 -0.40 -0.045 -0.62 -0.088 -1.13
7 0.118 1.86 0.063 0.90 0.049 0.68 0.068 0.87
8 -0.132 -2.04 -0.172 -2.42 -0.150 -2.03 -0.207 -2.59
9 0.085 1.31 0.043 0.62 0.041 0.55 0.076 0.94

10 -0.013 -0.20 0.014 0.21 -0.051 -0.69 -0.083 -1.02
11 -0.016 -0.23 -0.020 -0.27 -0.005 -0.06
12 -0.170 -2.48 -0.151 -2.07 -0.183 -2.32
13 -0.023 -0.33 0.004 0.05 0.033 0.41
14 -0.010 -0.15 -0.032 -0.43 -0.064 -0.82
15 -0.057 -0.85 -0.025 -0.34 -0.023 -0.30
16 0.021 0.31 -0.025 -0.35 -0.059 -0.75
17 -0.058 -0.89 -0.072 -0.99 -0.087 -1.12
18 0.088 1.34 0.014 0.19 0.004 0.05
19 -0.023 -0.35 -0.053 -0.74 -0.062 -0.81
20 -0.091 -1.41 -0.062 -0.88 -0.070 -0.92
21 -0.006 -0.08 -0.006 -0.08
22 -0.104 -1.48 -0.134 -1.76
23 0.056 0.81 0.094 1.23
24 -0.040 -0.58 -0.054 -0.70
25 -0.046 -0.68 -0.035 -0.46
26 -0.060 -0.90 -0.088 -1.15
27 0.019 0.29 0.032 0.41
28 0.047 0.71 -0.001 -0.02
29 -0.020 -0.31 -0.011 -0.15
30 -0.170 -2.62 -0.214 -2.95
31 0.055 0.74
32 -0.102 -1.39
33 0.056 0.78
34 -0.099 -1.39
35 0.144 2.01
36 -0.141 -1.95
37 -0.015 -0.21
38 -0.121 -1.71
39 0.086 1.20

Coeff. on lag 40 -0.063 -0.90

N 253 244 234 224 214
Adjusted R2 0.037 0.087 0.087 0.084 0.074

Root MSE 0.025 0.024 0.023 0.022 0.023
Persistence 1.252 1.062 0.745 0.548 0.445

Notes: Data: Log of Real Net Operating Surplus of U.S. Private Enterprises from 1947Q1 to 2010Q3. Source:
U.S. National Income and Product Accounts (Bureau of Economic Analysis), Table 1.10, line 12 (adjusted
for inflation using the GDP deflator). “Persistence” is given by 1/(1-sum of AR coefficients).
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Table 2: Bootstrap confidence intervals under the null of no predictability

Bootstrap

Moment US data Mean 90% C.I. 95% C.I.

1) corr(XRτ, XRτ+2→τ+5) −0.220 −0.049 [−0.249, 0.165] [−0.284, 0.206]

2) corr((P/E10)τ, XRτ+2→τ+5) −0.377 −0.141 [−0.432, 0.192] [−0.478, 0.249]

3) corr(ln(cτ)− ln(cτ−1), XRτ+2→τ+5) −0.297 −0.009 [−0.267, 0.254] [−0.313, 0.297]

4) corr((P/E10)τ, ln(cτ+6)− ln(cτ+2)) −0.167 −0.022 [−0.424, 0.388] [−0.493, 0.450]

5) corr(ln(cτ)− ln(cτ−1), ln(cτ+6) − ln(cτ+2)) −0.245 0.008 [−0.237, 0.257] [−0.283, 0.302]

Note: Sources for empirical moments and bootstrap procedures are described in the text.
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Figure 1: Log of Real Net Operating Surplus (“Earnings”) of U.S. Private Enterprises from 1947Q1
to 2010Q3

Source: U.S. National Income and Product Accounts (Bureau of Economic Analysis), Table 1.10, line 12. Adjusted for

inflation using the GDP deflator.
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Figure 2: Estimated Impulse Response Function for Earnings (in Levels), for Different AR(p) Mod-
els of Earnings Growth
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Figure 3: Cumulative Impulse Response Function for Gains, for Different AR(p) Models of Earn-
ings Growth
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Figure 4: Impulse Response Function for Consumption, for Different AR(p) Models of Earnings
Growth
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Figure 5: Correlation of Excess Returns in Year τ with Cumulative Excess Returns for Years τ + 2
to τ + 5, for Different AR(p) Models of Earnings Growth

Notes: Circles depict mean correlations over 200 simulations of length equal to the empirical sample, while bars depict

the 5th and 95th percentile of simulated values. “NE agents” use models with too few lags (AR(1) to AR(39)) while “RE

agents” use the correct (AR(40)) model for earnings growth.
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Figure 6: Correlation of the P/E10 Ratio in Year τ with Cumulative Excess Returns for Years τ + 2
to τ + 5, for Different AR(p) Models of Earnings Growth

Notes: Same as for Figure 5.
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Figure 7: Correlation of Consumption Growth in Year τ with Cumulative Excess Returns for Years
τ + 2 to τ + 5, for Different AR(p) Models of Earnings Growth

Notes: Same as for Figure 5.
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Figure 8: Correlation of the P/E10 Ratio in Year τ with Consumption Growth from Year τ + 2 to
τ + 6, for Different AR(p) Models of Earnings Growth

Notes: Same as for Figure 5.
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Figure 9: Correlation of Consumption Growth in Year τ with Consumption Growth from Year
τ + 2 to τ + 6, for Different AR(p) Models of Earnings Growth

Notes: Same as for Figure 5.
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Figure 10: Equity Premium (= Mean Excess Return of Equity over the Riskfree Rate) for Different
AR(p) Models of Earnings Growth

Note: “x” denote equity premia above 10%. “NE agents” use models with too few lags (AR(1) to AR(39)) while “RE

agents” use the correct (AR(40)) model for earnings growth.
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Figure 11: Standard Deviation of Excess Returns for Different AR(p) Models of Earnings Growth

Note: “x” denote standard deviations above 50%. “NE agents” use models with too few lags (AR(1) to AR(39)) while

“RE agents” use the correct (AR(40)) model for earnings growth.
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Figure 12: Standard Deviation of Consumption Growth for Different AR(p) Models of Earnings
Growth
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Figure 13: Equity Allocation of Rational Agents for Different AR(p) Models of Earnings Growth
held by NE Agents: Average (Top Panel) and Lower Bound (Bottom Panel)
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