Appendix to Fuster, Laibson, and Mendel (2010)

This appendix is divided into four sections. In section A.1, we report the maximum
likelihood estimates that were used to create the impulse response functions in Exhibit
2. In section A.2, we report results from Monte-Carlo analysis that suggest that
ARIMA(0,1,q) with “large” g are better able to capture low-frequency mean reversion
than lower-order ARIMA(p,1,q) with p and q < 3. Moreover, we show that large q
estimates are not subject to a substantial bias in the predicted persistence of the series
when the true data generating process is not nested by the ARIMA(0,1,q) structure. In
section A.3, we provide a more detailed description of the structural model in the paper.
In section A.4, we report quantitative simulation results from the model and compare

them with actual empirical moments.

A.1: Maximum Likelihood Estimates Underlying Exhibits 2a-2d

In this section, we report the maximum likelihood estimates that were used to create
the impulse response functions in Exhibits 2a-2d. We show estimates for four different
models: ARIMA(1,1,0), ARIMA(0,1, q,), ARIMA(O,1, q, ), ARIMA(0,1, g, ). Here the index
on ( represents the number of years that are covered by the moving average (MA)
terms. For quarterly data, g, =4, g, =8, ¢, =12. For monthly data, we estimate the
analogous values: g, =12, q, =24, g, =36.Note that Exhibits 2a-2d only plot the
impulse response functions for the cases ARIMA(1,1,0) and ARIMA(0,1, q; ).

The last line in the tables reports the predicted long-term persistence of a one-unit
shock that is implied by the ARMA coefficients. This persistence is given by (1+sum of

MA coefficients)/(1-sum of AR coefficients).



Table “2a”: Real GDP (quarterly data)

Xt-1

Et-1

€2

€3

€4

€5

Et-6

€7

Et-8

€9

€10

&t-11

&t-12
Constant
C¢

AIC

BIC

# obs.
persistence

Log nominal GDP ( x;)
ARIMA
ARIMA (1,1,0) ARIMA (0,1,4) ARIMA (0,1,8) (0,1,12)
Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.
0.363 (0.051)
0.337 (0.054) 0.326 (0.057) 0.333  (0.058)
0.259 (0.057) 0.245 (0.057) 0.251 (0.062)
0.079 (0.066)  0.066 (0.066)  0.045 (0.076)
-0.048 (0.062)  -0.020 (0.064)
-0.161 (0.064)  -0.147 (0.066)
-0.045 (0.063)  -0.074 (0.066)
-0.120 (0.072)  -0.120 (0.079)
-0.133  (0.059)  -0.099 (0.075)
-0.016 (0.074)
0.053 (0.079)
0.102 (0.065)
-0.058  (0.060)
0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001)
0.009 (0.000) 0.009 (0.000) 0.009 (0.000) 0.009 (0.000)
-1632.2 -1631.4 -1631.3 -1628.0
-1621.7 -1610.2 -1596.1 -1578.6
251 251 251 251
1.57 1.67 1.13 1.25



Table “2b”: Unemployment (monthly data)

Xt-1
Et-1
€2
€3
Et-4
€t-5
Et-6
€7
Et-8
€t-9
€t-10
Et-11
Et-12
&t-13
Et-14
&t-15
&t-16
€17
€18
€19
€20
&t-21
€22
€t-23
Et-24
€25
€26
€27
€28
€29
€t-30
&t-31
€t-32
€t-33
€34
€35
€36
Constant
O¢
AIC
BIC
# obs.
persistence

Unemployment ( X¢ )

ARIMA ARIMA ARIMA
ARIMA (1,1,0) (0,1,12) (0,1,24) (0,1,36)
Coeff. SE. Coeff. SE. Coeff. SE. Coeff. SE.
0.120  (0.022)
-0.012  (0.028) -0.032 (0.029) -0.029 (0.032)
0.199 (0.034) 0.197 (0.037)  0.221 (0.038)
0.173  (0.036) 0.172  (0.036) 0.164  (0.038)
0.172  (0.039) 0.174  (0.041) 0.159  (0.042)
0.230 (0.034)  0.227 (0.037)  0.230 (0.038)
0.134 (0.033) 0.118 (0.035)  0.120 (0.038)
0.170 (0.037)  0.111 (0.039)  0.103  (0.040)
0.175 (0.039)  0.105 (0.042)  0.096 (0.042)
0.140 (0.034)  0.084 (0.037)  0.075 (0.038)
0.023  (0.036) -0.015 (0.038) -0.016 (0.040)
0.070  (0.036) 0.038  (0.038) 0.051  (0.038)
-0.197 (0.036) -0.228 (0.041) -0.249 (0.042)
-0.040 (0.039) -0.069 (0.042)
-0.104 (0.036) -0.100 (0.038)
-0.049 (0.036) -0.043 (0.042)
-0.056 (0.042) -0.069 (0.041)
-0.071 (0.041) -0.094 (0.039)
-0.027 (0.040) -0.046 (0.043)
0.012 (0.044) -0.017 (0.046)
0.015 (0.039) -0.005 (0.042)
-0.035 (0.037) -0.058 (0.044)
0.055 (0.040)  0.036 (0.041)
-0.020  (0.038) -0.069  (0.041)
-0.185 (0.035) -0.205 (0.041)
-0.035  (0.043)
-0.115  (0.043)
0.005 (0.042)
-0.072  (0.042)
0.007  (0.045)
-0.002  (0.040)
-0.052  (0.043)
-0.101  (0.040)
-0.029  (0.040)
0.088  (0.040)
-0.049  (0.040)
-0.049  (0.037)
0.008 (0.010) 0.009 (0.017)  0.007 (0.011)  0.005 (0.007)
0.214 (0.003)  0.194 (0.003)  0.189 (0.004) 0.186 (0.004)
-175.43 -297.71 -315.35 -311.65
-161.58 -233.05 -195.26 -136.14
749 749 749 749
1.14 2.28 1.44 0.78



Table “2¢”: Real earnings (quarterly data)

Xt-1

Et-1

)

&3

Et-4

&5

Et-6

Et-7

Et-8

€9

&t-10

Et-11

Et-12
Constant
C¢

AIC

BIC

# obs.
persistence

Real earnings ( x; )

ARIMA
ARIMA (1,1,0) ARIMA (0,1,4) ARIMA (0,1,8) (0,1,12)
Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.
0.202  (0.051)
0.186  (0.053) 0.190 (0.057) 0.188 (0.061)
0.027 (0.058)  0.035 (0.063) -0.002 (0.064)
0.131 (0.057) 0.092  (0.063) 0.064  (0.060)
-0.134  (0.054)  -0.165 (0.060) -0.162 (0.061)
-0.204 (0.066)  -0.200 (0.069)
-0.227 (0.062) -0.185 (0.067)
-0.094 (0.066) -0.001 (0.065)
-0.223  (0.060)  -0.180 (0.059)
0.036 (0.070)
-0.001 (0.068)
-0.004  (0.075)
-0.199 (0.067)
0.008  (0.002) 0.008  (0.002) 0.008 (0.001) 0.008  (0.001)
0.025 (0.001)  0.025 (0.001)  0.024 (0.001)  0.023 (0.001)
-1136.2 -1136.6 -1147.2 -1147.1
-1125.6 -1115.4 -1111.9 -1097.7
251 251 251 251
1.25 1.21 0.41 0.36



Table “2d”: S&P 500 (monthly data)

Xt-1
Et-1
€12
€3
Et-4
€t-5
Et-6
€7
Et-8
€9
€10
Et-11
Et-12
€t-13
Et-14
&t-15
&t-16
&t-17
€18
&t-19
€20
€21
€22
€123
Et-24
€25
€t-26
€27
€128
€29
€t-30
€31
€t-32
€t-33
Et-34
€35
€t-36
Constant
O¢
AIC
BIC
# obs.
persistence

Excess Returns ( x; )

ARIMA ARIMA ARIMA
ARIMA (1,1,0) (0,1,12) (0,1,24) (0,1,36)
Coeft. S.E. Coeff. S.E. Coeff. S.E. Coeft. S.E.
0.114 (0.018)
0.121 (0.021)  0.111 (0.024)  0.113 (0.027)
0.006 (0.025) -0.009 (0.026) -0.008 (0.027)
-0.104  (0.025)  -0.090 (0.025) -0.088 (0.026)
0.020  (0.026) 0.023  (0.029) 0.033  (0.030)
0.082 (0.026)  0.078 (0.029)  0.077 (0.030)
-0.024  (0.024) -0.033 (0.027)  -0.033 (0.028)
0.017 (0.027) -0.006 (0.028) -0.008 (0.029)
0.026  (0.020) 0.032  (0.024) 0.030 (0.025)
0.083  (0.020) 0.069 (0.025) 0.068 (0.026)
0.000 (0.024) 0.020  (0.026) 0.010 (0.027)
-0.010 (0.024) -0.029 (0.027)  -0.023 (0.028)
0.028 (0.027) 0.015 (0.027) 0.015 (0.029)
-0.058 (0.028)  -0.041 (0.031)
-0.084 (0.029) -0.084 (0.029)
0.024 (0.027)  0.014 (0.028)
-0.030 (0.029) -0.040 (0.030)
0.096 (0.027) 0.094  (0.029)
0.023  (0.030) 0.025 (0.033)
-0.051 (0.027)  -0.049 (0.029)
-0.112 (0.031) -0.117 (0.033)
-0.133 (0.033) -0.135 (0.034)
-0.030 (0.031) -0.018 (0.033)
-0.055 (0.028)  -0.052 (0.031)
0.041 (0.029) 0.031 (0.031)
-0.051 (0.032)
0.032  (0.031)
-0.003  (0.031)
0.009 (0.035)
-0.021  (0.033)
0.008 (0.035)
0.034  (0.034)
-0.015  (0.035)
-0.018 (0.033)
-0.046  (0.033)
0.043  (0.034)
0.002  (0.035)
0.006 (0.002) 0.006 (0.002) 0.006 (0.002) 0.006 (0.002)
0.054  (0.054) 0.053  (0.053) 0.052  (0.052) 0.052  (0.052)
-3007.13 -3010.46 -3025.76 -3010.01
-2992.40 -2941.72 -2898.10 -2823.44
1002 1002 1002 1002
1.13 1.25 0.81 0.79



A.2 Monte-Carlo Analysis

In this section, we report results from a Monte-Carlo analysis that suggests that
ARIMA(0,1,q) with “large” q (e.g., four years of lags) are better able to capture
empirically relevant low-frequency mean reversion than lower-order ARIMA(p,1, q) with
pand g < 3. In addition, we show that ARIMA(0,1, ) models with large g are not
subject to substantial bias in the predicted persistence of the series when the true data
generating process is not nested by the ARIMA(0,1, q) structure.

We focus our analysis on the natural logarithm of the real U.S. net operating
surplus of private enterprises. This variable, which is a proxy for capital income, is the
driving process in the model in the paper.

Our analysis is conducted as follows:

We start by estimating a total of 8 statistical models on the available data:

- ARIMA(1,0,1), ARIMA(2,0,2), ARIMA(3,0,3); using linearly detrended data

- ARIMA(1,1,1), ARIMA(2,1,2), ARIMA(3,1,3), ARIMA(0,1,12), ARIMA(0,1,16).
The first group of models is stationary and the second group is non-stationary.

Then, we use the estimated models as the true data generating process (DGP) to
simulate 200 samples of 252 periods; this simulated sample length matches the sample
length of the empirical data. Hence we have eight models, each of which has 200
simulated samples, or 1600 simulated samples in total. For each of these 1600
simulated samples, we estimate the following five models: ARIMA(0,1,4), ARIMA(0,1,8),
ARIMA(0,1,12), ARIMA(2,1,2), and ARIMA(3,1,3). Hence, we are generating 8000
maximum likelihood estimations. As expected, about 5% of the estimates are
automatically discarded by Stata (the statistical software we use) because of a failure in
the convergence algorithm.

One well-known problem when estimating moving average (MA) models is that
the maximum likelihood estimator of the moving average root (i.e., the negative of the
sum of the lagged MA coefficients) tends to “pile up” at a value of 1, which means that

the predicted long-term persistence of a shock equals 0. This pileup occurs because the



sample likelihood function is locally flat at an MA root of 1, so that it is a local maximum
of the likelihood function and may be the global maximum in finite samples, even if the
true MA root is less than unity (see Campbell and Mankiw 1987 or Stock 1994 for
discussions).

As anticipated, in our simulations we observe that the estimated MA root is
often exactly equal to 1. In the case of stationary DGPs with an infinite sample, this is of
course what the estimation “should” find, because the true persistence of a shock
equals zero. For the non-stationary DGPs that we use, however, true persistence is
never zero. There is no simple solution for dealing with estimation results that imply
exactly zero persistence, because it is impossible to know with certainty whether the
likelihood function actually does have a global maximum away from the unit MA root.

To deal with this issue, we report in each case the percentage of simulations for
which the MA root was exactly unity (or more precisely, the absolute value of the sum
of MA coefficients was within 0.0001 of -1) and the mean estimated long-term
persistence including or dropping these cases.

We furthermore report the percentage of simulations for which the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC) -- also called the
Schwarz Criterion -- would select either the ARIMA(2,1,2) or the ARIMA(3,1,3) over the
ARIMA(0,1,9) models.



Stationary data generating processes

In all of the following three cases, the true model that is used to generate simulated

data is stationary, and consequently the true underlying persistence is 0.

Case 1: Data generating process is ARIMA(1,0,1)

(0,,4) [(0,,8) |(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 0.99 0.63 0.35 0.35 0.28
Std(est. persistence) 0.18 0.30 0.35 0.49 0.49
% of simulations with exact zero 0.0% 8.4% 36.1% | 59.2% | 66.0%
Mean est. pers. w/o exact zeros 0.99 0.68 0.55 0.86 0.83
The AIC and BIC select either the ARIMA(2,1,2) or (3,1,3) in 90.1% and 88.5% of all
simulations, respectively.
Case 2: Data generating process is ARIMA(2,0,2)

(0,1,4) |(0,1,8) |(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 1.20 0.56 0.22 0.67 0.29
Std(est. persistence) 0.19 0.36 0.33 0.62 0.52
% of simulations with exact zero 0.0% | 16.1% 57.3% | 40.6% | 69.3%
Mean est. pers. w/o exact zeros 1.20 0.67 0.51 1.12 0.96
The AIC and BIC select either the ARIMA(2,1,2) or (3,1,3) in 89.6% and 85.9% of all
simulations, respectively.
Case 3: Data generating process is ARIMA(3,0,3)

(0,1,4) |(0,,8) |(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 1.36 0.50 0.20 0.75 0.91
Std(est. persistence) 0.21 0.37 0.31 0.66 0.61
% of simulations with exact zero 0.0% | 21.9% | 571% | 393% | 26.5%
Mean est. pers. w/o exact zeros 1.36 0.65 0.47 1.23 1.24

The AIC and BIC select either the ARIMA(2,1,2) or ARIMA(3,1,3) in 50.5% and 64.3% of

all simulations, respectively.

We conclude that all estimated processes fail to consistently detect the mean-

reversion in the true data generating process. This problem is particularly pronounced




for the ARIMA(2,1,2) and ARIMA(3,1,3) models when the data generating process

becomes relatively complicated (Case 3). The ARIMA(0,1,12) models tends to predict

low persistence; it often estimates an MA root of unity but even if it doesn’t, it on

average predicts a persistence well below 1, unlike the low-order models. Despite the

superior persistence predictions of the ARIMA(0,1,12), the information criteria usually

select either the ARIMA(2,1,2) or ARIMA(3,1,3).

Non-stationary data generating processes

In the following five cases, the true model that is used to generate simulated data is

non-stationary.

Case 4: Data generating process is ARIMA(1,1,1) with true persistence of 1.25

(014 |(018) |(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 1.25 1.21 1.20 1.10 1.09
Std(est. persistence) 0.15 0.23 0.32 0.48 0.54
% of simulations with exact zero 0.0% 0.5% 1.1% | 11.6% | 13.8%
Mean est. pers. w/o exact zeros 1.25 1.22 1.21 1.24 1.26

The AIC and BIC select either the ARIMA(2,1,2) or ARIMA(3,1,3) in 85.0% and 75.6% of

all simulations, respectively.

Case 5: Data generating process is ARIMA(2,1,2) with true persistence of 1.29

014 (01,8 [(0,1,12) | (2,1,2) |(3,1,3)
Mean estimated persistence 1.24 1.22 1.22 1.19 1.11
Std(est. persistence) 0.14 0.24 0.33 0.53 0.56
% of simulations with exact zero 0.0% 26% | 109% | 328% | 41.7%
Mean est. pers. w/o exact zeros 1.24 1.22 1.23 1.34 1.27

The AIC and BIC select either the ARIMA(2,1,2) or ARIMA(3,1,3) in 90.1% and 82.3% of

all simulations, respectively.




Case 6: Data generating process is ARIMA(3,1,3) with true persistence of 1.33

(0,4 (0,8 |(0,1,12) | (2,1,2) |(3,1,3)
Mean estimated persistence 1.33 1.24 1.19 1.10 1.31
Std(est. persistence) 0.15 0.24 0.34 0.57 0.60
% of simulations with exact zero 0.0% 0.5% 1.6% | 12.5% 5.7%
Mean est. pers. w/o exact zeros 1.33 1.25 1.21 1.26 1.39

The AIC and BIC select either the ARIMA(2,1,2) or (3,1,3) in 80.2% and 71.9% of all

simulations, respectively.

Case 7: DGP is ARIMA(0,1,12) with true persistence of 0.36

014 (01,8 [(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 1.23 0.29 0.20 0.87 0.78
Std(est. persistence) 0.27 0.24 0.23 0.62 0.60
% of simulations with exact zero 0.0% | 30.2% | 48.7% | 241% | 21.1%
Mean est. pers. w/o exact zeros 1.23 0.42 0.38 1.14 0.99

The AIC and BIC select either the ARIMA(2,1,2) or (3,1,3) in 7.0% and 67.3% of all
simulations, respectively. (The AIC would select the ARIMA(2,1,2) or ARIMA(3,1,3) over
the ARIMA(0,1,8) in 23.6% of cases.)

Case 8: DGP is ARIMA(0,1,16) with true persistence of 0.29

014 (01,8 |(0,1,12) | (2,1,2) | (3,1,3)
Mean estimated persistence 1.25 0.28 0.22 0.88 1.00
Std(est. persistence) 0.26 0.26 0.30 0.62 0.52
% of simulations with exact zero 0.0% | 354% | 525% | 273% | 15.7%
Mean est. pers. w/o exact zeros 1.25 0.43 0.46 1.22 1.18

The AIC and BIC select either the ARIMA(2,1,2) or (3,1,3) in 6.6% and 64.6% of all
simulations, respectively. (The AIC would select the ARIMA(2,1,2) or (3,1,3) over the
ARIMA(0,1,8) in 24.2% of cases.)

We conclude that in cases 4, 5, and 6, where the true data generating process is
characterized by persistence above 1, the persistence implied by the estimated
ARIMA(0,1,12) model is somewhat downward biased, but not severely so. In cases 7 and

8, on the other hand, where the true data generating process is characterized by



persistence well below 1, the ARIMA(0,1,8) and ARIMA(0,1,12) models are the only ones
that on average come close to estimating the right persistence, while lower-order
models usually fail to predict any mean reversion. Nevertheless, the information criteria
frequently choose one of the low-order models (particularly the BIC).

The pileup problem discussed above is severe for the ARIMA(0,1,12) model in
cases 7 and 8 and drives the slight downward bias apparent in the first lines in the
respective tables. If runs where this occurs are disregarded, the estimated persistence is
slightly upward-biased. In the impulse response functions in Exhibits 2a-2d of the paper,
implied persistence never equals zero.

Overall, we believe that the slight downward bias we find for the ARIMA(0,1,q)
for large  is outweighed by this specification’s ability to detect mean reversion even in
samples of the size we use in our empirical work. Low-order models, on the other hand,
systematically over-predict persistence when the true underlying process is partially

mean reverting.

A.3 Detailed description of model

Consider a representative agent economy with two Lucas-style trees. An equity
tree generates stochastic dividends, X,, and a labor tree generates deterministic labor
income, Y. Dividends can be decomposed into a fixed component, £, and a zero-mean
stochastic process given by

Xpy = X% + BX, +17y, (1)

Agents hold intuitions generated by

AX, = PAX + &, (2)
For example, equation (2) is the model that is almost always chosen by the Bayesian

Information Criterion from the ARIMA(p,1,0) class when the true data-generating

process is equation (1).! Assume that parameter ¢ is pinned down using ordinary least

1 This assumes that the econometrician has a relevant macro sample of 252 quarters
of data.



a-p[-1
squares’, so that o =Tﬂ. Hence, ¢ is not a free parameter. This simple growth

regression is used to form intuitive forecasts, which we express as |, [xm].

Agents form beliefs — which we call natural expectations -- that are a weighted

combination of intuitive expectations and rational expectations.
Nl [)(tJrr]Eﬂlt[XtJrr]_'_(l_/l) El[)(t+r] (3)

The representative agent has time-separable quadratic preferences, and discount
factor 0. We study an open economy with foreign lenders who are willing to borrow
and lend at a constant risk-free (gross) rate of interest R. To enhance tractability, we
assume that OR =1, which implies that consumption is proportional to the discounted
value of forecasted claims, where the discount factoris 1/R.

The economy’s dynamic budget constraint is given by,

B., =¢ +RB,—x -V,

t+1

where B, is the debt to foreign agents in period t, and c,is consumption in period t. For

simplicity, we assume that foreign economic agents have no claims on domestic capital.

This is consistent with non-rational home bias or rational non-diversification coming

2 To derive the value of @, start with the true data generating process for x and difference it to
obtain:
AX, = alX_, + PAX, , + & —&_,. (1)
Now multiply the RHS and LHS of (1) by AX,_, and take expectations. Specifically, execute this
step three times, for 7 =0,1,2. These three calculations will yield a system of second moments:
V (AX) = aCoV(AX, AX_,) + BCOV(AX,AX ) + (2 — )T,
Cov(AX,AX_,) = aV (AX) + BCOV(AX,AX ) -0’
CoVv(AX,AX ,) = aCoV(AX,AX )+ BV (AX)
Solve this system to recover the value of @, which is an OLS coefficient:
b= Cov(AX,AX ) _ —,B—l.
V (AX) 2




through an agency channel.® Our results would be qualitatively similar as long as
domestic agents hold a disproportionate share of the domestic capital stock.

We simulate the model at quarterly frequencies. The quarterly risk-free gross return
is R=1.015. The parameters on the true data generating process—equation (1)—are
a=1.16 and f=-0.24. These values are estimated by first detrending the constant
dollar NIPA data for the net operating surplus of private businesses* and then estimating
equation (1). This procedure is biased because it imposes stationarity. We study this
extreme case to illustrate ideas rather than because we believe that there is no
persistent component in capital income. The stationarity property can be relaxed
without meaningfully changing the results of this paper. We set the standard deviation
of innovations in equation (1) to o =0.05. This is done so that equilibrium (annual)

asset volatility matches the historical average standard deviation of 0.17. We set the

average capital income share, ,u/(,u+ y) , to 1/3, which matches the historical average.

Finally, we take a shot in the dark and set the intuitive forecasting weighting parameter
in equation (3) to 4 =%. In other words, intuitive forecasting and rational forecasting
are equally influential in the mind of the representative agent. In future work, this
parameter could be estimated using a moment-based method. Finally, to enhance the
simplicity of our closed form expressions, we let risk aversion become vanishingly small,
so that asset pricing can be done with the risk free rate. Specifically, we study the
limiting economy that emerges as the weight on the quadratic term in the utility
function goes to zero.

Under these assumptions, the intuitive forecast for discounted equity returns is,
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The rational forecast for discounted equity returns is,

3 For example, moral hazard and adverse selection make it inefficient for foreign
investors to own most of the U.S. residential housing stock.
4 NIPA accounts, 1947:1 to 2009:4, Table 1.10, line 12. See discussion in previous section.
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For the purposes of Exhibit 3a, we define the cumulative t-period gross return as
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This definition implicitly assumes that equity dividends are reinvested in the safe asset

with gross annual return R. The cumulative excess return is then

These definitions have the desirable property that the asymptotic cumulative return for
the Natural Expectations model matches the asymptotic cumulative return for the
Rational Expectations model. Intuitively, agents realize the same dividend payouts
from the Lucas tree whether or not they have rational expectations; the cumulative

excess return in the long-run is therefore unaffected by the nature of belief formation.

Finally, we have also analyzed an extended version of the model with slow
adjustment in consumption, which is like a consumption habit. In this “habit” version of
the model, we assume that consumption is an equal-weighted average of last period’s
consumption and “target” consumption. Target consumption is defined as the annuity
value of wealth (this is the consumption level implied by the model without habits).
Adding a habit improves the model’s empirical fit with respect to high frequency
consumption dynamics. Without the habit, the model predicts that consumption
responds instantly to wealth innovations, which leads to counterfactually high
consumption volatility. The habit reduces this volatility, without materially affecting the

predictability properties we are focusing on (reported in Table A.1, below).



A.4 Empirical evaluation

The following table reports the degree of return predictability using both empirical
moments (“data”) and simulated moments (“model”). The moments match at almost all
horizons. For the simulations, we use the calibrated model to generate 1000 samples,
each of which has 252 periods. Hence, our real and simulated samples have matched

lengths.

Predictability of excess returns

P

i corr(efo ’rt”J corr (r,,r,.) corr (Ac,, .., )

DATA MODEL DATA MODEL DATA MODEL
1 -0.12 -0.10 0.09 0.00 -0.03  0.00
2 -0.14 -0.11 -0.05 -0.04 0.00 -0.04
3 -0.13  -0.10 -0.03 -0.05 -0.06 -0.05
4 -0.14 -0.09 -0.02 -0.05 -0.08 -0.05
5 -0.14 -0.08 -0.05 -0.04 -0.06 -0.04
6 -0.12 -0.07 -0.06 -0.04 -0.06 -0.04
7 -0.12 -0.07 -0.13 -0.03 -0.02 -0.03
8 -0.10 -0.06 0.01 -0.03 -0.08 -0.03

Caption: Correlations calculated with U.S. data (1947:1 to 2010:2) and simulated data
The ratio p, /e is the S&P 500 index divided by 40 quarters of inflation-adjusted

earnings (Campbell and Shiller 1988). P/E ratios come from Robert Shiller’s website.
Excess returns come from Kenneth French's website: "the value-weighted return on all
NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate
(from Ibbotson Associates).” Real consumption is from the NIPA accounts. For the
data we use changes in log consumption. For the model we use changes in the
absolute level of consumption, since the simulated model has no long-run growth.
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