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Abstract

This article reviews existing research at the intersection of genetics

and economics, presents some new findings that illustrate the state of

genoeconomics research, and surveys the prospects of this emerging

field. Twin studies suggest that economic outcomes and preferences,

once corrected for measurement error, appear to be about as herita-

ble as many medical conditions and personality traits. Consistent

with this pattern, we present new evidence on the heritability of

permanent income and wealth. Turning to genetic association stud-

ies, we survey the main ways that the direct measurement of genetic

variation across individuals is likely to contribute to economics, and

we outline the challenges that have slowed progress in making these

contributions. The most urgent problem facing researchers in this

field is that most existing efforts to find associations between genetic

variation and economic behavior are based on samples that are too

small to ensure adequate statistical power. This has led to many false

positives in the literature. We suggest a number of possible strategies

to improve and remedy this problem: (a) pooling data sets, (b) using

statistical techniques that exploit the greater information content of

many genes considered jointly, and (c) focusing on economically rele-

vant traits that are most proximate to known biological mechanisms.
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1. INTRODUCTION

With the sequencing of the human genome in 2001 (Lander et al. 2001, Venter et al. 2001),

and the rapid, ongoing development of new technologies for measuring and analyzing the

genome, the study of genetics has been transformed. Until recently, almost no information

was available about genetic variation across individuals. Now most common genetic

variation can be inexpensively measured.

These advances in genetics are in turn transforming medical research. Some diseases

have been linked to single genetic mutations in specific genes (e.g., Huntington’s disease

and Fragile X syndrome), which can be assayed to diagnose the disease, predict the age of

onset and/or severity, and better understand how treatment response varies as a function of

genetic characteristics. In the case of complex diseases or conditions, such as macular

degeneration and obesity, new methods are beginning to identify the ensembles of genes

that, along with environmental forces, account for individual differences. Unfortunately,

each genetic variant identified in these studies of complex traits typically explains only a

small amount of variation in the trait; therefore, the genetic risk factors identified so far are

insufficient for the purpose of accurate medical diagnosis. Instead, the main benefit comes

from the identification of new biological pathways and targets for therapeutic interven-

tion. In short, genetics research has identified “new biology” for many major diseases,

including diabetes, cancer, and schizophrenia.

Social scientists—including psychologists, anthropologists, political scientists, and, increas-

ingly, sociologists and economists—have begun to measure genetic variation and study how

it relates to individual behaviors and outcomes. Early work involved measuring just a few

candidate genes in small samples of laboratory participants. The costs of genotyping have

now fallen to the point at which comprehensive information on a person’s genetic constitu-

tion can be obtained at a moderate cost. Consequently, some large-scale social science sur-

veys, such as the Health and Retirement Study, are gathering such data, and others will

likely do so soon. With these new data sources, the scale of research at the intersection of

social science and genetics will surely explode.

The purpose of this article is to review research at the intersection of genetics and

economics, or genoeconomics (Benjamin et al. 2007); to present some new findings that

illustrate the current state of the field; and to survey the field’s prospects.

In Section 2, we begin by developing a simple conceptual framework that defines some

key terms and makes explicit some critical assumptions. In Section 3, we review the

economic research conducted in the tradition of classical behavior genetics—primarily

involving comparisons between identical and fraternal twins—that seeks to estimate heri-

tability for economic measures: the fraction of the variance that can be explained by

genetic factors. A remarkable implication from this work is that in modern Western

societies, for most outcomes in life, over half the resemblance of two biological siblings

reared in the same family stems from their genetic similarity. Another main implication is

that, despite arguably being more complex and “downstream” from biochemical variation

than psychological traits such as cognitive ability and personality that are the traditional

realm of behavior genetics, economic outcomes and preferences appear to be as heritable as

those traits, once adjustment is made for measurement error (Beauchamp et al. 2011a,b).

In Section 4, we present an overview of what we see as the four ways that the inter-

section of molecular genetics and economics promises ultimately to contribute to economics:

(a) identifying and measuring latent traits, (b) identifying biological mechanisms that

Candidate gene:

agenetic polymorphism

hypothesized to have
a causal effect on some

trait (or disease); the

hypothesis is based

either on what is
believed about the

biological function of

the gene where the

genetic polymorphism
is located or on

previously reported

associations between

that genetic
polymorphism and a

related outcome

628 Benjamin et al.

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

62
7-

66
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
9/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



influence economic behavior, (c) providing exogenous proxies for preferences and abilities

that may be used as control variables or—more problematically—as instrumental vari-

ables, and (d) predicting the differential effects of policies across individuals with different

genetic constitutions. We review the small, but growing body of work that reports associ-

ations between specific genes and economic traits. We end the section by outlining the main

challenges obstructing progress in genoeconomics and discuss different ways of confronting

these challenges.

In Section 5, we illustrate some of these themes with examples from our own work.

Using an Icelandic sample, the Age, Gene/Environment Susceptibility-Reykjavik Study

(AGES-RS), we searched for associations between a set of outcomes of interest to econ-

omists and a set of candidate genes previously associated with cognitive functions or

known to be involved in the brain’s decision-making circuitry. We found a promising

association between a particular genetic variant and educational attainment. The associ-

ation was biologically plausible, associated with cognitive function, and replicated in a

nonoverlapping sample from the same respondent population. The association then

failed to replicate in three other samples. We further illustrate the widespread non-

replicability of candidate gene associations by reviewing a systematic study we con-

ducted of previously published associations between cognitive ability and 12 candidate

genes. Across three new, large samples, we are unable to replicate these associations. We

close Section 5 by proposing a number of strategies for surmounting the challenges that

face genoeconomic research. If the genoeconomics enterprise is to bear fruit, it is impor-

tant that social scientists recognize the many methodological lessons that have been

learned in medical genetics over the past decade regarding the frequency of false positives

in genetic associations.

This review extends the analysis of Benjamin et al. (2007) and Beauchamp et al.

(2011b). Benjamin et al. (2007) provide an initial definition of genoeconomics and survey

the potential contributions of genetic studies in economics at a time when no such studies

had yet been performed. Beauchamp et al. (2011b) report results from a large-scale genetic

association study of educational attainment, which failed to identify any replicable associ-

ations. Using those results as a case study, Beauchamp et al. (2011b) reach similar con-

clusions as those presented here regarding the inferential challenges in genoeconomic

research. Although here we primarily review published research at the intersection of

genetics and economics and offer our perspective on the emerging field, we also present

several new findings. Supplemental Appendix 1 provides details regarding our new behav-

ior genetic results (in Section 3), which use Swedish Twin Registry data to estimate the

heritabilities of permanent income and wealth. Supplemental Appendix 2 provides details

regarding our molecular genetic analysis (in Section 5) from the Icelandic sample (follow

the Supplemental Material link from the Annual Reviews home page at http://www.

annualreviews.org).

2. CONCEPTUAL FRAMEWORK

We adopt a conceptual framework that serves three purposes: It defines genetics terms that

we use throughout the article, it makes explicit the assumptions typically made in empirical

work, and it helps clarify the link between behavior genetics and molecular genetics. We

omit many biological nuances to focus on the concepts that are critical to understanding

the field.

www.annualreviews.org � The Promises and Pitfalls of Genoeconomics 629
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Human DNA is composed of a sequence of approximately 3 billion pairs of nucleotide

molecules, each of which can be indexed by its location in the sequence.1 This long

sequence—the human genome—has subsequences called genes. Humans are believed to

have 20,000–25,000 genes. Each gene provides the instructions that are used for building

proteins. These proteins affect the structure and function of all cells in the body.

At the overwhelming majority of locations, there is virtually no variation in the nucle-

otides across individuals. The segments of DNA in which individuals do differ are called

genetic polymorphisms (from the Greek poly, meaning “many,” and morphisms, meaning

“forms”). For simplicity, our discussion here focuses on the most common kind of genetic

polymorphism, called a single-nucleotide polymorphism (SNP). SNPs are locations in the

DNA sequence in which individuals differ from each other in terms of a single nucleotide.

A single gene may contain hundreds of SNPs, and SNPs are also found in DNA regions that

are not part of genes. We index SNPs by j, and we let J denote the total number of SNPs in

the genome [currently it is believed that J � 52 million (see the build statistics for Homo

sapiens in Natl. Cent. Biotechnol. Inf. 2012)]. Conceptually, we can think of other kinds of

genetic polymorphisms in the same way as SNPs, so focusing on SNPs is not misleading

given our purposes.2

At the vast majority of SNP locations, there are only two possible nucleotides that

occur. The nucleotide of a SNP that is more common in a population is called the major

allele, and the nucleotide that is less common is called the minor allele. At conception, each

individual inherits half of her DNA from her mother and half from her father. For a given

SNP, one allele is transmitted from each parent. The gene, and hence the protein it pro-

duces, is affected by the genetic material received from both parents, but it does not matter

which material came from which parent. Therefore, for each SNP, there are three possibil-

ities: An individual has zero minor alleles, one minor allele, or two minor alleles. This

number is called the individual’s genotype, and for individual i for SNP j, we denote its

value by xij.

Fix some outcome of interest, e.g., educational attainment, income, risk preferences, or

body mass index. Let yi denote the value of this outcome for individual i. The simplest

model of genetic effects posits that yi is determined according to

yi ¼ mþ
XJ

j¼1

bjxij þ Ei, ð1Þ

where m is the mean value of yi in the population; bj is the effect of SNP j; and Ei is the effect
of exogenous residual factors. Equation 1 embeds a variety of assumptions. For example,

the restriction that the genotype’s effect is linear in the number of minor alleles is a sim-

plifying assumption that can be, and often is, relaxed. Below we discuss some other impor-

tant extensions of Equation 1.

bj should be understood as the treatment effect from an experiment in which one SNP

(and nothing else in Equation 1) is changed at conception. Although such experiments

are conducted on nonhumans, in humans this treatment effect is a hypothetical construct.

1The human genome is divided into 23 chromosomes. Each cell (aside from egg and sperm cells) includes two copies

of each chromosome, one inherited from the mother and one from the father (except in the case of the Y chromo-

some, which is inherited by males only and comes entirely from the father).

2Other kinds of genetic polymorphisms include insertions or deletions from the DNA sequence and variable numbers

of repetitions of a series of nucleotides.

Gene: a sequence

of nucleotides in

DNA that provides
instructions for

building a particular

protein or proteins

Genetic

polymorphism:

a segment of DNA
that differs between

individuals

Single-nucleotide

polymorphism (SNP):

a single nucleotide
location in the DNA

that varies between

individuals

Major allele: the

nucleotide of a SNP
that is more common

in the population;

for non-SNP genetic

polymorphisms with
two alleles, the major

allele is the term for

the more common

variant in the
population

Minor allele: the

nucleotide of a SNP

that is less common

in the population;
for non-SNP genetic

polymorphisms with

two alleles, the minor

allele is the term for
the less common

variant in the

population

Genotype: for a given

SNP, an individual’s
number of minor

alleles
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If bj 6¼ 0 for some j, then SNP j is a called a causal SNP. As an example, it is now believed

that there is a causal SNP in a gene called FTO on body weight (Frayling et al. 2007).3 There

are many ways in which FTO could affect body weight, e.g., by coding for a protein involved

in metabolism or by affecting food preferences. Identifying the correct mechanism(s) is an

active area of research.

The residual term, Ei, is often called the environmental effect, but this terminology is

imprecise and potentially misleading. Because the genotypic effects may operate through

environmental channels, Ei should be interpreted as the component of environmental fac-

tors that are not endogenous to genetic endowment (Jencks 1980). For example, if the

mechanism through which the FTO SNP affects body weight is a preference for energy-rich

foods that leads to increased caloric intake (as suggested in Cecil et al. 2008), then the

component of caloric intake that is genetically induced is not part of Ei.
Two important assumptions implicit in Equation 1 are quite strong and are therefore

relaxed in richer models. First, the genotypes, xij and xij0, for two different SNPs, j and j0,
may interact in affecting the outcome. Second, a genotype xij may interact with factors in Ei
in affecting the outcome. It is often claimed that such gene-gene interaction and gene-

environment interaction effects matter for many outcomes. Indeed, because the treatment

effect of a genotype is not a structural parameter, it will vary with some environmental

conditions. For example, Rosenquist et al. (2012) report that the effect of the FTO SNP

depends strongly on birth cohort.

Most of this article is concerned with potential contributions that the field of genetics

could make to the field of economics. We note here, however, a potential contribution that

economics could make to genetics. The modeling tradition in economics could help move

beyond the crude statistical framework outlined here toward more structural models. For

example, a structural model of FTO might allow it to affect the marginal utilities of

different foods, and possibly also the (production) function that maps caloric intake to

body weight. Such a model would make predictions regarding how the treatment effect of

the SNP would vary as a function of the prices and income of an individual, and it might

predict compensatory behaviors, such as more exercise to try to reduce elevated body weight.

The estimated model could be used to make predictions about the effects of changes in the

economic environment. More generally, insights from economics about how environments

can amplify or dampen genetic effects (e.g., depending on the degree of substitutability or

complementarity) may help geneticists more accurately model, identify, and understand

genetic mechanisms.

3. BEHAVIOR GENETICS AND ECONOMICS

Behavior genetics is a field of research concerned with understanding how genetic endowments

taken as a whole explain individual-level differences in outcomes. In terms of Equation 1,

individual i’s genetic endowment is defined as gi �
PJ
j¼1

bjxij. The field of behavior genetics

predates the availability of genotypic data, and its methods treat genetic endowments

as latent variables whose effects are inferred indirectly by contrasting the similarity in

3In a study of nearly 40,000 Caucasians, Frayling et al. (2007) find that individuals with two minor alleles of a

particular SNP weigh 3 kg more than individuals with two major alleles. This SNP may or may not be causal, as

other unmeasured, correlated SNPs in or near FTO could be the causal SNPs.

www.annualreviews.org � The Promises and Pitfalls of Genoeconomics 631

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

62
7-

66
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
9/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



outcomes of different pairs of relatives. Much research in behavior genetics focuses on

estimating heritability, defined for a given outcome as the ratio of the population variance

in genetic endowment to the population variance in the outcome,
VarðgiÞ

VarðyiÞ
.4 If genetic

endowment gi is independent of residual factors Ei, then heritability can be equivalently

expressed as the population R2 for the regression in Equation 1.

Over the years, there have been a number of misguided attempts to draw policy conclu-

sions from heritability estimates. Goldberger (1979) clarifies the key issues by pointing out

that high heritability of an outcome does not imply that policy is impotent in affecting the

outcome (see Manski 2011 for a more recent discussion of these issues). High heritability

means that existing, naturally occurring variation in Ei does not explain much of the varia-

tion in yi. It does not rule out the possibility that a policy could cause a large change in the

outcome. In Goldberger’s (1979) famous example, even if the heritability of eyesight were

100%, prescribing eyeglasses would still be a policy that passes the cost-benefit test. Con-

versely, the fact that an outcome has low heritability does not imply that it is especially

susceptible to influence by policy.

Despite these important interpretational caveats, we believe there are several reasons

why economists may be interested in knowing the heritability of economic outcomes.5

First, heritabilities of income, educational attainment, etc., are descriptive facts that con-

strain the set of theories regarding heterogeneity in preferences and abilities that can be

considered plausible. For example, high heritability estimates are challenging for “blank-

slate theories” of human nature, which have featured prominently in much social science

work (Pinker 2002).

Second, the pervasive finding of nonnegligible heritabilities for economic outcomes con-

firms the common concern that unobserved genetic endowments may confound attempts

to estimate the effect of environmental variables on outcomes of interest, e.g., the effect of

parental income on children’s outcomes. In the language of econometrics, parental geno-

types are omitted variables that correlate with the child’s genotype (which influence the

child’s behavior) as well as influence the child’s environmental exposures (through the

pathway of parental behavior).

Finally, because heritability can be interpreted as the population R2 for the regression in

Equation 1, it quantifies the degree to which an individual i’s outcome could be predicted if

the bj’s were known and the xij’s were observed (Visscher et al. 2008). This will become an

increasingly relevant upper bound as DNA information becomes more widely available

and better estimates of bj’s become possible. More immediately, a more heritable outcome

may be a better target for efforts to discover particular SNPs that affect it because, all else

equal, a more heritable outcome is likely to have more SNPs of larger effect.

The most common method for estimating heritability is the twin study. Twin studies

exploit the fact that there are two types of twins: monozygotic (MZ) twins, who are

4If Equation 1 is generalized to allow for a nonlinear effect of genotype and /or gene-gene interactions, then it becomes

necessary to distinguish narrow-sense heritability (essentially the R2 from the most predictive linear combination of

the genotypes) from broad-sense heritability (the R2 of the genetic effects from the population regression, which

includes their nonlinear effects). In the simple framework of Equation 1, these two concepts coincide.

5In plant and animal breeding, heritability is a key quantity because it measures the effect a breeder can have on the

mean outcome in the next generation by selecting which animals to breed. In humans, using heritability to predict the

next generation’s outcomes based on the current generation’s outcomes is far more tenuous because the reduced-form

relationships described in Equation 1 are likely to have changed from one generation to the next.
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essentially identical genetically,6 and dizygotic (DZ) twins, whose genetic endowments are

as correlated as those of ordinary siblings. The markedly higher resemblance that is often

observed for MZ twins when compared to DZ twins on an outcome is therefore often

interpreted as evidence that genetic endowment explains some of the variation in the trait.

Under some strong assumptions, data on the outcome for MZ and DZ twin pairs can be

used to obtain a quantitative estimate of heritability. In terms of the conceptual framework

described above, begin by assuming that an individual’s genetic endowment gi is indepen-

dent of residual factors Ei. Because the two members of an MZ twin pair, m and m0, have
virtually identical genetic endowments, the covariance of their outcomes is given by

Cov ym, ym0ð Þ ¼ Var gmð Þ þ Cov Em, Em0ð Þ. ð2Þ
Denoting the two members of a DZ twin pair by d and d 0, the covariance of their out-

comes is given by

Cov(yd, yd 0 ) ¼ 1

2
Var(gd)þ Cov(Ed, Ed 0 ). ð3Þ

The claim that Cov(gd, gd 0 ) equals
1

2
Var(gd) is not an immediate consequence of the fact

that DZ twins share half their DNA on average (see Falconer & Mackay 1996, chapter 9,

for the proof of the claim). The argument relies on the restriction in Equation 1 that

the genotypes affect the outcome linearly and additively, and it requires the additional

assumption that parents mate randomly (i.e., assortative mating on genetic endowments

is ruled out).

If the distribution of genetic endowments and residual factors is the same both among

MZ twins and among DZ twins as among the general population, then all three groups

have the same population variance of genetic endowments, Var(gm) ¼ Var(gd) ¼ Var(gi), as

well as the same population variance of outcomes, Var(ym) ¼ Var(yd) ¼ Var(yi).

The final key assumption is that

Cov Em, Em0ð Þ ¼ Cov Ed, Ed 0ð Þ � CovE. ð4Þ
Following Jencks (1980), this is how we interpret what is informally called the equal-

environment assumption. It requires that the residual factors covary equally for MZ twins

as for DZ twins. Of the several strong assumptions in twin studies, this one has generated

the most controversy, in part because it is rarely defined precisely, and it is easy to misin-

terpret. Clearly, MZ twins experience a more similar environment than DZ twins do: For

example, they are more similar in college completion and career interests, and because they

look the same, they may evoke more similar reactions from others. The terminology

“equal-environment assumption” misleadingly suggests that this greater similarity of MZ

twins’ environments violates the assumption in Equation 4. However, to the extent that

this similarity in environment is caused by the similarity in genetic endowment, it is not

a violation. Instead, the assumption in Equation 4 would be violated if, e.g., social inter-

actions with an MZ twin generate higher covariance in residual shocks. For example,

because he is genetically identical, an MZ twin may learn more about his own preferences

6Even MZ twins are not 100% genetically identical because of mutations. Moreover, there are ways in which even

individuals who have identical genomes at conception biochemically diverge over time. For example, the genome

develops a set of external instructions—the epigenome—that regulates protein production. As a result of heteroge-

neous environmental exposures, identical twins will have different epigenomes.
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from his cotwin’s experiences than a DZ twin does. Stenberg (2011) discusses the concep-

tual issues in interpreting the equal-environment assumption and surveys some attempts to

interrogate it empirically.

Now, dividing through Equations 2 and 3 by the respective population variances,

we obtain

Cov ym, ym0ð Þ
Var ymð Þ ¼ Var gmð Þ

Var ymð Þ þ
Cov Em, Em0ð Þ
Var ymð Þ , ð5Þ

Cov yd, yd 0ð Þ
Var ydð Þ ¼ 1

2

Var gdð Þ
Var ydð Þ þ

Cov Ed, Ed 0ð Þ
Var ydð Þ . ð6Þ

Because
Covðym, ym0 Þ
VarðymÞ

and
Covðyd, yd 0 Þ
VarðydÞ

, the correlation in outcomes across MZ pairs and

DZ pairs, can be estimated from a sample of twins, Equations 2 and 3 define two moment

conditions that jointly identify heritability. Although more sophisticated estimation

methods are available, the simplest heritability estimator is just to “double the difference”

between the correlations,

Var(gi)

Var(yi)
¼ 2

Cov(ym, ym0 )

Var(ym)
� Cov(yd, yd 0 )

Var(yd)

� �
. ð7Þ

Additional moments can be computed from data sets with more sibling types, thereby

allowing the identification of more realistic models that relax the equal-environment

assumption, the assumption that the effects of genotypes are purely additive, that mating

is random, and that genetic endowments do not interact with the environment.7 For an

illustration of some of these ideas in the context of income heritability, we refer readers to

Björklund et al. (2005).

The moment conditions in Equations 5 and 6 also identify
CovE

VarðyiÞ
, which is typically

called the common environmental component. This is the proportion of population vari-

ance in the outcome explained by residual factors shared among twins. It is often inter-

preted as the proportion of population variance in the outcome explained by residual

factors shared among siblings in general, an interpretation that requires the additional

assumption that CovE is also the covariance in residual factors among nontwin siblings.

Although viewed by geneticists as a by-product of the twin method of estimating heritabil-

ity, this common environmental component is of interest to economists: It is a descriptive

statistic measuring how much existing variation in family-rearing environments accounts

for variation in outcomes.

A simple example helps build some intuition for why this variance partitioning will

often imply nonnegligible heritabilities for outcomes such as income that are many steps

removed in the chain of causation from genes and protein production (Jencks 1980).

Consider a large sample of identical twins who are separated at birth and then randomly

assigned to families. Under these conditions, and if nongenetic shared experiences in the

7If Equation 7 is used as the estimator, then positive assortative mating on genetic endowments will generate a down-

ward bias in the estimate of heritability because such mating increases the covariance of the genetic endowments of

DZ twins. By the same token, the presence of nonlinear or nonadditive effects of the genotypes on the outcome will

cause an upward bias in the estimate of heritability because these effects decrease the covariance.

d d d
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uterine environment are not a source of greater MZ similarity, then any resemblance

between the two twins must ultimately result from similarity in genetic endowment. In this

case, Cov(Em, Em0 ) ¼ 0, so heritability could be estimated merely by computing the corre-

lation in outcomes. This example illustrates that heritability estimates capture not only

“direct” genetic effects, but also “indirect” effects that operate through environmental

exposures that are endogenous to genetic endowments. For example, a genotype may be a

source of selection into environments that in turn affect outcomes; e.g., genetic variation in

cognitive ability may be mediated by self-initiated exposure to books (Lee 2010), which is

ultimately caused by genetic influences on preferences. As another example, an individual’s

genotype may evoke environmental responses, such as parental investments (Becker &

Tomes 1976, Becker 1993, Lizzeri & Siniscalchi 2008).

Taubman (1976) introduced twin studies into economics. In a sample of approximately

2,500 white male twins who were all army veterans, he estimated the heritability of income

to be between 18% and 41%. The basic finding that income is moderately heritable has

now been repeatedly replicated in a variety of samples, including nontwin samples (Rowe

et al. 1999, Björklund et al. 2005). Sacerdote (2010) provides a recent review of behavior

genetic work in economics, including research on adoptees.

A string of recent papers has shown that measures of economic preferences, usually

elicited from either incentivized experiments or surveys, have heritabilities in the 20%–

30% range (Wallace et al. 2007; Cesarini et al. 2008, 2009, 2010, 2012; Barnea et al.

2010), although two papers report a considerably higher estimate (Zhong et al. 2009a,

Zyphur et al. 2009). Differences in common environment explain little of the variation in

these outcomes.

These estimates of heritability (and also those of common environment effects) are

likely biased toward zero, however, because of measurement error. Evidence for this view

comes from Beauchamp et al. (2011a), who analyze a data set of responses from over

11,000 twins to a battery of survey questions on risk attitudes. A subset of the respondents

answered the survey twice. Beauchamp et al. (2011a) find that after adjustment for mea-

surement error (assessed through the subset of repeat respondents), heritability for various

survey-based measures of risk taking is estimated to lie in the neighborhood of 40%–50%,

quite similar to the consensus estimates for personality and intelligence (Jang et al. 1996,

Bouchard & McGue 2003). Just as the original estimates of parent-child correlations in

income (Becker & Tomes 1986) were later shown to be greatly attenuated by measurement

error (Solon 1992, Zimmerman 1992, Mazumder 2005), so it would appear that twin-

based estimates of heritability that fail to adjust for measurement error are quite severely

downward biased.

3.1. Heritability of Permanent Income

We now turn to an illustration of the use of twin-study methods by reporting some new

estimates of two variables that are of central interest in economics: permanent income and

net wealth. Past work has tended to focus on the heritability of current income, but for the

purpose of describing inequality in the standard of living, economists are typically more

interested in consumption, or permanent income, than in transitory income. Largely because

of data limitations, existing studies have focused on the heritability of income measured

during a single year (Taubman 1976) or up to three years (Björklund et al. 2005). Here we

present heritability estimates of income averaged up to 20 years. For expositional convenience,
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we relegate a detailed variable and sample description to Supplemental Appendix 1 and

only sketch the details here.

We use a Swedish sample of twins from the Screening Across the Lifespan Twin (SALT)

study, augmented with a small number of individuals who answered a survey administered

by the registry in 1973 (Q73). The SALT sample is described in Lichtenstein et al. (2002)

and is composed of twins born between 1926 and 1958. We use panel data on income from

1968 to 2005, drawn from administrative records. We restrict attention to individuals for

whom we have complete income data for the 20-year period and whose average yearly

income exceeded SEK 1,000 (approximately USD 150).8 Such individuals constitute 94%

of the original sample (for further information about the sample and summary statistics,

see Supplemental Appendix 1). We use the natural logarithm of income, and we residualize

on a second-order age polynomial to account for income differences across birth cohorts.

Table 1 reports MZ and DZ correlations for income. In this sample, the estimated MZ

correlations for single-year log income are 0.41 for men and 0.27 for women, which are

roughly comparable to existing estimates based on US data (Taubman 1976). The male

MZ correlation in our sample is a little higher than the figure reported by Björklund et al.

(2005). However, when we average over a longer time period, we find that both the MZ

and DZ correlations rise, suggesting a larger role for genetic factors in explaining the

variation in permanent income. In male MZ twins, the correlation rises from 0.41 to

0.63, and in female MZ twins, the correlation rises from 0.27 to 0.48. The DZ twin cor-

relations also rise, but not as dramatically.

8We drop individuals with very low measured income because we believe such low numbers are especially likely to

reflect reporting error or suggest that the individual in question had sources of income that were not known to the tax

authorities. The threshold of SEK 1,000 is arbitrary, but the results do not vary substantively as we vary the threshold.

Table 1 Sibling correlations for log income averaged over multiple years

Men Women

MZ DZ p value MZ DZ p value

1 year 0.406

(0.344–0.474)

0.164

(0.123–0.211)

<0.001 0.266

(0.206–0.327)

0.143

(0.095–0.190)

0.002

3 years 0.513

(0.412–0.633)

0.193

(0.150–0.243)

<0.001 0.293

(0.237–0.352)

0.137

(0.099–0.184)

<0.001

5 years 0.512

(0.447–0.574)

0.201

(0.161–0.251)

<0.001 0.297

(0.239–0.361)

0.198

(0.145–0.253)

<0.001

10 years 0.556

(0.486–0.618)

0.241

(0.199–0.285)

<0.001 0.353

(0.293–0.419)

0.226

(0.180–0.272)

<0.001

20 years 0.626

(0.574–0.676)

0.270

(0.223–0.317)

<0.001 0.481

(0.431–0.528)

0.221

(0.170–0.282)

<0.001

Data are from the SALT sample of the Swedish Twin Registry. This table reports the log-income correlations for monozygotic (MZ) and dizygotic

(DZ) twin pairs, separately by sex, with log income averaged over 1, 3, 5, 10, and 20 years. Income is defined as the sum of income earned from

wage labor, income from own business, pension income, and unemployment compensation. The sample is restricted to those individuals for whom

there are income data at ages 31 through 50 and the average income exceeds SEK 1,000 (approximately USD 150). Confidence intervals are in

parentheses below the point estimates. Confidence intervals and p values are bootstrapped.
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In these data, applying the simple double-the-difference estimator (Equation 7) typically

produces a negative estimate of the family environment.9 We therefore instead proceed by

imposing the restriction that the family environment component is zero and obtain a rough

estimate of heritability by taking the average of the MZ correlation and twice the DZ

correlation. This estimator suggests that heritability increases from 0.37 to 0.58 in men as

we move from single-year income to a 20-year average. The corresponding figures for

women are 0.28 and 0.46. These findings suggest that permanent income is more heritable

than single-year income. This conclusion partly seems to reflect the fact that measurement

error and transitory shocks generate a downward bias in estimates of heritability (Solon

1992, Zimmerman 1992, Mazumder 2005), consistent with our earlier conjecture that the

heritability estimates of many other economic outcomes are downward biased.

These patterns of correlations illustrate Turkheimer’s (2000) three “laws” of behavior

genetics, which are not theoretical necessities, but rather stylized facts that summarize the

broad pattern of empirical findings in several decades of behavior genetics studies. The first

law states that all behavioral outcomes are heritable. For comparison with our estimates of

around 0.50 for permanent income, the heritability of personality traits and cognitive

abilities is about 0.40 to 0.60 (Plomin et al. 1994), and the heritability of height is about

0.80 (e.g., Silventoinen et al. 2003). Indeed, although Turkheimer’s first law is stated

qualitatively, it could be made quantitative: Of the hundreds of outcomes analyzed to date,

almost all have heritabilities estimated between 0.20 and 0.80 (see Plomin et al. 2008 for a

review). The second law states that common family environment explains less variance

than genes do, and the third law states that a substantial part of the variance in the

outcome is left unexplained by the sum of genetic and common environment effects. Our

results are consistent with the second and third laws, as well.

3.2. Heritability of Wealth

To study wealth, we use data from the SALTY (Screening Across the Lifespan Twin Study:

Younger Cohort) survey, which was recently administered by the Swedish Twin Registry.

There are a total of 11,418 usable responses, but the wealth questions we study here were

only administered to approximately 40% of the survey respondents (for further informa-

tion and summary statistics, see Supplemental Appendix 1). Because this sample size is far

smaller, and because wealth data are generally noisier than income data, our results on

wealth are much less precise. Nonetheless, we report these results because, as far as we are

aware, this is the first estimate of the heritability of wealth.

We use responses to a series of questions in which survey respondents are asked to indi-

cate their assets in various categories, as well as their total debt. Because wealth results tend to

be very sensitive to a few outliers with extreme values, we apply two transformations to the

data. The first, which is frequently recommended for wealth data (see, e.g., Pence 2006), is the

hyperbolic sine transformation, sinh�1(x) ¼ ln xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 þ 1)

p� �
. This transformation is used

9Even if the assumptions underlying the variance decomposition (described above) hold exactly, a negative estimate

could occur in a particular sample because of sampling variation and in that case should be interpreted as essentially

an estimate of zero. In this case, because the number of twin pairs is rather large, a more likely explanation is that the

assumptions are violated. For example, a negative common environment–component estimate could be generated by

a failure of the assumption of purely additive genetic effects, which would depress the genetic covariance between

DZ twins, or by a failure of the equal-environment assumption. It is also possible that the measurement errors are

more highly correlated in MZ twins.
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to reduce the influence of extreme observations while—unlike the log transformation commonly

used for other kinds of data—still allowing for negative values. As a robustness check, we also

report results with the variable transformed to have a normal distribution. Formally, we first

percentile-rank transform the net wealth variable and then take the inverse of the standard

normal distribution of the ranking. This ensures that the resulting variable is standard normal.

Table 2 reports MZ and DZ correlations for wealth. The sibling correlations in wealth

are quite low and are estimated with less precision than the income correlations because

only a subset of the SALTY respondents were asked about their assets and debt. Indeed, in

the analyses separately by sex, there is even an instance of the male DZ correlation being

higher than the MZ correlation, which we believe is likely to reflect sampling variation.

When we pool for males and females, however, we find that the correlations in MZ twins

are significantly higher than the DZ correlations, implying heritability levels that range

from about 0.20 to 0.40. Nonetheless, given the small sample and the imperfect measure-

ment, we interpret these findings cautiously.

4. MOLECULAR GENETICS AND ECONOMICS

Molecular genetics is the field of research that studies the structure and function of DNA.

Unlike behavior genetics, which draws indirect inferences regarding the effect of genetic

endowments as a whole, molecular genetics involves directly measuring the genotypes for

particular SNPs. Genoeconomics is an emerging field that incorporates such molecular

genetic data into economic research.

4.1. The Promises of Genoeconomics

In our view, genoeconomics will ultimately make significant contributions to economics.

We emphasize the word “ultimately” because—as is clear below in our discussion of the

pitfalls of genoeconomics—there are many challenges to be overcome before these contri-

butions can be realized. Nonetheless, it is the transformative promise of genoeconomics

that makes us believe that, despite the challenges, the enterprise is worth pursuing. We

anticipate that the eventual contributions will fall into four main categories.

Table 2 Sibling correlations for wealth

Men Women Pooled

MZ DZ p value MZ DZ p value MZ DZ p value

Hyperbolic

sine

0.088

(�0.015–

0.249)

0.162

(�0.007–

0.375)

0.692 0.446

(0.181–

0.573)

0.301

(0.079–

0.280)

0.019 0.282

(0.144–

0.434)

0.109

(0.013–

0.256)

0.054

Standard

normal

0.411

(0.277–

0.533)

0.378

(0.220–

0.524)

0.381 0.380

(0.309–

0.569)

0.072

(0.152–

0.460)

0.096 0.432

(0.331–

0.529)

0.336

(0.219–

0.440)

0.084

Data are from the first wave of the SALTY sample of the Swedish Twin Registry. Net wealth is defined as the difference between the total self-

reported value of assets and total self-reported debt. The asset classes considered are property (including summer house), stocks, bonds, transpor-

tation vehicles, and other. Respondents are asked to prorate in cases of joint ownership of an asset or joint debt. The exact question wording is in

Supplemental Appendix 1. Net wealth is transformed as described in the text. The results do not change appreciably if we remove outliers by

restricting the sample to individuals with an absolute net wealth lower than SEK 10,000,000 (approximately USD 1,500,000). Confidence intervals

are in parentheses below the point estimates. Confidence intervals and p values are bootstrapped.
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4.1.1. Direct measures of previously latent parameters. First, measuring genotypes will

advance empirical analysis by providing direct and exogenous measures of preferences and

abilities. For example, as discussed above, an individual’s FTO genotype may be a measure

of preference for fatty foods. Preferences and abilities are key parameters in many models

but currently must usually be treated as latent, unobserved variables. In principle (although

not yet in practice), genetic methods could be used to identify such key parameters and

thereby enable estimation of richer structural models.

4.1.2. Biological mechanisms. Second, social scientists will use genotypic data to learn

about the biological mechanisms that underlie behaviors of interest. One possibility is that

the genetic data can be used for tests of existing hypotheses. For example, experiments in

which humans are exposed to the neuropeptide oxytocin suggest that oxytocin causes

trusting behavior (Kosfeld et al. 2005). This leads naturally to the hypothesis that variation

in the geneOXTR, which encodes the receptor for oxytocin, may be related to variation in

trust-related behaviors. Unfortunately, the reported association between genetic polymor-

phisms in OXTR and trusting behavior (Israel et al. 2009) has not been replicated

(Apicella et al. 2010). Nonetheless, the use of genetic data to explore existing hypotheses

may bear fruit, and we review a number of efforts along these lines below in the context of

candidate gene studies.

Even more intriguingly, analysis of the genetic data might suggest new hypotheses. In

medicine, unexpected genetic associations with age-related macular degeneration and

Crohn’s disease have led to discoveries of new biological pathways for these diseases

(Hirschhorn 2009). Although it is difficult to anticipate new hypotheses, we suspect they

will arise in economics. We speculate that likely discoveries will involve the nature of

preferences. Whereas economists often study individual differences in terms of heterogene-

ity in “fundamental” preference parameters such as relative risk aversion, the (exponen-

tial) discount rate, and a weighting parameter for altruism, these primitive preferences do

not (yet) rest on biological foundations—these categories were proposed by economic

theorists before the modern age of empiricism. Identifying genetic differences that predict

heterogeneity in behavior may provide an empirical basis for decomposing (or even

rearranging) crude concepts such as risk aversion and discounting into more primitive

attributes with biological microfoundations.

4.1.3. Genes as control variables and/or instrumental variables. Third, social scientists

may use genetic markers as control variables, thereby improving the power of standard

economic analysis. By controlling for variation that would otherwise be absorbed in resid-

uals, economists will be able to lower the standard errors associated with estimates of

nongenetic parameters.

It is also possible that economists will be able to use genes as instrumental variables

(IVs) to infer the causal effect of (nongenetic) factor X on (nongenetic) factor Y using

observational data. For example, this approach has been used in epidemiology to argue

that greater alcohol consumption causes higher blood pressure, using as IVs genetic poly-

morphisms in genes that code for proteins involved in alcohol metabolism (Chen et al.

2008; for reviews of the genetic IVs in epidemiology, see Davey Smith & Ebrahim 2003

and Lawlor et al. 2008).

There are already a number of economics papers that use genes as IVs (Norton & Han

2008, Ding et al. 2009, Fletcher & Lehrer 2009, von Hinke Kessler Scholder et al. 2010).
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For example, Fletcher & Lehrer (2009) study the effect of mental health (X) on academic

achievement (Y). In effect, the idea is to use the fact that genotypes for polymorphisms

affecting mental health are randomly assigned among siblings within a family as a natural

experiment. As usual with IVs, the credibility of the analysis depends on whether the

assumptions underlying IV estimation are satisfied; the fact that genetic effect sizes are very

small, as discussed below in Section 4.6.4, raises the concern of weak instruments, and

the fact that most genetic polymorphisms have many effects, as discussed below in Sec-

tion 4.6.2, suggests that the exclusion restriction will often be violated (Conley 2009,

Cawley et al. 2011).

4.1.4. Targeting interventions. Finally, genetic information could eventually be useful for

targeting social-scientific interventions, much like it is beginning to be useful for targeting

medical interventions. For example, if dyslexia can eventually be predicted sufficiently well

by genetic screening, parents with children who have dyslexia-susceptibility genes could be

given the option of enrolling their children in supplementary reading programs, years

before a formal diagnosis of dyslexia (see Schumacher et al. 2007 for a review of the

genetic predictors of dyslexia). For adults, it is generally feasible and more accurate to

measure realized preferences and abilities directly rather than relying on genetic predispo-

sitions, at least when there is no incentive to misrepresent one’s type. For this reason, in the

realm of economics, targeting interventions is most likely to take the form of parents

obtaining genomic information about their children and then creating a developmental

environment that is most likely to cultivate the children’s preferences and abilities.

4.2. Estimating Genetic Effects

All these potential payoffs involve knowing the effect on an outcome of one or more

particular SNPs. Therefore, most work in genoeconomics to date has been focused on

estimating genetic effects, and that is likely to remain true for the foreseeable future. We

discuss how genetic effects are estimated, and then we turn to the pitfalls of genoeconomics,

most of which involve challenges of estimation and causal inference.

A naı̈ve approach would be simply to estimate Equation 1, yi ¼ mþPJ
j¼1

bjxij þ Ei. Even if

one could measure all J SNPs in the genome, however, this regression would fail the rank

condition (unless one had more than 52 million subjects!). For that reason, it is standard

instead to run K � J separate regressions,

yi ¼ mþ bjxij þ Ei, ð8Þ
one regression for each of K SNPs that have been measured in the sample.

If the genotypes xi1, xi2 , . . . , xiJ were mutually uncorrelated and uncorrelated with Ei,
then estimating Equation 8 rather than the population regression in Equation 1 would

nonetheless yield unbiased estimates of the genetic effect bj. In fact, however, because of

how DNA is transmitted from parents to child, the genotypes of SNPs physically close to

each other on the genome are correlated, often highly so. Consequently, a robustly nonzero

b̂j estimated from Equation 8 does not necessarily imply that the true bj from Equation 1 is

nonzero. SNP j could be proxying for a nearby, correlated SNP—possibly a SNP that is not

included among the K SNPs that have been measured in the sample. For this reason,

finding a robust association is the first step in a longer process (not discussed here) of
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obtaining high-resolution data on the associated SNP and adjacent SNPs to identify which

is the causal SNP.

The estimated coefficient on SNP j could also be biased if genotype xij is correlated with

residual factors Ei. Dealing with this possible confound is an important practical issue that

we discuss below in Section 4.6.1 under the rubric of “population stratification.”

The two main research strategies when testing for genetic association, the candidate

gene approach and the genome-wide association study (GWAS), correspond to the twoways

that researchers choose whichK SNPs to study.

4.3. The Candidate Gene Approach

In a candidate gene study, a researcher specifies ex ante hypotheses about a small set of

K SNPs (with K typically in the 1–30 range), runs the regression in Equation 8 for each,

and tests each of the null hypotheses that bj ¼ 0, usually at the conventional a ¼ 0.05

significance level. Ideally, these hypotheses are derived from the known biological function

of the SNP. In practice, the hypotheses are often based on previously reported associations

with the same outcome or a related outcome, or the choice of SNPs is a result of their

availability in the data set the researchers are using.

The candidate gene approach, or hypothesis-based approach, was the main research

strategy in medical genetics prior to the availability of dense SNP chips that made it

possible and relatively inexpensive to measure hundreds of thousands, or millions, of

SNPs. Candidate gene studies still predominate in the social science literature. Most of the

major early successes in medical genetics were candidate gene studies. For example,

because the plaques found in the brain of Alzheimer’s disease patients contain apolipopro-

teins, researchers examined whether genotypes in the APOE gene, which codes for an

apolipoprotein, are associated with Alzheimer’s disease. These genotypes, based on combi-

nations of two SNPs, are now the strongest known genetic predictors of Alzheimer’s

disease that are common polymorphisms, as opposed to rare mutations (Strittmatter et al.

1993, St. George-Hyslop 2000).

Although the hypothesis-based approach seems intuitively reasonable, aside from the

minority of cases in which the hypotheses are direct (such as APOE), it has a poor track

record in medical genetics. It is now widely accepted that findings from candidate gene

studies typically fail to replicate. In an example that seems typical of the general pattern, a

recent study used a sample with more than 20,000 individuals to examine previously

reported genetic associations with lung function. Of the over 100 genes examined, only

one published association was shown to be robust (Obeidat et al. 2011).

At least three factors seem to account for the apparently high rate of false positives

produced by these studies. First, the sample sizes were often relatively small, and thus the

statistical power is low, in the studies that initially reported positive findings, as discussed

further below. Second, when the hypothesis-based approach is applied to complex diseases

(or human behaviors), the basis for the hypothesis is almost always less precise than

a direct link between a disease- or trait-relevant protein and the gene that codes for it.

Ten years ago, those hypotheses often seemed convincing nonetheless, but today they seem

much less so with the benefit of hindsight. That is partly because there are now many more

known SNPs that could be hypothesized ex ante to be relevant and partly because it has

become clear that—ex post, once an association has been found—it is possible to come up

with seemingly plausible hypotheses about why almost any gene should be associated with
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the outcome of interest. And even if a plausible mechanism linking a gene to an outcome is

identified, there is no guarantee that a particular SNP in the gene selected as a candidate

will affect the gene’s function in the necessary way. Third, publication bias—the tendency

for positive findings, as opposed to nonfindings, to be selectively reported by researchers

and selectively published by journals—is magnified in genetic association research because

the typical data set has data on many outcomes and many SNPs. Hence false positives arise

because of multiple hypothesis testing that is not adequately corrected for. The investiga-

tion of gene-gene and gene-environment interaction effects, although in theory well moti-

vated, in practice exacerbates the multiple hypothesis–testing problem (see, e.g., Duncan &

Keller 2011).

Recognizing these concerns, a leading field journal, Behavior Genetics, has recently

adopted strict standards for publication of candidate gene studies (Hewitt 2012). To be

considered for publication, candidate gene studies must be well powered and must account

for all sources of multiple hypothesis testing, and any new finding must be accompanied by

a replication. Today, the consensus view among genetics researchers is that the results from

candidate gene studies are intriguing but should be interpreted with great caution.

4.4. Genome-Wide Association Studies

A GWAS is an atheoretical exercise that consists of looking for associations between the

outcome and all the SNPs measured on a dense SNP chip (usually K > 500,000, and now

typically K� 2,500,000), without any prior hypotheses. The researcher runs the regression

in Equation 8 for each of the K SNPs and tests each of the null hypotheses that bj ¼ 0 at the

genome-wide significance level, which is a ¼ 5 � 10�8.

The correlation structure of SNPs in the human genome is now well understood, and

the GWAS approach exploits this understanding in two ways. First, the SNPs that are

measured on a dense SNP chip are selected such that jointly they cover, or “tag,” much of

the nonrare genotypic variation across SNPs in the genome. Second, although the human

genome contains approximately 52 million SNPs, because of the correlation structure,

there are only effectively approximately 1 million independent SNPs. The genome-wide

significance threshold of 5 � 10�8 therefore approximates the appropriate Bonferroni-

corrected significance threshold of 0.05/1,000,000 (Panagiotou & Ioannidis 2012).

GWASs have produced many of the recent major discoveries in medical genetics. For

example, the FTO gene mentioned above had not been hypothesized to be linked to body

weight, but it repeatedly turned up in GWAS results. As nothing was previously known

about this gene, its codename was assigned to represent “fat mass and obesity associated,”

and intensive work has begun on discovering its biological functions (Tung & Yeo 2011).

In another example, in type 2 diabetes, GWAS-derived genetic discoveries have implicated

new biological mechanisms and have linked the disease to other processes, such as circa-

dian rhythms (see Billings & Florez 2010).

4.5. Molecular Genetics and Economics: A Review

To date, most published genoeconomics papers are candidate gene studies of some eco-

nomic preference parameter or economic behavior measured in the laboratory. All but one

(Apicella et al. 2010) of the studies focused on laboratory measures reviewed below are

based on samples smaller than 500 subjects, and in some cases smaller than 100 subjects.

Genome-wide

association study

(GWAS): a study in
which hundreds of

thousands of genetic

polymorphisms are

individually tested for
association with some

outcome, without any

prior hypotheses

Genome-wide

significance: 5 � 10�8;
the conventional

level at which an

association is

considered to be
statistically significant

in a genome-wide

association study
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Ebstein et al. (2010) and Beauchamp et al. (2011b) also provide reviews of the work in

genoeconomics to date.

The first genoeconomic association was reported by Eisenberg et al. (2007), who tests

whether two genetic polymorphisms near dopamine receptor genes (DRD2 and DRD4)

are associated with performance on a hypothetical delay discounting task measuring time

preferences. The polymorphism near DRD2 had a significant association with estimated

discount rates, and there was an interaction between the DRD2 and DRD4 polymor-

phisms (but no main effect of the DRD4 polymorphism). Another early paper was

by Knafo et al. (2008), who were inspired by findings that genetic variation near the

AVPR1a gene causes differences in the social behavior of voles (Hammock & Young

2002, Hammock et al. 2005). In a sample of 203 university students, Knafo et al. find

that dictator-game giving was associated with variation in this gene. A number of

genoeconomic papers quickly followed suit. These papers tend to study outcomes that

can be classified into one of two broad categories: decision making under uncertainty or

social preferences.

Several papers inspired by neuroimaging studies of decision making under risk looked

for associations between genes involved in the regulation of the dopaminergic system and

various measures of risk taking. Kuhnen & Chiao (2009) and Dreber et al. (2009) inde-

pendently report an association between a particular polymorphism of theDRD4 gene and

behavior in incentivized laboratory measures of risk taking. Neither Carpenter et al. (2011)

nor Dreber et al. (2011) replicate this reported association. Other papers, also motivated

by neuroeconomic theories, have reported statistically significant associations between

measures of risk taking and candidate genes (Crisan et al. 2009; Zhong et al. 2009b,c;

Roe et al. 2010; Frydman et al. 2011).

There have also been some reported associations with various measures of social pref-

erences. Israel et al. (2009) report an association between a SNP in the gene OXTR and

dictator-game giving. Apicella et al. (2010) fail to replicate this result in a larger sample

and discuss possible explanations for the failed replication. McDermott et al. (2009)

designed an experiment in which 78 genotyped subjects were told that their earnings from

a vocabulary task had been reduced by an anonymous third party. Subjects were then offered

the opportunity to punish the third party. The subjects were told that either 80% or 20%

of their earnings had been taken by the third party. The MAOA genotype predicted the

behavioral response only following the more aggressive provocation. Finally, Zhong et al.

(2010) report that an interaction between a DRD4 polymorphism and season of birth

affects responder behavior in the ultimatum game.

A handful of papers have examined associations between candidate genes and behaviors

and outcomes outside the laboratory, such as credit card debt (De Neve & Fowler 2010,

De Neve 2011), portfolio risk (Kuhnen et al. 2011), happiness (De Neve et al. 2011), and

self-employment (Nicolaou et al. 2011). In a large sample, van der Loos et al. (2011) fail to

replicate the reported association with self-employment.

Beauchamp et al. (2011b) is the only example of a GWAS published in an economics

journal to date, although van der Loos et al. (2010) describe an ongoing study. In a GWAS

of educational attainment with a sample of 7,574 Framingham Heart Study participants,

Beauchamp et al. (2011b) report 20 associations that fell short of genome-wide signifi-

cance. They also report a replication attempt with a sample of 9,535 individuals from a

Dutch sample. None of the 20 SNP associations replicated at the 0.05 significance level,

and only 9 of 20 even had the same sign. Martin et al. (2011) report on the results for a
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GWAS of educational attainment in a sample of 9,538 Australians and also fail to find any

genome-wide significant associations.

4.6. The Pitfalls of Genoeconomics

Despite the recent explosion in the number of papers reporting genotype-behavior associ-

ations, we are pessimistic about the replicability of most findings to date. The most urgent

problem—discussed in detail below—is that the most persuasive evidence suggests that

true genotype-behavior associations have tiny effect sizes, so current research designs in the

social sciences are woefully underpowered. However, even once this problem has been

solved, there are a number of further obstacles that must be overcome before the promises

of genoeconomics mentioned above—providing direct measures of latent parameters, eluci-

dating biological mechanisms, using genes as controls or IVs, and targeting interventions—

can be realized.

4.6.1. Causal inference. The promises of biological mechanisms and genes as IVs require

uncovering the causal effect of particular SNPs on behavior, but most existing research

designs focus on detecting correlations. There are myriad confounds to a causal interpre-

tation. As discussed above, because of the way DNA is transmitted from parents to

children, the genotype of a SNP is often highly correlated with the genotypes of nearby

SNPs, necessitating follow-up work to any robustly detected association to identify which

SNP is actually responsible. Another common confound is that an individual’s genotype is

correlated with her parents’ genotypes, which in turn are correlated with the individual’s

family environment. For example, a SNP may be associated with cognitive ability even

though it actually causes nurturing behavior; an individual with the nurturing genotype is

likely to have parents with that genotype, whose bias toward nurturing behavior may lead

them to create a family environment that potentiates the development of higher cogni-

tive ability.

In practice, the most common concern is confounding from population stratification:

Different groups within the sample differ in allele frequencies and also differ in their

outcome for nongenetic reasons. A famous pedagogical example is the “chopsticks effect”

(Lander & Schork 1994): A study concerned with finding the genetic causes of chopstick

use would find a significant association for any SNP whose allele frequencies differ appre-

ciably between Asians and non-Asians, even though most variation in chopstick use is

explained by cultural factors. This example might seem to suggest that a simple fix would

be to control for race or ethnicity. Indeed, it is standard practice to restrict a genetic

association study to subjects of a common ethnic background. It has been found, however,

that allele frequencies can differ even within ethnically homogeneous populations, such as

different regions within Iceland (Price et al. 2009). For this reason, it is a common practice

in GWASs to include as control variables the first four or more principal components of all

the genotypes measured in the dense SNP chip. These principal components seem to pick

up much of the subtle genetic structure within a population (Price et al. 2006). A disadvan-

tage of candidate gene studies relative to GWAS designs is that they are rarely based on

samples with dense SNP data and hence cannot control for subtle genetic differentiation

using principal components.

In our view, building the case that a robustly identified association is causal will take

time and will require convergent evidence from various research strategies. To rule out a
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number of potential confounds, it would be useful to have evidence for a genetic association

in a data set that includes siblings, using the regression in Equation 8 but with family fixed

effects. When identifying off of within-family variation, population stratification ceases to be

a concern. Moreover, genotypes are randomly assigned to siblings who share the same

biological parents. Complementary with such empirical evidence would be experimental

evidence from animal models, in which genotypes can be experimentally modified at

conception, as well as biological evidence on the function of protein products of the gene.

4.6.2. Pleiotropy. There is a further obstacle to credibly using genes as IVs. For the exclu-

sion restriction to be satisfied, the causal effects of the genes must be understood well

enough to rule out alternative pathways (besides X) by which the genes could affect out-

come Y. Because many genes code for proteins that have multiple functions and effects—

a phenomenon called pleiotropy that in most cases biologists have barely begun to

understand—it seems unlikely that we can be confident about all the consequences of

any particular genotype in the foreseeable future (Conley 2009).

4.6.3. Missing heritability. Targeting interventions is one of the potential contributions

closest at hand because the genetic markers can be merely predictive, rather than causal,

and because an index composed of many SNPs can be used, which may in the aggregate

have substantial predictive power even if any constituent SNP in the index has little or

none.10 However, although we expect eventual successes, it will likely be slow and chal-

lenging to find sufficient predictive power even from an index.

In medical genetics, with the exception of a few, rare, single-gene disorders, there has

been a general failure to find sizeable aggregate predictive power from the associated

genetic markers identified to date—a problem now called the missing heritability puzzle

(see, e.g., Int. Schizophr. Consort. et al. 2009). Consider height, a highly studied physical

trait that both is measured with much less error than behavioral traits and is more herita-

ble. Behavior genetics studies on twins and other relatives indicate that about 80% of the

variability in height results from genetic factors. Furthermore, recent estimates suggest

that, even just using the SNPs measured with current dense SNP genotyping technologies

(which leave non-SNP genetic polymorphisms unmeasured), it should be possible to pre-

dict 45% of the variance in human height (Yang et al. 2010). Yet the aggregate predictive

power from known genotypes is only about 10%, with 0.3% being the largest R2 of any

one of the SNPs in 180 separate locations in the genome so far found to be associated with

height (Lango Allen et al. 2010). This state of affairs for height, and similar states of affairs

for a variety of intensively studied medical outcomes, suggests that for these outcomes, the

bulk of the genetic variance is carried by many SNPs of miniscule effects that are spread

diffusely throughout the genome. If so, unrealistically large sample sizes may be required to

identify all these SNPs. Given the failure to find sizeable predictable power in physical

10The standard method of constructing a predictive index (Int. Schizophr. Consort. et al. 2009) is to take the

coefficients, b̂1, . . . , b̂K, estimated from running the regression in Equation 8 for each of the K SNPs; keep only a

subset ofQ< K of the coefficients such that the genotypes of theseQ SNPs are approximately uncorrelated; and then

form a predictor ŷi for each individual i using an analog of Equation 2, ŷi ¼ m̂þPQ
j¼1

b̂q jð ÞXi, q jð Þ,where q(j) is the j-th SNP

in the subset of Q SNPs. In addition to restricting the subset to SNPs that are approximately uncorrelated, the subset

is often limited further by including only SNPs whose p value from the regression in Equation 8 is below some

threshold. Predictive power is assessed as the R2 from a regression of yi on ŷi in a new sample.

Pleiotropy: multiple

effects of a single gene
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traits, the challenge is likely to be at least as large for behavioral traits where the causal

mechanisms are probably more complex.

4.6.4. Low power. The most urgent problem, however, is that most efforts in the social

sciences to discover genetic associations are underpowered. The fundamental reason is that

almost every true genotype-behavior correlation is probably very small. For example,

cognitive ability is among the most reliably measured and widely studied outcomes in

social science genetics, yet it is unclear whether any purported genetic associations with

cognitive ability are robust. In a meta-analysis of 67 independent samples, variation in the

COMT gene was found to explain 0.1% of the variance in cognitive ability, although even

this estimate is likely to be biased upward because the meta-analysis found evidence of

publication bias (Barnett et al. 2008). Even if this effect size were correct, as the strongest

associations are more likely to be discovered first, most of the SNPs truly associated with

cognitive ability probably have smaller effects. As another example, a recent GWAS of the

classic Big Five personality traits (neuroticism, extraversion, openness, agreeableness, and

conscientiousness) with a sample size of approximately 20,000 individuals failed to find

any genome-wide significant associations (de Moor et al. 2012).

To get a sense of the magnitude of the problem, consider a candidate gene study of a

particular SNP. To simplify, suppose there are only two genotypes for the SNP, with

carriers of the high variant, as opposed to carriers of the low variant, hypothesized to have

a higher value for the outcome. To further simplify, suppose there are only two possibili-

ties: Either there is a true association, or there is not. Imagine the outcome is distributed

normally. Suppose it is known that, if there is an association, then the SNP explains

R2 ¼ 0.1%—a rather large effect size for a single SNP (the same size as the COMT associa-

tion with cognitive ability). A first question is, what sample size is required for the standard

benchmark of 80% power to detect the effect using the regression in Equation 8 at the

conventional, two-tailed 0.05 significance level? The answer is 7,845. This is far larger

than typical samples to date in genoeconomics, which have numbered from less than a

hundred to several hundred in studies using laboratory measures and a few thousand in

studies using nonlaboratory data.

Now suppose that in a sample of size N, a researcher observes a statistically significant

association at the 0.05 significance level. How large does N have to be for this result to

constitute substantial evidence about whether there is an association? The upper half of

Table 3 shows how a researcher’s posterior belief (after having seen the data) that there is a

true association should depend on the researcher’s prior belief and on N. Of course, it is

difficult to know what an appropriate prior belief is, but for a typical candidate SNP, it is

probably much less than 10%. In a GWAS in which millions of SNPs are tested, the prior

probability that a typical given SNP has a true relationship is less than 0.01%.

A proper Bayesian thinker would barely update his posteriors when faced with a

statistically significant association in a sample of 100 individuals. Because the effect size is

so small, the statistical power—the probability of finding a statistically significant associ-

ation under the alternative hypothesis that there is truly a relationship—is only 6%. At a

significance level of 0.05, there is a 5% probability of finding a statistically significant

association under the null hypothesis. Hence finding a statistically significant association

at the 0.05 level is almost equally likely under the null hypothesis as under the alternative

hypothesis and hence is essentially uninformative regarding which hypothesis is more

likely to be correct.
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In a sample of 30,000 individuals, where statistical power is 99%, the likelihood of

finding a statistically significant association under the alternative hypothesis is about

20 times the likelihood of finding a statistically significant association under the null hypoth-

esis. When the prior probability of a true association is 0.01%, the posterior probability

after observing a statistically significant association is 0.20%, which is unfortunately still

extremely low. Even if the prior probability of a true association were as high as 10%, the

posterior probability after observing a statistically significant association would be 69%,

leaving a 31% chance that the reported association is a false positive.

Because the effect sizes are so small, these calculations defy our usual expectations about

the robustness of statistically significant findings and suggest that, when evaluating candidate

gene studies, it is valuable to conduct such calculations rather than rely on our faulty intui-

tions. One can see from the upper part of Table 3 that a researcher should conclude almost

nothing about a genotype-behavior relationship from a sample size in the hundreds, and

sample sizes must be in the many thousands before nontrivial inferences are appropriate.11

5. CAUTIONARY TALES AND CONSTRUCTIVE RESPONSES

In this section, we illustrate some of the challenges of genoeconomics research with

two cautionary tales that trace out the trajectory of our research projects in this area, and

outline three constructive responses.

Table 3 Posterior probability of a true association of R2 ¼ 0.1% as a function of prior probability and sample size

Sample size

For an association that is statistically significant at p ¼¼¼¼¼¼ 0.05

N ¼ 100

(power¼ 0.06)

N ¼ 1,000

(power¼ 0.17)

N ¼ 5,000

(power ¼ 0.61)

N ¼ 10,000

(power ¼ 0.89)

N ¼ 30,000

(power ¼ 0.99)

Prior

probability

of true

association

0.01% 0.01% 0.03% 0.12% 0.18% 0.20%

1% 1% 3% 11% 15% 17%

10% 12% 27% 58% 66% 69%

For an association that is statistically significant at p ¼¼¼¼¼¼ 5 ������ 10�8

N ¼ 100

(power¼ 0.00)

N ¼ 1,000

(power ¼ 0.00)

N ¼ 5,000

(power ¼ 0.00)

N ¼ 10,000

(power ¼ 0.01)

N ¼ 30,000

(power ¼ 0.51)

Prior

probability

of true

association

0.01% 0.03% 3% 57% 96% 100%

1% 3% 47% 99% 100% 100%

10% 25% 91% 100% 100% 100%

The assumptions underlying these calculations are provided in the text. Power is calculated using Purcell et al.’s (2003) online tool: http://pngu.

mgh.harvard.edu/~purcell/gpc/qtlassoc.html. Posterior probabilities are then calculated by Bayes’ rule:

Pr(truejsignificant) ¼ (power � prior)={(power � prior) þ [0.05 � (1 � prior)]}.

11The power challenge is probably less daunting for functional magnetic resonance imaging (fMRI) data, for which

the effects of individual SNPs are probably larger, but reasonable power still requires sample sizes much larger than is

currently typical. For instance, suppose it is known that, if there is an association, then the SNP explains R2 ¼ 3%.

Under the same assumptions as above, a sample size of N ¼ 258 is required for 80% power.
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5.1. An Icelandic Saga

When we began our work on genoeconomics approximately 10 years ago, before dense

SNP chips became relatively inexpensive, the standard empirical strategy in the medical

genetics literature was the candidate gene approach, so we followed the same methodol-

ogy. At the time, there were extremely few data sets that contained both economic and

genotypic data. No economic data sets had collected genotypic data, but we were fortunate

to team up with the AGES-RS, an Icelandic medical study (described in Harris et al. 2007)

that happened to have collected several survey measures of interest to economists. Here we

sketch our analysis of this data; full details are available in Supplemental Appendix 2.

Constrained by what was available in the data, we constructed the following eight

“economic outcomes” that serve as dependent variables in the analysis: (a) time preference

index (an index of present-oriented behaviors, combining measures of alcohol use,

cigarette use, and body mass index at age 25), (b) happiness, (c) self-reported health,

(d) housing wealth, (e) human capital index (an index of human capital, combining years

of education with number of foreign languages learned), (f ) income (predicted by occupa-

tion held at midlife), (g) labor supply, and (e) social capital index (an index of social

capital, combining the amount of regular contact with relatives and friends, attendance at

religious services, and participation in social activities).

We then created a list of candidate genes that we believed were most likely to be related

to economic decision making, given what was known at the time our study was initiated.

We obtained enough funding to have blood samples from 2,349 AGES-RS participants run

through a custom-designed microarray that could measure 384 SNPs. We chose which

genes to study based on two criteria: published associations with cognition-related out-

comes or disorders (e.g., cognitive ability, long-term memory, Alzheimer’s disease, schizo-

phrenia, attention deficit hyperactivity disorder) and/or membership in the dopamine or

serotonin neurotransmitter systems. If the gene was small enough, we included enough

SNPs to capture most of the possible variation in that gene. If the gene was too large, we

included only the SNPs on the gene that had been specifically mentioned in published

association studies. We supplemented the 384 SNPs we specified with several additional

SNPs that had been previously genotyped in AGES-RS for other purposes (e.g., the two

SNPs in APOE that define the genotypes associated with late-onset Alzheimer’s disease).

Adding these additional SNPs, and subtracting the few SNPs that failed to genotype

correctly, our total number of SNPs was 415 in a total of 68 genes.

We ran the regression in Equation 8 3,320 times, one for each of the 8 outcome �
415 candidate SNP combinations. The three most statistically significant associations are

the social capital index with a SNP called rs17529477 in the geneDRD2 (p < 0.0005), the

time preference index with rs908867 in BDNF (p < 0.0001), and the human capital index

with rs2267539 in SSADH (p < 0.001). The results are virtually identical when linear

controls for age and sex, the standard control variables in medical genetics, are included in

the regressions.

Naturally the standard p values (reported above) from such regressions are easily

misinterpreted because of multiple hypothesis testing. In 2008, we were able to attempt to

replicate these three “top hits” in a nonoverlapping sample of 1,759 AGES-RS participants

who had been genotyped using a dense SNP chip (the Illumina Hu370CNV) for a different

research project. Although that chip did not directly measure any of the three SNPs that

exhibited a promising association, it is standard in genetics to impute data on missing SNPs
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using observed data on surrounding SNPs, which is usually highly accurate because of the

high correlation among nearby SNPs. Although the imputation quality forDRD2 rs17529477

was relatively low, we were able to impute the other two SNPs with high accuracy.12

The association between the time preference index and BDNF rs908867 did not repli-

cate (p¼ 0.531). The association between the human capital index and SSADH rs2267539

not only replicated (p ¼ 0.02), but had similar effect sizes in the two samples: a coefficient

of 0.23 with a standard error of 0.07 in the first sample and a coefficient of 0.19 with a

standard error of 0.08 in the second sample. Combining the first and second samples, this

association has an R2 of 0.47%, which is quite large for an individual SNP.

Figure 1a (see color insert) shows, for the first and second samples combined, the

average level of the human capital index by genotype. In this case, it turns out that the rela-

tionship between the level of the index and the number of A alleles is monotonic. To give a

sense of the magnitude of the relationship in natural units, the figure also presents the mean

years of education—the main constituent of the index: The years of education for G/G

participants were 8.3, and this increased to 8.8 for A/G participants and 8.9 for A/A par-

ticipants. Table 4 shows, for the combined sample, the regression specification in Equa-

tion 8 with controls for population stratification (the first two principal components of the

dense SNP data) and regional variation in education.

An association is less likely to be a false positive if there is a plausible biological mech-

anism for the relationship. The gene SSADH (also known as ALDH5A1) codes for an

enzyme that metabolizes GABA, the principal inhibitory neurotransmitter in the brain.

This gene matters for cognition: It has been associated with general cognitive ability

(IQ; Plomin et al. 2004), it is related to the preservation of cognitive function in the elderly

(De Rango et al. 2008), and it may be undergoing recent natural selection (Leone et al. 2006),

as might be expected for a gene that has a large effect on a trait that could assist in survival

and reproduction. Furthermore, rare mutations of SSADH are associated with mental

retardation, and animals in which the gene is experimentally knocked out (i.e., rendered

inoperative) are cognitively impaired and develop epileptic seizures (Buzzi et al. 2006,

Knerr et al. 2008).

If the gene is related to our human capital index via its effect on cognitive ability, then

we should observe that cognitive ability mediates the relationship between the SNP and

human capital. To directly test this mechanism, we constructed a measure of cognitive

ability using a variety of cognitive tests that had been administered to AGES-RS partici-

pants (see Supplemental Appendix 2 for details).

Figure 1b shows that, as expected, this index of cognitive ability is associated with the

SNP of interest, SSADH rs2267539. In a regression (Equation 8) with standardized cogni-

tive ability as the outcome, the coefficient is 0.11 with a standard error of 0.03, indicating

that a switch of one G allele to an A allele is associated with one-ninth of a standard

12One commonly used metric for imputation quality is the variance ratio: the ratio of the variance across individuals

in the imputed genotype to the expected binomial variance based on the frequency of the minor allele. In a large sample,

an accurate imputation will have a variance ratio of 1, whereas an imputation based on no information will have a

variance ratio of zero. In standard GWAS sample sizes of several thousand individuals, most imputed SNPs have

variance ratios above 0.9 because of the generally high degree of correlation with nearby SNPs. The variance ratios for

DRD2 rs17529477, BDNF rs908867, and SSADH rs2267539 were 0.657, 0.999, and 0.956, respectively. Although a

variance ratio is not generally considered unacceptably low unless it is below 0.3, we were suspicious about the

DRD2 SNP imputation because the concordance rate—the fraction of matches between imputed genotype and

known genotype in the part of the GWAS sample that overlapped with the candidate gene sample—was only 81%.
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deviation greater cognitive ability (corresponding to approximately 1.7 points on the

IQ scale). This association is highly statistically significant, with a relatively large R2 of

0.3%. Also as expected, and consistent with much prior research (e.g., Cawley et al. 2001),

a 1-standard-deviation increase in cognitive ability is associated with 1.15 additional years of

schooling (p < 0.001, R2 ¼ 13%) in our data set. Finally, in the regression in Equation 8

with the human capital index as the outcome, the coefficient on genotype is reduced by

including cognitive ability as a control, indicating that cognitive ability is a statistical medi-

ator. Applying the Sobel test for mediation (MacKinnon et al. 2002), we can reject the null

hypothesis of no mediation (z ¼ 3.37, p ¼ 0.0008), and we estimate that cognitive ability

mediates 51% of the relationship between the human capital index and the SNP.

The best test of whether a finding is a true positive is whether it replicates in multiple new,

completely independent samples. Three additional research groups agreed to check in their

data whether the association replicates: the Framingham Heart Study, the Wisconsin Longi-

tudinal Study, and a sample of healthy control subjects for the Swedish Large Schizophrenia

Study. As we could not construct our human capital index in these samples, we studied

only educational attainment, the most important component of the human capital index.

The Framingham Heart Study is a cardiovascular disease study that began in 1948 with

a random sample of 5,209 participants from Framingham, Massachusetts. A sample with

dense SNP data is available for 7,357 individuals, a mix of original participants and their

relatives. Educational attainment is measured via nine categories, which we converted to

estimated years of schooling. In this sample, educational attainment is not associated with

SSADH rs2267539. In the regression in Equation 8 with standardized years of education

Table 4 Ordinary-least-squares regression of human capital index on genotype

(1) (2) (3) (4)

Genotype (number of A alleles) 0.218 (0.054) 0.178 (0.060) 0.185 (0.059) 0.187 (0.059)

Birth year 0.055 (0.005) 0.056 (0.006) 0.046 (0.006) 0.046 (0.006)

Female �0.692 (0.056) �0.681 (0.062) �0.682 (0.061) �0.684 (0.062)

Urban 1.054 (0.242) 1.323 (0.578)

GWAS principal components? No Yes Yes Yes

Region fixed effects? No No Yes Yes

Region � urban fixed effects? No No No Yes

R2 0.068 0.069 0.100 0.102

N 4,016 3,198 3,198 3,198

Data are from AGES-RS. The human capital index is a composite variable comprising educational attainment and the number of languages learned. It

is standardized to have zero mean and unit variance. The genotype is for SSADH rs2267539. Coefficients for the constant term and control variables

are suppressed. Standard errors are in parentheses. Urban is a dummy variable for whether the respondent grew up in an urban area. Genome-wide

association study (GWAS) principal components refer to the first two principal components of the dense single-nucleotide polymorphism (SNP) data.

Region fixed effects are dummies for the nine regions of Iceland (see Price et al. 2009). The first column includes the 2,349 AGES-RS respondents

whom we had genotyped with our SNP custom microarray, plus the nonoverlapping subset of 3,198 AGES-RS respondents for whom dense SNP

data were available. Because the other columns control for principal components of the dense SNP data, they include only the 3,198 respondents

for whom dense SNP data were available.
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as the outcome, the coefficient on the number of A alleles is 0.06 with a standard error of

0.06 (p ¼ 0.30). As the SSADH SNP with the second-strongest association in the AGES-RS

sample was not available in the Framingham Heart Study, we examined the SNP in the

gene with the third-strongest association. The regression coefficient is 0.02 with a standard

error of 0.06 (p ¼ 0.70). (In both cases, the standard errors are adjusted to correct for the

presence of relatives.)

The Wisconsin Longitudinal Study is a random sample of 10,317 Wisconsin residents

who graduated from high school in 1957, as well as 5,219 siblings who were enrolled later.

We obtained genotypes for the three most significant SNPs in AGES-RS from a subsample

of 3,408 individuals. Educational attainment is measured as years of schooling. Here it is

not associated with any of our three most statistically significant SNPs from AGES-RS, and

in fact the point estimates have the wrong sign in all three cases: b ¼ �0.02 (standard error ¼
0.07) for the most strongly associated SNP, b ¼ �0.00 (standard error ¼ 0.09) for the second

SNP, and b ¼ �0.05 (standard error ¼ 0.06) for the third SNP.

Our third non-Icelandic replication sample included 1,235 individuals from the healthy

control group for the Swedish Large Schizophrenia Study. These are individuals who were

identified from national population registers to match the schizophrenia group (which we

do not analyze) along the characteristics of age, gender, and county of residence. Educa-

tional attainment is measured on a scale of one to six, ranging from less than nine years to

postgraduate education, which we convert to a standardized variable for the purposes of

the regression analysis. It is not associated with either our most statistically significant SNP

from AGES-RS (b¼ 0.06, standard error¼ 0.07, p¼ 0.45) or our second-most statistically

significant SNP from AGES-RS (b ¼ �0.00, standard error ¼ 0.08, p ¼ 0.98).

What explains our puzzling pattern of results—the finding of an association that repli-

cates with a sample similar to the original sample, passes various plausibility and robust-

ness tests, and then fails to replicate in three other samples? We can think of four leading

possibilities. First, the association in the AGES-RS data may be spurious due to con-

founding factors. For example, we attempted to deal with population stratification by

controlling for the first two principal components of the whole-genome data, in addition to

region dummies, an urban dummy, and region � urban dummies. Even within an ethni-

cally homogeneous population such as Iceland, however, there may be ethnic stratification

on a finer scale than would be picked up by these controls. As a purely speculative example

(meant just to illustrate the many possibilities), descendants of former nobility/leadership

lineages could happen to have more A alleles and also be more educated. Second, the

association may be a true positive, but local to the Icelandic environment. This could occur

if, for example, cognitive skills that are taught in schools outside of Iceland are instead self-

taught within Iceland only by individuals with more A alleles. Third, the association may

be a true positive, but local to the Icelandic genome, if the gene in question primarily has

effects via its interaction with other genes and those genes differ between Icelanders and

other populations. Fourth, our multiple hypothesis tests could have generated a false

positive. Only because of chance did we happen to replicate the finding in a smaller sample

from the AGES-RS data.

Patterns of results like ours are difficult to interpret. There are reasons to emphasize our

replication within AGES-RS—which had exactly the same variable definitions and held

constant the environmental and genotypic background—and discount our subsequent

replication attempts: The ethnic makeups in the Framingham Heart Study and Wisconsin

Longitudinal Study differ substantially from the ethnic makeup in AGES-RS, and the
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Swedish sample (although ethnically more similar to the Icelandic one) is the smallest study

that we had. Yet there are also reasons to discount our plausibility and robustness checks.

We chose our set of candidate genes because we thought they were most likely be involved

in decision making, so it is not surprising that the association we happened to find “makes

sense” biologically. Cognitive ability is correlated with educational attainment, so it is not

surprising that a SNP that happened to correlate within AGES-RS with educational attain-

ment also correlates in that sample with cognitive function. Similarly, any confound that

might explain the association between the human capital index and our most significant

SNP on SSADH would equally well explain the association with other SNPs on SSADH,

which are correlated with it.

Our failure to replicate a seemingly robust association illustrates one of the major

challenges for integrating genetics and social sciences. But our experience is not unique;

indeed, it closely recapitulated a common story line in medical genetics research.

5.2. Wisconsin Tale

When we began our candidate gene study in AGES-RS, we believed—as did most medical

genetic researchers at the time—that the candidate gene approach was a reasonable

approach. Our experience helped us to appreciate what had become, by the time our

failure to replicate was complete, the new consensus view among the medical genetics

community: The candidate gene approach is a path strewn with false positives.

These realizations made us skeptical of many published candidate gene associations. Yet

social scientists, both authors and referees, seemed much less conscious of the fact that

reported candidate gene associations are unlikely to be true. Consequently, we set out to

systematically test existing candidate genes for general cognitive ability, also known as

“intelligence,” or IQ, which is among the most highly studied psychological traits in

molecular genetic work because it is among the most heritable of behavioral traits [esti-

mates range from 0.50 to 0.80 for IQ measured in adulthood (Bouchard &McGue 2003)].

There is a large literature of studies showing associations between many SNPs in various

genes and general cognitive ability (see Payton 2009 for a comprehensive review). As is

typical of candidate gene studies in the social sciences, many of these results are based on

small samples and had not seen any published replications.

As we report in Chabris et al. (2012), we sought to replicate published associations

between 12 genetic polymorphisms and general cognitive ability using three independent

data sets: the previously described Swedish Twin Registry, Wisconsin Longitudinal Study,

and Framingham Heart Study, with a total sample size of 9,755 participants. Of 32 inde-

pendent tests across all three data sets, only one was nominally significant at the p < 0.05

level.13 In the data from the Wisconsin Longitudinal Study, in which we tested all 12 genetic

polymorphisms and had the most statistical power, we cannot reject the null hypothesis

that the combined effect of those SNPs is zero—even though given our sample size of

5,571 individuals, we had 99% power to detect a combined effect of just R2 ¼ 0.52%.

Further power calculations suggested that, if the previously reported associations were not

false positives, we should have expected between 11 and 15 replicated significant associations

13Intriguingly, the one nominally significant association was with SSADH rs2760118, a SNP in the same gene that

was implicated in our analysis of human capital in AGES-RS. The evidence is once again muddy, however, due to

multiple hypothesis testing and the fact that it is a different SNP.

652 Benjamin et al.

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

62
7-

66
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
9/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



in our 32 tests, rather than the one that we found. Our analysis led us to conclude that

most published SNP associations with general cognitive ability are probably false

positives, most likely because the investigators in those studies inadvertently used samples

that were much too small.14

5.3. Responding to the Inferential Challenges

We believe there are several constructive responses to the inferential challenges posed by

the small explanatory power of individual SNPs.

5.3.1. Pooling data to increase power. When it became widely recognized in the medical

literature that candidate gene studies were generating a high rate of false positives, and when

dense SNP genotyping became sufficiently inexpensive, the standard research design became

GWASs. Obviously, relative to a candidate gene study, a GWAS magnifies the multiple-

testing problem, but the stringent genome-wide significance threshold of p < 5 � 10�8,

combined with implementing the GWAS in a large sample, has generated findings that

have proven much more replicable.

The lower half of Table 3 shows the results of the same Bayesian calculation as the

upper half, except for an association that is statistically significant at the p ¼ 5 � 10�8

level (rather than p ¼ 0.05). Because of the stringent significance threshold, statistical

power is much lower at any given sample size N. Indeed, a true association with effect size

R2 ¼ 0.1% will probably not replicate at a genome-wide significance level for a sample

smaller than 10,000 individuals, and there is only a 50% chance that an association known

to be true will be detected in a sample of 30,000 individuals. Nonetheless, an association

that reaches statistical significance at the genome-wide significance level in a sample of

10,000 or more individuals is almost certain to be a true positive.

Recognizing this, the medical literature has been moving in the direction of forming

consortia of data providers. In such a consortium, a GWAS is conducted in each data set,

and the “discovery phase” is carried out as a meta-analysis of these GWAS results, a so-called

meta-GWAS. In the “replication phase” that follows, the associations implicated in the

discovery phase are investigated in independent samples.

On the one hand, the hurdle that genotype-outcome associations must hold in differ-

ent samples that are typically drawn from populations with different ethnicities and

environments—a requirement that is implicit in a meta-GWAS and explicit in the require-

ment that associations replicate in independent samples—means that GWAS researchers

are unlikely to identify genetic associations that exist only in particular environments. The

set of associations that are reported will tend to be ones that are among the strongest and the

most universal—indeed, the fact that many true associations will not be discovered by a

meta-GWAS perhaps helps account for the missing heritability puzzle discussed in Section 4.

On the other hand, the samples used in meta-GWASs have proven to be sufficiently large to

detect SNP associations with modest effect sizes, and the findings that have emerged from

these cooperative studies appear to be more likely to survive the challenges of replication.

14In other work using the Wisconsin Longitudinal Study on which we are collaborators, Freese et al. (2010) attempt

to replicate associations reported in the literature between SNPs in the candidate gene DRD2 and educational

attainment, voting, partisanship, organization memberships, socializing, tobacco use, and alcohol use, and conclude

that none of the associations replicate.

Meta-GWAS:

a meta-analysis of

results from multiple
genome-wide

association studies

www.annualreviews.org � The Promises and Pitfalls of Genoeconomics 653

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

62
7-

66
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
9/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Following the lead of the medical genetics community, we, together with Philipp

Koellinger, have organized the Social Science Genetic Association Consortium (SSGAC),

attempting to include all relevant major data providers that have dense SNP data and social

science outcome measures. The SSGAC has had three meetings since its formation in

February 2011, under the auspices and guidance of the Cohorts for Heart and Aging

Research in Genomic Epidemiology Consortium (Psaty et al. 2009), a successful medical

genetic consortium. In forming the SSGAC, we are following in the footsteps of, and

proceeding in close coordination with, the “Gentrepreneurship Consortium” that was formed

for the purpose of studying genetic associations with self-employment (van der Loos

et al. 2010).

5.3.2. Exploiting the cumulative effect of many single-nucleotide polymorphisms. Even in

those cases in which sample sizes are too small to discover robust associations, the data

may still contain valuable information about the distribution of effect sizes of the SNPs on

a dense SNP chip. Yang et al. (2010) developed a method, genomic-relatedness-matrix

restricted maximum likelihood (GREML), for estimating the proportion of variance

explained jointly by all the SNPs measured on a dense SNP chip. The key assumption is

that among individuals who are unrelated—i.e., distantly related, as all humans are related to

some extent—residual factors are uncorrelated with differences in the degree of genetic

relatedness. Under that assumption, an estimate of heritability can be obtained by examin-

ing how the correlation in an outcome between pairs of individuals relates to the genetic

distance between those individuals. Unlike in twin studies where relatedness is known, here

the relatedness is estimated from the SNP data.

Unlike GWASs, for moderately heritable traits, GREML is well powered for samples

of only several thousand unrelated individuals because it aggregates the information

contained in the genetic data. The GREML procedure estimates the fraction of variance

of an outcome that could be predicted if a researcher had GWAS data and a look-up table

that contained the true effect of all SNPs. Under the assumption that large individual-SNP

effects are more likely for outcomes where the joint predictive power of all SNPs is larger,

GREML can be used to assess which outcomes are the most promising to pursue for

GWASs. Applying this method in a sample of 3,925 individuals, Yang et al. (2010) find

that the measured SNPs could account for 45% of the variance in human height; Davies

et al. (2011) apply the method to cognitive ability and obtain point estimates of 40% for

crystallized intelligence (N ¼ 3,254) and 51% for fluid intelligence (N ¼ 3,181); and

Chabris et al. (2012) similarly estimate 47% for general cognitive ability. Vinkhuyzen et al.

(2012) estimate 6% for the personality trait of neuroticism and 12% for extraversion

(N� 12,000, varying somewhat with the outcome variable). Using a sample of 5,727 individ-

uals from the previouslymentioned SALTstudy, Benjamin et al. (2012) estimate 16% for educa-

tional attainment. With a smaller sample from SALTY (N � 2,400), Benjamin et al. (2012)

also apply GREML to survey measures of risk preference, time preference, fairness concerns,

trust, and political attitudes. Although the estimates are noisy, taken as a whole they suggest

that themeasured SNPs account for a positive share of the variance in these traits.

As with GREML, the basic insight behind polygenic risk prediction (e.g., Int. Schizophr.

Consort. et al. 2009) is that even when it is not possible to robustly identify the individual

SNPs associated with an outcome, it may still be possible to make statistically efficient use

of the joint predictive power of a large number of SNPs. Whereas GREML estimates the

amount of predictive power theoretically attainable from the SNP data (but does not
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enable one to actually predict the outcome), a polygenic risk score is an attempt to use the

SNP data in a given sample to actually construct a predictive equation for an outcome in

that sample (see footnote 10). Estimating a prediction equation that can predict well out of

sample requires precise estimates of the effects of individual SNPs. Because these individual

SNP effects are estimated in a finite sample, polygenic risk prediction will achieve much

less predictive power than the theoretical bound estimated by GREML. Unfortunately, the

out-of-sample predictive power that can be obtained from considering the SNP data simul-

taneously is presently too small to be of practical use for most outcomes. For example, the

International Schizophrenia Consortium reported an out-of-sample predictability of up

to 3% from a predictive risk equation estimated in a total sample of 6,907 individuals

(Int. Schizophr. Consort. et al. 2009). Benjamin et al. (2012) estimate predictive risk

equations for educational attainment (N � 8,300) and for a range of economic preferences

and political attitudes (N � 2,900). In all cases, the out-of-sample R2 is less than 0.1%.

The greatest success to date has been for height, for which the out-of-sample R2 is approx-

imately 13%when the predictive risk equation is generated from SNP effects estimated in a

meta-GWAS of more than 180,000 individuals (Lango Allen et al. 2010).

5.3.3. Focusing on biologically proximal traits. Regardless of the analytic approach, a

major question going forward is which outcomes are the most promising to study. In our

view, in the short run this decision will be dictated by which variables are consistently

measured across a large-enough number of data sets that the joint sample size will yield

reliable results. For this reason, SSGAC’s first outcome to study is educational attainment,

which is widely measured not only in social science surveys, but also in most medical

surveys as a key measure of socioeconomic background.

In the long run, however, we suspect that the most promising economic outcomes will

be those that are most closely related to the underlying biology. Distal outcomes, such as

educational attainment and self-employment, are likely influenced by an enormous num-

ber of genes, each with a tiny effect that will be difficult to detect even in a huge data set. If

these distal genetic effects work through different pathways in different local environ-

ments, then even true relationships will not robustly replicate across data sets. Proximal

outcomes, such as aggressiveness and perhaps impulsivity, are likely to have larger and

more direct genetic influences from fewer genes. Outcomes that are also measurable in

animals have the additional advantage that the genes can be experimentally manipulated in

animal models to directly study their causal effects. Unfortunately, as of now, none of these

proximal outcomes is widely measured across many data sets that have dense SNP data.

One function we envision for the SSGAC will be to coordinate the collection of harmo-

nized measures of proximal outcomes.

6. CONCLUSION: GENOMICS RESEARCH IN ECONOMICS

Above we discuss a number of ways in which the use of molecular genetic data could

benefit economics. For example, genetic data will serve as a powerful lens to identify and

study biological mechanisms that generate important, and potentially overlooked (by

economists), sources of individual differences (e.g., aggression, ambition, and myopia).

Genotypic data will also (eventually) be used as control variables that serve to increase

power. Genetic data may also be of interest in and of itself: Economists have used geno-

typic data to study the effect of intellectual property rights on innovation (Williams 2010)
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and adverse selection in health insurance markets (Oster et al. 2010). Looking ahead a

decade or two, the availability of inexpensive genotypic data is likely to help parents

predict learning disabilities such as dyslexia earlier in childhood, facilitating earlier inter-

ventions. Potential vulnerabilities to substance abuse, or other kinds of self-destructive

behavior, may also one day be predictable from genetic data.

We also predict that methodological challenges—such as multiple testing—will generate

many more false positives in the literature, especially in the short run. The press is likely to

distort findings and exaggerate the degree to which specific genes “determine” outcomes.

In most cases there is no “gene for [insert behavior here],” despite frequent newspaper

headlines suggesting that there is. Indeed, for most behaviors, researchers are struggling to

find a SNP with an R2 that is greater than one-tenth of 1%. Researchers in this field hold a

special responsibility to try to accurately inform the media and the public about the

limitations of the science.

The inevitable, inexpensive, broad-based availability of genotypic information will

raise myriad social, ethical, and legal questions to which economic analysis will provide a

valuable perspective. Many geneticists rightly worry that genetic research will prove to be

socially harmful by generating discrimination against genetically disadvantaged groups.

Genetic information will generate a rich set of new policy problems (in addition to the

benefits that we review above). Governments will need to formulate new policies that

maximize social welfare in a world where people with genetic advantages will wish to

share them with potential employers and insurers, and people with genetic disadvantages

will want to shroud them. In some cases, the provision of genetic information can be

beneficial (e.g., alerting couples who both possess disease-causing recessive mutations),

whereas in other cases, it would be deeply problematic (e.g., sharing genetic data with

health insurance companies, which effectively creates an unraveling of some of the social

benefit of health insurance). Problems abound in any analysis of optimal access to genetic

information, even when the individual herself is the only one who is going to have access to

the data. Under what conditions will the benefits to an individual from knowing her own

genetic risk factors, such as the ability to prepare well in advance for a likely illness,

outweigh the costs of increased anxiety and distress (see Oster et al. 2012)? We predict

that research on these different types of questions will soon occupy a much larger fraction

of economists’ energy as these issues quickly become of immediate practical relevance.
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a b

Figure 1

Mean of the human capital index by genotype. (a) The human capital index is a composite variable comprising educational

attainment and the number of languages learned. The mean years of educational attainment by genotype are shown in parenthe-

ses below the sample size. (b) The cognitive function index is a composite variable comprising digit symbol substitution (WAIS),

digit span (forward and backward), spatial working memory, and long-term memory (CVLT recall and recognition). In the
cognitive function sample, survey respondents who scored 	23 on the Mini Mental State Examination are dropped. Both the

human capital index and the cognitive function index are standardized to have zero mean and unit variance. The genotype is for

SSADH rs2267539. Error bars show 
1 standard error. Data are from the AGES-RS.
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