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Self-Control and Saving

David Laibson®

Research on animal and human behavior has led psychologists to con-
clude that discount functions are approximately hyperbolic (Ainslie, 1992).
This paper characterizes the savings/consumption behavior of sophisticated
economic decision-makers with hyperbolic discount functions. Such prefer-
ences are characterized by “dynamic inconsistency”; the preferences imply a
conflict between the optimal contingent plan from today’s perspei:tive and
the optimal decision from tomorrow’s perspective. To model intertemporal
choice when such conflicts arise, I assume that individuals engage in an in-
tertemporal game with themselves (Strotz (1956), Phelps (1968), Peleg and
Yaari (1973), Goldman (1980)). Specifically, I reinterpret the infinite-horizon
intergenerational consumption game proposed by Phelps and Pollak (1968)
as an intra-personal consumption game. I show that hyperbolic discounting
generates a coordination problem which leads to the existence of multiple
intra-personal equilibria, some of which are Pareto-rankable. (In this intra-
personal game two equilibria are Pareto-rankable if all temporal selves of
the individual are better off under one of the two equilibria.) I characterize
the equilibrium set, and calibrate the model. I interpret this model as a
framework for understanding the psychological concept of self-control.
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Olivier Blanchard, Drew Fudenberg, Fausto Panunzi, Drazen Prelec, Matthew Rabin,
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1 Introduction

Research on animal and human behavior has led psychologists to conclude
(see Ainslie (1992)) that discount functions are approxima.tely hyperbolic:

where the «’s

e.g., rewards 7 periods in the future are discounted _" =
are constants. Hyperbolic discount functions imply a monotonically falling
discount rate. This discount structure sets up a conflict between today’s
preferences and the preferences which will be held in the future. For example,
from today’s perspective, the discount rate between two far off periods, ¢ and
t+1,is a long-term low discount rate. However, from the time ¢ perspective,
the discount rate between ¢ and ¢ + 1 is a short-term high discount rate. This
type of preference “change” is reflected in many common experiences. For
example, today I may desire to quit smoking next year, but when next year
actually roles around my taste at that time will be to postpone any sacrifices
another year.

Hyperbolic discount functions generate a preference structure which is a
special case of the general class of “dynamically inconsistent” preferences:
i.e., preferences which imply a conflict between the optimal contingent plan
from today’s perspective and the optimal decision from tomorrow’s perspec-
tive. Robert Strotz (1956) was the first economist to study dynamically
inconsistent preferences. Pollak (1968), Peleg and Yaari (1973), and Gold-
man (1980) have extended Strotz’s work, arguing that when preferences are
dynamically inconsistent, dynamic decisions should be modelled as an intra-
personal game among different temporal selves (i.e., “me today” is modelled
as a different player from “me tomorrow™).

Despite the availability of this analytic framework, and the substantial
body of evidence supporting hyperbolic discounting, few economists have

studied the implications of hyperbolic discount functions. Phelps and Pol-



lak (1968) analyze an inter-generational game in which each generation has a
discount function which I will argue below is approximately hyperbolic. How-
ever, Phelps and Pollak restrict their attention to linear Markov-equilibria,
undermining the generality of their analysis. Akerlof (1991) analyzes the
behavior of decision-makers who place a special premium on effort made in
the current period. Such a premium can be interpreted as a reflection of
hyperbolic discounting although this interpretation is not made by Akerlof.
Akerlof’s analysis is inconsistent with the intra-personal game approach as his
decision-makers act myopically; they fail to foresee the preference “changes”
described above. Finally, Loewenstein and Prelec (1992) also analyze the
choices of myopic decision-makers with hyperbolic discount functions.

To date economists have not characterized the unrestricted behavior of so-
phisticated/ rational economic decision-makers with hyperbolic discount func-
tions. However, in pathbreaking work, a pschyiatrist, George Ainslie (1992),
has discussed the kinds of qualitative behavior that sophisticated agents with
hyperbolié discount functions might exhibit. The primary goal of this pa-
per is to formalize and extend Ainslie’s psychological analysis, by explicitly
modelling individual decision-making as an intra-personal game.

Specifically, I adopt preferences which nest the standard exponential dis-
count structure as a special case, and I analyze an intra-personal delay-of-
gratification game which is associated with these preferences. I look for
subgame-perfect equilibria of this game and find a multiplicity which is dis-
concerting because it arises even in the special case of exponential discount-
ing. To address this problem, I propose a menu of three refinements, each
of which eliminates the multiplicity when discounting is exponential. For
the exponential case, moreover, each of these refinements admits a single
equilibrium which is the standard “Ramsey” outcome.

For the case of hyperbolic discounting, only two of the original three re-



finements still imply uniqueness. A common equilibrium survives both of
these refinements, but this equilibrium is Pareto-dominated by a continuum
of other subgame perfect equilibria. (In this intra-personal game two equi-
libria are pareto-rankable if all temporal selves of the individual are better
off under one of the two equilibria.) This suggests that there is no focal equi-
librium in the non-exponential discount case. So while there are reasonable
ways to rule out multiplicity in the exponential case, such arguments do not
carry over to the case in which discount rates are non-exponential.

This conclusion has interesting consequences for the theory of dynamic
choice in general and for consumption theory in particular. In the dynamic
choice category there are three conclusions which should be highlighted.
First, this approach provides a way of explaining why people with identi-
cal preferences might exhibit dramatically different behavior in the same
environment. Second, this approach can explain why some people have self-
acknowledged “bad habits” which they can’t break, while other people with
ostensibly identical preferences muster the internal self-discpline/self-control
to avoid these “bad habits.” The bad habit is a perfect equilibrium which is
Pareto-dominated by another perfect equilibrium. Third, the model explains
why individual behavior is often perceived to be self-diagnostic of future
behavior (i.e., the model explains why individuals often reason, “if I show
self-control today, I'll be more likely to show self-control tomorrow”).

Finally the model is of direct interest to macroeconomists, since the in-
tertemporal choice problem that I study is a savings/consumption decision.
The model explains how an economy’s savings rate can be indeterminate in
equilibrium. A single calibration of the model produces many potential equi-
librium paths. For any reasonable parameter vector the associated range of
equilibrium savings rates is quite large, with substantially more dispersion
than that exhibited in cross-country savings studies. Hence, the multiple



equilibria of this model can explain heterogeneous international savings rates.
This suggests that the heterogeneity implied by the model is substantial when
normalized by cross-country savings variability.

The paper is divided into six sections, including this introduction. Sec-
tion two of the paper lays out the formal model, describing the specific
iqtra-personal game that I consider. Section three characterizes the equi-
librium set for the case of exponential discounting, and proposes three re-
finements. Section four applies the refinements of section three to the case of
non-exponential discounting. Section five characterizes the equilibrium set
when the discount structure is non-exponential. Section six interprets the

results and section seven concludes.

2 An intra-personal game.

Following Strotz (1955), Pollak (1968), Peleg and Yaari (1972), and Gold-
man (1980), 1 model an individual as a composite of autonomous tempo-
ral selves. These selves are indexed by their respective periods of control,
(t =0,1,2,.. .), over a consumption decision. During its period of control,
self t observes all past consumption levels (o, €1,€25 - <+ ci—1), and the current
wealth level A;. Self t then chooses a consumption level for period t, which
satisfies the restriction,

0<c <A (1)

Self t+1 then “inherits” an asset stock equal to,
Apn=R- (Ae — ct) (2)

where R is the constant gross return. The game continues, with self t+1 in

control. Finally, note that in this game the precommitment solution discussed



by Strotz (1956) is implicitly ruled out; i.e., the current self can not make
consumption decisions for future selves.?

Now it only remains to specify the payoffs of the “players” of this game.
Player ¢ receives payoff U,(co, ¢y, ..., ¢, .. .) where U, is a map into the real
line or the extended real lin: (R = R U {~o00,00}).2 I restrict U, to focus
consideration on a special case which is both economically interesting and
analytically tractable. |

In particular, I assume

Ucoscry-.eveey..) =u(c) + B &'u(ceps) (3)
i=1

where § and 3 are discount parameters, and u(c) is a continuous, strictly
concave function, u : [0,00) — R. Unless otherwise stated, I assume that
u is a member of the class of CRRA utility functions (with relative risk
aversion coefficient p € (0,00)). When I work in this class, I need u(c) to
be well-defined for all ¢ € [0,00). To preserve the continuity property, set

4(0) = lim..o u(c). Hence, for p € [1,00), u(0) = —cc.
There are two reasons, other than analytical tractibility, to focus on the
preferences in equation 3. The first motivation is that if u is in the CRRA
class and # = 1, the model reduces to the familiar case of exponential dis-

2From the perspective of the time zero self, precommitment would be optimal. However,
in the real world precommitment is often not possible, since for most forms of economic
activity there do not exist institutional mechanisms for precommitment. Three mutually
compatible stories may explain this empirical observation. First, such contracts would be
difficult to enforce without creating a costly monitoring structure. Second, in a world of
uncertainty, such contracts would be difficult to write down. Specifying all of the potential
contingencies is impossible. Finally, precommitment is ethically ambiguous, and, at least
in the US, some precommitment contracts are not legally binding. Should a 25 year old
self be able to make commitments which the 50 year old self is compelled to follow? Which
self has the right to make temporally global decisions. The ethical and legal dimensions
of this last question are discussed in Schelling (1983).

31t may help to interpret self t's payoff as the expectation at time ¢ of this function.
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counting with time-additive homothetic preferences. Hence the B # 1 case
may be thought of as a perturbation to the “standard” macro preferences.
If we care about robustness we probably want to know what happens when
such perturbed preferences are considered.

The second motivation is more complex. Thereisa large body of evidence

that discount functions are closely approximated by hyperbolas (i.e. the dis-

1
Ky +naT

first made by Herrnstein (1961), in relation to animal behavior experiments.

count function is approximated by the curve ). This observation was
The work was later extended with human subjects (DeVilliers and Herrn-
stein (1976)). Small amendments have been subsequently proposed to this
hyperbolic structure, but the basic shape has not been challenged. The im-
portant characteristic of the hyperbolic discount function is that it discounts
relatively more heavily than the exponential for events in the near future, but
discounts less heavily for events in the distant future. Psychologists, notably
Ainslie (1975, 1986, 1992), Prelec (1989), and Loewenstein and Prelec (1992)
believe that such hyperbolic discounting may play an important role in gen-
erating problems of self-regulation, and may provide a potential explanation
for numerous behavioral anomalies. When 0 < B <1 the discount structure
in equation [3] mimics the hyperbolic shape, while maintaining most of the
analytical tractibility of the exponential case.

The preferences in [3) were first analyzed by Phelps and Pollak (1968).
However, their choice of this structure was motivated in a different way. Their
game is one of imperfect intergenerational altruism, so the players are (non-
overlapping) generations. I assume that the different players are temporally
distinct selves of a single person. The mathematical analysis which follows
can be applied to either interpretation. '

There is another important contrast between this paper and the work
of Phelps and Pollak. They confine their analysis to a subset of the joint



strategy space by limiting their analysis to symmetric Markov strategies that
are linear with respect to the current asset stock. Specifically, they consider
equilibria that are supported by the following symmetric strategy for all
selves: Consume at rate A whatever the previous history, (set ¢, = A\A,).
They look for A values that support this as a Nash equilibrium.* I consider
the full strategy space.

" Before proceeding with my analysis of this model, it is useful to in-
troduce the following notation. Let H, be the set of feasible histories of
the consumption game at time t. An h, € H, history is a t + l-element
vector, (Ao, co,C1,€2,...,¢-1) € Rt. Let HF represent the set of feasible
histories at time ¢. Let HF be the set of all feasible histories. Let A :
HF — [0,00) be the map from feasible histories to asset stocks, such that
A(Aoycoyc1yCay...yC-1) = Rt Ag—3 21 Rt—ic;. Hence, A(h,)is the asset stock
available to self ¢ after history k,. Represent the pure strategy space of self ¢

as,
Se={s|s:H —[0,00), and 0 < s(h,) < A(k) Vhe € HF}. (4)

Define the joint strategy space S = [[2, S:. Let S represent the set of
subgame-perfect equilibria of the consumption game. Finally, let v(s,t,A;)
represent the continuation payoff of self t, after history A;, when equilibrium

strategy s is played from time ¢ forward.

3 The exponential discount case: g = 1.

The analysis in this section assumes 8 = 1, which implies preferences that are

standard to economists: exponential discounting with time-additive utility.

4 Actually, all of their equilibria satisfy the stronger condition of subgame perfection.



These preferences were first analyzed by Ramsey (1928). His method of anal-
ysis was to assume that behavior would correspond to the precommitment

strategy of self zero.

Definition 1: A Ramsey equilibrium is an element of S which
is subgame perfect and which mazimizes the continuation payoff
to self zero in every possible subgame.

It is easy to show that if =1, uisin the CRRA class, and §R'™* < 1,
then there exists a unique Ramsey equilibrium. This equilibrium is sum-
marized by the following consumption rule for all selves: Consume at rate
M=1- (SR""’)%. (The assumption on technology, §R}* <1, is standard
in the macroeconomics literature, and the condition is assumed to hold for
the rest of the paper.) The goal of this section is to determine whether the
Ramsey equilibrium is a reasonable prediction for the game-theoretic model
of section two. 1 will ultimately conclude that it is. However, the path to

that conclusion is surprisingly challenging.

Theorem 1: Let u be ¢ CRRA utility function with p € (0,1).
Fiz 8 = 1. Then the Ramsey equilibrium is the unique subgame
perfect equilibrium.

Proof: Based on Theorem 4, and hence postponed.

So far so good. Unfortunately, the conclusion of Theorem 1 does not hold

when p > 1. This is particularly worrisome because it is common to calibrate
models with 1 < p < 2.



Proposition 1: Let u be a CRRA utility function with p €
[1,00). Fiz 8 = 1. Let {c}}2, be any feasible consumption path.
Then {c;}2, can be supported by a subgame perfect equilibrium.

Proposition 1 says that anything is possible. At first this appears to be a
very strong result, but, it is trivial to prove using a rather perverse weakly

dominated strategy.

Proof: Consider the following equilibrium strategy for self ¢:

If nobody else has deviated consume ¢; = c. If anybody else has
deviated consume ¢; = 0.

Recall that if p € [1,00), then ¢; = 0 implies u(c;) = —oco. If some self s < ¢
expects ¢; to equal zero, then self s’s payoff will be negative infinity. Since
deviations produce payoffs of —oo, no self has a strict incentive to deviate.
This argument also applies off of the equilibrium path. O

This proof makes use of an unrealistic punishment structure, (though it
is subgame perfect). One might want to rule out equilibria which rely on
weakly dominated strategies. It is straightforward to show that the only
weakly dominated strategy is for a self to consume nothing, or everything.
Hence, it seems reasonable to restrict attention to subgame perfect strategies
that satisfy the condition 0 < ¢, < A; in every subgame in which A4, > 0.
However, this is not strong enough to eliminate or even to reduce the multipl-
icy in Proposition 1. This is because it is possible to generate infinite punish-
ments without setting consumption to zero. Consider the case p € (1, 00). If
all selves consume at rate ), (i.e. ¢; = A4, Vt), where A € [1 — (6R!~?)7T, 1),
then all selves have payoff —c0.5 Recall that infinite punishments make any-
thing possible as a perfect equilibrium.

$Such infinitely bad punishments with positive consumption levels can also be generated
for the case p= 1.
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The next natural step is to see what happens when we exclude equilibria

which are supported by such infinitely bad punishments.

Definition 2: A perfect equilibrium has finite payoffs at t, if
the equilibrium satisfies the following conditiun: For every h; €
H, such that A, > 0, all selves s > t receive finite payoffs if no
deviations occur from time t forward.

Ifp>landifan associated subgame perfect equilibrium has finite pay-
offs at t, Vi, then in every subgame with a positive asset stock, the path of
future consumption levels will satisfy the restriction 0 < ¢ < A,. Hence the
finite payoff condition rules out weakly dominated strategies. In addition,
the finite payoff condition rules out all strategies that rely on infinite pun-
ishments. However, the finite payoff criterion does not meaningfully change

the equilibrium set.

Theorem 2: Let u be ¢ CRRA utility function with p € 1, 00).
Fiz 8 = 1. Let {c} }2, be any feasible consumption path, such that
T2, 8u(ct) > —oo. Then, {c:}:2o can be supported by a perfect
equilibrium with finite payoffs at t, Vt.

Proof: Let U = Y20 8u(c}y)- So Up is the payoff to self ¢t on the equi-
librium path. The statement of the Theorem assumes, Us > —o0, which
implies that V¢ > 0, Uf > —oo. Let A; be the inherited asset stock of self ¢
on the equilibrium path.

First, I'll consider the case p = 1, (i.e. u(-) =In(-)). Construct the set
P lr=1...,00 ¢ =r,...,00}, according to the following rules. For
each r, choose A, such that 0 < Arp < 1,and U 26 F(Aer) + 75 In(47) +
(T_%Fln(R), where f()) = 5[n(}) + 5 In(1 - A)]. Such a selection is
always possible since Ff(A) = —oc as A = 0. Now, given A, ., with 7' 2 7,

11



pick ), ,r41 such that 0 < ), ;3 <1 and §f(Arpis1) < f(Arer). Use this rule
to recursively generate the entire set of A values.
Consider the following strategy:

If no previous self has deviated, consume c; = c;. If self r was
the first to deviate, and self r' was the last to deviate, consume
at rate A, ...

. The remaining step is to confirm that this strategy supports a perfect
equilibrium. Suppose that the current self is self ¢, and that no previous self
has deviated. Then,

Ur 2 6(he) + Top (A7) + (—l_iﬁ,-ln(a)

=In(A4]) + f: SIn(A R (1 = Ae) " Aeye)

i=1

> In(c) + f:.s"ln((A; — )Ri(1 = Ae) " Ayy) Ve € [0,4]).

i=1
Hence, no self has an incentive to deviate after histories in which no previous
self has deviated.

Now suppose that the history is such that self r was the first to deviate
and self »' was the last to deviate. The current period is ¢ > '. WLOG
assume A, = 1, and R = 1 (for A, # 1, R # 1, carry the appropriate
constants through the following inequalities). If self ¢ follows the equilibrium
path, its payoff is

z SIn(A(l = A ) REA, 1)

1=0

= f(Ar.r’) 2> Jf(xr,r’-{-l) 2 ... > &_'If(Af.t) 2> Jf(Ar,t)

= In(A,) + f: Jiln(At(l - ’\r.t)i_lRi’\"t)

> In(c) + f: §1n((Ae — ¢)(1 = M) BiA,;)  Ve€[0,4,).

Hence, no self has an incentive to deviate after histories in which previ-
ously selves have deviated. Finally, note that any constant consumption rate

12



bounded strictly between zero and one implies 2 finite payoff for all selves.
This completes the proof for the case p = 1.

Now consider the case p > 1. The general argument used for p = 1
may also be used for this case. However, two differences arise. First, it is
necessary to construct a new set Do 7= 1,...,00 PN & which
is contingent on the value of p. Moreover, when the )\ values are chosen, they

must all satisfy the condition A <1 — (R“’S)'ih. This guarantees that the
continuation payofis are finite. O '

The proof of Theorem 2 is long, but the idea is very simple. Since
To, 8ulel) > —0 it can be shown that for all £, T2 Sulcts) > —°
Hence, for each self one can construct 2 finitely bad punishment that en-
sures that that self will not want to deviate from the equilibrium path. The
challenge is to show that these punishments are credible. This is done with
sequences of cascading finite punishments, each one worse than the last.

Theorem 1 establishes that the multiplicity in Proposition 1 does not
rely on infinitely bad punishments. One consequence of this Theorem and
the previous Proposition is that we may now be very suspect of the con-
cept of subgame perfection. Perfection is obviously not strong enough to
ensure that the Ramsey equilibrium is the only equilibrium. The rest of this
section considers a menu of three mutually compatible refinements, each of
which eliminates the multiplicity and leaves the Ramsey solution as the only

subgame-perfect outcome.

3.1 Phelps and Pollak’s uniqueness result.

As stated earlier, Phelps and Pollak (1968) were the first to consider the
game described in section two. They looked for equilibria in which all players
follow the same linear, Markov strategy both on and off the equilibrium path:

Consume at rate )\ whatever the previous history. They did note, however,

13



that other equilibria might exist. Given the assumption on technology, they
show that there exists a unique Nash equilibrium which is supported by
their rule. Using that result it is straightforward to show that subject to
their restrictions there exists a unique subgame perfect equilibrium. This is
the Ramsey equilibrium. Obviously, we may be interested in seeing what
happens when we consider more general strategy spaces.

3.2 Bounded payoffs.

The second refinement is related to the earlier idea of eliminating infinite
Punishments. The new approach is to consider what happens when we elim-
inate equilibria that rely on cascades of ever-worsening punishments. The
approch is motivated by the following result.

Theorem 3: Let u be any bounded, continuous real-valued func-
tionu:[0,00) »R. Fizf =1, and § < 1. Then every subgame-
perfect equilibrium is a Ramsey equilibrium,

Proof: Let C represent the space of bounded, continuous functions,
f:[0,00) = R. Let

V(4) = {v | v = v(s,t,h,), for some s € SP, and h, s.t. A(h) = A} .

Let v(A) = infV(A). So v : [0,00) — R. The Theorem follows from the
following three lemmas.

Lemma 1: v is ¢ fized point of the functional equation,

(T£)(4) = max{u(c) + 6£((4 - ¢)R)}.

14



Proof of Lemma 1: Fix any A € [0,00). The first step is to show,
v(A) < max.{u(c) + §v((A — c)R)}- Construct a sequence {s",t", hp} such
that A(h?) = A for all n, and limp—e (8™t hE) = v(A). Then,
v(s",t" ht) = mf'x{u(c) + bv(s™ " + 1 {r?,cH}s
which implies that,
o(s", t*, h7) > max{u(c) + 62((4 — ¢)R)}.

Taking the limit of the LHS yields,

u(A) > max{u(c) + 8((A - c)R)}- (5)

The next step is to show, v(A) < max.{u(c) + 62((A - ¢)R)}. For this
part of the proof I focus exclusively on subgame-perfect equilibria for which
the payoff to self one depends exclusively on A;. I assume that Ao = A.

Hence, it is possible to represent the continuation payoff to player one as
v(s,1,(A - co)R). s € SP then

o(A) < max{u(c) + 6v(s, 1, (A= IR}

Construct {s"},, such that s™ € SP for all n, and v(s™,1,°) — y(-) < L for
all n. (Hence, v(s™, 1,(A - ¢)R) uniformly converges to v((A — ¢)R).) So,

v(A) £ limn—eo mg.x{u(c) + sv(s",1,(A - c)R)},
which implies that,
o(4) < max{u(e) + 6u((A ~ B} (6)

Combining equations 5 and 6 proves the lemma. O
Lemma 2: v € C.

Proof of Lemma 2: First, note that v is bounded since u is bounded and
§ < 1. It remains to show that v is continuous. Fix any A € [0,00), and any

15



sequence {An}32, such that 4, € [0,00) for all n, and lim,, ., A, = A. Seek
to show lim, o 2(4,) = 1(A4).

Construct a sequence of subgame-perfect equilibrium strategies, {s"},
such that v(s",0, A,) —v(A,) < . Construct a second sequence of subgame-
perfect equilibrium strategies {5"}%2, such that v(5",0,4) — v(4) < L.

Let ¢*(A) represent the equilibrium consumption of self 0, according to
strategy s". Then,

v(s",0,4n) 2 2(4) - [u(&*(4)) - uw(¢"(4) - (A — 44))],

which implies that,
1 an an
2(An) + ~ 2 2(4) = [u(&Y(4)) - w(&%(4) — (4 - 4a))).
Taking limits of both sides yields,
lim 2(4.) 2 o(4). ™

Let c®(A) represent the equilibrium consumption of self 0, according to
strategy s”. Then,

v(3",0,4) 2 v(An) = [u(c"(4n)) — u(c"(4) + (4 — 4n))},
which implies that,
2(A) + = > 2(4n) ~ [u(*(4n)) — u(e(4) + (A - 4,))
Taking limits of both sides yields,
2(A4) < lim p(4,). (8)
Combining equations 7 and 8 yields

lim v(A4,) =2(4).0
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Lemma 3: (Stokey et al. ( 1989), Theorem 4.6) The functional

equation,
- (Tf)(A) = max{u(c) + 6£((4 - c)R)}

has a unique fized point in C.

Together, Lemmas 1,2, and 3 imply that the continuation payoffs associated
with v are equivalent to the Ramsey continuation payofts. O

Theotem 3 establishes that when 8 = 1 and the felicity function is
bounded (and continuous), all subgame perfect equilibria are Ramsey equilib-
ria.6 Note that for each value of p the CRRA felicity function is unbounded.
This explains why Theorem 3 is consistent with Theorem 2. The goal of this
section is to develop an equilibrium refinement for the CRRA consumption
game which captures the idea of boundedness. Specifically, I restrict atten-
tion to equilibria that have the property that for any given equilibrium the
set of “normalized” continuation payofis associated with that equilibrium is

bounded. The following definition makes this idea precise.

Definition 3: Fiz a strategy profile, s. Let

Qs)={wlde period t, feasible history h,, s.t. A(hy) >0 and
A(h )P rw = v(s,t he)}. 7

We will say that s has bounded normalized continuation
payoffs (BNCP) if inf Q(s) is finite. Finally, if u is an instanta-
neous utility function, let PBNCP(y) represent the associated set
of subgame perfect equilibria which satisfy the BNCP property.

8If u is not strictly concave there may not be a unique Ramsey equilibrium.
TIf p = 1, let ©3(s) be as above but replace A(h)!~7-w with 12-%(_17’21 In(A(he)) + w-
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Theorem 4: Let u be a CRRA utility function. Fiz § = 1. The
Ramsey equilibrium is the unique subgame perfect equilibrium with

the BNCP property.

Proof: There are three relevant cases: p € (0,1), p =1, and p > 1. I'll prove
the Theorem for the first case. The treatment of the remaining two cases
uses the same approach.

Assume p € (0,1), and assume that there exists a perfect equilibrium s
with the property that W(s) has a well-defined (finite) inf, w(s). Let A(k)
represent the current asset stock when the previous history is h. Let w(h,) =
v(s,t,h,)mffﬁ:. The existence of finite w(s), implies that there exists a
sequence of histories {hy,,)}72,, such that w(s) = lima_e w(hY,). Note that
the superscript n signifies the location in the sequence. No structure is
imposed on the function ¢(n).

Consider some history k. If this history arises, the continuation payoff of
self ¢ is given by ﬁ%}%—’-—’w(h,). Since s is a perfect equilibrium, this payoff
is bounded below by,

c=* _ S[R(A(h:) - o))'*
1-p + 1-p

w(s) Vee [0, A(k.)).

Let ¢ be the value of ¢ that maximizes that lower bound. Using the first
order condition (which is necessary and sufficient for this problem) it is easy

to show
A(he)
1+ (w(s)§R1-¢)*
Plugging this value of ¢ back into the expression for the lower bound and
dividing through by (ﬁ%'_l‘):—_-: yields the following expression for w(h,).

c=

w(he) 2 [1+ ((s)6R**)5)”

Replacing h,, with ki) and taking the limit of the LHS as n — oo, yields,

w(s) 2 [1+ (()6R**)3]".
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Simplification implies that,

w(s) > [L+ (6B

Compare this to'the payoff that would be received under the Ramsey equi-
librium. It is tedious, but not hard to show that if the current period is t,
with asset stock A¢, the Ramsey payoff to self ¢ is equal to
A}~? _a\117P
F b ererl
so the normalized Ramsey payoft is

L+ (R3]

The last inequality on w(s) implies that the worst normalized continuation
payoff of equilibrium s is at least as good as the normalized Ramsey payoft.
But the Ramsey payoff is also the upper bound on W(s). It follows that
W (s) is a one point set with all continuation payoffs equal to the normalized
Ramsey payoff. O

I am now ready to prove Theorem 1.

Proof of Theorem 1: Note that if p € (0,1), then u(-) is bounded from
below by 0. Hence, if p € (0,1), then any subgame perfect equilibrium has
the BNCP property. By Theorem 4, the Ramsey equilibrium is the unique
subgame perfect equilibrium. O

3.3 Finite horizons.

Consider the finite-horizon analog to the game described in section 2, with

B = 1. If the horizon is T, there are T+1 selves, and preferences are given

by .
—t

U(cos €1+ cr) = E & ulCeri)- (9)

1=0
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In subsection 4.2, I show that for the general case 0 < 8 < 1 the finite horizon
game has a unique perfect equilibrium. In addition, I show that as T — oo
these finite horizon equilibria converge to a perfect equilibrium of the infinite
horizon game. For the case B = 1 this limiting equilibrium corresponds to
the Ramsey equilibrium. Hence, finite horizon arguments provide another

means of picking out the Ramsey equilibrium.

This completes the analysis when 8 = 1. For this case, I am very com-
fortable settling on the Ramsey equilibrium. However, that is not the central
issue. More importantly, it may serve the reader to decide, before proceed-
ing, which arguments in favor of the Ramsey outcome are most persuasive.
If these refinements are reasonable you may also want to accept their impli-

cations in the case 0 < 8 < 1.
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4 Non-exponential discounting: 0 < g <1l

It is trivial to extend the multiplicity results in Proposition 1 and Theorem
1 to the case 0 < B < 1. Hence, it is interesting to see which of the ear-
lier refinements can eliminate this multiplicity It turns out that only two
of -the original three refinements continue to imply uniqueness. These two

“guccessful” refinements are discussed first.

4.1 Phelps and Pollak revisited.

Once again, Phelps and Pollak’s restriction to the set of symmetric, linear
Markov strategy, yields a unique perfect equilibrium. Their equilibrium con-

sumption rate, \* satisfies the equation,
1
»=1- (SR (B-1D+ 1))*. (10)

Henceforth, 1 will refer to their equilibrium strategy as the Phelps-Pollak
strategy. Note that this reduces to the Ramsey equilibrium strategy when

g=1

4.2 Finite horizons revisited.

In this subsection, I show that there is a unique perfect equilibrium in the
finite-horizon game, and 1 consider its limiting properties as the horizon goes
to infinity. This analysis formalizes the arguments in subsection 3.3, by
proving more general results. All of the results in the current subsection
apply to the case 0<p<l.

I begin by analyzing finite horizon games. Note that the T-horizon game
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has T'+1 players, and preferences given by,

T
Uy(cosc1y---rer) = u(e) + B Sucess) V.

i=1

Proposition 2: For any T-horizon game, there ezists a unique
subgame-perfect equilibrium. This equilibrium is Markov perfect.

Proof: Let sT be a point in the strategy space of self ¢ in a game with
horizon T. So sT : Hf — [0,00). Suppose that the T-horizon game has a
unique perfect equilibrium. Also suppose that this equilibrium has strate-
gies of the form: s7(h;) = Ar_.A,, for all selves t € {0,1,...,T}. Finally,
assume 0 < Ar_, < 1forall t € {0,1,2,...,T — 1}. Let V(A,T +1) =
Bé 2,7':0 8*u(Ar_;A,), where Ay = A, and the rest of the A4, sequence is built
up recursively: A.y; = R(1—Ar_;)A:. It is easy to show V4(A,T+1) > 0 and
Vaa(A,T+1) <0V A € (0,00), and lim 4.0 V4(A,T +1) = co. Now consider
the behavior of self 0 in a game with horizon T + 1. Since there is a unique
subgame perfect equilibrium in the subgame that arises after self 0’s choice,
self 0 chooses a consumption level to maximize, u(¢co) + V(R(A4o — c), T + 1),
subject to the restriction 0 < ¢y < Aq. The properties of u(-) and V(-,T +1)
imply that this problem has a unique interior solution. It is easy to show that
the chosen consumption level is proportional to, but less than, A,. Hence,
there exists a number A\, 0 < A < 1 such that ¢ = A4y VAq. Set Aryy = A
The proof proceeds by induction. To start the induction, simply observe that
=1.0

Since the unique subgame perfect equilibrium in any finite-horizon game
is a sequence of Markov strategies, we can write the equilibrium strategy of

self £ in a T-horizon game as, ¢;( A4, T).
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Proposition 3: Consider a T -horizon game. The following “Eu-
ler equation” holds on the unique equilibrium path.

(ce) = REu'(cos) [""’“},‘i‘:’”(ﬂ _1)+ 1] 1)

Proof: Continuing the argument from the proof of Proposition 2, note that
in equilibrium the following condition holds for all ¢:

u'(cg) = RVA(AH.l,T—t).
Note that V(Ae41,T—t) can be reexpressed, V(A41, T—t) =
B8u(cesr( A1, T)) + SV(R(Aei1 — ces1(Aer1, T)), T= (¢ +1))

Taking a partial derivative, yields, Va(Ae+1, T -t) =

Bbu(cu) a:ltﬂl + SRVa(R(Aer1 = °¢+1)aT"(t +1)) { e ] y
t+

3 '~ hen

Finally substitute v’ (€e41) for RVa(Ars2, T—(t+1)) to get the required result.
O

I can now proceed with the main result of this subsection. Theorem 5 es-
tablishes that the finite-horizon equilibrium can be used to pick out the
Phelps-Pollak equilibrium in the infinite horizon game.

Theorem 5: As T — oo, c(A,T) converges pointwise to the
function A*A, which is the symmetric Markov strategy in the
Phelps and Pollak equilibrium.

Proof: Recall that the proof of Proposition 2 shows that in a game with
horizon 7, the unique perfect equilibrium strategy of self t is to consume
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at rate Ap_,. Given this observation, it is possible to use Proposition 3 to
characterize the consumption of self ¢ in a T +1-horizon game.

Recall that Proposition 3 states that the following equation holds on the
unique equilibrium path of any finite horizon subgame:

I(c‘ 1)__ R6u'( )[3C¢(A¢,T)(ﬂ 1)+1

Assume that the game has horizon T. Substitute in for u(-), replace ¢, with
Ar_¢A., and replace the partial derivative with Ar_.. Solving for c,-, yields,

Ce-1 = ’\T-(t—l)At—l’

where

Ar—¢
[BR-2(Ar_e(B — 1) + 1)]* + Ar—¢
This implies that in a finite horizon game it is possible to calculate the equi-
librium consumption rate of today’s self from the equilibrium consumption
rate of tomorrow’s self. Another way of thinking about this is to say that it
is possible to calculate self ¢’s equilibrium strategy in the T+1-horizon game
if we know self t’s equilibrium strategy in the T-horizon game.

So far I’ve noted the following properties. First c;(A4¢,T) = Ar_.A, both
on and off the equilibrium path. Second, the sequence of consumption rates
{2+ }2,, follows the recursion,

(12)

AT_(t-1) =

Ar

drin Sif(2e) = [6R-P(A.(B — 1) +1)]* +

Hence, to prove the Theorem it is sufficient to show that A, — A*.
In the argument which follows I'll use the following properties of f(-),
which are straightforward to confirm.

e f(0)=0.

e f(-) differentiable on [0, 1].

e f'(0) > 1 (using technology assumption §R(}~#) < 1).
e f'(z)>0on [0,1].

e f(1)<1l.
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Let X=sup{A | A € [0,1},A = f(2)}. There is at least one fixed point at
zero, 50 A exists. In fact, it is possible to ghow that X is strictly greater than
gero. This follows from the properties f(0) =0, f'(0) > 1, f(+) continuous,
f(1) <1, and by application of the Intermediate Value Theorem. Finally,
), — X since f'(z) > 0on[0,1], f(1) <1 and Mo = 1.

It only remains to show that X = A°. Recall that X = f(X). Both sides
of this equation can be divided by " since it has been shown that 2>0.
Transforming the resulting equality it is easy to show that

- L~ 3

5 =1- (R MB-1+ 1.

Note that the unique solution to this equation is A*. O

Before proceeding with the next subsection, it is helpful to extend the analysis

of this subsection a little further. Recall equation 11, and note that Theorem
5 establishes that as the horizon goes to infinity

act+1(At+1 9 T) — A.
0Ain1

Hence, in the limit,? equation 11 becomes,

u(e) = Ré6u' (cesn) N (B— 1)+1] Wt (13)

Note that this equation and its finite-horizon analog reduce to the stan-
dard Euler equation when g =1.1tis also interesting to observe that equa-
tion 13 is observationally equivalent to the Euler equation that arises when
discounting is exponential with discount rate & = 6 {A° (B8-1)+1]. This is

an observational equivalence result which is somewhat similar to the widely

8This can be interpreted formally in the following way. Consider the infinite horizon
game. Let ¢* be the equilibrium of that game which is picked out in Theorem 5. Equation
13 holds on the equilibrium path of s°.
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cited but false observational equivalence claim of Strotz (1955).° Note that
my derivation of equation 13 depends on two assumptions that Strotz did
not make. First, my discounting structure is very restricted, reverting to ex-
ponential discounting after one period. Second, I assume CRRA preferences.
The specific form of my result depends on both of these assumptions,!?

. However, there is a sense in which my observational equivalence claim is
just a special case of a more general phenomenon. With CRRA preferences
and a fixed interest rate, any constant consumption rate implies a linear

relationship between v/(c;) and u'(ce41). If the consumption rate is ),
u'(c:) = Rbu'(cona)

where § = RP=1(1 = A)e.

4.3 An interesting class of equilibria.

I now return to the general infinite-horizon case. Before discussing the re-
maining two refinements, it is helpful to describe a class of equilibria to which
I will later refer. Consider the following symmetric strategy (symme*ric in

the sense that all selves follow the same consumption rule).

Consume a fraction \g < \* of the current asset stock unless
some prior self has consumed at a rate different than )\o. In that
case, consume at rate \*.

9Strots claimed that dynamically inconsistent agents would behave as if they had an
exponential discount rate equal to their instantaneous rate of discount at time zero. See
Phelps (1968) for an explanation of what Strotz did wrong.

19With completely general discounting a very different “Euler-equation” is generated.
This general equation contains an infinite sequence of marginal utilities and propensities
to consume.
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Call this strategy the Self-Diagnostic rule (SD rule). The rule specifies that
selves choose a (cooperative) low consumption rate, anless some previous
self has violated .the rule. In the case of a previous violation, the current
self is instructed to consume at the Phelps-Pollak rate. The strategy uses
linear consumption rules both on and off the equilibrium path, and admits
the Phelps-Pollak strategy as & special case (i.e. do = 2°*). Also note that
the equilibrium path is supported by 2 “focal” strategy, in the sense that the
post-deviation phase corresponds to the unique equilibrium picked out in the
previous two subsections. Since the SD strategy depends on both Ao and X*,

represent it as SDxg e

Proposition 4: Fiz0 < B <1, and 0 < § < 1. There ez-
ists an € > 0 such that for all Xo in the interval (A* — & X*), the
SDj, e rule supports a subgame perfect equilibrium which Pareto-
dominates the outcome associated with the Phelps-Pollak equilib-
rium.

" Note that two equilibria are Pareto-rankable if all temporal selves of the
individual are better off under one of the two equilibria. Proposition 4 is
proved by extending a result in Phelps and Pollak (1968).

Proof: Phelps and Pollak show that for small € there exists an interval
(A —¢ A*), with the property that if X is in that interval, an infinite path
of consumption at rate )\ Pareto-dominates the consumption path of the
Phelps-Pollak equilibrium.

The remaining step is to show that this Pareto-superior path is supported
as a perfect equilibrium by the SD rule. Assume that at time t no previous
celf has deviated. So the SD rule implies that self t should consume at rate
re (X - €,\*). Suppose self t were to deviate. The SD rule dictates that
a current deviation is punished by future consumption at rate )*. So what
is self t’s best deviation? Recall that 2* has the property that if all future
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selves consume at A* then the current self will also want to consume at A*.
So self t’s best deviation is to consume at rate \°. However, we know that
consumption at rate A* forever makes self t no better off than consumption
at rate A forever. So there is no incentive to deviate from the equilibrium
path. By definition of A* there is also no incentive to deviate after a history
which is off of the equilibrium path. [J

One useful implication of this proof is that if an S Dy, 2. strategy sup-
ports a perfect equilibrium than the corresponding equilibrium path Pareto-
dominates the equilibrium path of the Phelps-Pollak equilibrium.

4.4 The BNCP refinement.

Recall the notation of section 3.2. It is trivial that if s is an SD equilibrium,
§)(s) is a two point set. It can also be shown that these two points are finite.
Hence, every SD equilibrium is admissible by the BNCP criterion. Since the
SD equilibria are indexed by a nondegenerate interval the BNCP criterion

is too weak to provide uniqueness.

4.5 Which equilibrium is focal when 0 < 8 < 1?

Having considered the three refinements, it is now possible to ask if there
is a focal equilibrium for the case 0 < 8 < 1. The most likely candidate
is the Phelps-Pollak equilibrium. Subsections 4.1 and 4.2 showed that this
equilibrium is uniquely chosen by the Phelps-Pollak refinement and the finite
horizon refinement. In addition, the Phelps-Pollak equilibrium has appeal-
ingly simple symmetric strategies which satisfy the Markov property that the
sufficient statistic for today’s consumption decision is today’s asset stock. Fi-
nally, the Phelps-Pollak equilibrium satisfies the BNCP criterion.

However, there is also a strong argument against the Phelps-Pollak equi-
librium. Proposition 4 shows that there exist SD equilibria that Pareto-
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dominate the Phelps-Pollak equilibrium. Moreover, the SD rules are sym-
metric and relatively simple (though they do not have the Markov property),
and the SD equilibria satisfy the BNCP criterion.

Finally, there are other perfect equilibria outside of the SD class which
also Pareto-dominate the Phelps-Pollak equilibrium. Is the Phelps-Pollak
outcome, an SD outcome, or some other outcome most likely? When 8 =1
we had a clear answer. For the case 0 < B8 < 1, there is not an obvious

choice.l?

5 Characterization of the equilibrium set.

This section characterizes the set of subgame perfect equilibria which survive
the BNCP criterion, when u is a CRRA utility function. Hence the section
characterizes the set PBY CP(y), which I will henceforth shorten to PpBNCP,
The characterization depends upon two assumptions (in addition to the ear-
lier technology assumption) which respectively restrict the range of § and §3,

the discount parameters in my model. The restriction on § takes the form,
(A1)  (6R™*)5 >}

This inequality is satisfied for sufficiently large 6. The restriction on S is less

clear-cut. In particular, I assume,

(A2) B sufficiently close to 1.

Recall that § = 1 is the standard exponential discount case. When the

model is calibrated with reasonable parameter values, assumption (A2) is

11] am currently working on renegotiation. refinements.  Preliminary work in this
area indicates that some renegotiation criteria, (e.g., Farrell and Maskin’s (1989) weak
renegotiation-proofness criterion), continue to admit multiple equilibria.
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not restrictive - i.e. the results which depend on (A2) hold for 8 values in
an interval (8,1], where 8 is “close” to zero. At the end of this section I
present some examples which support this claim.

Consider the set, PENCP which contains all of the subgame perfect strat-
egy profiles of the BNCP class. Let w represent the worst normalized con-

tinuation payoff in the set of all normalized continuation payoffs of strategy
profiles in PBNCP,

w =min{w|3s € PBNCP 5t w e O(s)}.

For now, I'll assume that w is well-defined. A formal existence result appears
in the main theorem.

Before proceeding to the theorem, it may be helpful to emphasize the
reason that we care about w. Let,

i=1

W({Aa}2) = 80m) + B3 Fu(BAmgi [T (1 = M),

=1 3=0

s0 w({An}Z,,) is the normalized payoff to the current self if the path of

current and future consumption rates is given by {\,}>= .

Proposition 5: A path of consumption rates, {\;}2, can be
supported by a perfect equilibrium with bounded normalized con-
tinuation payoffs iff w < w({A}2,.) Vm > 0.

Proof: Necessity follows immediately from the definition of w. To show
sufficiency, it is helpful to introduce the following notation. Let A(s,t,h)
represent the equilibrium consumption rate of self ¢ after observing history
h when the equilibrium strategy profile is s. Pick s* € PBNCP ¢+ and A°,
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such that ?

o= v(s*, %, h°)

=7 A(h)-r )
Note that such a triplet must exist by the definition of w. Finally, for any two
time periods r and ¢, with * < t, let h(r,t) = {R*5Ars Arsrs- e ,Ae-1}, where
the respective \’s are the realized sequence of consumption rates from time
» to time t — 1, and h°, is the history of consumption rates defined above.
Now take a path of consumption rates, {Me}20, such that @ < W({An}m)
v m > 0. Consider the following strategy profile:

If no previous self has deviated, self t consumes at rate Ay, Ifr <t
was the first self to deviate, self t consumes ot rate (st +t—

Ty h("'at))'

This profile is a subgame perfect equilibrium which supports the proposed
path of consumption rates. O

The main theorem depends on the property that the Ramsey consumption
path, (i.e. A = AR = 1 — (6R-*)/* Vi), can be supported by a sub-
game perfect strategy profile with bounded normalized continuation payofis.

Proposition 6 provides a sufficient condition for this property.

Proposition 8: Given (A1) and (A2), the Ramsey consumption
path can be supported by a subgame perfect strategy profile with
bounded normalized continuation payoffs.

Proof: Let w(d) = w(A,A,A,...). Let f(B) = w(AP) - w(A*(B)), where
X*(B) is the Phelps and Pollak consumption rate. This notation is used to
emphasize that w(A*(8)) depends on J in two ways. First, B is a discount
rate, so changes in 3 affect the value of future consumption. Second, 3 is in

12When p = 1, find 8° € PBNCP ¢* and h*, such that w = v(s*,?°,h°%) —
1=8028) In(A(h*))-
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the implicit equation which determines A*. Note that 3 only influences w(AR)
through the former mechanism as AR does not depend on 3.

The body of this proof characterizes the value of f(-) in a neighborhood
of 8 = 1. First, f(1) = 0 since A*(1) = AR. To evaluate f(-) at 8 values just
below unity, I consider f'(1) and f"(1).

dw(AR)  Hw(X*) Bw(r*)dr*
a8 88  8x dB

Note that f'(1) =0, as —"’(&lp_l = —%—)'lp-l, and, 2 |p=1 = Ja;g-llg =1 =
0. Tedious algebraic manipulations reveal that

f'(8) =

(1) = %(A")-'(l — XR)(1 - 2)R),

which is positive by (Al) (recall that AR = 1 — (§R'-*)'/?). Given that
f(1) =0, f(1) =0, and f"(1) > 0, there exists an interval (3,1) such that
f(B) > 0V B € (B,1). Hence, for sufficiently large 8 < 1, and § satisfying
(A2), f(B) is positive and the SDyx ). rule is a subgame perfect equilibrium.
a

Theorem 5: Assume that the Ramsey consumpticii path can
be supported by a subgame perfect strategy profile with bounded
normalized continuation payoffs. Then w is well defined, and

w=w(XP(X7), 37,08, .. ) =w(3", AR, .. ),

where,

D(\P\ — P \R
AZ(A )_a.l)'éﬁ?jxw()«,,\ s ATy,

X = max{AP € (0,1)|w(AP(AP), AP, AR, .. ) = w(AP, AR, . )}.
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Proof: First, note that AP(\FP) is a function on (0,1). Let
g(OP) = w(AP, AB,..) — w(AP(AP), A7, AR, ..).
Let AM = argmaxyepo,q)w(}, A%, ...). The following results are straightfor-

ward to confirm:

e \M is a point in (0,1),
.%(;;1<0forau,\">w,
o g(AM) >0,

e limyr_, g(A?) < 0.

Hence, %P is well-defined. The rest of the proof is based on the following
result.

Lemma 4: Given w, let X = sup{\ |w()\,AR,...) = w}. Then,

w=wX,..)= w(AP(X), X, AR, ...).

Proof of Lemma 4: Fix any subgame perfect equilibrium, s, with normal-

ized continuation payoff to self 0 of w. Then,
w > u()) + 8[(1 — )R] *lw(s, 1,A) = (1 - Blu(M1(N))], forall A € [0,1],

where w(s,1,)) represents the normalized payoff to self 1 under equilibrium
s if self 0 has played ); and A;()), represents the equilibrium map from self
w < w(s,1, ), for all s, A,

0’s action ), to self 1’s action, ;. By assumption,

s0,

w > u(A) + 8[(1 = MR *w — (1 - Byu(M(N))], forall X € [0,1].
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It is straightforward to confirm that
hY =.sup{z\ | 3 {An}, suchthat, w(A, {dn};) 2w}
Hence, \(}) < ], implying,
o > w(d) + 8[(1 - N)R*lw — (1 - B)u(M)], forall A € [0,1],
which in turn implies,
w > w(AP(X), X, AR,

By definition of w, there exists a sequence of w’s which converge to w, and

for each w in this sequence the previous inequality holds. Hence,
w > w(AP(N), X, AR,..0). (14)

Construct a monotonically increasing sequence, {An}nz; which converges
to \. By definition of X the following equilibrium path strategy is supportable

with a subgame-perfect equilibrium:

Self 0: consume at rate AD(A").
Self 1: consume at rate A™.
Selves t > 2: consume at rate AR,

Hence @ < w(AP(A"), A", AR, ...). Letting A" go to unity (and noting that

AD is continuous in its argument), yields

w< w(AD(_X)v_xa AR, ) (15)
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Combining equations 14 and 15, yields,
w = w(AP(X), A, AR L),

proving the lemma. O
. To complete the proof of Theorem 5 it is sufficient to show that given w,
A= 3. Suppose 2> 3. Then, by definition of -XP,

W%, OB, .Y # w(OP(R), AR, ),

contradicting Lemma 4. Alternatively, assume, Y <. By definition of XP,
the following equilibrium path strategy is supportable by a subgame-perfect

equilibrium:

Self 0: consume at rate \° ).

Self 1: consume at rate 3.
Selves t > 2: consume at rate consume at rate \B.

Hence, by definition of 37 and X the normalized payoff to self 0 is

WwAP(X), X, AR, ) = WP AR, L) <w(XAR,.L) = e,

contradicting the definition of w. Hence, X = 3. o

Theorem 5 characterizes the worst continuation payoff which can be sup-
ported by a perfect equilibrium of the BNCP class. Proposition 7, which
follows, characterizes the best continuation payoff which can be supported
by a perfect equilibrium of the BNCP class. Let,

7= max{w|3s € PBNP st. wE Q(s)}-
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Proposition 7: Assume that the Ramsey consumption path can
be supported by a subgame perfect strategy profile with bounded
normalized continuation payoffs. Then @ is equal to the normal-
ized payoff which would be achieved by self zero if self zero could
precommit all future consumption rates.

Proof: It is sufficient to note that from the perspective of self zero the
optimal path of consumption rates from period one forward is given by A; =
AR O

Theorem 5 and Proposition 7 rely on an assumed property: there exists an
element of PENCP which supports the Ramsey consumption path. It is useful
to know if this property holds when the model is calibrated with standard
parameter values. Proposition 6 establishes that assumptions (Al) and (A2)
are sufficient for this property to hold. Hence, an interesting exercise is to
determine the restrictiveness of (A1) and (A2). Do these assumptions rule
out any of the parameter values we would like to use to calibrate this model?

Condition (A1) can be analyzed directly. Table 1 examines three leading
cases which span the range of p values from which most consumption models
are calibrated. Inspection of the table immediately reveals that (A1) is not
restrictive since preferences are usually calibrated with 1 < p < 2, and
90<6< 1.

Condition (A2) cannot be analyzed as easily. Recall, that I seek to char-
acterize the calibration range over which there exists a subgame perfect equi-
librium which implements the Ramsey consumption path. A sufficient con-
dition for the existence of such an equilibrium, is the existence of an SDyxz ).
equilibrium. This is the approach taken in the proof of Proposition 6. Table
2 extends this analysis by mapping p, § pairs into intervals of 8 values which
have the property that if 3 is in that interval a SDjz ). equilibrium exists.
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strictiveness of assumption (A1)

Table 1: Re

=1.03

(A1) given p snd given B

(A1) given p from column 1

§2R >}

“
| > 10

1 §> .50

5>-2'

|

wle
(X1 g

\
T

Table 2: Restrictiveness of assumption (A2)

3 SDxp. equilibrium |

| B Tatervals for which
given R = 1.03, and various p, & pairs
r §=.9 §=.95
p=3 334<p<l 245<p <1
p=1 003<B<1 012<p<1
p=2 0<p<l 0<p<l
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Specifically, Table 2 reports the intervals of A values for which
w(AB ) > w(A®,...).

Table 2 demonstrates that (A2) is not restrictive. For each of the exam-
ples that I consider there is a large range of B values for which the Ramsey
path can be implemented. Moreover, for p = 2 the entire unit interval (open

at zero) is in the acceptable region.

6 Interpreting the results.

In this section I argue that the preceding multiplicity is actually a good
thing, since it provides a potential explanation for some puzzling economic
phenomena. I consider the consequences of this analysis for the theory of
dynamic choice, and then turn to some specific applications which may be

of interest to macroeconomists.

6.1 Dynamic choice.

There are three general conclusions which I want to highlight. First, since
there is not a focal equilibrium in the case 0 < B < 1, it seems reasonable
to predict that two people with identical preferences would exhibit different
behavior in the same environment. Hence, the model generates heterogeneous
behavior without making recourse to heterogeneous preferences.

Second, this theory explains why some people have self-acknowledged
“bad habits” which they can’t break, while other people with identical prefer-
ences are able to exert what might be called “self-control” to avoid these “bad
habits.” The bad habit is a perfect equilibrium which is Pareto-dominated

by another perfect equilibrium. Consider a person whose selves are playing
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the Phelps-Pollak equilibrium, and contrast this individual with a different
person whose gelves are consuming at a lower rate because they are playing
a Pareto-superior equilibrium of the SD class. The Phelps-Pollak individual
may wish that she had the ugelf-control” of the §D individual. However,
the Phelps-Pollak individual is in equi ;brium, and, short of some kind of
renegotiation, will not achieve the better outcomes of the SD person.

" Third, the theory makes sense of the observation that behavior is often
perceived to be self-diagnostic. On the equilibrium path of the SD equi-
librium, one self-indulgent act—a high consumption rate today—begets 2

sequence of self-indulgent acts—high consumption rates in the future.

6.2 Macroeconomic applications.

The model is of direct interest to macroeconomists, since the intertemporal
choice problem that 1 stud&' is a savings/ consumption decision. Most impor-
tantly, the model explains how an economy’s/individual’s savings rate can
be indeterminate in equilibrium, without using 2 traditional externality ar-
gument. The scope of this indeterminacy is demonstrated in the following
example.

Let ) be the smallest )Xo value for which the SDx, e+ strategy supports
a perfect equilibrium. It can be shown that for all X € [A, 0], the SDj
rule supports a perfect equilibrium. Table 3 provides examples of the (A, A%

interval for a small set of B, 6 pairs when p = 1.8

13]¢ can be shown that p = 1 implies that the interval is independent of RA = T_-_-:fl—f-_-ﬂ,
and ) is the smaller of the two solutions to the following non-linear equation:

(A)'n (i‘- + F@%,-xn (%-:,\i) =0.
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Table 3: [\, \°]

B=25 | B=50 | B=75 | B=1.00
§ = .975 || [.003,.093] | [.011,.049] | [.019,.033] | [.025,.025]
§=.950 || [.009,.174] | [.024,.095] | [.038,.066] | [.050,.050]
= .925 || [.017,.245] | [.040,.140] | [.059,.098] | [.075,.075]
§ = .900 | [.030,.308] | [.057,.182] | [.080,.129] | [.100,.100]
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Consider the following particular example. KB = 50,6 = 975 and
an SD equilibrium is adopted, then the individual’s long-run consumption
rate can be as low as .011 and as high as .049. It is helpful to contrast two
hypothetical people (who may be interpreted as two small open economies).
Suppose the first person is in an SD equilibrium with A = .011. Suppose
the second person is in an SD equilibrium with A = .049. Take the interest
rate to be 3%, (i.e. R=1.03). Then the consumption of individual one will
grow exponentially over time, while the consumption of individual two will
fall exponentially; individual one exhibits a savings rate of 62.2% of income,
while individual two exhibits a savings rate of -67.8% of income. However,
in terms of their deep preferences these two people are completely identical.
They function in the same institutional environment. The only difference is
that they implement different perfect equilibria. Moreover, it is hard to argue
in favor (from a positive perspective) of one equilibrium over the other. The
high consumption rate equilibrium is the Phelps-Pollak equilibrium, and has
all of the nice properties discussed above. However, it is Pareto-dominated
by the low consumption rate equilibrium. Which equilibrium is more likely
to occur? '

This analysis suggests a potential rationale for government intervention
to try to raise the national savings rate. I have analyzed a model in which
low savings rate are Pareto-inferior, but nevertheless arise as an equilibrium
outcome. Hence it may make sense to use social institutions to pick out
welfare-enhancing equilibria. Perhaps schools should teach students to save?

Finally, the analysis of this paper can be interpreted as a general method-
ological critique of the “Euler equation” approach to consumption. When S is
less than one there are multiple equilibria, and hence, the usual consumption
Euler equation no longer holds. (If a unique Euler equation did hold than

there could not be multiple equilibria.) Moreover, on 2 generic subgame-
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perfect equilibrium path there will be no systematic relationship between
the interest rate and the path of marginal utilities. Marginal utilities take
on very little importance because for generic equilibria the decision to devi-
ate is not based on considerations of local perturbations to the consumption
path.14

7 Conclusion.

This paper characterizes the equilibria that arise when dynamic savings de-
cisions are modelled as an intra-personal game. I present three refinements
which admit a unique equilibrium (the Ramsey equilibrium) when discount-
ing is exponential. However, only two of these refinements continue to admit
a unique equilibrium when discounting is approximately hyperbolic. More-
over, the unique equilibrium in those two “successful” cases turns out to be
Pareto-inferior in the class of subgame perfect equilibria. This leads me to
conclude that there is no single focal equilibrium in the case of hyperbolic
discounting. I consider several consequences of this result, with emphasis on
the indeterminacy of the national savings rate.

There are three extensions on which I am currently working. The first
is to incorporate renegotiation refinements. Preliminary work in this area
indicates that some renegotiation criteria, (e.g. Farrell and Maskin’s (1989)
weak renegotiation-proofness criterion) continue to admit multiple equilibria.
Second, I have used hyperbolic discounting to develop a model of precommit-
ment (Laibson (1993a)). Third, I am using hyperbolic discounting to develop
a model of self-reward and mental accounts (Laibson (1993b)).

14The exception to this observation is the Phelps-Pollak equilibrium.
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