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ABSTRACT 

We conduct a large-scale genetic association analysis of educational attainment in a sample of 
~1.1 million individuals and identify 1,271 independent genome-wide significant loci. For the 
loci taken together, we find evidence of heterogeneous effects across environments. The loci 
implicate genes involved in brain-development processes and neuron-to-neuron communication. 
In a separate analysis of the X chromosome, we identify 10 loci and estimate a SNP heritability 
of ~0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-
phenotype) analysis of educational attainment and three related cognitive phenotypes generates 
polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the 
variance in cognitive performance. This prediction accuracy substantially increases the utility of 
polygenic scores as tools in research. 
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INTRODUCTION 
Educational attainment (EA) is an important correlate of many social, economic, and 

health outcomes1,2. The largest GWAS of EA conducted to date identified 74 loci in a discovery 
sample of 293,723 individuals and reported that a 10-million-SNP polygenic score explained 
3.2% of the variance in independent samples3.  Here, we report results from (i) a meta-analysis 
of EA based on a much larger sample of 1,131,881 individuals and (ii) joint (multi-trait) analyses 
of EA and three genetically correlated phenotypes: cognitive (test) performance (N = 257,841), 
self-reported math ability (N = 564,698), and hardest math class completed (N = 430,445). 

 

RESULTS 

Main GWAS Results 

In our primary GWAS, we study EA, which is measured as number of years of schooling 
completed (EduYears). All association analyses were performed at the cohort level in samples 
restricted to European-descent individuals. We applied a uniform set of quality-control 
procedures to all cohort-level results. Our final sample-size-weighted meta-analysis produced 
association statistics for ~10 million SNPs from phase 3 of the 1000 Genomes Project4. 

The quantile-quantile plot of the meta-analysis (Supplementary Figure 1.1) exhibits 
substantial inflation (λGC = 2.04). According to our LD Score regression5 estimates, only a small 
share (~5%) of this inflation is attributable to bias (Supplementary Figure 1.2). We used the 
estimated LD Score intercept (1.11) to generate inflation-adjusted test statistics. Fig. 1 shows the 
Manhattan plot of the resulting P values. Overall, our meta-analysis identified 1,271 
approximately independent (pairwise R2 < 0.1) SNPs at genome-wide significance (P < 5×10-8). 
Adjusted for winner’s curse, the median effect size for these SNPs corresponds to 1.7 weeks of 
schooling per allele; at the 5th and 95th percentiles, 1.1 and 2.6 weeks, respectively. 

We examined the replicability of 162 single-SNP associations (P < 5×10-8) from the 
combined discovery and replication sample (N = 405,073) of the largest previous study3. In the 
subsample of our data (N = 726,808) that did not contribute to the earlier study’s analyses, the 
SNPs replicate at a rate that closely matches theoretical projections that account for sampling 
variation and winner’s curse (Supplementary Figure 1.4). 

To probe the robustness of our meta-analysis findings, we compared results from within-
family association analyses conducted in four sibling cohorts to those from a meta-analysis that 
excluded the siblings. Our sample of 22,135 sibling pairs is too small to allow well-powered 
within-family association analyses of single SNPs but large enough for joint analyses of the lead 
SNPs. We find greater sign concordance than expected if GWAS results were driven primarily 
by stratification bias (Supplementary Figure 2.1; see Supplementary Note for a more detailed 
discussion). 



Because educational institutions vary across places and time, the effects of specific SNPs 
may vary across environments. Consistent with such heterogeneity, we find that the inverse-
variance-weighted mean genetic correlation of EduYears across pairs of cohorts in our sample is 
0.72 (SE = 0.14), which is statistically distinguishable from one (P value = 0.03). Moreover, for 
the lead SNPs, we reject the joint null hypothesis of homogeneous cohort-level effects (P value = 
9.7×10-12; Supplementary Figure 1.3). 

We supplemented our autosomal analyses with association analyses of SNPs on the X 
chromosome. We first conducted separate association analyses of males (N = 152,608) and 
females (N = 176,750) in the UK Biobank, finding a male-female genetic correlation close to 
unity. We also find nearly identical SNP heritability estimates for men and women, which is 
consistent with partial dosage compensation (i.e., on average the per-allele effect sizes are 
smaller in women) and implies that any contribution of common variants on the X chromosome 
to sex differences in the normal-range variance of cognitive phenotypes6 is quantitatively 
negligible. Next, we conducted a large (N = 694,894) meta-analysis of summary statistics from 
mixed-sex analyses (Supplementary Figure 4.1). We identify 10 genome-wide significant loci 
and estimate SNP heritability due to the X chromosome of ~0.3%. This heritability is lower than 
that expected for an autosome of similar length (Supplementary Figure 4.2, Supplementary 
Table 4.3). 

 

Biological Annotation 

 For biological annotation, we focus on the results from the autosomal meta-analysis of 
EduYears. Across an extensive set of analyses (see Supplementary Figure 5.1 for a flowchart), 
all major conclusions from the largest previous GWAS of EA3 continue to hold but are 
statistically stronger. For example, we applied the bioinformatics tool DEPICT7 and found that, 
relative to other genes, genes near our lead SNPs are overwhelmingly enriched for expression in 
the central nervous system (Fig. 2A).  

There are also many novel findings associated with the large number of genes newly  
implicated by our analyses: At the standard false discovery rate (FDR) threshold of 5%, the 
bioinformatics tool DEPICT7 prioritizes 1,838 genes, a tenfold increase relative to the DEPICT 
results from an earlier GWAS of EduYears3.  In what follows, we distinguish between the 1,703 
“newly prioritized” genes and the 135 “previously prioritized” genes. The SOM contains an 
extensive analysis of many of the newly prioritized genes and their brain-related functions. Here 
we highlight two especially noteworthy regularities. First, whereas previously prioritized genes 
exhibited especially high expression in the brain prenatally, newly prioritized genes show 
elevated levels of expression both pre- and postnatally (Fig. 2B). Many of the newly prioritized 
genes encode proteins that carry out online brain functions such as neurotransmitter secretion, 
the activation of ion channels and metabotropic pathways, and synaptic plasticity. For a number 
of newly prioritized genes, Fig. 3 illustrates the crucial roles in cellular neurophysiology8 played 
by their protein products in the postnatal brain. 



Second, even though glial cells are at least as numerous as neurons in the human brain9, 
gene sets related to glial cells (astrocytes, myelination, and positive regulation of gliogenesis) are 
absent from those identified as positively enriched (Supplementary Table 5.5). Furthermore, 
using stratified LD Score regression10, we estimated relatively weak enrichment of genes highly 
expressed in glial cells: 1.08-fold for astrocytes (P = 0.07) and 1.09-fold for oligodendrocytes (P 
= 0.06) versus 1.33-fold for neurons (P = 2.89×10-11). Because myelination increases the speed 
with which signals are transmitted along axons11, the absence of enrichment of genes related to 
glial cells may weigh against the hypothesis that differences across people in cognition are 
driven by differences in transmission speed. 

The results also raise a number of possible targets for functional studies. Among SNPs 
within 50 kb of lead SNPs, 127 of them are identified by the fine-mapping tool CAVIARBF12 as 
likely causal SNPs (posterior probability > 0.9). Eight of these are non-synonymous, and one of 
these (rs61734410) is located in CACNA1H, which encodes the pore-forming subunit of a 
voltage-gated calcium channel that has been implicated in the trafficking of NMDA-type 
glutamate receptors13. 

 

Polygenic Prediction 

Polygenic predictors derived from earlier GWAS have proven to be a valuable tool for 
researchers, especially in the social sciences14,15. We constructed polygenic scores for European-
ancestry individuals in two prediction cohorts: the National Longitudinal Study of Adolescent to 
Adult Health (Add Health, N = 4,775), a representative sample of American adolescents; and the 
Health and Retirement Study (HRS, N = 8,609), a representative sample of Americans over age 
50. We measure prediction accuracy by the “incremental R2”: the gain in coefficient of 
determination (R2) when the score is added as a covariate to a regression of the phenotype on a 
set of baseline controls (sex, age, and 10 principal components of the genetic relatedness matrix).  

All scores are based on results from a meta-analysis that excluded the prediction cohorts. 
Our first four scores were constructed from sets of LD-pruned SNPs associated with EduYears at 
various P-value thresholds: 5×10-8, 5×10-5, 5×10-3, and 1 (i.e., all SNPs). In both cohorts, the 
predictive power is greater for scores constructed with less stringent thresholds (Supplementary 
Figure 6.3). The (sample-size weighted) mean incremental R2 increases from 3.2% at P < 5×10-8 
to 9.4% at P ≤ 1. Our fifth score was generated from HapMap3 SNPs using the software 
LDpred16. Rather than dropping SNPs in LD with each other, LDpred weights each SNP by (an 
approximation to) its conditional effect, given other SNPs. This score had the greatest 
incremental R2: 11.4%. Hereafter, we focus on the LDpred score. 

To put the predictive power of this score in perspective, Fig. 4A shows the mean college 
completion rate by polygenic-score quintile. The difference between the bottom and top quintiles 
in Add Health and HRS is, respectively, 45 and 36 percentage points (see Supplementary 
Figure 6.4 for analogous analyses of high school completion and grade retention). Fig. 4B 



compares the incremental R2 of the score to that of standard demographic variables. The score is 
a better predictor of EduYears than household income and a worse predictor than mother’s or 
father’s education. Controlling for all the demographic variables jointly, the score’s incremental 
R2 is 4.6% (Supplementary Figure 6.7). We also found that the score has substantial predictive 
power for a variety of other cognitive phenotypes measured in the prediction cohorts 
(Supplementary Figure 6.1). For example, it explains 9.2% of the variance in overall grade 
point average in Add Health. 

 

Related Cognitive Phenotypes and MTAG 

We also performed genome-wide association analyses of three complementary 
phenotypes: cognitive performance (CP, N = 257,841), self-reported math ability (Math Ability, 
N = 564,698), and highest math class taken (Highest Math, N = 430,445). For cognitive 
performance, we meta-analyzed published results from the COGENT Consortium17 with results 
based on new analyses of the UKB. For the two math phenotypes, we studied new genome-wide 
analyses in samples of research participants from 23andMe. All analyses and quality-control 
procedures were harmonized to ensure comparability with the EduYears GWAS. We identified 
225, 618, and 365 genome-wide significant loci with CP, Math Ability, and Highest Math, 
respectively (Supplementary Figures 1.5-1.7, Supplementary Tables 1.8-1.10). 

We conducted a multi-trait analysis of EduYears and our supplementary phenotypes to 
further improve prediction accuracy. These phenotypes are well suited to joint analysis because 
their pairwise genetic correlations are high, in all cases exceeding 0.5 (Supplementary Table 
1.11). We applied a recently developed method, Multi-Trait Analysis of GWAS, or MTAG18, to 
summary statistics from the four phenotypes (again excluding the prediction cohorts). MTAG 
allows for sample overlap across the phenotypes and generates phenotype-specific association 
statistics. For all four phenotypes, MTAG increases the number of loci identified at genome-
wide significance (Supplementary Figures 1.8-1.12, Supplementary Table 1.14). For 
example, MTAG identifies 661 loci associated with CP, and a host of follow-up analyses suggest 
that the false discovery rate is low. 

Polygenic scores constructed from MTAG results are expected theoretically to 
outperform corresponding scores based on GWAS results under general conditions. Fig. 4C 
shows the incremental R2 for the polygenic scores based on GWAS and MTAG association 
statistics (but otherwise constructed using identical methods) when the target phenotype is either 
EduYears (left panel) or CP (right panel). For EduYears, relative to the GWAS score, the MTAG 
score improves predictive power from 12.7% to 13.0% in Add Health and from 10.6% to 11.2% 
in the HRS. To measure prediction accuracy for cognitive performance, we used a third 
validation cohort, the Wisconsin Longitudinal Study (WLS), because it contains a measure with 
excellent retest reliability and psychometric properties similar to those used in our discovery 
GWAS of cognitive performance. In the WLS, the MTAG score predicts 9.7% of the variance in 
CP, a substantial improvement over the 7.0% predicted by the GWAS score—and approximately 



double the prediction accuracy reported in three recent GWASs of cognitive performance19–21. In 
Add Health, where our measure of cognitive performance is the respondent’s score on a test of 
verbal cognition, the incremental R2s of the GWAS and MTAG scores are 5.1% and 6.9%, 
respectively. 

 

DISCUSSION 

For social science, the polygenic scores are the most important results of this paper. With 
their levels of predictive power—11-13% and 7-10% of the variance of EA and cognitive 
performance, respectively—they will be useful across at least three types of applications. First, it 
is now possible to conduct well-powered studies of the mechanisms by which genetic factors 
affect EA by examining associations between the scores and high-quality measures of 
endophenotypes in samples as small as those from laboratory experiments. Second, the polygenic 
scores can now generate non-trivial gains in statistical power when used as control variables in 
randomized-controlled trials of expensive interventions that aim to improve academic and 
cognitive outcomes [see the calculations in the SOM of Rietveld et al.22]. Third, genetic effects 
on educational attainment and cognitive performance have repeatedly been found to vary across 
environmental contexts23,24, and the polygenic scores provide a new and powerful tool for 
researchers interested in exploring such gene-environment interactions. 

 

CODE AVAILABILITY: 

All software used to perform these analyses are available online. 
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Fig. 1. Manhattan Plot for GWAS of EduYears (N = 1,131,881). P values and the mean 𝜒𝜒2 
shown in figure are based on inflation-adjusted test statistics. The x-axis is chromosomal 
position, and the y-axis is the significance on a –log10 scale. The dashed line marks the threshold 
for genome-wide significance (P = 5×10-8). 
 



Fig. 2. Tissue-specific expression of genes in DEPICT-defined loci. (A) We took microarray measurements from the Gene 
Expression Omnibus7 and determined whether the genes overlapping EduYears-associated loci are significantly overexpressed 
(relative to genes in random sets of loci) in each of 180 tissues/cell types. These types are grouped in the figure by Medical Subject 
Headings (MeSH) first-level term. The y-axis is the one-sided P value from DEPICT on a –log10 scale. The 28 dark bars correspond 
to tissues/cell types in which the genes are significantly overexpressed (FDR < 0.01), including all 22 classified as part of the central 
nervous system (see Supplementary Table 5.1 for identifiers of all tissues/cell types). (B) Whereas genes prioritized by DEPICT in a 
previous analysis based on a smaller sample3 tend to be more strongly expressed in the brain prenatally (red curve), the 1,703 newly 
prioritized genes show a flat trajectory of expression across development (blue curve). Both groups of DEPICT-prioritized genes show 
elevated levels of expression relative to protein-coding genes that are not prioritized (gray curve). Analyses were based on RNA-seq 
data from the BrainSpan Developmental Transcriptome25. Error bars represents 95% confidence intervals. 
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Fig. 3. Roles of selected newly prioritized genes involved in neuronal communication. The 
59 genes listed in the figure were selected as follows. We began with the 30 gene-set clusters in 
Supplementary Figure 5.2 and dropped those that include gene sets that were implicated in a 
previous study of EduYears [Supplementary Table 4.5.1 of Okbay et al.3]. Of the 8 clusters that 
remained, we retained the 4 related to neuronal communication (“DAG and IP3 signaling,” 
“associative learning,” “post NMDA receptor activation events,” “regulation of neurotransmitter 
levels”). We identified the 460 DEPICT-prioritized genes that belong to the exemplary gene sets 
that are members of these clusters (membership Z score > 2). Of these, the figure shows the 59 
genes that appear in a figure or table of a well-known recent textbook8; these are genes whose 
functions are known and considered important for neuronal physiology. 
 

 
 
 



Fig. 4. Prediction Accuracy. (A) Mean prevalence of college completion by EduYears PGS quintile. (B) Incremental R2 of the 
EduYears PGS on EduYears compared to that of other variables. (C) Incremental R2 of the PGS for EduYears and Cognitive 
Performance constructed from the respective GWAS or MTAG summary statistics. Error bars show bootstrapped 95% confidence 
intervals with 1000 iterations each. 
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ONLINE METHODS 
This article is accompanied by a Supplementary Note with further details. 

 
GWAS of educational attainment. The EduYears meta-analysis was performed by combining 
59 cohort-level results files from Okbay et al.3 with new results from 8 cohorts that did not 
contribute to Okbay et al.3 and 4 cohorts that did contribute to it but genotyped additional 
samples after the publication of that article, enabling them to contribute analyses based on larger 
samples. In what follows, we focus on the 12 new results files. 

Genome-wide association analyses were performed at the cohort level. Genotyping was 
performed using a range of common, commercially available genotyping arrays. Imputation was 
conducted using a reference panel from either the 1000 Genomes Project26 or a larger panel 
subsequently released by Haplotype Reference Consortium27. The EduYears phenotype was 
constructed by mapping each major educational qualification that can be identified from the 
cohort’s survey measure to an ISCED category, and imputing a years-of-education equivalent for 
each ISCED category. 

Cohorts were asked to estimate, for each SNP, a linear regression of EduYears on the allele dose 
of the SNP, a vector of the first ten principal components of the variance-covariance matrix of 
the genotypic data, a vector of standardized controls, including a third-order polynomial in year 
of birth, an indicator for being female, and their interactions; and a vector of study-specific 
controls. All analyses were restricted to European-ancestry individuals that passed the cohort’s 
quality control and whose EduYears was measured at an age of at least 30. 

Prior to meta-analyses, the quality-control protocol and filters described in Okbay et al.3 were 
applied to the results files. Detailed cohort descriptions for the 12 new results files, information 
about cohort-level phenotype measures, genotyping and imputation procedures, and association 
analyses are shown in Supplementary Tables 1.1-1.4. For analogous information on the 59 
results files from Okbay et al., see Supplementary Tables 1.1, 1.3-1.5 of Okbay et al.3. 

We performed a sample-size-weighted meta-analysis of 71 cleaned cohort-level results files 
using the METAL software28, applying a minimum sample-size filter of 500,000. Subsequently, 
we inflated the standard errors using the square root of the estimated intercept from an LD Score 
regression (√1.11) to adjust for non-independence. 
To select independent genome-wide significant SNPs from our results, we used the standard 
clumping algorithm implemented in  PLINK29, clumping together all SNPs on a chromosome 
with a pairwise LD exceeding R2 = 0.1. We estimate LD using the 1000 Genomes Project phase 
3 genotyping data26 that have been described in detail in a previous publication30. 
Supplementary Table 1.5 shows the association results for the 1,271 approximately 
independent SNPs that reached genome-wide significance. 

 
Sensitivity of results to alternative locus definitions. We conducted two follow-up analyses 
using a sample of approximately unrelated individuals (pairwise relatedness < 0.025) of 
European ancestry from UKB (N = 405,519). First, we re-ran our main clumping algorithm using 



the UKB reference sample and identified 1,223 approximately independent SNPs at genome-
wide significance. Second, we performed a conditional and joint multiple-SNP analysis 
(COJO)31, aiming to explore secondary associations that may have been lost from clumping. 
Before analysis, we applied SNP filters recommended in the original COJO paper31. We 
performed COJO using the implementation found in the GCTA software (Version 1.90.0 beta). 
Model selection was performed using the stepwise selection process outlined in the original 
COJO paper31 in which SNPs from across the genome are iteratively added to the model. We set 
the LD window to 100 Mb. 
Our COJO analysis identified 765 variants at genome-wide significance. To help interpret this 
number, we also applied our clumping algorithm to the ~4.9M SNPs that passed COJO filters 
and found 1,053 lead SNPs when UKB is used as the reference sample. We classified each of the 
765 COJO hits as either primary or secondary by applying our clumping algorithm to the list of 
COJO variants, again using UKB as our reference sample and an R2 threshold of 0.1. We found 
that our clumping algorithm eliminated 60 SNPs from the original list of 765 COJO hits 
(pairwise R2 > 0.1 with at least one COJO variant). We call these 60 variants secondary 
associations and the remaining 705 variants primary associations (Supplementary Table 1.6). 

 
Estimating the Distribution of Effect Size. To calculate the 5th, 50th, and 95th percentile of the 
effect-size distribution of our lead SNPs, we first calculate the posterior distribution of each 
SNP’s effect size using the winner’s curse adjustment described in Section 1.8 in the 
Supplementary Methods of Okbay et al.3 We then drew 10 simulated effect sizes from the 
posterior distribution for each lead SNP. To estimate the 5th percentile of the effect-size 
distribution, we used the 5th percentile of the simulated effect sizes. We calculated the 50th and 
95th percentiles in the same way. 

 
Replication of Okbay et al. Lead SNPs. We conducted a replication analysis of the 162 lead 
SNPs identified at genome-wide significance in Okbay et al.’s3 pooled (discovery and 
replication) meta-analysis (N = 405,073). Of the 162 SNPs, 158 pass quality-control filters in our 
updated meta-analysis. To examine their out-of-sample replicability, we calculated approximate 
Z-statistics from the subsample of our data (N = 726,808) that was not included in Okbay et al. 
Let the Z-statistics of association from, respectively, Okbay et al., the new data, and our final 
EA3 meta-analysis, be denoted by Z1, Z2 and Z. Since our meta-analysis used sample-size 
weighting28, Z2 is implicitly defined by: 

𝑍𝑍 = �𝑁𝑁1
𝑁𝑁
𝑍𝑍1 + �𝑁𝑁2

𝑁𝑁
𝑍𝑍2, 

where SNP subscripts have been dropped for notational convenience and N’s are sample sizes. 

Of the 158 SNPs, we find that 154 have matching signs in the new data (for the remaining four 
SNPs, the estimated effect is never statistically significant at P < 0.10). Of the 154 SNPs with 
matching signs, 143 are significant at P < 0.01, 119 are significant at P < 10-5, and 97 are 
significant at P < 5×10-8. The replication results are shown graphically in Supplementary 
Figure 1.4. 



To help interpret these results, we used the statistical framework from Section 1.8 in the 
Supplementary Methods of Okbay et al.3 to calculate the expected replication record under the 
null that all 158 SNPs are true associations. The theoretical projections are based on shrinkage 
parameters estimated from Okbay et al. summary statistics (used to adjust the Okbay et al. effect 
sizes for winner’s curse): (𝜏̂𝜏2,𝜋𝜋�) = (5.02 × 10−6, 0.33). 

 
Tests for Population Stratification. We used several methods to test for population 
stratification. First, we compared the estimated intercept from LD Score regression5 to the 
average χ2 test statistic among HapMap3 SNPs to produce an estimate of the share of inflation in 
the test statistics that is due to stratification (Supplementary Figure 1.2 and Supplementary 
Table 1.12).  

Second, we conducted within-family association analyses on a sample of 22,135 sibling pairs 
from STR-Twingene, STR-SALTY, UKB, and WLS. For each cohort, we standardized EduYears 
within each cohort and then residualized this variable using a vector of controls. We then 
regressed the sibling difference in the residuals on the sibling difference in genotype. We 
restricted analyses to SNPs with minor allele frequency above 5% in each of the sibling cohorts 
and meta-analyzed the cohort-level results using an inverse-variance-weighted meta-analysis. 
We used these within-family summary statistics alongside a discovery GWAS conducted in an 
independent sample to conduct two sets of tests: a sign test and a within-family regression test. 

For the sign test, we followed Okbay et al.30 to compare the signs of the within-family estimates 
to the signs of the discovery GWAS. We benchmarked our observed fraction of concordant signs 
against several null hypotheses: that the GWAS results are entirely driven by stratification (i.e., 
an expected sign concordance of 50%), that the GWAS results contain no stratification (but are 
corrected for winner’s curse), and that the GWAS results are biased upward by assortative 
mating. We constructed these null distributions via simulation, and we conducted one-sided 
binomial tests where the alternative hypothesis is that the observed sign concordance falls short 
of each benchmark. We conducted this test for sets of approximately independent SNPs selected 
at the P value thresholds 5×10−8, 5×10−5, and 5×10−3 (Supplementary Table 2.1 and 
Supplementary Figure 2.1).  

We also performed a regression-based comparison of the within-family estimates and the GWAS 
estimates (Supplementary Table 2.2 and Supplementary Figure 2.2). Further details on our 
within-family analyses, including a derivation for the assortative mating correction, can be found 
in the Supplementary Note. 

 
Joint F-test of Heterogeneity. For the 1,271 lead SNPs, a test of homogenous effects across 
cohorts fails to reject the null at the Bonferroni-adjusted P value threshold of 0.05/1,271 for all 
SNPs barring one. We generated an omnibus test statistic for heterogeneity by summing the 
Cochran Q-statistics for heterogeneity across all 1,271 lead SNPs32. Because the software used 
for meta-analysis does not report Q-statistics, we inferred these values based on the reported 
heterogeneity P values. To do so, we treated each lead SNP as if it were available for each of the 
71 cohorts in the meta-analysis, which implies that the Q-statistic for each lead SNP has a 𝜒𝜒2 
distribution with 70 degrees of freedom. The sum of these Q-statistics is therefore 



(approximately) 𝜒𝜒2-distributed with 70 ×  1,271 = 88,970 degrees of freedom. This gave us an 
omnibus Q-statistic of 91,830, with corresponding P value equal to 9.68 × 10−12. 

 
Mean genetic correlation. To calculate the mean genetic correlation of EduYears across pairs of 
cohorts included in the meta-analysis, we first estimated the genetic correlation of EduYears 
across all unique pairs of cohorts with non-negative heritability estimates (Supplementary 
Table 3.1). To do so, we used bivariate LD Score regression33 implemented by the LDSC 
software with a European reference population, filtered to HapMap3 SNPs. The estimated 
genetic correlation of EduYears between each of our 933 pairs of cohorts is shown in 
Supplementary Table 3.2.  

We report the inverse-variance-weighted mean of the genetic-correlation estimates. The genetic 
correlation across pairs of cohorts will be correlated across all observations that share one of 
their cohorts in common. Therefore, to obtain correct standard errors, we used the node-jackknife 
variance estimator described by Cameron and Miller34. 

As detailed in Supplementary Note, we also estimated the amount of variation in SNP 
heritability of EduYears across cohorts, and we conducted analyses to assess the extent to which 
we can predict variation in SNP heritability and genetic correlation of EduYears based on several 
observable cohort characteristics (Supplementary Tables 3.3 and 3.4). 

 
X chromosome. We performed association analyses of SNPs on the X chromosome in our two 
largest cohorts, UKB (N = 329,358) and 23andMe (N = 365,536). In both cohorts, the 
association analyses were performed on a pooled male-female sample with male genotypes 
coded 0/2. 
Except for this allele coding in males, all major aspects of the 23andMe analysis were identical 
to those described for the autosomal analyses; see Supplementary Tables 1.2-1.4 for details. 

Imputed genotypes for the X chromosome were not included in the data officially released by 
UKB. We therefore imputed the data ourselves using the 1000 Genomes Project26 as our 
reference panel. The UKB analyses were conducted in a sample of conventionally unrelated 
European-ancestry individuals, yielding a smaller sample size than the autosomal UKB analyses 
(Supplementary Table 4.1). 

Both sets of association results underwent the same set of quality-control filters as the autosomal 
analyses prior to meta-analysis. Additionally, we dropped a small number of SNPs with male-
female allele frequency differences above 0.005 in UKB. The meta-analysis was conducted in 
METAL28, using sample-size weighting. Only SNPs that were present in both results files were 
used. To adjust the test statistics for bias, we inflated the standard errors by the LD Score 
regression intercept from our main autosomal analysis (√1.113). 

Applying our clumping algorithm, we found 10 approximately independent SNPs at genome-
wide significance (Supplementary Table 4.2). Supplementary Figure 4.1 shows Manhattan 
and quantile-quantile plots from the meta-analysis. 

 



Heritability of the X Chromosome and Dosage Compensation. SNP heritability for males and 
females from SNPs on the X chromosome was estimated solving for ℎ𝑖𝑖2 in 

E[𝜒𝜒𝑖𝑖2] = 1 +  
𝑁𝑁𝑖𝑖ℎ𝑖𝑖2

𝑀𝑀eff
, 

where 𝑖𝑖 ∈ {𝑚𝑚,𝑓𝑓} indicates males or females, E[𝜒𝜒𝑖𝑖2] is the expected 𝜒𝜒2 statistic, ℎ𝑖𝑖2 is the SNP 
heritability for the X chromosome, Ni is the GWAS sample size, and Meff is the effective number 
of loci (which is assumed to be the same in males and females). 

We use 𝛾𝛾 = ℎ𝑚𝑚2 /ℎ𝑓𝑓2  to denote the dosage compensation ratio. The ratio takes on a value between 
0.5 (zero dosage compensation) and 2 (full dosage compensation). It is estimated as 

𝛾𝛾� =  
(𝜒̂𝜒𝑚𝑚2 − 1)𝑁𝑁𝑓𝑓
(𝜒̂𝜒𝑓𝑓2 − 1)𝑁𝑁𝑚𝑚

, 

where 𝜒̂𝜒𝑖𝑖2 is the mean 𝜒𝜒2 statistic. 

 
Biological Annotation. We used DEPICT7 (downloaded February 2016 from 
https://github.com/perslab/depict) to identify the tissues/cell types where the causal genes are 
strongly expressed, detect enrichment of gene sets, and prioritize likely causal genes. We ran 
DEPICT as described previously3 with the following exceptions: we used 37,427 human 
Affymetrix HGU133a2.0 platform microarrays7, discarded gene sets that were not well 
reconstituted35, and relaxed the significance threshold for defining a matching SNP in the 
simulated null GWAS from 5×10−4 to 5×10−3.  

The list of genes we used is described in Supplementary Table 5.3. For more details on how the 
gene sets were constructed, see Supplementary Note. In addition to the results presented in the 
main text, we examined how enrichment of gene sets differs across phenotypes (Supplementary 
Table 5.7) and which functional systems are least implicated by DEPICT (Supplementary 
Table 5.6).  

We tested the robustness of our DEPICT results using the bioinformatics tools MAGMA36 and 
PANTHER37,38. For MAGMA, we used the “multi=snp-wise” option, mapping a SNP to a gene 
if it resides within the gene boundaries or 5kb of either endpoint. We estimated LD using a 
reference panel of Europeans in 1000 Genomes phase 3, and we defined a gene as significant if 
its joint P value falls below the threshold corresponding to FDR < 0.05 (Supplementary Table 
5.4). For PANTHER, we used the binomial overrepresentation test with the DEPICT-prioritized 
genes as input (Supplementary Table 5.8).  

We also used stratified LD Score regression to partition the heritability of the trait between SNP-
level annotation categories. We devised three novel annotation types, described in the 
Supplementary Note. We first constructed a model using baseline annotations (Supplementary 
Table 5.12) and tested the heritability enrichment of various SNP-level annotations 
(Supplementary Table 5.13 and Supplementary Figure 5.4), developmental stages 
(Supplemental Table 5.11), and cell types (Supplementary Table 5.2). We also applied LD 
Score regression to DEPICT-reconstituted gene sets (Supplementary Table 5.9) and binary 
gene sets (Supplementary Table 5.10 and Supplementary Figure 5.3).  

https://github.com/perslab/depict


Finally, we used the tool CAVIARBF12,39 to identify candidate causal SNPs. We used the 74 
baseline annotations employed by stratified LD Score regression as well as 451 annotations from 
Pickrell’s (2014) list40. We applied a MAF filter of 0.01 and a sample-size filter of 400,000, and 
we only considered SNPs within a 50-kb radius of a lead SNP. We computed exact Bayes factors 
by averaging over prior variances of 0.01, 0.1, and 0.5; we set the sample size to the mean 
sample size of our considered SNPs; and we added 0.2 to the main diagonal of the LD matrix 
because we used a reference panel for LD estimation. To incorporate annotations, we used the 
elastic net setting with parameters selected via 5-fold cross-validation. The resulting annotation 
effect sizes and list of candidate causal SNPs are given in Supplementary Tables 5.14 and 5.15. 
Regional association plots of four noteworthy candidates are shown in Supplementary Figure 
5.5. 
 
Defining Newly Prioritized Genes. We distinguished “newly prioritized genes” from those 
prioritized by DEPICT in Okbay et al.3, as in Figure 2B. As in this previous work, we used 
expression data from the BrainSpan Developmental Transcriptome25 and calculated the average 
expression in the brain of DEPICT-prioritized EduYears genes as a function of developmental 
stage.  

 
Polygenic Prediction Methods. Prediction analyses were performed using the National 
Longitudinal Study of Adolescent to Adult Health (Add Health), the Health and Retirement 
Study (HRS), and the Wisconsin Longitudinal Study (WLS). Polygenic scores were constructed 
using HapMap3 SNPs that meet the following conditions: (i) the variant has a call rate greater 
than 98% in the prediction cohort; (ii) the variant has a minor allele frequency (MAF) greater 
than 1% in the prediction cohort; and (iii) the allele frequency discrepancy between the meta-
analysis and the prediction cohort does not exceed 0.15. To calculate the SNP weights we use the 
software package LDpred16, assuming a fraction of causal variants equal to 1, and then we 
construct the scores in PLINK.  

All prediction exercises were performed with OLS regression of a phenotype on our score and a 
set of controls consisting of a full set of dummy variables for year of birth, an indicator variable 
for sex, a full set of interactions between sex and year of birth, and the first 10 principal 
components of the variance-covariance matrix of the genetic data. 

Our measure of prediction accuracy is the incremental R2. To calculate this value, we first 
regress a phenotype on our set of controls without the polygenic score. Next, we re-run the same 
regression but with the score included as a regressor. For quantitative phenotypes, our measure 
of predictive power is the change in R2. For binary outcomes, we calculated the incremental 
pseudo-R2 from a Probit regression. 95% confidence intervals around the incremental R2’s are 
bootstrapped with 1000 repetitions (Supplementary Table 6.1 and Supplementary Figures 6.1, 
6.2, 6.5, and 6.6). 
 

Prediction of Other Phenotypes. In addition to EduYears, we also used our polygenic score to 
predict a number of other phenotypes. In the HRS and Add Health, we analyzed three binary 
variables related to educational attainment: (i) High School Completion, (ii) College Completion, 
and (iii) Grade Retention (i.e., retaking a grade). 



In additional analyses in Add Health, we predicted an augmented version of the Peabody Picture 
Vocabulary test, measured when participants were 12–20 years old. In this test, an interviewer 
reads a word aloud, and a respondent selects the illustration that best fits the word’s meaning. 
Eighty-seven items were included on this computer-adapted test, and Peabody scores were age-
standardized. We also predicted a number of Grade Point Average variables from the third wave 
of Add Health, when transcripts were collected from respondents’ high schools. From the 
transcripts, grade point averages (GPAs) are calculated using the common United States 0.0 to 
4.0 range, both for Overall GPA and for subject-specific GPAs. We analyzed Overall GPA, Math 
GPA, Science GPA, and Verbal GPA, controlling for high school fixed effects. 

In additional analyses in the HRS, we predicted several cognitive phenotypes. Total Cognition is 
the sum of four cognitive measures common across waves 3 through 10: an immediate word 
recall task, a delayed word recall task, a naming task, and a counting task, with a total score 
ranging from 0 to 35. Verbal Cognition measures the subject’s ability to define five words. Each 
definition supplied is rated as incorrect (0), partially correct (1) or completely correct (2), 
resulting in a total score ranging from 0 to 10. To evaluate changes over time, we also studied 
wave-to-wave changes in Total Cognition and Verbal Cognition, (xt – xt-1). Our next cognitive 
outcome, Alzheimer’s, is an indicator variable equal to one for subjects who report having been 
diagnosed with Alzheimer’s disease, and 0 otherwise. Since the HRS data are longitudinal, the 
unit of analysis for our 4 cognitive outcomes is a person-year. For these analyses, because 
individual i took the cognitive tests at different ages, in our set of controls we replaced our 
person-specific age variable with age at assessment (which differs for individual i across the 
cognitive outcomes); we also clustered all standard errors at the person level.  

In the WLS, we predicted cognition from a respondent’s raw score on a Henmon-Nelson test of 
mental ability, a 30-minute multiple-choice test that consists of 90 individual verbal or 
quantitative items. 

For all of these additional prediction exercises, results are shown in Supplementary Table 6.1 
and depicted in Figure 4A and Supplementary Figures 6.1 and 6.4. 

 
Benchmarking the Predictive Power of the Eduyears Polygenic Score. To benchmark our 
score’s predictive power, we compared its predictive power to the predictive power of other 
common variables: mother’s education, father’s education, both mother’s and father’s education, 
verbal cognition, household income, and a binary indicator for marital status. For each variable, 
we calculated the variable’s incremental R2 using the same procedures as those described above, 
with the same set of control variables. (For “mother’s and father’s education,” we calculated the 
incremental R2 from adding both variables as regressors.) The results of this analysis are shown 
in Supplementary Table 6.2A and depicted in Figure 4B and Supplementary Figure 6.7.  

We also evaluated the attenuation in the incremental R2 of the polygenic score in predicting 
EduYears using various sets of available demographic control variables one at a time: marital 
status, household income, mother’s education, and father’s education. We next controlled for 
both mother’s and father’s education, and finally we controlled for the full set of demographic 
controls. At each addition of a control or set of controls, we calculated the change in incremental 
R2. The results of this analysis are shown in Supplementary Table 6.2B and Supplementary 
Figure 6.7. 



 
GWAS of Cognitive Performance, Math Ability and Highest Math. The GWAS of Math 
Ability (N = 564,698) and Highest Math (N = 430,445) phenotypes were conducted exclusively 
among research participants of the personal genomics company 23andMe who answered survey 
questions about their mathematical background. In our analyses of cognitive performance, we 
combined a published study of general cognitive ability (N = 35,298) conducted by the 
COGENT consortium41 with new genome-wide association analyses of cognitive performance in 
the UK Biobank (N = 222,543). The phenotype measures are described in detail in 
Supplementary Table 1.7. Our new genome-wide analyses of CP in UKB, and Math Ability and 
Highest Math in 23andMe were conducted using methods identical to those for EduYears in 
UKB and 23andMe respectively (Supplementary Table 1.4). 

For Cognitive Performance (CP), we conducted a sample-size-weighted meta-analysis (N = 
257,841), imposing a minimum-sample-size filter of 100,000. We similarly applied minimum-
sample-size filters to the Math Ability (N > 500,000) and Highest Math (N > 350,000) results. 
We adjusted the test statistics using the estimated intercepts from LD Score regressions (1.073 
for Math Ability, 1.105 for Highest Math, and 1.046 for CP). The summary statistics underwent 
quality control using the same procedures applied to EduYears results files. 

The lists of approximately independent genome-wide significant SNPs were obtained by 
applying the same clumping algorithm used in the EduYears analyses (Supplementary Tables 
1.8-1.10). Manhattan plots from the analyses are shown in Supplementary Figures 1.5-1.7. 

 
MTAG of Cognitive Performance, Math Ability and Highest Math. We performed a joint 
analysis of our GWAS results on EduYears, Cognitive Performance, Math Ability, and High 
Math using MTAG18. Supplementary Table 1.11 shows moderately high pairwise genetic 
correlations, ranging from 0.51 to 0.85, which motivate the multivariate analysis. 

We applied the MTAG-recommended filters to the summary statistics, dropping (i) SNPs with 
minor allele frequency below 1% or (ii) SNPs with sample sizes below a cutoff (66.6% of the 
90th percentile), leaving approximately 7.1 million SNPs found in all four results files. 
Supplementary Table 1.13 provides the increases in effective sample size from using MTAG 
for each set of GWAS results. 

Supplementary Table 1.14 lists all the SNPs that reach genome-wide significance in the MTAG 
analysis. Supplementary Figures 1.8-1.11 show inverted Manhattan plots that compare the 
MTAG and GWAS results, restricted to the set of SNPs that pass MTAG filters. 

Polygenic scores were constructed from MTAG results using the same procedures as for the 
GWAS results. Supplementary Figure 6.8 and Supplementary Tables 6.3 and 6.4 compare the 
predictive power of scores constructed from MTAG results in the Add Health and WLS cohorts 
(see Supplementary Note section 6.5 for details).    

To examine the credibility of the MTAG-identified loci of our lowest-powered GWAS, 
Cognitive Performance, we conducted a replication analysis. We re-ran MTAG with GWAS 
results that exclude COGENT cohorts, and we used the COGENT meta-analysis as our 
replication sample. In addition to applying the MTAG filters above, we limited the analysis to 
SNPs for which the COGENT results file contains summary statistics based on analyses of at 
least 25,000 individuals. The MTAG-identified loci for Cognitive Performance from our 



restricted sampled are reported in Supplementary Table 1.15. We calculated the expected 
replication record of the MTAG results, given sampling variation. The observed replication 
record in the COGENT meta-analysis is not much below the expected record. 

 

ACCESSION CODES 
Upon publication (or earlier, if permitted by the editor), summary statistics will be posted at 
www.thessgac.org/data. For analyses that include data from 23andMe, only up to 10,000 SNPs 
can be reported. Complete summary statistics for the EduYears GWAS omitting 23andMe are 
available. Only the lead SNPs are reported for the GWAS results for Cognitive Performance, 
Math Ability, and Highest Math and for the MTAG results of EduYears, Cognitive Performance, 
Math Ability, and Highest Math. For EduYears GWAS results that include 23andMe, clumped 
results for the 4,429 SNPs with the lowest P values are available. This number of SNPs was 
chosen such that the total number of SNP association results that include data from 23andMe is 
exactly 10,000. 
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