Modeling of tropospheric halogen (CI-**Br**-I) chemistry: cycling, debromination, and impact Global annual mean inventory of tropospheric inorganic bromine (Br_y) Lei Zhu¹, Daniel Jacob¹, Sebastian Eastham^{1,2}, Melissa Sulprizio¹, Xuan Wang¹, Tomás Sherwen², Mat Evans², and Johan Schmidt³ > GCA1 05/21/2018 ¹Harvard; ²MIT; ³University of York; ⁴University of Copenhagen Gas phase; Photolysis; Heterogeneous reactions Results based on one-year simulation (v1102-d, 2012, 4x5, MERRA2) #### Increasing evidence for widespread bromine in the troposphere - Tropospheric daytime BrO background: ~1ppt - Bromine radicals (Br and BrO) play important roles in tropospheric chemistry by: - · depleting ozone and OH - oxidizing elemental mercury and VOCs Probably impact your work! # Global tropospheric budget for inorganic halogen (Br_{ν}) - Global source of tropospheric halogens is mainly natural and from the oceans - Bromoform (CHBr₃) is major source in the free troposphere - Conundrum: Sea salt aerosol (SSA) is the dominant global source, but caused too high BrO in previous model studies # Modeling of sea salt aerosol (SSA) debromination - Observations indicate a 50% depletion of bromide in SSA relative to seawater composition - Less bromide depletion (i.e., larger EF) over the Southern Ocean debromination only occurs in acidified SSA SSA Br⁻ + H⁺ + HOBr $$\rightarrow$$ Br₂ + H₂O #### Observational constraints on BrO • BrO in the marine boundary layer are maintained at relatively low levels by adding: Uptake of HBr by the sea salt aerosol becomes the major sink of Br_y #### Effect of halogen chemistry in tropospheric ozone and OH - SSA debromination will be off in v11-02 because it breaks ozone # A cycling Br_v family - Sea salt aerosol as a source and a sink of bromine - To make SSA debromination consistent with ozone