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Abstract

We develop a demand system for a dynamic auction market with directed search.

In each period, heterogeneous goods are exogenously supplied and sold by second-

price auction, and incumbent bidders choose which good to bid on and how much

to bid. Bidder valuations are multidimensional, private and perfectly persistent, and

the population of bidders evolves according to an exogenous entry and endogenous

exit process. We prove that the state of the market — which includes active bidders’

types and information sets — evolves as a geometrically ergodic Markov process. We

characterize best responses as solutions to a partially observed Markov decision prob-

lem and provide conditions under which the econometrician can identify equilibrium

strategies from time series data. We provide additional conditions under which this

allows nonparametric identification of preferences. When the market is large so that

each bidder’s actions are informationally small, we show bidderwise identification: the

valuations of bidders whose individual time series includes a bid on every product are

identified. Two-stage nonparametric and semiparametric estimation procedures are

proposed, and shown to work well in Monte Carlo and counterfactual simulations.
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1 Introduction

In many markets, goods are traded by an auction mechanism. Important examples include

financial assets, housing, procurement contracts and used goods. The goods being sold at

any point in time are typically heterogeneous, and buyers have heterogeneous preferences.

As a result, these markets exhibit directed search: families look for homes with enough

bedrooms for their children; construction firms look for projects for which they have the

relevant experience and capacity; and car dealerships attend car auctions looking to fill

specific gaps in their inventory.

Buyers also often get multiple purchase opportunities over time. This is most obvious in the

case of today’s online auction markets: eBay has auctions for physical goods closing every

second, while Google’s Doubleclick and Microsoft’s Advertising Exchange trade online ad-

vertisements at a much faster rate. This creates the possibility for buyers to inter-temporally

substitute, adjusting their current bids to account for the option value of waiting for future

purchasing opportunities. When preferences are persistent, so-called “leakage effects” can

also arise: a bidder who bids aggressively on a particular product may be revealing their

preferences to the other bidders, which has strategic implications.

All of these effects are well understood by theorists, although seldom combined in a single

model. However they have not received much attention in the empirical auctions literature,

which typically considers the identification and econometric analysis of a repeated cross-

section of observations of a static auction game. This is problematic for the markets cited

above, in which directed search and dynamics may be important for counterfactuals.

For example, one question often emphasized is the design of optimal reserves. In a static

model of a second-price auction, changing the reserve price has no effect on bidding. But

when that auction is embedded in a market, changing the reserve price affects participation.

And when we allow for dynamics, one can distinguish between a transitory increase in the

reserve price (which has no strategic implications in a second price auction) and a permanent

increase in the reserve price (which affects strategies by changing continuation values).

There are many more counterfactuals that only make sense in a richer model. For example,

consider trying to predict what would happen to the bids on small state-funded construction

projects when the government increases the supply of large federal contracts. This question

fits naturally into a framework with heterogeneous goods and directed search. Or what

about the effects of introducing of a new good? In fixed price markets, the usual approach
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is to estimate demand as a function of product characteristics and predict the market share

and consumer surplus of a new product. In our model we can follow the exact same logic

by projecting multidimensional types down to characteristic space. In order to model sub-

stitution to the new good, however, we need a model of how bidders choose which auctions

to participate in.

By ignoring the option value of participating in future auctions and how this affects the bid-

ding function, the static auction model also mischaracterizes buyer valuations and therefore

consumer surplus, in a way that is sharpest for high-type bidders.1 Moreover, the static

auction model throws away one of the most interesting features of auction data, which is

our ability to link bidders across time. We believe that exploiting this feature is particularly

fruitful for identifying cross-elasticities, similar in spirit to the use of second-choice data in

demand estimation.

This paper aims to fill this gap in the empirical auctions literature. We introduce a particular

model of a dynamic auctions market with directed search. We are guided in our modeling

choices by the discrete choice demand system literature that has been employed in the

analysis of durable goods markets. Our agents have unit demand and perfectly persistent

preferences, described by their valuations for each of a discrete set of available goods. Each

period, a set of goods is exogenously supplied, and bidders choose which good to bid on

and how much to bid. Search frictions arise because the matching of buyers to sellers is

random conditional on the choice of product, so that the number of bidders participating in

the auction of any given object varies across auctions.

Dynamics are kept as simple as possible. Winning bidders exit with certainty and losing

bidders exit exogenously with a fixed probability. Entry is governed by a distribution over

the number of new entrants. Each new entrant draws their valuations independently and

privately. The recent history of the game is publicly observable.

Despite these modeling choices, the dynamic environment remains complicated. Buyers

have strategic incentives to learn each other’s private valuations, making inferences from

the observed history of the game. In order to characterize best response functions, we

show that it is possible to rewrite the bidder’s problem as a partially observable Markov

Decision Problem (POMDP). We solve the POMDP to show that in a pure strategy Bayesian

equilibrium, bidders participate on the good that gives them the highest expected surplus,

1Surplus estimation is more convincing in auction models because unlike fixed price markets, it is possible
to invert individual buyer behavior and nonparametrically identify the valuations of the highest types.
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and then bid their valuation, less their continuation value when pivotal, plus a term that

reflects leakage effects.

We then return to the questions of identification and estimation. The decision problem

faced by an individual type is nonparametrically identified from the data; this means that

the econometrician can look at the data and deduce the best response functions for each

type. Since the equilibrium strategies are mutual best responses, this identifies them. This

allows us to provide conditions under which the entire model is nonparametrically identified.

But these conditions are not constructive. To make progress, we consider an equilibrium

in which leakage effects are small, as would be the case in a large market. Then we can

go much further, showing that if a bidder is observed bidding once on each product, their

type is identified by applying a contraction mapping. This “bidderwise” identification result

provides part of the rationale for our decision to introduce both directed search and dynamics

in the same model, since in a static model the econometrician only sees each bidder once.

The last part of the paper is concerned with estimation. We offer two approaches. One

follows the nonparametric identification logic directly, taking the set of bidders who are

observed bidding on every product and inverting back to their type using the contraction

map developed in identification. But the set of bidders observed bidding on every product is

a selected sample, and to get the true distribution of valuations, it is necessary to re-weight

the estimated density. We show how to do this.

A disadvantage of the nonparametric method is that it is data intensive, since if the product

space is large, the set of bidders who bid on every product may be quite small. Alternatively,

by making a parametric assumption on the type distribution, we can use all the data. We

show how to simulate moments given any parameter vector. We can thus apply simulated

GMM to consistently estimate the model parameters.

This approach extends easily to a random coefficients model in which “types” are now

idiosyncratic preferences over product characteristics, as in Berry, Levinsohn, and Pakes

(1995). Monte Carlo simulations show the estimation approaches perform well in moderately

sized samples, and a counterfactual simulation shows that taking account of dynamics is

important in determining the optimal sales policy for a monopolist seller.
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1.1 Literature Review

This paper builds on existing work in auction theory, search theory, empirical auctions and

fixed-price demand systems. On the theory side, Milgrom and Weber (2000) introduced a

model of sequential auctions over a finite horizon with a finite number of players. They

showed that under certain information structures there are no learning effects, so that the

strategies in each period are not history-dependent. The literature on dynamic matching and

bargaining games went in a different direction, working with a continuum of players and an

infinite horizon, allowing allowing analysis of a steady-state and steady-state strategies (see

Gale (2000) for a fantastic overview). Some recent work has focused on equilibria in which

there is only temporary asymmetry in information, as between entrants and incumbents

(Hendricks, Onur, and Wiseman 2008) or players use memoryless strategies (Said 2009). All

of these models are cleverly designed to avoid “leakage effects” in which atomistic players

must take account of how their actions today will affect their opponent’s future beliefs. By

contrast, our model allows for this possibility, at the cost of significant modeling complex-

ity. Our contribution here is to link this problem with the computer science and operations

research literatures on partially observed Markov decision processes. This may enable com-

putational analysis of these difficult problems.

Burdett, Shi, and Wright (2001) introduced a directed search model in which sellers posted

prices, and buyers selected which seller to purchase from. They showed that in the symmetric

equilibrium sellers all offer the same price and buyers randomize, creating frictions due

to inefficient rationing. Subsequent papers explored simultaneous search in labor markets

(Albrecht, Gautier, and Vroman 2006, Galenianos and Kircher 2009) and college admissions

(Chade, Lewis, and Smith 2011). Peters and Serevinov (2006) develop an analogous model

of an internet auction market where sellers post identical reserves and buyers randomize. In

our paper, sellers are differentiated by the good they sell, buyers choose sellers, and search

frictions arise within each buyer-product set due to random matching of buyers to auctions.

The existing empirical auctions literature is large; for excellent overviews, see Paarsch and

Hong (2006), Athey and Haile (2007) and Hendricks and Porter (2007). Relative to this

literature, we innovate in two distinct ways. The first is to allow for multiple kinds of goods

and multidimensional bidder preferences, and model the directed search process by which

bidders decide what good to bid on. Even in a purely static model, modeling search allows for

realistic substitution patterns when the set of available objects being auctioned is changed.
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Indeed, the participation decision is entirely analogous to discrete choice over products.A

number of recent papers in the literature have also focused on the participation decision,

but in a model where agents get some signal affiliated with their type before entry and must

decide whether or not to enter (Marmer, Shneyerov, and Xu 2007, Li and Zheng 2009, Roberts

and Sweeting 2012). Endogenizing participation leads to selection problems that must be

addressed in identification and estimation.

The second innovation is that we allow for perfectly persistent private types in a dynamic

environment. This is in contrast to the recent empirical literature on dynamic games, which

considers the case with transient private information shocks (Aguirregabiria and Mira (2007),

Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007); Fershtman and

Pakes (2012) is a recent exception). Jofre-Bonet and Pesendorfer (2003) is in a paper in this

spirit, analyzing a dynamic auction game in highway procurement where the contractors

have transient private information. Zeithammer (2006) found empirical evidence of dynamic

behavior on eBay, showing that bidders shade down current bids in response to the presence of

upcoming auctions of similar objects. Other related papers are Ingster (2009), who develops

a dynamic demand model for identical objects, ignoring leakage effects; Sailer (2006) who

estimates a dynamic model with participation costs; and Nekipelov (2007), who estimates a

model where bidders attempt to prevent learning by late bidding.

We emphasize the issue of nonparametric identification in the paper, following the pioneering

work of Athey and Haile (2002) for auction markets and the subsequent work on fixed price

markets (Berry, Gandhi, and Haile 2012). Adams (2012) has analyzed a static version of

our model with directed search, and provided partial identification results. Finally, our work

is related to the dynamic demand literature for fixed price markets (e.g. Hendel and Nevo

(2006), Gowrisankaran and Rysman (2009)).

The next section introduces the theoretical framework, while section 3 analyzes nonparamet-

ric identification. Section 4 describes our two different estimation approaches, while section

5 performs simulation exercises. Section 6 concludes.

2 Theory

In this section we introduce a stylized model of a large auction model with two novel features.

The first is that there are many different products which are auctioned simultaneously in each
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period, and buyers have distinct preferences for these products. In equilibrium there will be

directed search: sellers are offering different products, and buyers will pick an auction for a

good they value relatively highly. Assuming simultaneous auctions is a good way of approx-

imating participation frictions in online markets that are truly sequential.2 An important

implication of directed search is that the set of bidders in any auction is selected, an issue

that has been emphasized in many recent empirical auctions papers (Marmer, Shneyerov,

and Xu 2007, Li and Zheng 2009, Roberts and Sweeting 2012).

The second is that buyers are long-lived and forward looking, with perfectly persistent private

valuations. This introduces dynamic incentives: buyers may shade their bids to reflect the

option value of buying later, or garble their bids to avoid revealing their valuations to their

opponents (“leakage effects”). The option value effect will be important in markets where

bidders have unit demand, as in the purchase of durable goods. Leakage effects will matter

in markets where there are a small number of strategically inclined players, such as financial

markets (e.g. auctions for distressed assets). Both of these are present in our analysis.

The stage game is complex, combining a matching model with a dynamic auction model.

Accordingly, we make the dynamics as simple as possible. We assume that supply and the

entry of new bidders is exogenous; that the exit of losing bidders is exogenous; and that

bidders have unit demand. It would have been even simpler to avoid dynamic issues com-

pletely by assuming that all bidders exit after every period, generating a static auction game

with directed search. We analyze this special case below, and show that the static model is

not identified: Observations of the same bidder over time are the key to our identification

strategy. We begin by describing the stage game, and then describe these dynamics.

2.1 The Stage Game

Figure 1 depicts the stage game. There are J distinct kinds of goods sold in a market,

indexed by j = 1 . . . J . In period t the supply of good j is Nj,t, and overall supply is

Nt = (N1,t, N2,t . . . NJ,t). Supply is exogenous, and the vector Nt is drawn iid each period

from a distribution FN with support {0, 1, 2 . . . N}J . Each good is simultaneously auctioned

2For example, one can think of eBay as a sequence of second-price sealed bid auctions ordered by closing
time (Bajari and Hortacsu 2003). Without participation frictions, every incumbent bidder should participate
in every auction, but in fact it is rare for the average bidder to participate in more than a single auction a
day. Our model makes a pair of assumptions — multiple auctions per period and single auction participation
— that may be thought of as a reduced form for some more complete model of search frictions.
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Available Goods (J product types)

Incumbent Bidders

(differentiated by their preferences and private histories)

Figure 1: The Stage Game. Bidders decide which of the available goods to bid on and then
how much to bid. There is heterogeneity on both sides of the market: bidders are differentiated by
their preferences and private histories, and there are J product types.

by second-price sealed-bid auction. In each time period, there is some set of incumbent

bidders, differentiated by their private information (which describes both preferences and

knowledge). They choose a good to bid on and are randomly matched to an auction of that

good.3 Without observing the number nor identities of the rival bidders in the auction, they

decide how much to bid. Bidders are risk neutral and if they win good j they get a payoff

equal to their valuation for that good xj less the price paid.4

2.2 Market Dynamics

Bidders are assumed to have unit demand, and so winning bidders exit at the end of a period

with certainty. Losing bidders exit randomly and independently at some rate 1− r, with a

zero payoff on exit. Bidders are assumed to maximize their lifetime utility on the platform.

The survival rate r plays the role of a discount rate, ensuring that lifetimes are almost surely

finite and lifetime utility is bounded.5

3Nothing in the model gives a bidder a reason to pick one auction for good j over another, and so random
matching is a sensible assumption. This sort of matching technology is commonly assumed in the theory
literature, dating back to Rubinstein and Wolinsky (1985) (in bargaining) and Wolinsky (1988) (in auctions);
and arises as an equilibrium phenomenon in the directed search model of Burdett, Shi, and Wright (2001).

4If no one participates in an auction or if the highest bid is zero, the good is not sold; if only one bidder
participates and makes a positive bid, they pay zero. Losing bidders get a zero payoff.

5We could also allow for a separate discount rate, but this adds nothing to the analysis except that for
the identification results we would need to assume that this discount rate is known by the econometrician.
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At the end of each period, Et buyers enter the market, independently drawing J-dimensional

valuations x from some distribution FX , where Et is sampled independently over time from a

distribution FE with support {0, 1, 2 . . . E}. So that the size of the market doesn’t explode,

we assume that whenever the number of incumbent bidders strictly exceeds I − E, no-one

enters. It follows that the total number of bidders in the market never exceeds I.6

We assume that FX has support X a connected subset of the hypercube [0, x]J and strictly

positive density on its support. Valuations are perfectly persistent and remain fixed while the

bidder is in the market. Bidders are also differentiated by what they know. All information

from the past tP periods is publicly available. Specifically, at the end of the period and for

each bidder the platform publishes an auction ID for the auction they participated in, the

type of object they were bidding on, their bidder ID and their bid. Thus a bidder bidding

for the kth time will have seen bid observations from periods t − 1, t − 2 · · · t − tP − k + 1.

We call this their history hi,t and let the set of all histories be H.7

Bidder i’s information set at time t consists of their valuation xi, the realized supply nt and

their history hi,t. Throughout the analysis, we restrict attention to anonymous, stationary

and symmetric pure strategies γ and β.8 Stationary symmetric pure strategies are a mapping

from information sets to participation and bidding decisions: γ : X × H × N → J and

β : X × H × J × N → R.9 We will say that these strategies are anonymous if they are

invariant under relabeling of auction numbers and rival bidder identities.

2.3 Long-Run Properties

We begin by analyzing the behavior of the dynamic system when the agents employ any

(possibly sub-optimal) strategies γ and β. Recall that at any point in time each bidder’s

information set consists of their valuation, their history and the current supply. Taking

as a state variable the collection of all incumbent valuations and all incumbent histories

(i.e. everything privately known) and the public history and current supply (i.e. everything

publicly known), all actions are fully determined by the state. These actions, along with the

random matching outcomes, determine the endogenous exit of agents; and since entry and

6With endogenous entry, one would expect a condition like this to hold: as the number of participants
goes to infinity, expected surplus falls to zero and entry stops. With exogenous entry, we must impose it.

7Since bidders can be arbitrarily long-lived, this set will be infinite dimensional.
8This restriction is common in the dynamic matching and bargaining game literature (Gale 2000).
9Stationarity and symmetry imply the mappings do not depend on identity i and time period t directly.
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supply are exogenous, the system evolves as a discrete-time Markov process.

We can therefore analyze the long-run behavior of the dynamic system using standard tech-

niques. We would like the system to be recursive in the sense that it is possible to revisit

previous states. To do this, we assume that auction and player identities are “recycled”:

whenever an identity is no longer needed, in the sense that it is in no incumbent bidder’s

history, it will be assigned to the next auction or player that requires an identity. This is

without loss of generality whenever strategies are anonymous.10

Letting It be the set of incumbent bidders and hPt be the public history, we define the state

as outlined above, anonymizing the histories: st =
(
{xi, hi,t}i∈It , hPt , Nt

)
∈ S. Let S be

metrized by the sup norm, and let B(S) denote the Borel sigma-algebra on S.11 Then there

exists a Markov transition function Pγ,β on (S,B(S)) that describes the state transitions.

What happens to this Markov process in the long-run? It cannot literally have a steady-

state, as there is continuous fluctuation in the number of players and their valuations. But

there is a unique ergodic measure over the state space, which gives the long-run probability

of any measurable set of states occurring:

Lemma 1 (Long-Run Evolution). Given anonymous, symmetric and stationary strategies

γ and β, there is a unique ergodic measure µγ,β on (S,B(S)), converged to at geometric rate.

In the proof, we need to rule out two extreme cases: that there is no ergodic measure (the

chain somehow drifts away over time); or multiple ergodic measures (the chain splits at

some point). We show this by arguing that the market periodically collapses when everyone

spontaneously exits. So the chain cannot drift away as it is anchored by these collapses; nor

can it have two disjoint non-communicating classes of states, as both communicate through

collapses. In fact, using the techniques of Stokey, Lucas, and Prescott (1989), we prove a

stronger result: that the chain converges geometrically to the ergodic measure.

2.4 The Single-Agent Decision Problem

Now that we understand that the market dynamics are Markovian, we turn to the strategic

analysis. We start with the decision problem of a single agent. Each period he must choose

10This transformation makes the system recursive, but any individual bidder faces a non-recursive decision
problem: since their private history grows each period, they will never revisit a previous state.

11Throughout the paper we will use B(A) to denote the Borel sigma-algebra on a space A and P(A) the
associated space of probability measures on (A,B(A)).
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which product to bid on and how much to bid, knowing his own valuation and history. In

equilibrium, he understands what his rivals will bid on and what they will bid given their

information sets. What he doesn’t know is what is in their information sets: their valuations,

as well as any history they may have privately observed. Some part of this is impossible to

know, as in each period there is a new cohort of entrants whose valuations are independently

drawn from F . But the history may be informative as to the valuations held by incumbent

bidders at t− 1, some of will survive and play again in period t.

Because both the state and the observations (innovations in his private history) evolve as

a controlled Markov process, and because the state is only partially observed, his prob-

lem can be described as a partially observable Markov decision problem (POMDP) (Sondik

1978).12 From his perspective, the state transitions are described by a transition kernel

Pγ−i,β−i
(s′|s, j, b) where the prime denotes that s′ is tomorrow’s state, j is his chosen good

and b is his bid. The transition rule depends on the strategies of the other bidders γ−i and

β−i, as well as the current state s and his own action (j, b). Since the state is not observable,

he has to form beliefs over the state on the basis of what he does see: his private history.13

A well-known result in computer science and operations research is that POMDP’s can be

transformed back into Markov Decision Problems (MDP’s). This is achieved by a transfor-

mation of the state space. To solve a POMDP the agent has to form beliefs about the current

state using the observations he has made. The so-called “belief MDP” implements this idea,

creating a state space from the set of all beliefs π about the underlying state s. These

beliefs evolve according to Bayes rule as a controlled Markov process, because the agent’s

observations of the system are themselves Markov. So instead of solving the POMDP on

the partially observed state space, one may equivalently solve the MDP on the belief space,

finding strategies γ(π) and β(π, j) that depend on current beliefs π and chosen object j.

Let us make this transformation, and consider the agent’s decision problem.14 Let GM
j,π be

the distribution of the maximum rival bid BM
j in a random auction for item j when the state

12A quick taxonomy: autonomous (uncontrolled) Markovian systems with hidden state variables are hidden
Markov models; controlled models with observable states are Markov decision problems.

13Because valuations are iid, his valuation is not informative after conditioning on his history.
14For the moment we defer the question of where the agent’s initial beliefs — their prior — comes from.
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is distributed according to π. The value function satisfies the following Bellman equation

V (π) = max
j , b

[
GM
j,π(b)

(
xj − EG[BM

j |BM
j < b]

)
+ r(1−GM

j,π(b))

∫
V (π′)dQ(π′|π, j, b, BM

j > b)

] (1)

The left hand side is the expected value of the game given beliefs π. The intuition for the

right hand side is as follows. If an agent bids b when bidding on an item-type j, they win

with probability GM
j,π(b) and pay EG[BM

j |BM
j < b], where the probabilities are assessed with

respect to their beliefs π. At this point the game ends.

However, if they lose and survive — which happens with probability r(1−GM
j,π(b)) — then

they will update their beliefs tomorrow and get a payoff of V (π′). Belief updating follows

Bayes rule, and is described by a conditional probability measure Q(π′|π, j, b, BM
j > b) that

gives the ex-ante distribution of the beliefs the agent may hold tomorrow after they observe

the events of the current period. It is ex-ante in the sense that the agent has not yet observed

the history of this period, and makes forecasts based on what currently believe, what they

themselves will do, and noting that if they play tomorrow they must have lost today.

This dynamic programming formulation allows a clean characterization of the optimal policy.

Write the conditional continuation value when the agent bids b on product j and the highest

rival bid is B as v(π, j, b, B) =
∫
V (π′)dQ(π′|π, j, b, BM

j = B). Taking a first order condition,

we obtain the following characterization of the bidding function:

Theorem 1 (Optimal Strategies). The participation strategy γ(π) must satisfy:

γ(π) ∈ arg max
j∈J(π)

max
b

[
GM
j,π(b)

(
xj − EG[BM

j |BM
j < b]

)
(2)

+ r(1−GM
j,π(b))

∫
V (π′)dQ(π′|π, j, b, BM

j > b)

]
where J(π) denotes the set of products available at state π. Let j∗ = γ(π) and β(π, j∗) = b∗.

Then whenever GM
j,π has a density gMj,π at b∗, b∗ satisfies the implicit equation:

b∗ = xj∗ − rv(π, j∗, b∗, b∗) + r

(
1−GM

j∗,π(b∗)

gMj∗,π(b∗)

)
EG

[
∂

∂b
v(π, j∗, b, B)

∣∣∣∣B > b∗
]

(3)
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The first part is intuitive: the object bid on must be the best of the available options, in the

sense of maximizing expected payoff. The second part describes the optimal bid. Ignoring

the third term in (3) momentarily, we can use the usual intuition from second price auctions

to explain the result. Bidders must bid in such a way that they experience no ex-post regret.

If a bidder marginally wins, they get a surplus of xj−b. If on the other hand they marginally

lose, they get the value of the game tomorrow, which is the second term on the right hand

side. This takes into account the fact that their bid was pivotal, which is informative about

future competition.15 These two terms must be equal, otherwise they would regret having

not bid marginally higher.

The extra third term in (3) reflects the fact that in a dynamic environment bidders must

account for the effects of their bid on future competition. These are termed “leakage effects”

in the auction literature. Leakage only matters upon losing (i.e. when B > b∗), and is

captured by the partial derivative in these states. We expect leakage effects to lead to more

bid shading: high bids convince rivals that competition is tough, lowering their perceived

continuation value and therefore increasing their optimal bids, which hurts the agent.

2.5 Equilibrium

Our equilibrium notion is Bayes-Nash equilibrium, slightly modified to take into account the

fact that we are interested in a market in long-run equilibrium. We place three restrictions on

equilibrium play. First, agents must form beliefs according to Bayes Rule whenever possible.

To make sense of this, we endow agents with an initial set of beliefs that are consistent with

long-run play: if the equilibrium strategies are (γ, β) and the ergodic measure over states is

thus µγ,β, their initial beliefs are π0 = µγ,β.

So an agent entering the market will start with beliefs µγ,β, observe the last tP periods

of data, and immediately update to new beliefs π′0 before their first auction. This process

corresponds to what a sensible analyst might do upon observing a long time series of data

from a market in steady-state equilibrium: work out what the conditional distribution of

various statistics of interest is, given the recent history. We also require that agents optimize

given beliefs, so that the strategies (γ, β) are a solution to the POMDP defined by (1).

15Ignoring leakage, a bidder who bids their valuation less their unconditional continuation value falls prey
to a “winner’s curse”: when they win, they learn that their rivals had low valuations for the object, implying
that they may have been able to win it even cheaper tomorrow.
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Finally, off-path beliefs must sustain equilibrium play.16

A brief discussion of how this compares to other equilibrium notions is useful. Our restrictions

are identical to those of Bayes-Nash equilibrium, except that the initial beliefs come from

long-run play rather than a prior over the initial state of the market at time zero and Bayesian

updating to form a posterior at time t. Whether this is reasonable or not is arguable, but

by Lemma 1, for large t (i.e. in the long-run), the initial distribution of types should be

irrelevant, so that the two approaches to the prior coincide.17 Any equilibrium that obeys

our restrictions is also an experience-based equilibrium (Fershtman and Pakes 2012). This

is because our agents must have assessments of expected returns to on-path actions that are

consistent with long-run play.

We will not attempt to prove existence of a pure strategy equilibrium, as this involves chal-

lenges beyond the ambition of this paper.18 Instead, we will assume that such an equilibrium

exists and proceed to ask whether the primitives can be identified from observable data under

equilibrium play.

3 Identification

3.1 Observable Data

We assume that the econometrician observes an arbitrarily long time series of the data

collected by the platform: all bids, bidder identities, auction numbers and outcomes. The

resulting data set is shown graphically in Figure 2. Each bidder’s private history and actions

are observed and collected in the vector yit. Following a single bidder over time, we get

16We ignore off-path beliefs and refinements in what follows. They are perhaps less of a force for multiplicity
here than in other games: because of the private information, agents have different payoff functions; and
because winning leads immediately to exit, it is hard to get different types to pool based on the threat of
future punishment.

17Assuming that initial beliefs come from long-run play is theoretically unattractive in that they are then
themselves equilibrium objects. On the other hand, assuming a common prior at the start of the market
(i.e. before any play) begs the question of where the prior came from.

18Indeed, even in a static auction game it can be hard to prove existence (Athey 2001, McAdams 2003).
We are dubious that a pure strategy equilibrium will exist without adding some noise or discretizing the bid
observations so that a player’s beliefs about rival’s types never converge to atoms; although as Bergemann
and Hörner (2010) note, one may be able to restore existence even in that case by enriching the strategy
space in various ways (see the discussion in their paper). For simplicity, we simply assume existence and
thus avoid this additional modeling complexity.
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Bidder Identity Aggregate
. . . i i+1 i+2 i+3 i+4 . . . Data

...
Time Period t yit yi+1

t ∅ ∅ ∅ yt
t+1 yit+1 yi+1

t+1 yi+2
t+1 ∅ ∅ yt+1

t+2 yit+2 ∅ ∅ yi+3
t+2 ∅ yt+2

t+3 ∅ ∅ ∅ yi+3
t+3 yi+4

t+3 yt+3

t+4 ∅ ∅ ∅ yi+3
t+4 yi+4

t+4 yt+4
...

Individual Time Series yi yi+1 yi+2 yi+3 yi+4

Figure 2: Observable Data. This is the dataset that we assume the econometrician observes.

Each entry yit consists of the private history hi,t, object chosen ji,t and bid bi,t of bidder i in time

period t. A notation of ∅ means the agent was not present in the market at that time period, either

because they had not yet entered, or had already exited. Aggregating all the individual data from

a given time period gives us the aggregate data yt; aggregating all the data from a given individual

across time periods gives us the individual time series yi.

an individual time series yi; aggregating all the data across individuals from a single time

period together, we get a vector of actions and histories yt. Both arrangements of the data

are useful to us. By Lemma 1, the aggregate time series {yt} is geometrically ergodic, and we

can apply time series econometrics techniques in its analysis. But since types are sampled

iid on entry, for the identification arguments it will be easier to look at the collection of

individual time series {yi}.

The primitives of the model are the distribution of the number of entrants FE, the distri-

bution of the number of goods listed of each type FN , the distribution of types FX and the

survival rate r. Notice that everything except the type distribution is trivially identified

directly from the aggregate data (e.g. the number of entrants each period is observable, and

therefore so is its distribution). So the challenge is to identify the bidder’s valuations FX .

We make our identification argument in two steps. First we show that the econometrician

can deduce the equilibrium strategies σe = (γe, βe) from the observables. Second, if different

types take different actions (at least along some paths), we can use our knowledge of σe to

invert from the distribution of individual bidder time series to the type distribution.
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3.2 Identifying Equilibrium Strategies

To start, we rewrite the Bellman equation (1) in terms of observables, rather than the bidder’s

beliefs. Beliefs enter through the bidder’s perception of the distribution of the highest rival

bid GM
j,π, and the transition kernel Q(π′|π, j, b, BM

j > b). In equilibrium, bidders form their

beliefs by starting with the ergodic distribution of states and updating by Bayes rule based

on their history h and the supply realization n.19 Their beliefs are thus consistent with

the ergodic measure over the state space µ, conditional on h and n, and we can define

GM
j (b|h, n) ≡ Eµ[BM

j < b|h, n] = GM
j,π(b). Similarly since future beliefs are a function of

future private history and supply, their perceived transition kernel is Q(h′, n′|h, n, j, b, BM
j >

b). Because supply is exogenous and iid, this can be decomposed further, allowing us to

write the following observable counterpart of the original Bellman equation:

V (x, h, n) = max
j , b

[
GM
j (b|h, n)

(
xj − EG[BM

j |BM
j < b, h, n]

)
+ r(1−GM

j (b|h, n))

∫ ∫
V (x, h′, n′)dFN(n′)dQ(h′|h, n, j, b, BM

j > b)

] (4)

where V (x, h, n) is the value of a bidder of type x with private history h facing a supply vector

n. The objects in (4) are identified as the asymptotic limits of their empirical analogs.20

Letting G be the set of conditional bid distributions {GM
j (b|h, n)} and Q be the set of

conditional transitions {Q(h′|h, n, j, b, BM
j > b}, define the set of empirical best responses

Σ(G,Q, FN) as the set of policies that solve (4) (i.e. the set of best responses to equilibrium

actions). Each element σ of this set is a best response function σ(x). One can construct

all the elements of Σ by solving the MDP defined by (4) for each type x, and then taking

the cartesian product of the sets of solutions for each type. This implies the empirical best

responses are identified. Moreover, we know that the equilibrium strategies σe must be in

Σ(G,Q, FN) otherwise some type could deviate and improve their payoff, contradicting the

definition of equilibrium. Summarizing:

Lemma 2 (Identification of Optimal Policies). The empirical best responses Σ(G,Q, FN)

are identified. If Σ(G,Q, FN) is a singleton, equilibrium policies σe = (γe, βe) are identified.

19Recall that because valuations are iid and have no impact on state transitions, they are redundant.
20For example, let GM,T

j (b|H,n) be the empirical probability in a dataset of T auctions that the highest
rival bid faced by a bidder bidding on good j is less than b when supply is n and his history is in some open
set of histories H. Since the system is ergodic, we may apply the Birkhoff ergodic theorem to conclude that
limT→∞GM,T

j (b|H,n) = GM
j (b|H,n) almost everywhere.
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3.3 Inversion

Suppose that Σ(G,Q, FN) is indeed a singleton.Lemma 2 suggests a natural identification

strategy: since the optimal policies are identified, why not invert from the observed actions

to the types? For example, in the case of a static symmetric first-price auction, there is a

unique monotone equilibrium bidding function β. Given this optimal policy and its inverse

β−1, one can invert the bid distribution pointwise to get the type distribution. This is

basically the identification strategy of Guerre, Perrigne, and Vuong (2000).21

This approach is complicated by the fact that the type and action spaces are multidimen-

sional, and we may observe repeated observations from a single bidder. To simplify this

problem, we focus our analysis on the individual bidder time series yi ∈ YI . For each

type there is a distribution over these time series outcomes FY |X implied by the primitives

and equilibrium play. The econometrician can simulate these paths by drawing an initial

public history at random, applying the equilibrium strategies, and then sampling rival high

bids, transitions and supply according to (G,Q, FN) to generate the next state in the path.

Therefore the distributions FY |X are identified. The data can be summarized as a distribu-

tion FY (y) over individual time series, generated as an (infinite) mixture of the time series

from different types:

FY (y) =

∫
FY |X(y|x)dFX(x) (5)

This defines an inversion problem: we want to deduce FX from FY given FY |X . Intuitively,

this is only possible if different types have different strategies; that is, if the equilibrium

is separating. We make a stronger assumption: that for each type there is some path —

perhaps a long sequence of bids and participation decisions — that is separating in the sense

that only that type could have played it.

Assumption 1 (Dynamic Separability). Let µY |X be the conditional measures on (YI ,B(YI))
corresponding to the distributions FY |X . For each type x, there is some set of outcomes

A ∈ B(YI) with µY |X(A|x) > 0 and µY |X(A|x′) = 0 ∀x′ 6= x.

Dynamic separability condition is a weak condition in the common case when types are

assumed to be one dimensional.22 Then it would suffice to assume a monotone equilibrium.

In higher dimensions the condition becomes harder to satisfy and we may only be able to

21In their case, the optimal policy is identified from the first order condition for the bidding problem.
22Examples: models with a single kind of good; identical preferences over different goods up to a scalar

unobservable (Haile, Hong, and Shum 2006); in characteristic space, models with a single random coefficient.
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get partial identification (we discuss this later in the paper). As noted earlier, we will also

need a second assumption on the uniqueness of the empirical best responses:

Assumption 2 (Unique Empirical Best Responses). For any set of primitives FE,FN ,FX ,

r and equilibrium strategy σe which induce bid distributions G and transitions Q, the empir-

ical best response set Σ(G,Q, FN) is a singleton.

This is not the same as requiring a unique pure strategy equilibrium: multiple equilibria are

fine because each equilibrium will generate different observables. Instead, it rules out the

possibility that there are two different type distributions and strategies (F 1
X , σ

e
1) and (F 2

X , σ
e
2)

that generate identical data, and therefore both σe1 and σe2 are best responses.

Theorem 2 (Non-Parametric Identification). Under assumptions 1 and 2, the model is

identified.

The proof appeals to a result in the statistics literature on the identification of mixtures

(Blum and Susarla 1977). Our dynamic separability assumption is stronger than necessary

for the inversion. We use it because it is relatively transparent, whereas the necessary and

sufficient condition is devoid of economic content.23

Neither of the assumptions are on the primitives, and unfortunately we don’t know enough

about the full Bayesian equilibrium to verify that these assumptions always hold. What we

can say is that they are both in principle testable by solving the MDP and then simulating

paths. Testing these conditions would give a sense of whether identification is possible with

any particular dataset.

We will show below that in large markets we can go further and dispense with the assump-

tions. First though, we will use our analysis to get a negative identification result for the

static case in which bidders only live for a single period (i.e the survival rate is r = 0). Data

from the static model essentially consists of repeated iid observations of the static stage

game. In each stage game, agents pick an item j to bid on and then bid on it. There are

no dynamic implications — no leakage, no continuation value — and so bidders bid their

valuations in any auction they choose to participate in.

Corollary 1 (Static Model). Fix r = 0 and any entry and supply distributions FE and

FN . FX is identified iff J = 1.

23Fox and Gandhi (2011) make a similar point about identification of finite mixture models, and introduce
their own sufficient condition called reducibility. Dynamic separability and reducibility are closely related.
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When J = 1, identification is obvious: valuations are one-dimensional and are directly

identified from the bid distribution. But when J > 1, the bid distribution for product j is

informative only about the marginal distributions of valuations of bidders who have selected

into bidding on product j. As in Roy’s (1951) classic model of the labor market, unless

there is sufficient variation in the choice sets, some bidders will never select into bidding on

product j and therefore even the marginal distributions are not fully identified.

But even if FN has full support, so that sometimes only a single product is available and

everyone selects into bidding on it, it is still hard to infer the correlation structure of FX . For

example, in a two-good economy with many high bids for good 1, the challenge is to learn

what the contribution is from types with high and low valuations for good 2, respectively.

The supply variation may provide an experiment: there may be some supply vectors in

which the bidders with high valuation for good 2 switch to bidding on good 2, making it

clear what the relative contributions of the different bidder types are. But there are “not

enough” supply vectors to separate out the types: since the set of possible supply vectors

is finite and the set of types is infinite, there is always partial pooling in the participation

decision. And since each bidder is observed exactly once, the correlation structure cannot be

inferred by following the same bidder over time across different supply vectors. As we will

see below, this possibility is the key to identification, and is the reason we chose to focus on

a dynamic model.

3.4 Large Market Approximation

Although the full Bayesian model is identified under the conditions we have outlined above,

it will be formidably difficult to estimate in markets with large numbers of players and

products. Happily, those are also the markets in which it may be reasonable to use more

tractable equilibrium notions.

We consider an equilibrium in which bidders ignore the effects of their own actions on

evolution of other’s beliefs — that is, they ignore leakage effects. This is reasonable in large

markets: as the market size approaches the continuum limit, the distribution of opposing

types is close to the steady-state distribution with probability approaching one, and so it is

natural to assume that agents mutually ignore the actions of individual players, eliminating

leakage effects.24 In that case the assumption acts as an equilibrium refinement, eliminating

24Bodoh-Creed (2012) argues that under certain smoothness conditions, equilibrium strategies of contin-

18



undesirable equilibria where agents coordinate on the basis of a priori unreasonable grounds.

Notice that in this special case bidder’s actions have no dynamic implications apart from

determining whether they win and exit, or lose and persist. Formalizing this requires a little

care. Fixing rival strategies γ−i, β−i and a belief-state π, let j̃ = γ−i(π) and b̃ = β−i(π, j̃).

Then define an autonomous transition kernel Q(π′|π) ≡ Q(π′|π, j̃, b̃, BM
j > b̃). This kernel

is autonomous because we have substituted rival strategies for what would otherwise be the

controlled part of the transition process.

Definition 1 (No Leakage Equilibrium). Symmetric strategies σe constitute a no-leakage

equilibrium if σe solves the belief MDP with autonomous transition kernel Q(π′|π), where on-

path beliefs and the prior are consistent with long-run equilibrium play under σe.

A no leakage equilibrium has the properties we desire. The transition kernel is correct on-

path, because in a symmetric equilibrium rival strategies coincide with the player’s own

strategy (i.e. they do what they expected to do). But agents treat the transition kernel as

autonomous, ignoring their ability to influence rival beliefs by changing their actions when

solving their decision problem. The value of considering these equilibria is that equilibrium

strategies are considerably simpler and better defined.25

Definition 2 (Strategy Monotonicity). Fix two types x1 and x2 with x1
j < x2

j and x1
k = x2

k

for k 6= j. Strategies are monotone if at any (h, n), whenever type 1 bids on product j, type

2 also bids on product j and bids strictly more; and whenever type 2 bids on product k 6= j,

type 1 also bids on product k and bids weakly more.

Strategy monotonicity seems like something one would desire from reasonable demand sys-

tems. It says that if one type values a product more than another otherwise identical type,

they should be more likely to bid on it, and when they do, they should bid more. Conversely,

they should be less likely to substitute away to another product, and if they do, they should

bid less. No leakage equilibria have this property:

uum games will be an epsilon-Bayes-Nash equilibrium of the finite game with sufficiently many players.
25In the analysis of industry dynamics, Weintraub, Benkard, and Van Roy (2008) introduce the related

notion of oblivious equilibrium, in which firms optimize against the ergodic distribution of rival firm types
(instead of conditioning on the full state vector). The no leakage assumption is different: our bidders are
sophisticated in how they form beliefs about rival play, conditioning on all information available; and are
näıve only in predicting how their own actions will affect future play.
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Lemma 3 (No Leakage Equilibrium). In a no leakage equilibrium, strategies are mono-

tone. When optimally bidding on product j at information set (h, n), bidders bid their valu-

ation for j less their (survival)-discounted continuation value in that state.

Recall that if we ignore leakage effects, bidders bid their valuations less their continuation

value discounted by the survival rate. So whenever their valuation for the good they are

bidding on increases they bid more. since their continuation value increases at a slower rate

than their valuation (a rate of at most r < 1). Similar arguments show that participation

strategies must be monotone.

This has strong implications for identification. Solving the empirical MDP for a type x

produces a value function V (x, h, n), and by standard arguments this value function is unique.

Consequently the discounted continuation value is also unique, and since bids are equal

to valuation less discounted continuation value, so are the best responses. Bidders who

are observed bidding on all J products will be distinguishable, by the monotonicity of the

strategies. In fact, we can explicitly construct an inversion from a set of bids that includes

a bid on each product back to the bidder’s type.26

Theorem 3 (Bidderwise Identification). In a no leakage equilibrium the type of any

bidder is identified iff the bidder is observed bidding at least once on each of the J products.

The proof strategy is quite novel. We first reduce the bid-vector of each bidder to a J-vector,

by randomly selecting one of their bids on each product. We then conjecture a J-vector of

discounted continuation values v at each of those points, and infer the type x̂ = b + v who

would have made those bids. Solving the MDP for that conjectured type x̂ we get a new

continuation value for each of those points v. This algorithm defines a mapping from the

space of continuation values RJ into itself, and we show that this map is a contraction map.27

Thus it converges to a unique value function, identifying the true type according to x = b+v.

This result allows us to prove an explicit and constructive result regarding identification of

the model. The idea is to apply the bidderwise identification result to every bidder observed

bidding on all products. However, this set of bidders is selected: in particular, bidders with

high valuations are unlikely to be observed bidding on all products since they will win early

26An earlier version of this paper required that a bidder was observed making bids in every state, which
in this model is a zero probability event.

27In the context of fixed-price demand systems, Berry (1994) constructs a similar inversion from market
shares to product/market level unobservables.
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and exit. We can correct for this by re-weighting: if F̃J is the distribution of types recovered

by applying the contraction mapping of Theorem 3 to this set of bidders, then we can divide

through by the probability that each type would be observed bidding on all products to

recover FJ , the distribution of types who bid on all products with positive probability. The

following lemma establishes that these weights are recoverable.

Lemma 4 (Selection Correction). Let A be the set of all subsets of J . In a no leakage

equilibrium the probability of observing a type x bid on any A ∈ A is identified.

A more serious problem for identification stems from directed search: some types may never

bid on some products, regardless of the state of the world (i.e. for those types the probability

of bidding on all products is zero). Then dynamic separability may fail and the model may be

only partially identified. Still, Theorem 3 can be applied to deduce the marginal distribution

of valuations for the set of goods on which these bidders actually bid. This may be enough

for certain counterfactuals. To formalize this, define the “product support” of type x as

J(x) = {j : P(γ(x, h, n) = j) > 0}

This is the set of all products that type bids on with positive probability. Let XA be the

random variable X restricted to only the products in A ∈ A \∅ (i.e. defined by an identity

map from X to [0, x̄]|A|) and define the conditional distribution function FA(xA) ≡ P (XA ≤
xA|J(X) = A). This is the joint distribution of valuations for products in A of types with

product support A.

Theorem 4 (Identification in Large Markets). In a no-leakage equilibrium, the distri-

bution FA is nonparametrically identified for all A ∈ A \∅.

Notice how much stronger this is than the earlier identification Theorem 2. Not only do

we dispense with assumptions 1 and 2, we also sharply define the limits of the data. The

proof is in two parts. First we show that for any product set A, we can apply the bidderwise

identification result plus a selection correction approach to get the type distribution for

types with that product support. Then we proceed by induction from the maximal set

down, getting the type distribution and then subtracting the contribution of higher-level

sets. For example, when there are two products, we get the density of types who bid on both

goods, then get the marginal valuations for good 1 and remove the contributions of those
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who bid on both to get the marginal for those who only bid on good 1. The nice thing about

this identification approach is that it may be directly employed in estimation.28

4 Estimation

In this section we explore estimation of the full Bayesian model, as well as the model where

we assume a no leakage equilibrium. There are two basic approaches. The first approach is

nonparametric, following the logic of the identification section by inverting from the distribu-

tion of bidder time series to types. In the no leakage case, this is relatively straightforward:

we simply implement the constructive identification argument. The disadvantage — and it

is a serious one — is that it is impractical in markets with many products or high turnover

in participants, since then it will be unusual to see many bidders bidding in multiple states.

Our second approach is a semiparametric approach based on simulated generalized method

of moments (an approach often used for demand estimation). There we assume a parametric

structure on the distribution of types, and choose parameters to match moments implied by

the structural model with those observed in the data.

Even in that case, if there are a large number of products the model quickly becomes un-

wieldy. So a third approach is to follow the IO literature and project product valuations

onto characteristics (McFadden 1974). Instead of valuations for products, types are now

random coefficients indicating the marginal value of product characteristics. In a standard

specification, this implies a linear structure for valuations in characteristics. Regardless of

the approach — nonparametric, semiparametric or characteristic-based — we apply a two-

step estimation approach, as is common in the estimation of dynamic games (Aguirregabiria

and Mira 2007, Bajari, Benkard, and Levin 2007, Pakes, Ostrovsky, and Berry 2007).

4.1 First-Stage Estimation

The first step is to estimate the conditional bid distributions, the empirical transitions, the

entry and supply distributions, and the exit rate. The entry and supply distributions are

28A disadvantage is that this result requires a non-standard equilibrium concept. To address this, one
could try to prove that leakage effects are uniformly bounded in sufficiently large markets. The contraction
mapping arguments above would then produce partial identification results, where each type is identified up
to the error produced by ignoring leakage.
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discrete, and so can be estimated from simple averages. The conditional bid distributions

and empirical transitions can be estimated nonparametrically. In principle data limitations

can be overcome by appropriate choice of bandwidth, but since the history vectors are high

dimensional, estimating objects like GM
j (b|h, n) can be difficult. For this reason researchers

may choose to estimate these distributions within pre-defined blocks, treating certain histo-

ries and supply vectors as equivalent.29

4.2 Second-Stage: Nonparametric Approach

To estimate the distribution of valuations nonparametrically, we follow the main identifica-

tion argument given in Section 3. For each type in the type-space, we solve the empirical

MDP to recover optimal strategies. Using those strategies, we may simulate the distribution

of time series outcomes for each type, and then invert from the observed distribution of time

series to the implied distribution of types.

One of the practical difficulties of this approach is that it requires solving the empirical

MDP for each type in X , possibly necessitating a rather coarse discretization of X for

computational reasons. In large markets, it will be attractive to assume that bidders are

playing a no leakage equilibrium, because then we can apply the bidderwise identification

approach, solving the bid inversion problem only for the bid vectors actually observed in the

data. Following this inversion, we smooth the estimated type density and then re-weight

according to the selection correction probabilities that we derive in the proof of Theorem 4.

We omit a formal analysis of the asymptotic properties of this estimator, both because

it takes us into the realm of nonparametric estimation with dependent data — which we

understand poorly at best — and because we suspect that the semiparametric approach

outlined below is more likely to be used in practice. Yet intuitively Lemma 1 guarantees

that the data generating process converges geometrically to an ergodic distribution, and so

the asymptotics should be well-behaved. This is supported by the estimator’s performance

in our Monte Carlo experiments (see below).

29A previous version of the paper suggested formalizing such “coarsening” as part of the equilibrium
concept. This is a good idea if the modeler has a strong prior on what the bidders condition on in making
their decisions, but otherwise is problematic.
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4.3 Second-Stage: Semiparametric Approach

The semiparametric approach proceeds in the opposite direction. Instead of inverting bids to

valuations, we take draws from a parametrized type distribution and match moments of the

observed data with those generated by simulation. This is simulated GMM, and so inference

is relatively standard, which is an advantage relative to the nonparametric case.

We give a brief overview of the approach, following Duffie and Singleton (1993). Let the

type distribution F be finitely parameterized by some vector of parameters θ ∈ Θ, with θ0

the true parameter vector. In contrast to our identification arguments, let us think of the

data as a long time series, with all the data for each period summarized in a random vector

Yt. Let Zt = (Yt, Yt−1, Yt−2 · · ·Yt−l) for some positive integer l < ∞. Let g∗t ≡ g(zt, θ0) be a

known (vector-valued) function of the data, defined for all possible realizations of Zt. The

simulated GMM estimator proceeds by minimizing the distance between the sample average
1
T

∑T
t=1 g

∗
t and the moments predicted by the model E[g(zt, θ)]:

θ̂T = arg min
θ∈Θ

(
1

T

T∑
t=1

g∗t − E[g(zt, θ)]

)′
W

(
1

T

T∑
t=1

g∗t − E[g(zt, θ)]

)
(6)

These moments E[g(zt, θ)] are constructed by simulating the economy forward. In these sim-

ulations it is not necessary to solve for a new set of equilibrium strategies for each evaluation

of θ, since these have been pinned down by the first-stage. Thus the moments depend on θ

only through the type distribution.30

As Duffie and Singleton (1993) argue, the simulated GMM approach will only have good

asymptotic properties under certain conditions. The main challenge is that the moments

depend on the parameter vector indirectly through the simulated DGP.31 These indirect de-

pendencies may be substantial in our application: perturbations of the parameters describing

the distribution of valuations, even holding random simulation draws fixed, may induce large

discrete changes in outcomes: e.g., rank reversals in bids or changes in bidders’ participation

30In this two-stage approach the econometrician is restricted to moment conditions in which the policy
functions are evaluated at θ0, although the type distribution is evaluated at θ. This is computationally
very convenient and avoids the problems of equilibrium multiplicity that would occur in re-solving for new
equilibrium policies at some other θ. But by holding the policy functions fixed and focusing on the “partial
derivative” of the objective function in θ, the objective function may become flatter.

31Another problem is the initial conditions problem: every time the econometrician simulates moments
for a particular parameter vector, they must pick an initial condition for the state of the system. This can
be overcome by a “burn in” period under Duffie and Singleton’s (1993) stronger ergodicity condition.
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choices, both of which may have dynamic effects via the set of survivors in future peri-

ods. The solution to this problem is to strengthen the standard ergodicity assumption of

Hansen (1982) to geometric ergodicity of the DGP for all θ ∈ Θ. Such a condition holds by

our Lemma 1. We suspect therefore that the simulated GMM estimator, with thoughtfully

chosen moments, should have good asymptotic properties in our environment.32

4.4 Moment Choice

This leaves the question of which moments to choose. In view of our earlier identification

arguments, it may be reasonable to focus on (averages of) individual bidder outcomes; and

in particular to look at the behavior of the same bidder over time (since this is what pins

down the correlation structure of FX).For example in each time period one could construct

the fraction of bidders bidding on each good and the mean and mean squared bids on each

product. Given two successive time periods t and t − 1 one could look at the substitution

matrix across products, and the correlation in bids by the same bidder, conditioning on

product identity.

Many of these functions have a particular form. They can be written as:

g(zt, θ) =
1

It

∑
i∈It

g̃(zit, θ)

where It is the set of bidders who were present in period t, with cardinality It; and g̃ is an

identity-symmetric function of the individual time series outcomes zit = {yit, yit−1 · · · yit−l}.33

An advantage of this formulation is that we can re-write the moments more conveniently:

E[g(zt, θ)] =
1

It

∑
i∈It

∫
g̃(zit, θ)dF̃ (zit|θ)

=

∫
g̃(zit, θ)dF̃ (zit|θ) (by symmetry)

=

∫ ∫ ∫
g̃(zit, θ)dFZ|Y (zit|yi)w(yi)dFY |X(yi|x)dF (x|θ)∫ ∫

w(yi)dFY |X(yi|x)dF (x|θ)

The distribution F̃ is the ergodic distribution of individual observations, which can be ob-

32An additional complication is error in the first-stage estimation: the arguments of Andrews (1994) or
Ai and Chen (2003) may help here to argue in favor of

√
N -consistency.

33If l > 1, the function g̃ needs to be well-defined when a bidder wasn’t present in some period t− l.
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tained by simulation of the full economy. The last step separates the problem of simulating

moments into three pieces. First, we sample a type from the distribution F (x|θ). Then we

sample a time series yi for that type using the conditional distribution of time series outcomes

F (yi|x). As argued above, the distribution of time series outcomes for each type is identified

from the empirical MDP, and so this is possible without θ. Finally, given an individual time

series yi, we sample zit by drawing a period t according to weights ψ(zit) = E
[

1
It
|zit
]

and

then getting zit from yit (i.e. FZ|Y is a discrete distribution with masses given by ψ).

In performing this decomposition, we have to carefully weight how different individual ob-

servations are sampled. Conditional on any bidder’s time series, the probability that an

observation from period t is chosen is proportional to the inverse of the number of incum-

bent bidders in period t. This explains the form of FZ|Y . Similarly, the probability of

sampling a bidder should be proportional to how often their observations would be chosen,

with weights w(yi) =
∑

yit∈yi
ψ(zit(y

i
t)). Dividing through by the sum of these weights in the

denominator, we get a well-defined distribution. The weights are identified directly from

the data.34 For example, suppose that zti is a product-bid pair for bidder i at period t. An

estimate of E
[

1
It
|zit
]

is given by averaging the inverse of the number of incumbent players

across all instances in which the product-bid pair zti was observed in the data.

What is useful about this decomposition is that only the first piece depends on θ. So one

can fix a large sample of types x, simulate a large set of time series outcomes {yi(x)} and

corresponding weights {w}, and calculate
∫
g̃(zit, θ)dFZ|Y (zit|yi) for each time series obser-

vation yi. Then for each new parameter draw of θ during the optimization, sample those

mean outcomes with weights f(x|θ) to evaluate the objective function. The advantage of

this estimation approach is its computational simplicity and the fact that the simulated ob-

jective function will be continuous in θ, which will not generally be the case for moments

that require simulating the entire auction marketplace.35 This will make numerical optimiza-

tion easier.This trick may be usefully applied elsewhere: for example, in macro-econometric

models with heterogeneous types.

34To see that these are the right weights, consider Figure 2 and the relative probability of sampling any
two entries, say y11 and y44 . These are equally likely to be sampled in the ergodic distribution, since periods
1 and 4 are equally likely to be sampled, and each entry in those periods is sampled with probability 0.5.
Now go the other way. The probability of sampling bidder 1 is 1/5; the bidder-weight is 1/2 + 1/3 + 1/2 and
the probability of sampling the first entry is 3/8, multiplied for a total weight of 1/10. Similarly for bidder
4 we get corresponding weights of 1/5, 1/2 + 1/2 + 1/2, 1/3, multiplied for a total weight of 1/10.

35When J > 1, it is impossible to “hold the draws fixed”: as θ changes, different bidders will win and exit,
resulting in discrete changes in simulated behavior for future states. So the simulated objective function will
be discontinuous in θ.
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4.5 Characteristic Space Approach

Demand estimation in product space is difficult when the product space is large and so we

may want to project valuations down onto product characteristics (e.g. McFadden (1974)).

To do this, we assume that valuations depend purely on the characteristics of the goods zj:

xj = zjβi (7)

where βi ∼ Fβ. This is the pure characteristics model of Berry and Pakes (2007). Bidders

differ in their tastes for the characteristics, and we would like to recover the distribution of

the random coefficients Fβ.

We assume that the characteristic space Z has dimension K, with K ≤ J (i.e. we are project-

ing down onto a lower dimensional space). An implication of this is that the characteristic-

space restriction is testable: given any bidder observed bidding on all J products, we can

solve for their valuation x and then ask if there is any βi that rationalizes their imputed

valuations. More practically, it simplifies parametric estimation. Rather than optimizing

over a high-dimensional type space, we may instead simulate moments by sampling random

coefficients from a known parametric distribution and matching as before. Optimization is

now over a lower dimensional vector that parameterizes the distribution Fβ over RK .

The characteristic-based specification is readily adaptable for applied work. For example,

researchers may want to add idiosyncratic iid demand shocks εi,j,t or unobserved product

heterogeneity ξj,t to the model. Idiosyncratic demand can be easily accommodated into the

simulated GMM approach, as it will integrate out of the mean bids (although it will create

“mixing” in the participation decision). Unobserved heterogeneity is more challenging as it

will create difficulties in correctly measuring the bid distributions G and state transitions

Q. It may be possible to introduce these features into our framework and retain nonpara-

metric identification using modern measurement error techniques (e.g. Li and Vuong (1998),

Krasnokutskaya (2011) and Hu and Shum (2012)), but this is beyond the scope of this paper.

5 Simulations

In this section we generate a simulated economy and use it in two ways. First, we take the

simulated data and run a Monte Carlo simulation to see how our various proposed estimation
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approaches work in finite samples. Second, we run a counterfactual to assess the optimal

level of supply for a monopolist who controls the supply of one of the products in a two-

product economy. We compare the results from the full structural model with a “straw man”

reduced-form approach to determining the profit-maximizing supply.

5.1 The Simulated Economy

We consider a simulated economy in which there are just two products. Supply of both

products is random, with an equal probability of either 10 or 15 units being supplied each

period. There are exactly 120 entrants each period (i.e. Et is deterministic), and they draw

their valuations from a bivariate normal distribution. In the base case their valuations for

each good are independent, with mean 200 and standard deviation 100. Winners exit with

certainty, and losing bidders survive with probability 0.75, so that there is quite a lot of

persistence in the economy.

To find equilibrium participation and bidding strategies, we look for a fixed point so that

these strategies are mutual best responses. In theory we would like to allow strategies to

be maps from type, the supply level and private history to the reals, but in practice this is

computationally infeasible.36 So instead we consider simpler strategies γ(x, n) and β(x, n, j)

that condition only on the supply vector, which has four discrete points of support. We

find a fixed point in this strategy space by best response iteration: taking an initial strategy,

simulating out an economy governed by these strategies, computing a best response for every

type, and repeating until convergence.While in principle there could be multiple equilibria,

regardless of our starting point we find only a single equilibrium set of strategies. This gives

us a strategy vector (γe, βe) and a set of primitives FN , FE, FX and r as described above.

Table 1 offers summary statistics for the simulated economy at the bid-, auction-, and bidder-

level. Average bids are marginally higher than valuations, but only marginally because

continuation values are only large for the small population of high-valuation bidders who are

likely to win auctions. Conditional on participating in good 1 auctions, one might expect

that the average valuation of bidders would be substantially higher than the underlying

population mean of 200. This is offset by the difference between the entry distribution and

the ergodic distribution; low-valuation bidders are more likely to lose auctions and persist,

36While estimation on the full state space is difficult, finding an equilibrium is vastly more so, as it requires
solving for a fixed point in a high-dimensional space.
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as evident from the bidder-level data, and therefore push the mean observed bid downwards.

The auction-level summary statistics highlight the relationship between supply and directed

search. Holding fixed the supply of good 1, an increase in the supply of good 2 draws bidders

away seeking lower prices.

5.2 Monte Carlo

We generate 100 Monte Carlo datasets by simulating 300 periods of data from the above

data generating process. Since there are on average 25 auctions each period, this implies

that the average dataset consists of 7500 auctions. We then apply both the nonparametric

and semiparametric estimation approaches to recover the type distribution FX , estimating

the other primitives FN and r in a first-stage (we assume FE known since it is deterministic).

The model is only partially nonparametrically identified: even with the supply variation,

many types will always choose to participate on the same good. For this reason, the non-

parametric estimation approach follows the partial identification proof of Theorem 4, start-

ing with the bidders observed bidding on both goods, identifying the distribution of types

of those bidders and then proceeding to get the marginal distributions for bidders who bid

only on a single good.

The results are shown in Table 2. We present the result for three groups separately: those

who bid on both goods, those who bid on good 1 only and those who bid on good 2 only.

For each group, we show their mean µi and standard deviations µii of their valuations for

good i, as well as the covariance in valuations σ12. These statistics θ0 are generated from

the simulated economy; they differ from the parameters of the full joint distribution because

they condition on a particular product support.

For types that bid on both items, the bidder-wise identification result applies, and we do a

great job of backing out the underlying valuations. The mean point estimates are extremely

accurate, and the standard deviations are small. Although this is not shown in the table,

we can confirm that the estimates for each individual bidder are also good. We do less well

in the estimates of the marginals. Although the mean estimates remain quite good, there

is substantially more variation in the parameter estimates. Overall though, this approach

performs extremely well without imposing any parametric assumptions.

The semiparametric approach assumes, correctly, that the underlying distribution of types
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is multivariate normal. We estimate the five parameters (µ1, µ2, σ11, σ22, σ12) by simulated

GMM. The moments gt we use in estimation are the mean bid on each good in period t, the

variance in bids for each good in period t, and the mean covariance in bids between bidders

who bid on one product in t− 1 and another product at t. Table 3 shows the results of not

only the benchmark case but also other simulated economies with different parameters.37

The mean parameter estimates are once again good, suggesting that the estimators are un-

biased. But there is considerably more noise in the parameter estimates, particularly in

the variance estimates. In some sense this is to be expected. Both the nonparametric and

semiparametric estimators will inherit error from the first stage estimates of the conditional

distributions G and transitionsQ. But the semiparametric estimator has the additional prob-

lems of simulation and optimization error, which will add noise to the estimates. Nonetheless

the results are good: the estimator performs well even when there is positive or negative

correlation in valuations, or with higher levels of persistence.

5.3 Counterfactual

One might wonder if it is really necessary to estimate this complicated structural model in

order to run counterfactuals. We consider one particular counterfactual and show that the

full model is needed. In this counterfactual, an economist is asked by the firm who produces

to good 1 to work out their long-run profit maximizing level of per period supply, given that

their per unit cost is c = 207. That is, they want to solve the problem of maximizing per

period profit:

max
q∈Z+

(
Eµq [p]− c

)
q

where q is the per period supply, p is the price (a random variable since this is an auction),

and the expectation is taken with respect to the ergodic measure for an economy in which

per period supply is q. To calculate the long-run price distribution for any supply level q,

we have to re-solve for the equilibrium strategies and then simulate out the economy. We

do this for a range of integer supply levels. Again there is no guarantee that the equilibrium

strategies are unique, and therefore in principle for any particular supply level we could have

a set of possible counterfactual outcomes, one for each equilibrium. In practice though we

find only a single equilibrium at each supply level.

37We have repeated this exercise for the nonparametric estimation procedure, and it performs comparably
— we omit those results to conserve space.
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Figure 3: Counterfactual demand and revenues. The left panel shows the estimated
inverse demand curve (i.e. mean price as function of quantity supplied) using a linear model (solid)
and the full structural model (dashed). The linear model passes through the mean prices in the
observed data (dots). The linear estimates vastly underestimate the quantity elasticity of price. The
right panel shows the projected profits according to the linear model (solid) and the full structural
model (dashed).

As a straw man, we consider taking a simpler “reduced-form” approach to this optimization

problem. Taking advantage of the current exogenous variation in supply, the economist

estimates a linear demand system of the form:

pn,t = α0 + α1q
1
t + α2q

2
t + εn,t

where n indexes auctions of good 1 within period t, and q1
t and q2

t are the supply of goods 1

and 2 respectively. Using the estimated inverse demand curve p̂(q) = Ê[p|q, q2 = 10]P (q2 =

10) + Ê[p|q, q2 = 15]P (q2 = 15), one can also solve the optimization problem above.

The results are displayed in Figure 3. In the left panel we plot the inverse demand curve

(i.e. mean price as function of quantity supplied) estimated from the linear model and the

structural model. The linear model significantly underestimates the quantity elasticity of

price. The main problem is not the linear specification, because, as we can see, the true

relationship is approximately linear for a large range of quantity levels (between 8 and 17 or

so). Instead, the issue is that the linear model gives the average price response to a transitory

change in quantity, whereas the structural model gives the impact of a permanent change in

quantity, which is in fact the counterfactual of interest.

Transitory supply changes have no effect on equilibrium strategies. On the other hand, a

permanent decrease in supply will increase bids, because bidders will correctly perceive that
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their continuation values have fallen and thus bid more aggressively. The converse is true for

an increase in quantity supplied. As a result the long-run inverse demand curve is steeper

than the short-run curve.

The right panel shows the implications of this. The optimal supply level is between the two

previous levels, and is relatively flat between 12 and 14. But using a reduced form approach,

the economist would instead advise an increase to a supply of 19 units per period, which in

fact would lead to a sharp fall in profits. This comparison makes clear the value of having a

dynamic structural model.

6 Conclusion

Dynamics and market interactions are salient in real-world auction markets. Bidder partici-

pation choices can create limits for identification: if bidders never bid on a product, we can

only hope to put an upper bound on their valuations. Moreover, this participation choice

implies an endogenous distribution of competing bidders in any given auction, a distribu-

tion that responds to both short-term supply fluctuations and long-term structural changes.

Because bidders are persistent, there is also an option value to losing; an option value that

is increasing in a bidder’s private valuation. Bidders shade their bids by that option value,

which creates challenges for recovering their underlying valuation. In addition to these issues,

we consider the problem of information leakage, whereby bidders seek to influence the beliefs

of other bidders. Taking all of these features into account, we offer an model of demand in

an auction platform market.

We show that for any strategies, the evolution of the state of the market is geometrically

ergodic. Moreover, we make use of results from the computer science literature on partially

observable Markov decision processes to characterize best responses. We combine these

results in our general identification approach: Lemma 2 demonstrates that bidders’ strategies

are identified, and Theorem 2 relates general identification of the model to a set of intuitive

and testable assumptions on bidders’ strategies. If we further assume that leakage effects

are negligible, we are able to offer constructive identification results in Theorem 3 and 4,

which hinge on bidder-level invertibility. Theorem 4 in particular demonstrates the limits of

identification in a market with directed search.

We believe the identification results here offer a robust framework for estimation in dynamic
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auction markets. We offer three estimators that are designed to exploit different features

of the results and the unique structure of auction data: a nonparametric estimator that

directly implements the constructive identification result, a semiparametric estimator that

transforms the problem into a simulated method of moments estimation exercise, and finally

a variation on the latter that projects valuations down into characteristic space, an analogue

to traditional methods for fixed-price markets.

Auction data offers a unique and rich environment for learning about consumer preferences.

The choice to model a dynamic auction marketplace explicitly is driven not just by a desire

to “get the model right,” but also because we want a framework that allows us to extract

information from within-bidder variation in outcomes, across products and time, as the state

of the market changes. We hope that this framework offers a first step in that direction.
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Appendix

Proof of Lemma 1

By Theorem 11.12 in Stokey, Lucas, and Prescott (1989), uniform geometric convergence in

total variation norm will be achieved if their “condition M” holds: ∃N ≥ 1 and ε > 0 such

that for every A ∈ B(S), either [PN(s, A) > ε ∀s ∈ S] or [PN(s, Ac) > ε ∀s ∈ S] where

P (s, A) ≡ Pγ,β(s, A) is the probability of reaching the set A from state s in a single step, and

PN(s, A) is the N -step transition kernel. We claim the following is sufficient for condition M:

there exists some s0 ∈ S and some N ≥ 1 and some ε > 0 such that PN(s, s0) > ε ∀s ∈ S.

To prove this, notice that for any A ∈ B(S) either s0 ∈ A or s0 ∈ Ac. If the former, then for

any s ∈ S, PN(s, A) ≥ PN(s, s0) > ε. If the latter, then PN(s, Ac) ≥ PN(s, s0) > ε.

Now we must find such an s0. Let s0 be the state where there are no bidders and no supply,

and the history of the past tP periods is null. This state is reachable in tP +1 steps: it occurs

if for tP + 1 periods there has been no supply and in the previous period everyone exited

and no-one entered. The probability of this is at least FN(0)tP +1(1 − r)Ī . So the required

condition holds with R = tP + 1 and δ = FN(0)tP +1(1− r)Ī .

Proof of Theorem 1

Rewrite the payoff function at state π after choosing object j∗ as:∫ b

0

(xj∗ −BM
j )dGM

j∗,π(BM
j ) + r

∫ ∞
b

∫
V (π′)dQ(π′|π, j∗, b, BM

j )dGM
j∗,π(BM

j )

Take a first order condition in b wherever GM
j∗,π has a density gMj∗,π:

(xj∗ − b) gMj∗,π(b)− rgMj∗,π(b)

∫
V (π′)dQ(π′|π, j∗, b, b)

+ r

∫ ∞
b

∂

∂b

(∫
V (π′)dQ(π′|π, j∗, b, BM

j )

)
dGM

j∗,π(BM
j )

Substituting v(x, j, b, B) =
∫
V (π′)dQ(π′|π, j, b, B), setting the result equal to zero and re-

arranging terms gives the result.
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Proof of Lemma 2

Fixing a type x and (G,Q, FN), the transitions and per period payoff in the empirical Bellman

equation are identified for any actions j and b . This defines a MDP, so standard results (e.g.

Rust (1994)) imply the existence of a unique value function V (x, h, n), and a set of optimal

policies Σ(G,Q, FN). By definition these are the empirical best responses.

Proof of Theorem 2

Let F be the collection of conditional probability measures {µY |X(A|x)}A∈B(Y), and let L(F)

be the space generated by linear combinations of elements of F . Let C0(X ) be the Banach

space of continuous functions on X which vanish at infinity, under the sup norm. Blum and

Susarla (1977) show that the inversion problem is solvable if C0(X ) ⊆ L(F).

By assumption 2 and the argument in the main text, the collection of probability measures

F are identified. We must show that assumption 1 implies that C0(X ) ⊆ L(F). For each

x, pick a set B(x) ∈ B(Y) so that the collection of sets {B(x)}x∈X is mutually disjoint

and µy|x(B(x)|x) > 0 and µy|x(B(x)|x′) = 0 if x′ = x. Assumption 1 guarantees this is

possible. Elements of L(F) can be written as g(x) =
∑

A∈B(Y) µY |X(A|x)w(A) for w(A) a

function indexed by the Borel sets A. Fix f ∈ C0(X ). Write f as f(x) =
∑

A∈B(Y) 1(A =

B(x))µY |X(B(x)|x) f(x)
µY |X(B(x)|x)

. But then f ∈ L(F) using the weight function w(A) = 0

whenever A 6= B(x) for some x, and w(A) = f(x)
µY |X(B(x)|x)

otherwise (the weights are indexed

by the set B(x), not the type x). Since f was arbitrary, we have C0(X ) ⊆ L(F).

Proof of Corollary 1

When J = 1, we have b = v for every bidder, and so the distribution of bids G(b) = FX(x)

immediately identifies demand. So suppose J ≥ 1. We show that C0(X ) 6⊆ L(F) so the

inversion problem is not solvable. For any type x, in the static game the surplus from

(optimally) bidding their valuation for any product j when supply is n is:

S(x, j, n) =

∫ xj

0

(xj −BM
j )dGM

j (BM
j |n)
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Since the type distribution is assumed everywhere continuous, this surplus function is also

continuous. Pick any type x̂ such that S(x̂, j∗, n) > S(x̂, j, n) for j 6= j∗. Such a type

exists: the set of types who are indifferent between two bidding on two products given any

particular supply realization n is of lower dimension than the type space, and since the

set of supply vectors is finite, so is their union, implying that the set of types with strict

participation preferences is non-generic. Then by continuity, there is an open ball of types

B(x̂) who make the same participation choices as x̂. The unique outcomes for these types

x ∈ B(x̂) are maximally a set of pairs (j, xj). So all functions in L(F), when restricted

to the domain B(x̂), have the form
∑

j fj(xj) for some bounded measurable functions fj.

Continuous functions of the form f(x) =
∏J

j=1 xj are not in L(F). Thus following Blum and

Susarla (1977), the model is not identified from the distribution of time series outcomes FY .

Finally, we argue that in the static case that if two type distributions generate the same

distribution of time series outcomes FY , then there is no additional information in the data to

tell them apart (i.e. non-identification by mixtures implies non-identification of the model).

Suppose F 1
X and F 2

X are distributions over types that generate the same distribution of

individual outcomes FY . Because all bidders are new entrants and drawn iid, the joint

distribution of actions in every period conditional on the number of entrants is generated as

an Et fold repetition of FY ; implying that F 1
X and F 2

X will generate identical data.

Proof of Lemma 3

Assuming a no leakage equilibrium, taking a derivative in b in the empirical Bellman equation

and setting it equal to zero gives the first order condition:

b∗(x, j, h, n) = xj − rE[V (x, h′, n′)|h, n]

So b∗(x2, h, j, n)− b∗(x1, h, j, n) = (x2
j − x1

j)− r (E[V (x2, h′, n′)|h, n]− E[V (x1, h′, n′)|h, n]).

Since x1 can copy x2 and guarantee an identical payoff except when bidding on item j,

we have 0 ≤ E[V (x2, h′, n′)|h, n] − E[V (x1, h′, n′)|h, n] ≤ x2
j − x1

j , implying the previous

expression is positive. Similarly, b∗(x2, h, k, n) − b∗(x1, h, k, n) = −r(E[V (x2, h′, n′)|h, n] −
E[V (x1, h′, N ′)|h,N)) ≤ 0. This proves bid monotonicity. For participation, we show that

if γ(x1, h, n) = j, then γ(x2, h, n) = j. Suppose not. Then x2 improves by bidding on some

product k. But then x1 has a profitable single-period deviation as he can bid on product k

also, and return to his original strategy (under no leakage this is possible). Contradiction.
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Proof of Theorem 3

Necessity is obvious: if a bidder is observed bidding on only a subset of the products, their

valuation for the remaining products can only be bounded above (they chose not to bid on

it), rather than point identified. For sufficiency, let b be a j-vector of bids with at least

one bid on product j, where the jth element is a bid on a product of type j. Moreover, let

(hj, nj) be the associated state of the world when that bid was observed. Under NL, bids

are equal to valuations plus the discounted continuation value of the bidder:

xj = bj + νj (8)

– where ν is defined to be a J-vector of continuation values for the associated bids with

νj = r
∫
V (x, h′, n′)dQ(h′, n′|hj, nj). Define the following mapping T : RJ → RJ ,

T (ν) = r

∫
V (b+ ν, h′, n′)dQ(h′, n′|h, n) (9)

This mapping is identified because the empirical best responses are identified. We use Black-

well’s sufficient conditions to demonstrate that the mapping T is a contraction. First is

monotonicity. Consider two vectors ν and ν ′, with ν ′ ≥ ν componentwise. We need:

r

∫
V (b+ ν, h′, n′)dQ(h′, n′|h, n) ≤ r

∫
V (b+ ν ′, h′, n′)dQ(h′, n′|h, n) (10)

Since b is fixed, b + ν ≤ b + ν ′. Then, because a componentwise higher type can always do

at least as well as a componentwise lower type type by mimicking their strategy, we have

V (b+ν, h, n) ≤ V (b+ν ′, h, n) everywhere on H×N . Since Q is a distribution on that space

and r is a positive constant, we have monotonicity. Next is discounting. We need:

r

∫
V (b+ ν + a, h′, n′)dQ(h′, n′|h, n) ≤ r

∫
V (b+ ν, h′, n′)dQ(h′, n′|h, n) + ρa (11)

–for ρ ∈ (0, 1) and a > 0 a J-vector with equal elements. However, a type with valuation

raised by a can do no better than win immediately, implying an upper bound of T (V + a) ≤
TV + ra componentwise. Thus discounting holds with ρ = r. Applying the contraction

mapping theorem we conclude that there is a unique fixed point ν. Combining this with the

observable bid vector b, we use equation (8) to recover the bidder’s type x.
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Proof of Lemma 4

Define P (A, x, h, n) to be the probability that a bidder who, starting from state (h, n), is sub-

sequently observed bidding only on a subset of products in A, and q(x, h, n) to be the proba-

bility that a bidder of type x exits at (h, n), whether by winning or losing. Let Q(h′, n′|x, h, n)

be the transition operator induced by equilibrium play (i.e. substituting γ(x, h, n) for j and

β(x, h, n, j) for b in Q(h′, n′|h, n, j, b, BM
j > b). We can express P (A, x, h, n) recursively:

P (A, x, h, n) = 1(γ(x, h, n) ∈ A)

·
[
q(x, h, n) + (1− q(x, h, n))]

∫
P (A, x, h′, n′)dQ(h′, n′|x, h, n))

]

Since q(x, h, n) ∈ (0, 1) ∀(x, h, n), it is easy to see that this recursion satisfies Blackwell’s

sufficient conditions for a contraction mapping, which we can exploit to obtain P (A, x, h, n).

Now define κ(h, n) to be the ergodic measure with respect to histories and supply in which

entry is possible (i.e. excluding states where the number of incumbents exceeds Ī−Ē). Then

the probability of a bidder x being observed in all, and only in, auctions for products A can

be written:

P (A|x) =

∫
P (A, x, h, n)dκ(h, n)−

∑
B⊂A

P (B|x)

This follows since the probability of seeing bids for every product j in A is equal to the

probability that the bidder stays within A less the probability that he stays in a strict subset

of A. One can construct the summation on the right-hand side of the final equation by

beginning with singleton subsets of J and proceeding iteratively.

Proof of Theorem 4

We proceed by induction on the cardinality a of the subsets A ∈ A \ ∅. Our base step is

the case a = J , so we prove that FJ is identified. The induction step is that if all of the

distributions in {FA}{A:|A|>a} are identified, then distributions in {FA}{A:|A|=a} are identified.

Base Step:

By Theorem 3, we can identify the types of bidders who are observed bidding at least once

on every product in J , and get the distribution of types for these bidders. It will be easier

to work with densities rather than distribution functions. Let the density of types for this

42



sample be f̃J . We have f̃J (x) = P (J |x)fJ (x). By Lemma 4, P (J |x) is identified. So

fJ (x) = f̃J (x)
P (J |x)

is identified (the denominator is non-zero since by assumption J(x) = J ).

Inductive Step:

Assume that all of the distributions in {FA}{A:|A|>a} are identified. We want to show that

distributions in {FA}{A:|A|=a} are also identified. Fix a set A with cardinality a. Consider

the set of bidders who are observed bidding only on products in A. This set consists both

of types with product support A, and those with product support J(x) ⊃ A. An easy

corollary of Theorem 3 is that the restricted types xA are identified for those types with

product support A. The argument follows the proof of Theorem 3, except that the mapping

T defined in equation (9) is amended so that the vector b + ν on the RHS is equal to b + ν

for products in A and 0 otherwise, so that T is now a mapping T : R|A| → R|A|. This result

correctly identifies xA for these bidders, since the valuations of goods outside of the product

support make no contribution to the continuation values (they never bid on these goods)

and so setting them to zero has no effect on xA.

In view of this, let the inversion mapping ξ : (R×H×N )|A| → R|A| be implicitly defined as

the outcome of the contraction mapping approach outlined in the paragraph above. Applying

the inversion map ξ to the set of bidders observed bidding only in products in A, we get

a density f̃A(xA). For each A, partition x into xA and x−A with joint density f(xA, x−A).

Then any type x with J(x) = A makes a contribution of
∫
P (A|x)f(xA, x−A)dx−A to this

density. But some types with J(x) ⊃ A are incorrectly classified as having restricted type

xA = (ξ ◦β)(x) so that inversion of bids yields the density
∫
P (A|x)1((ξ ◦β)(x) = xA)dF (x).

This can be decomposed

f̃A(xA) =
1

s(A)

(∫
P (A|x)1(J(x) = A)f(xA, x−A)dx−A

+
∑
B⊃A

∫
P (A|x)1(J(x) = B)1((ξ ◦ β)(x) = xA)dF (x)

)

for s(A) the share of bidders observed bidding only in set A. Re-arranging terms:∫
P (A|x)1(J(x) = A)f(xA, x−A)dx−A = s(A)f̃A(xA)

−
∑
B⊃A

∫
P (A|x)1(J(x) = B)1((ξ ◦ β)(x) = xA)dF (x)
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Now notice that P (A|x) is constant in x−A whenever J(x) = A, so write P (A|xA) for

the probability of being seen bidding only on products in A with restricted type xA and

product support A. Then
∫
P (A|x)1(J(x) = A)f(xA, x−A)dx−A = P (A|xA)

∫
1(J(x) =

A)f(xA, x−A)dx−A. And fA(xA) ∝
∫

1(J(x) = A)f(xA, x−A)dx−A where the normalizing

constant comes from the constraint
∫
fA(xA)dxA = 1. So we get:

fA(xA) ∝
s(A)f̃A(xA)−

∑
B⊃A

∫
P (A|xB)1(J(x) = B)1((ξ ◦ β)(x) = xA)dF (x)

P (A|xA)

The denominator is identified by Lemma 4. By change of variables
∫
P (A|xB)1(J(x) =

B)1((ξ ◦ β)(x) = xA)dF (x) is identified for all B ⊃ A whenever {FB}{B:|B|>a} are identified.
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Table 1: Summary Statistics: Simulated Auctions of Two Goods

Supply Vector
(15,15) (15,10) (10,15) (10,10)

Bid-level data
Avg valuation of bidders (good 1) 200.8351 200.7476 200.2437 200.4063
Avg bid (good 1) 200.4295 200.3533 199.8324 200.0033
Avg valuation of bidders (good 2) 200.7935 200.3346 200.6366 200.3604
Avg bid (good 2) 200.4026 199.9120 200.2481 199.9541
Auction-level data
Avg bidders per auction (good 1) 13.4900 14.4689 18.7596 20.4310
Avg winning bid (good 1) 212.3141 212.3323 212.9482 213.0141
Avg bidders per auction (good 2) 13.4735 18.7511 14.4353 20.1094
Avg winning bid (good 2) 212.2328 213.0196 212.2590 213.0645
Bidder-level data
Avg bidder life span 3.3630
Avg bidder life span (v1 < µ1) 3.6443
Avg bidder life span (v1 > µ1) 3.0822

Summary statistics for the benchmark simulated economy where the mean valuations of entrants for good 1
and good 2 are 200, variances are 100, and covariance is 0. An observation in bid-level data is a simulated
bid and underlying valuation. An observation in auction-level data is an individual auction. An observation
in the bidder-level data is a bidder. The four columns in the first two panels correspond to data from periods
with the four possible supply vectors: (15,15), (15,10), (10,15), (10,10).
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Table 2: Monte Carlo Results: Nonparametric estimator

µ1 µ2 σ11 σ22 σ12

Bidders who bid on both items
θ0 197.6946 197.6906 66.6438 66.6442 4.9456

Average θ̂ 198.0420 197.8758 67.4228 67.5580 2.7850

Std deviation of θ̂ 0.2265 0.2199 1.6294 1.4711 1.1305
Bidders who bid only on good 1

θ0 215.8624 197.7556 17.3298 70.7754 5.2944

Average θ̂ 215.4231 19.4245

Std deviation of θ̂ 0.1092 0.7490
Bidders who bid only on good 2

θ0 197.7642 215.8568 71.0065 17.2577 5.1845

Average θ̂ 215.4171 19.4129

Std deviation of θ̂ 0.0930 0.5608
Monte Carlo simulations of the nonparametric estimation procedure. Each dataset consists of 300 periods
of data from a simulated economy with 120 entrants each period, supply of each good identically and
independently chosen at random from the set {10, 15}, survival rate r = 0.75 and valuations multivariate
normal with parameters µ1 = µ2 = 100; σ11 = σ22 = 100; σ12 = 0. The nonparametric estimation
procedure is used to estimate the joint distribution of bids for types who bid on both good; and the marginal
distributions for those who bid only on a single good. Moments of these estimated distributions are recorded.
The mean and standard deviations of these estimates across 100 repetitions are reported, as well as the truth
for each group of types.

46



Table 3: Monte Carlo Results: Semiparametric estimator

µ1 µ2 σ11 σ22 σ12

Benchmark
θ0 200 200 100 100 0

Average θ̂ 199.8262 199.7852 100.7446 100.1809 0.7720

Std deviation of θ̂ 0.5490 0.4636 3.3925 3.2494 1.9159
Negative Correlation

θ0 200 200 100 100 -20

Average θ̂ 199.5762 199.7759 99.3460 99.8421 -18.8666

Std deviation of θ̂ 2.4388 0.7650 5.7142 5.8649 4.5680
Positive Correlation

θ0 200 200 100 100 20

Average θ̂ 199.4154 198.5935 99.2190 98.1095 18.8579

Std deviation of θ̂ 0.7029 3.4670 4.2294 5.0055 2.6607
Higher Persistence

θ0 200 200 100 100 0

Average θ̂ 199.6549 199.6274 100.6775 100.7262 0.3364

Std deviation of θ̂ 0.5059 0.4954 3.0815 2.9143 1.6271
Asymmetric Variance

θ0 200 200 100 80 0

Average θ̂ 199.2110 199.2865 98.8734 79.9131 -0.0443

Std deviation of θ̂ 2.1461 2.4859 4.1870 4.0724 1.8067
Monte Carlo simulations of the semiparametric estimation procedure. The benchmark dataset consists of
300 periods of data from a simulated economy with 120 entrants each period, supply of each good identically
and independently chosen at random from the set {10, 15}, survival rate r = 0.75 and valuations multivariate
normal with parameters µ1 = µ2 = 100; σ11 = σ22 = 100; σ12 = 0. In the negative (positive) correlation
case, the covariance is σ12 = ±20. In the asymmetric variance case, we have σ22 = 80. In the higher
persistence case, we assume r = 0.8. The parameters are estimated by simulated method of moments. The
mean and standard deviations of these estimates across 100 repetitions are reported, as well as the truth for
each group of types.
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