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1 Introduction

The college admissions process has lately been the object of much scrutiny, both from

academics and in the popular press. This interest owes in part to the competitive nature

of college admissions. Schools set admissions standards to attract the best students, and

students in turn respond most judiciously in making their application decisions. This

paper examines the joint behavior of students and colleges in equilibrium.

We introduce an equilibrium model of college admissions that analyzes the impact of

two previously unexplored frictions in the application process: students find it costly to

apply to college, and college evaluations of their applications is uncertain. As evidence

of the noise in the process, observe that admissions rates are well below 50% at the

most selective colleges, and below 75% at the median 4 year college.1 This uncertainty

prevails conditional on the SAT. Even applicants with perfect SAT scores have no better

than a 50% chance of getting into schools like Harvard, MIT and Princeton (Avery,

Glickman, Hoxby, and Metrick, 2004). So it is not surprising that most applicants

construct thoughtful portfolios that include both “safety” and “stretch” schools.

Despite this uncertainty, the costly nature of applications substantially limits the

number of applications sent — three for the median student.2 A fast growing empirical

literature confirms the impact of this friction: for instance, Pallais (2009) finds that

when the ACT allowed students to send an extra free application, 20% of ACT test-

takers took advantage of this option.3 Small costs can have large effects on application

behavior because the marginal benefit of applying falls geometrically in the number

of applications. A student applying to identical four-year colleges with a typical 75%

acceptance rate sees the marginal benefit to her 5th application scaled by 4−4 = 1/256:

Even if attending college this year is worth $20000, the marginal benefit is only $59.

Figure 1 illustrates some motivating patterns in the application data. The left panel

demonstrates the importance of the application frictions — for the chance of matric-

ulating at a private elite school is significantly higher for students who apply widely.4

The right panel plots the average number of applications as a function of the SAT score,

1Source: Table 329, Digest of Education Statistics, National Center for Education Statistics.
2Source: Higher Education Research Institute (HERI), using a large nationally representative survey

of college freshman since 1966 (data also used to construct Figure 1; see online appendix for details).
3Steinberg (2010) reported that colleges who waived application fees saw applications skyrocket.
4Avery and Kane (2004) study a Boston program giving low-income students advice on how/where to

apply; these students matriculated at a higher rate than comparable students elsewhere. Similar results
have later been found in field experiments where students received application help: see Bettinger,
Long, Oreopoulos, and Sanbonmatsu (2009) and Carrell and Sacerdote (2012).
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Figure 1: Applications and Matriculation by SAT. The left panel shows the chance of
matriculating at a top private university, by number of applications and household income. The
right panel shows the estimated relationship between SAT score and number of applications.
Estimation is by local linear regression; 95% confidence intervals are shown as dotted lines.

small but larger than one consistent with our two frictions.5

Any model that focuses on these two frictions — costly portfolio choices with incom-

plete information — must diverge from the approach of the centralized college matching

literature (Gale and Shapley, 1962), for it expressly sidesteps such matching frictions.

Rather, we analyze an entirely decentralized model that parallels the actual process. It

affords sharp conclusions about two key decision margins: how colleges set admission

standards and how students formulate their application portfolios.

We assume a heterogeneous population of students, and two ranked colleges — one

better and one worse, respectively, called 1 and 2. Like the decentralized model of Avery

and Levin (2010), there is a continuum of students; this avoids colleges facing aggregate

uncertainty — otherwise, wait-listing is needed, for instance.6 Colleges seek to fill their

capacity with the best students possible, but student calibers are only imperfectly ob-

served. The tandem of costly applications and yet noisy evaluations feeds the intriguing

conflict at the heart of the student choice problem: shoot for the Ivy League, settle

for the local state school, or apply to both. As we shall see, our paper formalizes the

critical roles played by stretch and safety schools. Meanwhile, college enrollments are

5Admissions rates fall rapidly as college rank rises. So larger portfolios are particularly valuable for
high SAT students applying to top-tier colleges, consistent with the right panel of Figure 1.

6See Che and Koh (2013) for a college admissions model with aggregate uncertainty. We also
omit many real-world elements like financial aid and peer effects, but these are typically ruled out in
centralized matching models too. In a recent paper, Azevedo and Leshno (2012) assume a continuum
of students in a centralized paper in the spirit of Gale and Shapley (1962), and find that it affords a
characterization of equilibrium in terms of supply and demand — one of our observations too.
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interdependent, since the students’ portfolios depend on the joint college admissions

standards, and students accepted at the better college will not attend the lesser one.

This asymmetric interdependence leads to many surprising results.

Central to our paper is a theorem characterizing how student acceptance chances at

the colleges covary with student caliber. We deduce that as a student’s caliber rises,

the ratio of his admission chances at college 1 to college 2 rises monotonically. We are

thus able to solve the equilibrium in three stages, first deducing how acceptance chances

translate into application portfolios, and then seeing how portfolio choices across student

calibers relate, for any pair of college admission standards; finally, we compute the

derived demand for college slots. We analyze the equilibrium of the induced admissions

standards game among colleges through the lens of supply and demand: When a college

raises its standards, its enrollment falls both because fewer students make the cut —

the standards effect — and fewer will apply ex ante — the portfolio effect. Treating

admissions standards as prices, these effects reinforce each other. In equilibrium, we

uncover a “law of demand”, in which a college’s enrollment falls in its standard. The

portfolio effect increases the elasticity of this demand curve.

Analogous to Bertrand competition with differentiated products, colleges will choose

admissions standards to fill their desired enrollment, taking rival standards and the

student portfolios as given. An equilibrium occurs when both markets clear and stu-

dents behave optimally. The model frictions yield some novel comparative statics. For

instance, the admissions standards at both colleges fall if college 2 raises its capacity,

while lower application costs at either school increase the admissions standards at the

better college. We will argue that our equilibrium framework rationalizes the pattern of

changing college standards and admission rates recently documented by Hoxby (2009).

In a major thrust of the paper, we ask whether sorting occurs in equilibrium: First,

do the better students apply more “aggressively”? Precisely, the best students apply just

to college 1; weaker students insure by applying to both colleges; even weaker ones apply

just to college 2; and finally, the weakest apply nowhere. Such an application pattern

rationalizes the general rise and fall that we observe in the right panel of Figure 1.

Second, does the better college impose higher admissions standards? The answer to this

question is no when the lesser college is sufficiently small, for by our “law of demand”,

college 2 continues to raise its standards as its capacity falls. Failures of student sorting

are more subtle: The willingness of students either to (i) gamble on a stretch school or (ii)

insure themselves with a safety school may not be monotone in their types. Conversely,
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all equilibria entail sorting when the colleges differ sufficiently in quality and the lower

ranked school is not too small. All told, sorting proves elusive with frictions.7 The college

sorting failures that we identify have problematic implications for rankings based on the

characteristics of matriculants, such as their SAT scores: Colleges that substantially

increase their capacity are penalized, since they must lower their admission standards.

This paper takes very seriously the uncertainty that clouds the student admission

process. Students apply to colleges, perhaps knowing their types, or perhaps ignorant

of them. Equally well, colleges evaluate students trying to gauge the future stars, and

often do not succeed. The best framework for analyzing this world therefore involves

two-sided incomplete information. In fact, we later formulate such a richer Bayesian

model, and argue that its predictions are well-approximated by ours where students

know their types, and colleges observe noisy signals. The sorting failures we claim, as

well as the positive theory of how students and colleges react, are in fact robust findings.

We conclude the paper with a topical foray into “affirmative action” for in-state

applicants, or other preferred applicant groups. We show that colleges impose different

admissions standards so as to equate the “shadow values” of applicants from different

groups — a form of third degree price discrimination. This, in turn, affects how students

behave: in a simple case, lower caliber applicants of a favored group behave as if they

were higher caliber applicants from a non-favored group. This is consistent with the

reduction in less-qualified minority applications to selective public schools after the end

of affirmative action in California and Texas, documented in Card and Krueger (2005).

2 The Model

A. An Overview. The paper introduces three key features — heterogeneous students,

portfolio choices with unit application costs, and noisy evaluations by colleges. We

impose little additional structure. For instance, we ignore the important and realistic

consideration of heterogeneous student preferences over colleges, as well as peer effects.

A central feature of our analysis is modeling college portfolio applications. Student

choice is trivial if it is costless, and in practice, such costs can be quite high. Indeed, the

7This adds to the literature on decentralized frictional matching — e.g., Shimer and Smith (2000),
Smith (2006), Chade (2006), and Anderson and Smith (2010). The student portfolio problem in the
model is a special case of Chade and Smith (2006). In this sense, our paper also contributes to the
directed search literature. See Burdett and Judd (1983), Burdett, Shi, and Wright (2001), Albrecht,
Gautier, and Vroman (2003) and Kircher and Galenianos (2006)).
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sole purpose of the Common Application is to lower the cost of multiple applications.8

Next, we assume noisy signals of student calibers. This informational friction cre-

ates uncertainty for students, and a Bayesian filtering problem for colleges. It captures

the difficulty faced by market participants, with students choosing “safety schools” and

“stretch schools”, and colleges trying to infer the best students from noisy signals. With-

out noise, sorting would be trivial: Better students would apply and be admitted to

better colleges, for their caliber would be correctly inferred and they would be accepted.

We also make two other key modeling choices. First, we assume just two colleges, for

the sake of tractability. But as we argue in the conclusion, this is the most parsimonious

framework that captures all of our key findings. We also fix the capacity of the two

colleges. This is defensible in the short run, and so it is best to interpret our model as

focusing on the “short run” analysis of college admissions. We explore the simultaneous

game in which students apply to college, and colleges decide whom to admit.9

In the interest of tractability, our analysis assumes that the colleges’ evaluations

of students are conditionally independent. This captures the case where students are

apprised of all variables (such as the ACT/SAT or their GPA) common to their appli-

cations before applying to college. Students are uncertain as to how these idiosyncratic

elements such as college-specific essays and interviews will be evaluated, but believe

that the resulting signals are conditionally independent across colleges. We revisit this

restriction in Section 6, and argue that our main results on sorting are robust, and that

we have analyzed a representative case.

B. The Model. There are two colleges 1 and 2 with capacities κ1 and κ2, and a

unit mass of students with calibers x whose distribution has a positive density f(x) over

[0,∞). Non-triviality demands that college capacity be insufficient for all students, as

κ1 + κ2 < 1. To avoid many subscripts, we shall almost always assume that students

pay a separate but common application cost c > 0 for the two colleges. All students

prefer college 1. Everyone receives payoff v > 0 for attending college 1, u ∈ (0, v) for

college 2, and zero payoff for not attending college. Students maximize expected college

8This general application form is used by almost 400 colleges, and simplifies college applications. It
eliminates idiosyncratic college requirements, but retains separate college application fees.

9Epple, Romano, and Sieg (2006) analyze an equilibrium model that includes tuition as a choice
variable, price discrimination, peer effects, and students that differ in ability and income. Under single
crossing conditions, they obtain positive sorting on ability for each income level. Their model, however,
does not include costly applications or noise, thus precluding the portfolio effects we focus on and their
implications for sorting. While we do not allow colleges to choose their tuition levels, we do not ignore
the role of tuition, for one can simply interpret the benefits of attending college as net benefits.
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payoff less application costs. Colleges maximize the total caliber of their student bodies

subject to capacity constraints.

Students know their caliber, and colleges do not. Colleges 1 and 2 each just ob-

serves a noisy conditionally independent signal of each applicant’s caliber. In particular,

they do not know where else students have applied. Signals σ are drawn from a condi-

tional density function g(σ|x) on a subinterval of R, with cdf G(σ|x). We assume that

g(σ|x) is continuous and obeys the strict monotone likelihood ratio property (MLRP).

So g(τ |x)/g(σ|x) is increasing in the student’s type x for all signals τ >σ.

Students apply simultaneously to either, both, or neither college, choosing for each

caliber x, a college application menu S(x) in {∅, {1}, {2}, {1, 2}}. Colleges choose the

set of acceptable student signals. They intuitively should use admission standards to

maximize their objective functions, so that college i admits students above a threshold

signal σ i. Appendix A.1 proves this given the MLRP property — despite an acceptance

curse that college 2 faces (as it may accept a reject of college 1).

For a fixed admission standard, we want to ensure that very high quality students

are almost never rejected, and very poor students are almost always rejected. For this,

we assume that for a fixed signal σ, we have G(σ|x) → 0 as x → ∞ and G(σ|x) → 1

as x → 0. For instance, exponentially distributed signals have this property G(σ|x) =

1− e−σ/x. More generally, this obtains for signals drawn from any “location family”, in

which the conditional cdf of signals σ is given by G((σ − x)/µ), for any smooth cdf G

and µ > 0 — e.g. normal, logistic, Cauchy, or uniformly distributed signals. The strict

MLRP then holds if the density is strictly log-concave, i.e., logG′ is strictly concave.

C. Equilibrium. We consider a simultaneous move game by colleges and students.

This yields the same equilibrium prediction as when students move first, as they are

atomless.10 An equilibrium is a triple (S∗(·), σ∗1, σ∗2) such that:

(a) Given (σ∗1, σ
∗
2), S∗(x) is an optimal college application portfolio for each x,

(b) Given (S∗(·), σ∗j), college i’s payoff is maximized by admissions standard σ∗i.

We also wish to preclude trivial equilibria in our model in which one or both colleges

reject everybody with a very high admissions threshold and students do not apply there.

10See Appendix A.2. Alternatively, colleges could move first, committing to an admission standard.
This is arguably not the case, but regardless, it too yields the same equilibrium properties until we
study affirmative action (proof omitted). In the interests of a unified treatment throughout the paper,
we proceed in the simultaneous move world.
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A robust equilibrium also requires that any college that expects to have excess capacity

set the lowest admissions threshold. Since κ1 +κ2<1, both colleges will have applicants.

In a robust sorting equilibrium, colleges’ and students’ strategies are monotone. This

means that the better college is more selective (σ∗1 > σ∗2) and higher caliber students

are increasingly aggressive in their portfolio choice: The weakest apply nowhere; better

students apply to the “easier” college 2; even better ones “gamble” by applying also to

college 1; the next tier up applies to college 1 while shooting an “insurance” application

to college 2; finally, the top students confidently just apply to college 1. Monotone

strategies ensure the intuitive result that the distribution of student calibers at college 1

first-order stochastically dominates that of college 2 (see Claim 3 in Appendix A.7), so

that all top student quantiles are larger at college 1. This is the most compelling notion

of student sorting in our environment with noise (Chade, 2006).

Our concern with a robust sorting equilibrium may be motivated on efficiency grounds.

If there are complementarities between student caliber and college quality, so that wel-

fare is maximized by assigning the best students to the best colleges, any decentralized

matching system must necessarily satisfy sorting to be (constrained) efficient. Since

formalizing this idea would add notation and offer little additional insight, we have ab-

stracted from these normative issues and focused on the positive analysis of the model.

D. Common versus Private Values. Notice that in our model colleges care about

the true caliber of a student and not about the signal per se. In other words, the model

exhibits common values on the side of the colleges. Appendix A.1 shows colleges behave

in exactly the same way if they do not care about caliber but care only about the signal

i.e. the private values case. In this interpretation, students differ in their observables x

(known to both students and colleges), and also in their “fit” for each college εi (known

only to the college). College payoffs depend on both observables and fit through the

signal σi ≡ σi(x, εi). Until the affirmative action application in Section 7, all the results

apply to the private values case as well, albeit with a different interpretation.

3 Equilibrium Analysis for Students

3.1 The Student Optimization Problem

We begin by solving for the optimal college application set for a given pair of admission

chances at the two colleges. Consider the portfolio choice problem for a student with
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admission chances 0 ≤ α1, α2 ≤ 1. The expected payoff of applying to both colleges

is α1v + (1 − α1)α2u. The marginal benefit MBij of adding college i to a portfolio of

college j is then:

MB21 ≡ [α1v + (1− α1)α2u]− α1v = (1− α1)α2u (1)

MB12 ≡ [α1v + (1− α1)α2u]− α2u = α1(v − α2u) (2)

The optimal application strategy is then given by the following rule:

(a) Apply nowhere if costs are prohibitive: c > α1v and c > α2u.

(b) Apply just to college 1, if it beats applying just to college 2 (α1v ≥ α2u), and

nowhere (α1v ≥ c), and to both colleges (MB21 < c, i.e. adding college 2 is worse).

(c) Apply just to college 2, if it beats applying just to college 1 (α2u ≥ α1v), and

nowhere (α2u ≥ c), and to both colleges (MB12 < c, i.e. adding college 1 is worse).

(d) Apply to both colleges if this beats applying just to college 1 (MB21 ≥ c), and

just to college 2 (MB12 ≥ c), for then, these solo application options respectively

beat applying to nowhere, as α1v > MB12 ≥ c and α2u > MB21 ≥ c by (1)–(2).

This optimization problem admits an illuminating and rigorous graphical analysis.

The left panel of Figure 2 depicts three critical curves: MB21 = c,MB12 = c, α1v = α2u.

All three curves share a crossing point, since MB21 = MB12, when α1v = α2u.

Cases (a)–(d) partition the unit square into (α1, α2) regions corresponding to the

portfolio choices (a)–(d), denoted Φ, C2, B, C1, shaded in the right panel of Figure 2.

This summarizes the portfolio choice of a student with any admissions chances (α1, α2).

In the marginal improvement algorithm of Chade and Smith (2006), a student first

decides whether she should apply anywhere. If so, she asks which college is the best

singleton. In Figure 2 at the left, college 1 is best right of the line α1v = α2u, and

college 2 is best left of it. Next, she asks whether she should apply anywhere else.

Intuitively, there are two distinct reasons for applying to both colleges that we can now

parse: Either college 1 is a stretch school — i.e., a gamble, added as a lower-chance

higher payoff option — or college 2 is a safety school, added for insurance. In Figure 2,

these are the parts of region B above and below the line α1v = α2u, respectively.

The choice regions obey some natural comparative statics. The application region

Ci to either college increases in its payoff, in light of expressions (1) and (2), and the

8
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Figure 2: Optimal Decision Regions. The left panel depicts (i) a dashed box, inside
which applying anywhere is dominated; (ii) the indifference line for solo applications to col-
leges 1 and 2; and (iii) the marginal benefit curves MB12 = c and MB21 = c for adding
colleges 1 or 2. The right panel shows the optimal application regions. A student in the blank
region Φ does not apply to college. He applies to college 2 only in the vertical shaded region C2;
to both colleges in the hashed region B, and to college 1 only in the horizontal shaded region C1.

region B expands rightwards in the college 2 payoff u, and leftwards in the college 1

payoff v. In particular, if a student enjoys fixed acceptance rates at the two colleges, a

college grows less attractive as the payoff of its rival rises. Also, as the application cost c

rises, the joint application region B shrinks and the empty set Φ grows.

Although outside our model, let us briefly consider non-linear costs — for instance,

the second application costs may be less than c, possibly due to some duplication of

forms, essays, etc. We analyze this in the online appendix, and show that region B is

bigger and the remaining regions smaller than with constant costs. Interestingly, some

types who would send no singleton applications would nonetheless apply to both colleges.

3.2 Admission Chances and Student Calibers

We have solved the optimization for known acceptance chances. But we wish to predict

the portfolio decisions of the students, despite the endogenous acceptance chances. To

this end, we now derive a mapping from student types to student application portfolios.

Fix the thresholds σ 1 and σ 2 set by college 1 and college 2. Student x’s acceptance

chance at college i, i = 1, 2, is given by αi(x) ≡ 1 − G(σ i|x). Since a higher caliber

student generates stochastically higher signals, αi(x) increases in x. In fact, it is a

smoothly monotone onto function — namely, it is strictly increasing and differentiable,
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Figure 3: The Acceptance Function with Exponential Signals. The figure depicts
the acceptance function ψ(α1) for the case of exponential signals. As their caliber increases,
students apply to nowhere (Φ), college 2 only (C2), both colleges (B) — specifically, first using
college 1 as a stretch school, and later college 2 as a safety school — and finally college 1
only (C1). Student behavior is therefore monotone for the acceptance function depicted.

with 0 < αi(x) < 1, and the limit behavior limx→0 αi(x) = 0 and limx→∞ αi(x) = 1.

Taking the acceptance chances as given, each student of caliber x faces the portfolio

optimization problem of §3.1. She must choose a set S(x) of colleges to apply to, and

accept the offer of the best school that admits her. We now translate the sets Φ, C2, B, C1

of acceptance chance vectors into corresponding sets of calibers, namely, Φ, C2,B, C1.

Key to our graphical analysis is a quantile-quantile function relating student admis-

sion chances at the colleges: Since αi(x) strictly rises in the student’s type x, a student’s

admission chance α2 to college 2 is strictly increasing in his admission chance α1 to

college 1. Inverting the admission chance in the type x, the inverse function ξ(α, σ)

is the student type accepted with chance α given the admission standard σ, namely

α≡1−G(σ|ξ(α, σ)). This yields an implied differentiable acceptance function

α2 = ψ(α1, σ 1, σ 2) = 1−G(σ 2|ξ(α1, σ 1)) (3)

We prove in the appendix that the acceptance function rises in college 1’s standard σ 1

and falls in college 2’s standard σ 2, and tends to 0 and 1 as thresholds near extremes.

By Figure 3, secant lines drawn from the origin or (1, 1) to successive points along the

acceptance function decrease in slope. To this end, say that a function h : [0, 1]→ [0, 1]

has the double secant property if h(α) is weakly increasing on [0, 1] with h(0) = 0,
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h(1) = 1, and the two secant slopes h(α)/α and (1− h(α))/(1− α) are monotone in α.

This description fully captures how our acceptance chances relate to one another.

Theorem 1 (The Acceptance Function) The acceptance function α2 = ψ(α1) has

the double secant property. Conversely, for any smooth monotone onto function α1(x),

and any h with the double secant property, there exists a continuous signal density g(σ|x)

with the strict MLRP, and thresholds σ 1, σ 2, for which admission chances of student x

to colleges 1 and 2 are α1(x) and h(α1(x)).

This result gives a complete characterization of how student admission chances at two

ranked universities should compare. It says that if a student is so good that he is

guaranteed to get into college 1, then he is also a sure bet at college 2; likewise, if he

is so bad that college 2 surely rejects him, then college 1 follows suit. More subtly, we

arrive at the following testable implication about college acceptance chances:

Corollary 1 As a student’s caliber rises, the ratio of his acceptance chances at college 1

to college 2 rises, as does the ratio of his rejection chances at college 2 to college 1.

For an example, suppose that caliber signals have the exponential density g(σ|x) =

(1/x)e−σ/x. The acceptance function is then given by the increasing and concave geo-

metric function ψ(α1) = α
σ 2/σ 1
1 , as seen in Figure 3 (as long as college 2 has a lower

admission standard). The acceptance function is closer to the diagonal when signals

are noisier, and farther from it with more accurate signals.11 For an extreme case, as

we approach the noiseless case, a student is either acceptable to neither college, both

colleges, or just college 2 (assuming that it has a lower admission standard). The ψ

function tends to a function passing through (0, 0), (0, 1), and (1, 1).12

Since a student’s decision problem is unchanged by affine transformations of costs and

benefits, we henceforth assume a payoff v = 1 of college 1; so, college 2 pays u ∈ (0, 1).

Throughout the paper, we also realistically assume that application costs are not too high

relative to the college payoffs — specifically, c < u(v−u)/v = u(1−u) and c < u/4. The

first inequality guarantees that the curves MB21 = c and MB12 = c do not cross twice

inside the unit square.13 The second inequality ensures that the MB21 = c curve crosses

11Specifically, for the earlier location-scale family, ψ(α1) rises in the signal accuracy 1/µ (see Persico
(2000)). Easily, the acceptance function tends to the top of the box in Figure 3 as µ → 0, since
ψ(α1) = 1−G(−∞) = 1, and to the diagonal ψ(α1) = 1−G(0 +G−1(1− α1)) = α1 as µ→∞.

12The limit function is not well-defined: If a student’s type is known, just these three points remain.
13For if α2 = 1, then MB21 = c and MB12 = c respectively force α1 = 1− (c/u) and α1 = c/(v− u).

Now, 1− (c/u) > c/(v − u) exactly when c < u(1− u)/v.

11



below the diagonal.14 If either inequality fails, the analysis trivializes since multiple

college applications are impossible for some acceptance functions, as they are too costly.

4 Equilibrium Analysis for Colleges

4.1 A Supply and Demand Approach

Each college i chooses an admission standard σ i as a best response to its rival’s threshold

σ j and the student portfolios. With a continuum of students, the resulting enrollment

Ei at colleges i = 1, 2 is a non-stochastic number (recall that αi(x) ≡ 1−G(σ i|x)):

E1(σ 1, σ 2) =

∫
B∪C1

α1(x)f(x) dx (4)

E2(σ 1, σ 2) =

∫
C2
α2(x)f(x) dx+

∫
B
α2(x) (1− α1(x)) f(x) dx, (5)

suppressing the dependence of the sets B, C1 and C2 on the student application strategy.

To understand (4) and (5), observe that caliber x student is admitted to college 1 with

chance α1(x), to college 2 with chance α2(x), and finally to college 2 but not college 1 with

chance α2(x)(1 − α1(x)). Also, anyone that college 1 admits will enroll automatically,

while college 2 only enrolls those who either did not apply or got rejected from college 1.

If we substitute optimal student portfolios into the enrollment equations (4)–(5),

then they behave like demand curves where the admissions standards are the prices. Our

framework affords analogues to the substitution and income effects in demand theory.

The admission rate of any college obviously falls in its anticipated admission standard —

the standards effect. But there is a compounding portfolio effect — that enrollment also

falls due to an application portfolio shift. Each college’s applicant pool shrinks in its own

admissions threshold. We then deduce in the appendix the “law of demand”: If a college

raises its admission standard, then its enrollment falls. Because of our portfolio effect,

a college faces a more elastic demand for slots than predicted purely by the standards

effect. A lower admission bar will invite applications from new students.15

The law of demand applies outside the two college setting. For intuition, suppose that

the admissions standard at a college rises. Absent any student portfolio changes, fewer

14For MB21 = c has no roots on the diagonal α2 = α1 if c > u/4.
15The portfolio effect may act with a lag — for instance, a college may unexpectedly ease admission

standards one year, and see their applicant pool expand the next year when this becomes understood.
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students meet its tougher admission threshold (the standards effect), and its enrollment

falls. The portfolio adjustment reinforces this effect. Those who had marginally chosen

to add this college to their portfolios now excise it (the portfolio effect).

In consumer demand theory, the “price” of one good affects the demand for the other,

and in the two good world, they are substitutes. Analogously, we prove in the appendix,

that a college’s enrollment demand rises in its rival’s admission standard. This owes to

a portfolio spillover effect. If it grows tougher to gain admission to college i, then those

who only applied to its rival continue to do so, some who were applying to both now

apply just to j (which helps college j when it is the lesser school), and also some at the

margin who applied just to i now also add college j to their portfolios.16

Since capacities imply vertical supply curves, we have justified a supply and de-

mand analysis, in which the colleges are selling differentiated products. Ignoring for now

the possibility that some college might not fill its capacity, equilibrium without excess

capacity requires that both markets clear:

κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2) (6)

Since each enrollment (demand) function is falling in its own threshold, we may invert

these equations. This yields for each school i the threshold that “best responds” to its

rival’s admissions threshold σ j so as to fill their capacity κi:

σ 1 = Σ1(σ 2, κ1) and σ 2 = Σ2(σ 1, κ2) (7)

Given the discussion of the enrollment functions, we can treat Σi as a “best response

function” of college i. It rises in its rival’s admission standard and falls in its own ca-

pacity. That is, the admissions standards at the two colleges are strategic complements.

Figure 4 depicts a robust equilibrium as a crossing of these increasing functions.

By way of contrast, observe that without noise or without application costs, the

better college is completely insulated from the actions of its lesser rival — Σ1 is vertical.

The equilibrium analysis is straightforward, and there is a unique robust equilibrium.

In either case, the applicant pool of college 1 is independent of what college 2 does. For

when the application signal is noiseless, just the top students apply to college 1. And

16As in consumer theory, complementarity may emerge with three or more goods available. With
ranked colleges 1, 2, and 3, college 3 may be harmed by tougher admissions at college 1, if this encourages
enough applications at college 2.
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Figure 4: College Responses and Equilibria. In both panels, the functions Σ1 (solid)
and Σ2 (dashed) give pairs of thresholds so that colleges 1 and 2 fill their capacities in equilib-
rium. The left panel depicts a unique robust stable equilibrium, while the right panel shows a
case with multiple robust equilibria. E0 and E2 are stable, while E1 is unstable.

when applications are free, all students apply to college 1, and will enroll if accepted.

With application costs and noise, Σ1 is upward-sloping, as application pools depend

on both college thresholds. When college 2 adjusts its admission standard, the student

incentives to gamble on college 1 are affected. This feedback is critical in our paper. It

leads to a richer interaction among the colleges, and perhaps to multiple robust equilibria.

In Figure 4, left panel, Σ1 is steeper than Σ2 at the crossing point. Let us call any

such robust equilibrium stable. It is stable in the following sense: Suppose that whenever

enrollment falls below capacity, the college eases its admission standards, and vice versa.

Then this dynamic adjustment process pushes us back towards the equilibrium. Then

at this theoretical level, admission thresholds act as prices in a Walrasian tatonnement.

Unstable robust equilibria should be rare: They require that a college’s enrollment

responds more to the other school’s admission standard than its own.

Theorem 2 (Existence) A robust stable equilibrium exists. College 1 fills its capacity.

Also, there exists κ̄1(κ2, c) < 1−κ2 satisfying limc→0 κ̄1(κ2, c) = 1−κ2 such that if κ1 ≤
κ̄1(κ2, c), then college 2 also fills its capacity in any robust equilibrium. If κ1 > κ̄1(κ2, c),

then college 2 has excess capacity in some robust equilibrium.

Surprisingly, college 2 may have excess capacity in equilibrium, despite excess demand

for college slots.17 This possibility is a consequence of portfolio effects: if college 1 is

sufficiently big its standards may be low enough that college 2 fails to attract enough

17 College 1 cannot have excess capacity in a robust equilibrium. For then it must set the lowest pos-
sible standards, whereupon all students would apply and be accepted, violating its capacity constraint.
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applicants to fill its capacity even if it accepts all of them. In this case, α2 = 1 for all

students, and so the acceptance function traverses the top side of the unit square in

Figure 3. So as student caliber rises, the lowest students apply to college {2}, higher

students to both colleges, and the best students just apply to college {1}. Let us observe

in passing that this is a robust sorting equilibrium.

Since admissions standards are strategic complements, multiple robust equilibria are

possible (right panel of Figure 4).18 In such a scenario, both colleges raise their standards,

yet students send even more applications, and another robust equilibrium arises.

4.2 Comparative Statics

We now continue to explore the supply and demand metaphor, and derive some basic

comparative statics. The potential multiplicity of robust equilibria makes a comparative

statics exercise difficult. But fortunately, our analysis applies to all robust stable sorting

equilibria and in some cases to all robust stable equilibria. Indeed, at any robust stable

equilibrium, greater capacity at either college lowers both college admissions thresholds.

This result speaks to the equilibrium effects at play. Greater capacity at one school,

or an exogenous increase in the “supply” of slots at that college, reduces the “price”

(admission standard) at both schools. The left panel of Figure 5 proves this assertion

for an increase in κ2, and the proof for a change in κ1 is analogous.

For intuition, consider a robust stable sorting equilibrium, where students apply as

in Figure 3. Let college 2 raise its capacity κ2. For any admission standard σ 1, this

depresses σ 2, so Σ2 shifts down. Then the marginal student that was indifferent between

applying to college 2 only (C2) and both colleges (B) now prefers to apply to college 2

only. So fewer apply to college 1. Given this portfolio shift, college 1 drops its admission

standards, and both thresholds are lower in the new equilibrium E1. The same logic

generates the analogous comparative static for an increase in capacity at college 1.

Unlike college capacity, changes in college payoffs or application costs affect both best

response functions Σ1 and Σ2. As a result, the comparative statics can be ambiguous,

and counter-intuitive results may emerge. For example, suppose the payoff v of college 1

rises (right panel of Figure 5). At the current admissions standards, demand for college

1 will increase, while demand for college 2 decreases as more of its applicants gamble up

on college 1. These forces lead to new best response functions, namely a rightward shift

18The online appendix contains a solved example with multiplicity.
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Figure 5: Comparative Statics. In both panels, the best response functions Σ1 (solid)
and Σ2 (dashed) are drawn. The left panel considers a rise in κ2, which shifts Σ2 up and has
no effect on Σ1. In the right panel, we illustrate the effect of an increase in college 1’s payoff,
which shifts Σ1 to the right and shifts Σ2 down.

in Σ1 and a downward shift in Σ2.

At first glance, this has ambiguous effects: depending on the size of the shifts, both

admissions standards could rise or both could fall, or the standard at college 1 could

rise and that of college 2 could fall.19 But provided Σ2 does not fall below the point

A in Figure 5, the new curves Σ′1 and Σ′2 will cross above and to the right of A. In

that case, there is another robust and stable equilibrium in which σ 1 rises. Notice that

college 2 attracts more applications and admits more students at A than at E0 because

of its lower standards, while losing joint admits at the same rate as before (see the proof

of Theorem 3). So it must have excess demand at A, and thus Σ′2 must pass between

E0 and A, implying a new equilibrium E1 in which college 1’s standards increase.

Next, assume that the application cost c rises, perhaps due to a rise in the SAT or

ACT cost, or the common application fee. This has two effects. On the one hand, it

decreases the number of college applications (the region B in Figure 3 shrinks). This

has an unambiguously negative effect on demand at both colleges. On the other hand, it

decreases competition between the colleges, as there will be fewer overlapping applica-

tions. This has no effect on college 1 (since they always beat college 2 for joint admits),

but it improves the yield of college 2. As a result, demand at college 1 falls and Σ1 shifts

left, but the effect on Σ2 is ambiguous.

Using an argument similar to the one above, we can show that there exists a new

robust stable equilibrium in which σ 1 falls. But due to the competition effect, we cannot

19We face the same ambiguity in analyzing the effect of an increase in the payoff u of college 2.
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be sure how σ 2 moves: college 2 may raise its standards in the new equilibrium, if the

higher applications costs deter sufficiently many students from gambling up.

Consider instead a rise in just one college’s application cost, such as a college requiring

a longer essay or imposing a greater fee. We argue that in a robust stable sorting

equilibrium, if the application cost at either college slightly falls, then the admission

standard at college 1 rises and its student caliber distribution stochastically worsens.

For example, if the application cost at college 2 falls, then more students apply,

and it is forced to raise its standards. The marginal benefit of a stretch application to

college 1 thus rises. To counter this, college 1 responds with a higher standard. Still,

its set of applicants is of lower caliber than before (in the sense of the strong set order),

and though it screens them more tightly, its caliber distribution stochastically worsens.

By contrast, college 2 loses not only its worst students, but also top ones for whom it

was insurance, and its caliber change is ambiguous.

Summarizing our results on changes in college payoffs and application costs:

Theorem 3 (Comparative Statics) In a robust stable sorting equilibrium:

(a) When v increases, there exists another robust equilibrium in which σ 1 increases.

(b) When c increases, there exists another robust equilibrium in which σ 1 decreases.

(c) When either college’s application cost increases marginally, σ 1 decreases.

Whenever σ 1 decreases due to one of the above changes, the distribution of enrolled

calibers at college 1 improves in the sense of first order stochastic dominance.

The final part of the theorem suggests that top-tier colleges have an incentive to

increase application costs, since this leads the weakest applicants to self-select out of

applying to them. There is some evidence of this: many top-tier colleges require id-

iosyncratic essays as part of their application, effectively raising application costs.20 Yet

this result relies on our assumption that students know their type and colleges do not,

for if colleges were better than students at identifying caliber, then they might want to

encourage applications by lowering application costs. This appears to be true for low-

income students: Hoxby and Avery (2012) show that many low-income high-achievers

act as if they were unaware of their caliber, and do not apply to any selective colleges.

In this case top schools should decrease frictions for low-income students, through appli-

cation cost waivers and targeted recruiting efforts — both of which we see in practice.

20For example, one essay prompt from the University of Chicago this year is the Winston Churchill
quote that “A joke is a very serious thing”; also, almost all of Amherst’s essay prompts are based on
quotes from Amherst professors and alumni.
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The logic underlying this section does not essentially depend on the assumption that

there are two colleges. For instance, whenever colleges have overlapping applicant pools,

a rise in capacity at any one college depresses the admission standards at all of them.

Consider the positive theory of this section in light of Hoxby (2009). She shows that

during 1962-2007, the median college has become significantly less selective, while at

the same time, admissions have become more competitive at the top 10% of colleges.

Her explanation for the fall in standards hinges on capacity : the number of freshman

places per high-school graduate has been rising steadily. But as we illustrate in Figure 5,

higher capacity at all schools should depress standards at all schools, via our spillover

effect. As a countervailing force, she argues that students have simultaneously become

more willing to enroll far from home, raising the relative payoff of selective colleges. This

aligns with Theorem 3: starting at a robust and stable sorting equilibrium, a perceived

increase in the value of an education at a top school leads it to raise its standards.

5 Do Colleges and Students Sort in Equilibrium?

Casual empiricism suggests that the best students apply to the best colleges, and those

colleges are in turn the most selective. This logic justifies ranking colleges based on their

admissions standards. Curiously, these claims are false without stronger assumptions.

We identify and explore two possible types of sorting violations.

The first violation occurs when some relatively high calibers “play it safe”. By

Corollary 1, along the acceptance function, higher types enjoy a higher ratio of ad-

missions chances at college 1 to college 2. But this does not imply a higher marginal

benefit α1(1 − α2u) of applying to college 1, and so lower types may apply more ag-

gressively. We illustrate this in the left panel of Figure 6, where application sets are

Φ, {2}, {1, 2}, {2}, {1, 2}, {1} as caliber rises. A concrete example is the Texas top 10%

plan, which guarantees automatic admission to any school in the UT system for students

graduating in the top 10% of their high-school class. Such students have little incentive

to apply to slightly better out-of-state schools (college 1), since the payoff increment is

small and they don’t need the insurance of a second application. But students who just

miss the 10% cutoff may want the insurance, and so one might see more aggressive ap-

plication portfolios from those (lower-caliber) students, generating a non-monotonicity.

The second violation occurs when the worse college sets a higher admissions stan-

dard. To see how this can happen, consider the edge case where the standards are the
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Figure 6: Non-Monotone Behavior. In the left panel, the signal structure induces a
piecewise linear acceptance function. Student behavior is non-monotone, since there are both
low and high caliber students who apply to college 2 only (C2), while intermediate ones insure
by applying to both. In the right panel, equal thresholds at both colleges induce an acceptance
function along the diagonal, α1 = α2. Student behavior is non-monotone, as both low and
high caliber students apply to college 1 only (C1), while middling caliber students apply to
both. Such an acceptance function also arises when caliber signals are very noisy.

same at both colleges. With common admissions chances α, the marginal benefit of

a safety application (1 − α)αu is not increasing in α (and thus not in caliber, either).

The right panel of Figure 6 depicts one such case — where the application sets are

Φ, {1}, {1, 2}, {1} as caliber rises.In this case college 2 only attracts insurance applica-

tions. This can be an equilibrium outcome if college 2 is small enough (and by making

it still smaller, college 2 can end up setting a higher standard than college 1).

To rule out the first sorting violation, it suffices that college 2 offer a low payoff

(u < 0.5), so that the payoff increment of admission to college 1 is large. We show in the

Appendix that this ensures that the marginal benefit of additionally applying to college

is increasing in caliber. The second sort of violation cannot occur when college 1 sets

a sufficiently higher admission standard than college 2. This happens when college 1

is sufficiently smaller than college 2. The threshold capacity will depend on the model

primitives: rival capacity, applications cost, payoff differential and signal structure.

Theorem 4 (Non-Sorting and Sorting in Equilibrium)

(a) If college 2 is “too good” (i.e., u > 0.5), then there exists a continuous MLRP density

g(σ|x) that yields a robust stable equilibrium with non-monotone student behavior.

(b) If college 2 is small enough relative to college 1, then college 2 sets a higher admissions
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standard than college 1 in some robust equilibrium.

(c) If college 1 is small enough relative to college 2, and college 2 is not too good (namely,

u ≤ 0.5), then there are only robust sorting equilibria and no college has excess capacity.

The challenge in proving this theorem is to show that all of non-monotone behavior

outlined above can happen in equilibrium. For part (a), we construct a robust non-

monotone equilibrium by starting with the acceptance function depicted in the left panel

of Figure 6, which constrains the relationships between admissions chances across colleges

to be some mapping α2(x) = h(α1(x)). We then construct a particular acceptance

chance α1(x) so that the induced student behavior and acceptance rates given (α1, h(α1))

equate college capacities and enrollments. Finally, we show that these two mappings

satisfy the requirements of Theorem 1 and therefore can be generated by MLRP signals

and monotone standards. For part (b), we show that that by perturbing a robust

equilibrium with equal admissions chances by making college 2 smaller, we get a robust

equilibrium with non-monotone standards. Finally, part (c) turns on showing that when

κ1 is relatively small, the crossing of the best-response functions must occur at a point

where college 1 sets high enough standards that low caliber students don’t apply there.

All told, parts (a) and (b) show that sorting may fail, which is surprising given

how well behaved the signal structure is. Even in equilibrium, the optimal student

portfolio may not increase with caliber; and worse colleges can enroll students of higher

average caliber if they are sufficiently small.21 Since organizations like US News and

World Report use statistics like the average SAT score of matriculants in their college

rankings, this undercuts how colleges are ranked.

For an insightful counterpoint, consider what happens when students are limited

to just a single application, as it is sometimes the case.22 Recalling the left panel in

Figure 2, we see that the diagonal line α1u = α2, and the individual rational equalities

α2u = α1 = c, jointly partition the application space into three relevant parts. But

with any acceptance function with the falling secant property, low types apply nowhere,

middle types apply to college 2, and high types apply to college 1. It should come as

21This can be illustrated using the right panel of Figure 6. Consider a robust equilibrium with equal
admissions standards at the two colleges. If f(x) concentrates most of its mass on the interval of low
calibers who apply just to college 1, then the average caliber of students enrolled at college 1 will be
strictly smaller than that at college 2. This example can be adjusted slightly so that college 2 is more
selective than college 1. (See our online appendix for a fleshed out example of this phenomenon.)

22In Britain, all college applications go through UCAS, a centralized clearing house. A maximum of
five applications is allowed.
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no surprise that there is a unique robust equilibrium. So it turns out that the sorting

failures in Theorem 4 (a) and (b) require portfolio applications.

Moreover, the college non-monotonicity result requires that colleges have some “mar-

ket power”. To see this, suppose that there were instead two tiers of colleges, a top tier 1

and an lesser tier 2; each containing a continuum of otherwise identical colleges with

total capacity κ1 and κ2 respectively. Students may apply to multiple colleges within a

tier, each application generating a conditionally iid signal and costing c. Then college

standards must be monotone; for if the top tier colleges were easier to get into, no student

would ever apply to a second tier college. By contrast, we show in the online appendix

that the student non-monotonicity result is robust to making the colleges atomistic.

6 General Incomplete Information About Calibers

A. When Students Do Not Know their Calibers. We have assumed that colleges

observe conditionally independent evaluations of the students’ true calibers. At the

opposite extreme, one might envision a hypothetical world where colleges know student

calibers, and students see noisy conditionally independent signals of them. Yet observe

that this is informationally equivalent to a world in which students know their calibers,

and colleges observe perfectly correlated signals. For any student sees a signal equal to

t+ “noise”, while both colleges see the student caliber t.

This embedding suggests that we could capture the world in which students and

colleges alike only see noisy conditionally iid signals of calibers by relabeling the student

signal as their caliber. We argue in the appendix that under this relabeling that world

is a special case of the following one:

(F) Students know their calibers and colleges observe affiliated noisy signals of them.

Thus, we can without loss of generality assume that students know their calibers and

colleges vary by their signal affiliation.23 Observe that in this world, Theorem 1 remains

a valid description of how the unconditional acceptance chances at the two colleges relate.

B. Perfectly Correlated Signals. This benchmark is highly instructive. Suppose

first that the two colleges observe perfectly correlated signals of student calibers. As

we mentioned above, this is akin to observing the caliber of each applicant. The key

(counterfactual) feature here is that if a student is accepted by the more selective college,

23Some predictions outside of the model might differ in the known and unknown calibers cases.
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then so is he at the less selective one. This immediately implies that σ 1 > σ 2 in

equilibrium, for otherwise no one would apply to college 2. So contrary to Theorem 4,

college behavior must be monotone in any equilibrium.

The analysis of this case differs in a few dimensions from §3.1. Since σ 1 > σ 2,

applying to both colleges now yields payoff α1 + (α2 − α1)u− 2c. Unlike before,24

MB21 ≡ (α2 − α1)u = c and MB12 ≡ α1(1− u) = c (8)

because admission to college 1 guarantees admission to college 2. In this informational

world, both optimality equations are linear, and the latter is vertical (see Figure 7).

Assume that college 1 is sufficiently more selective than college 2. Then the lowest

caliber applicants apply to college 2 — namely, those whose admission chance exceeds

c/u. Students so good that their admission chance at college 1 is at least c/(1− u) add

a stretch application, provided college 2 admits them with chance c/u(1 − u) or more.

In Figure 7, this occurs when the acceptance function crosses above the intersection

point of the curves MB21 = c and MB12 = c.25 Since the marginal benefit MB12 is

independent of the admission chance at college 2, MB12 > c for all higher calibers.

But monotone behavior for stronger caliber students requires another assumption.

Consider the margin between applying just to college 1, or adding a safety application.

The top caliber students will apply to college 1 only, since their admission chance is so

high. But the behavior of slightly lesser student calibers is trickier, as the acceptance

function can multiply cross the line MB21 = c.26 Under slightly stronger assumptions,

the acceptance function is concave; this precludes such perverse multiple-crossings, and

implies monotone student behavior.27

Consider now the possibility of non-monotone student behavior. Absent a concave

acceptance function, the previous sorting failure owing to multiple-crossings arises. But

even with a concave acceptance function, a sorting failure arises if college 1 is not suffi-

ciently choosier than college 2. For then a suitably drawn concave acceptance function

could consecutively hit regions C1, B, then C1, and a sorting failure ensues.

Having explored the impact of correlation on college-student sorting, we now flesh

24We suppress the caliber x argument of the unconditional acceptance chance αi(x) at college i = 1, 2.
25Namely, at the mutual intersection of regions C1, C2, and B in Figure 7. By inequality (13), this

holds under our hypothesis that college 1 is sufficiently choosier than college 2.
26For as seen in Figure 7, that line also has a strictly falling secant.
27Concavity holds whenever −Gx(σ|x) is log-supermodular. This is true when we further restrict to

location families (like the Normal) or scale families (such as exponential).
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Figure 7: Student Behavior with Perfectly Correlated Signals. The shaded regions
depict the optimal portfolio choices for students when colleges observe perfectly correlated
signals. Unlike Figure 2, the MB12 = c curve separating regions B and C2 is vertical. The Σ1

curve at the right is vertical (up to a point), since college 2 no longer imposes an externality
on college 1 when the set of calibers sending multiple applications is nonempty.

out its effect on college feedbacks. Since MB12 is independent of the admission threshold

at college 2 in (8), the pool of applicants to college 1 is unaffected by changes in σ 2.

Hence, the Σ1 locus is vertical over most of its domain.28 The better college is insulated

from the decisions of its weaker rival, and the setting is not as rich as our baseline

conditionally iid case. It is obvious from Figure 7 that the robust equilibrium is unique.

C. Affiliated College Evaluations. We now turn to the general case of assumption

(F). Each student knows his caliber x, and colleges see signals σ1, σ2 of them, with an

affiliated joint density g(σ1, σ2|x).29 Since acceptance and rejection by college 1 is good

and bad news, respectively, it intuitively follows that

αA2 ≥ α2 ≥ αR2 (9)

Here, αA2 and αR2 are the respective acceptance chances at college 2 given acceptance

and rejection at college 1. For instance, 1 = αA2 > α2 > αR2 with perfectly correlation.

But in the conditionally iid case, college 2 is unaffected by the decision of college 1, and

28The locus Σ1 vertical if college 1 is sufficiently more selective than college 2. For then the acceptance
function is high enough that it traverses region B, and some students send multiple applications. If not,
then the acceptance function could hit C2 and then C1, bipassing region B. In that case, the marginal
applicant to college 1 depends on σ 2, and hence Σ1 is not vertical.

29As is standard, this means that g obeys the monotone likelihood ratio property for every fixed x.
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so αA2 = α2 = αR2 . Since these are intuitively opposite ends of an affiliation spectrum,

we call evaluations more affiliated if the conditional acceptance chance αA2 at college 2

is higher for any given unconditional acceptance chance α2.

Let’s first see how affiliation affects student applications. In this more general setting,

MB21 = (1− α1)αR2 u and MB12 = α1(1− αA2 u). (10)

This subsumes the marginal analysis for our conditionally iid and perfectly correlated

cases: (1)–(2) and (8). Relative to these benchmarks, the acceptance curse (or the

“acceptance blessing”) conferred by college 1’s two possible decisions lessens the marginal

gain of an extra application to either college — due to inequality (9). More intuitively,

double admission is more likely when signals are more affiliated. In our graph, this is

reflected by a right shift of the curve MB12 = c, and a left shift of MB21 = c. In other

words, for any given college admission standards, students send both fewer stretch and

safety applications when college evaluations are more affiliated.

We next explore how affiliated evaluations affects college behavior. Consider the best

reply locus Σ1 of college 1. It is upward-sloping with conditionally iid college evaluations,

and vertical with perfectly correlated evaluations. We argue that it is upward-sloping

with affiliated evaluations, and grows steeper as evaluations grow more affiliated. In

other words, our benchmark conditionally iid case delivers robust results about two-way

college feedbacks. Perfectly correlated evaluations therefore ignores the effect of the lesser

on the better college, and so is less reflective of the affiliated case.

We first show that the best response curve Σ1 slopes upward with imperfect affilia-

tion. For let college 1’s admission standard σ 1 rise. Then its unconditional acceptance

chance α1 falls for every student. The marginal student pondering a stretch applica-

tion must then fall in order for college 1 to fill its capacity (6). Optimality MB12 = c

in (10) next requires that this student’s conditional acceptance chance αA2 fall. This only

happens if his unconditional chance α2 falls too — i.e. the standard σ 2 rises.

Next, college 1’s best response curve Σ1 slopes up more steeply when college eval-

uations are more strongly affiliated. For as affiliation rises, the marginal student sees

a greater fall in his admission chance αA2 . So his unconditional chance α2 falls more

too, and college 2’s admission standard σ 2 drops more than before (see Figure 7), as

claimed. As an aside, since robust equilibrium is unique with perfectly correlated college

evaluations, uniqueness intuitively holds more often when we are closer to this extreme.

Finally, we consider how the equilibrium sorting result Theorem 4 changes with affili-
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ation. By examining (10), we see that as we transition from conditionally iid to perfectly

correlated signals with increasing affiliation, the region of multiple applications shrinks

monotonically. This simple insight has important implications for sorting behavior. By

standard continuity logic, for very low or high affiliation, sorting obtains and fails ex-

actly as in the respective conditional independent or perfectly correlated cases. More

strongly, the negative result in Theorem 4 (b) fails for moderately high affiliation: For

then nonmonotone college behavior is impossible since the locus MB21 = c in (8) lies

strictly above the diagonal, and thus the same holds for (10) with sufficiently affiliated

signals. So the acceptance function would lie below the diagonal if admission standards

were inverted, and no student would ever apply to college 2. Lastly, the logic for the

positive sorting result of Theorem 4 (c) is still valid: both student and college behav-

ior are monotone if college 2 is not too small and not too good, and if the acceptance

function is concave — appealing to the logic for perfectly correlated signals.

7 The Spillover Effects of Affirmative Action

We now explore the effects of an affirmative action policy.30 Slightly enriching our

model, we first assume that a fraction φ of the applicant pool belongs to a target group.

This may be an under-represented minority, but it may also be a majority group. For

instance, many states favor their own students at state colleges — Wisconsin public

colleges can have at most 25% out-of-state students. Just as well, some colleges strongly

value athletes or students from low-income backgrounds. We assume a common caliber

distribution, so that there is no other reason for differential treatment of the applicants.

Assume that students honestly report their “target group” status on their applica-

tions. Reflecting the colleges’ desire for a more diverse student body, let college i earn a

bonus πi ≥ 0 for each enrolled target student. Colleges may set different thresholds for

the two groups. If college i offer a “discount” ∆i to target applicants, then the respective

standards for non-target and target groups are (σ 1, σ 2) and (σ 1−∆1, σ 2−∆2). Akin to

third degree price discrimination, now colleges equate the shadow cost of capacity across

groups for the marginally admitted student. So at each college, the expected payoff of

the marginal admits from the two groups should coincide — except at a corner solution,

when a college admits all students from a group. This yields two new equilibrium condi-

30For recent treatment of complementary affirmative action issues, see Epple, Romano, and Sieg
(2008), Hickman (2010), Groen and White (2004), and Curs and Singell (2002).
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tions that account for the fact that ex post, colleges behave rationally, and equate their

expected values of target and non-target applicants. Along with college market clearing

(6), equilibrium entails solving four equations in four unknowns.

The analysis is simpler if we assume private values, and we begin with this case.

Since colleges care directly about the signal observed with private values, equalization

of the marginal admits of the two groups i = 1, 2 reduces to σ i = σ i −∆i + πi, and so

∆i = πi. That is, the ‘discount’ afforded to a student from the target group equals the

additional payoff a college enjoys from admitting a student from the target versus the

non-target group. Thus, college preferences for target group students translate directly

into admission standard discounts for that group.

Instead, with common values the equalization of shadow values (i.e., the expected

payoff of the marginal admits from the two groups) yields the richer conditions:

E[X + π1|σ = σ 1 −∆1, target] = E[X|σ 1, non-target]

E[X + π2|σ = σ 2 −∆2, target, accepts] = E[X|σ 2, non-target, accepts]

Here, X is the student caliber. As before, along with (6), equilibrium amounts to

solving four equations in four unknowns. Notice that no longer do we have ∆i = πi,

which significantly complicates the analysis of the problem. Rather, the discount ∆i

now depends on πi in a nonlinear fashion via the conditional expectations. To obtain a

sharp result, we impose the following notion of stability, which we explain in the online

appendix: when the shadow value of a target student exceeds that of a non-target

student, college i responds by raising the target advantage ∆i. Call the equilibrium

shadow value stable if this dynamic adjustment process pushes us back to the equilibrium.

Theorem 5 (Affirmative Action) Fix π1 = π2 = 0.

(a) Assume private values and a robust stable equilibrium. As the preference for

a target group at one college rises, it favors those students and penalizes non-target

students, with no effect on the other college. As the preference for target students at

both colleges rise, both favor them and penalize non-target students.

(b) Assume that ∆1 = ∆2 = 0 is a robust shadow value stable equilibrium with

monotone student behavior.31 As the preference for a target group at college 1 rises, it

favors those students and college 2 penalizes them. As the preference for target students

at college 2 rises, both colleges favor them more.

31Such an equilibrium easily exists when c = 0, and by continuity for c small enough.

26



Observe the indirect effect of student preferences: Nontarget students face stiffer admis-

sion standards since the shadow value of capacity is now higher. The assumption that

π1 = π2 = 0 is important, as it precludes some complex feedback effects that emerge

when there is already a preference for target students at the outset.

Consider private values. For a sharper insight, let the signal distribution be G(σ−x)

(location family). Suppose that both colleges exhibit identical preference π for the target

group. Since ∆ = π for both colleges, the acceptance relation is identical for both groups

and given by ψ(α1) = 1 − G(σ 2 − σ 1 + G−1(1 − α1)) (the discounts cancel out in the

argument of G for the target group). This implies that caliber x from the target group

applies exactly as if they were a type x+ π from the non-target group: a testable claim.

If instead only one college, say 1, has a preference π1 for the target group, then it

sets a discount ∆1 = π1. The acceptance relation for the target group is then ψ(α2) =

1−G(σ 2 − σ 1 + ∆1 +G−1(1− α1)), which is everywhere below that of the non-target

group ψ(α2) = 1−G(σ 2−σ 1+G−1(1−α1)). As a result, in a robust sorting equilibrium,

target-group students will gamble up and apply to college 1 more often, and insure with

an application to college 2 less often, than non-target group students.

Regarding common values, Theorem 5 (b) (proof in the online appendix) asserts

that as the preference for a target group at college 1 rises from the no preference case

π1 = π2 = 0, it favors those target students, but now college 2 instead penalizes them.

But when the preference for target students at the worse college 2 rises, both favor them.

In other words, an asymmetry emerges under common values. When only college 1

favors a target group of students, college 2 must counter this with a penalty, owing to

two effects. First, the best favored students that previously applied to college 2 now

just apply to college 1, and thus the pool of target applicants at college 2 worsens. This

portfolio effect was present with private values. Second, college 2 confronts an acceptance

curse. A student who enrolls there either only applied to it, or also applied to college 1

— and was rejected. So the event that a student enrolls at college 2 is a worse signal of

his caliber if college 1 has favored them.32

32This asymmetric result should speak to studies, like Kane (1998), that found that affirmative action
for disadvantaged minorities is generally confined to selective schools — as we think of college 1.
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8 Concluding Remarks

We have formulated the college admissions problem for two ranked colleges with fixed

capacities in order to study the effects of two frictions in equilibrium. Student types

are heterogeneous and colleges only partially observe their types. College applications

are costly, and students therefore face a nontrivial portfolio choice. This model admits

a tractable separable solution in stages — student portfolios reflect the admission stan-

dards, and colleges then compete as if they were Bertrand duopolists. This framework

is the only equilibrium model that speaks to the recent empirical explorations of stu-

dent application behavior (Avery and Kane (2004); Pallais (2009); Carrell and Sacerdote

(2012); Hoxby and Avery (2012)).

We have characterized in a testable fashion how student admission chances co-move as

their calibers improve, showing how their optimal portfolio choices over stretch and safety

schools differ. We have have discovered that even in this highly monotone matching

world, sorting of students and colleges fails absent stronger assumptions. For better

students need not always apply more aggressively: If the worse college is either too good

or too small, or the application process is noisy enough, one student may gamble on the

better college while a more talented one does not. Likewise, college admissions standards

need not reflect their quality — the worse college may optimally impose higher standards

if it is small enough. Large public schools might well be punished in college rankings

publications that use SAT scores of enrolled students in ranking schools.33

Turning to affirmative action, we predict that favored minority applicants apply as

ambitiously as if they were majority applicants of higher caliber. Card and Krueger

(2005) investigate what happened when affirmative action was eliminated at state schools

in California and Texas. They find a small but statistically significant drop in the

probability that minority applicants send their SAT scores to elite state schools, but

find no such effect for highly qualified minority applicants (those with high SATs or

GPAs). This is consistent with our finding that lower caliber minority applicants send

stretch applications under affirmative action.

While the two college world is restrictive, it is the most parsimonious model with

portfolio effects, stretch and safety schools, and admission standards set by competing

33 Avery, Glickman, Hoxby, and Metrick (2004) develop an innovative revealed preference college
ranking based on enrollment decisions by students admitted at multiple schools, and public schools
are indeed ranked higher under their approach. One difficulty for them is that the initial application
portfolios are endogenous. Explicitly modeling the application decision using our model of portfolio
choice — as in Fu (2010) — may be helpful in resolving the econometric inference problems that result.
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schools. The portfolio effects induce important and realistic interdependencies missing

from all frictionless models of student-college matching. Since assortative matching can

fail in this setting, it can fail more generally. Our baseline model has assumed that

students perfectly know their calibers and colleges only observe them with noise, but we

have argued that the portfolio effects and sorting failures monotonically diminish as we

shift toward the opposite extreme when colleges have superior information. And even

in this limit, students send stretch and safety applications, and sorting can fail.

A Appendix: Omitted Proofs

A.1 Colleges Optimally Employ Admissions Thresholds

Let χi(σ) be the expected value of the student’s caliber given that he applies to college i,

his signal is σ, and he accepts. College i optimally employs a threshold rule if, and only

if, χi(σ) increases in σ. For college 1 this is immediate, since g(σ|x) enjoys the MLRP

property. College 2 faces an acceptance curse, and so χ2(σ) is:

χ2(σ) =

∫
C2 xg(σ|x)f(x)dx+

∫
B xG(σ 1|x)g(σ|x)f(x)dx∫

C2 g(σ|x)f(x)dx+
∫
BG(σ 1|x)g(σ|x)f(x)dx

(11)

where we denote by C2 the set of calibers applying to 2 only, and B those applying to

both.34 Write (11) as χ2(σ) =
∫
B∪C2 xh2(x|σ)dx using indicator function notation:

h2(x|σ) =
(IC2(x) + IBG(σ 1|x))g(σ|x)f(x)∫
B∪C2(IC2(t) + IBG(σ 1|t))g(σ|t)f(t)dt

, (12)

Then the ‘density’ h2(x|σ) has the MLRP. Therefore, χ2(σ) increases in σ.

Notice that the same results obtain for any increasing function χi(σ) — in particular,

if it is the identity function, as in the private values case. �

A.2 Simultaneous versus Sequential Timing

We claim the subgame perfect equilibrium (SPE) outcomes of the two-stage game when

students move first coincide with the Nash equilibria of the simultaneous-move game.

34 We assume that students employ pure strategies, which follows from our analysis of the student
optimization in §3.1. Measurability of sets B and C2 owe to the continuity of our functions αi(x) in §3.2.
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First, consider an SPE of the two-stage game where students choose applications S =

S(·) and then colleges choose standards σ 1(S) and σ 2(S). Colleges best respond to each

other given the realized S. As students are non atomic, they treat S as fixed in the first-

stage, and so their applications best respond to the anticipated standards σ∗1 = σ 1(S)

and σ∗2 = σ 2(S). This is a Nash equilibrium of the simultaneous move game.

Conversely, since each student has measure zero, he cannot affect the college stan-

dards by adjusting his application strategy. Hence, any equilibrium (S, σ∗1, σ
∗
2) of the

simultaneous move game is also an SPE outcome of the two-stage game. �

A.3 Acceptance Function Shape: Proof of Theorem 1

To avoid duplication, we assume σ 1 > σ 2 throughout the proof.

(⇒) The Acceptance Function has the Double Secant Property. First,

since G(σ 1|x) is continuously differentiable in x, the acceptance function is continuously

differentiable on (0, 1]. Given α ≡ 1 − G(σ|ξ(α, σ)), partial derivatives have positive

slopes ξα, ξσ > 0. Differentiating (3),

∂ψ
∂α1

= −Gx(σ 2|ξ(α1, σ 1))ξα(α1, σ 1) > 0
∂ψ
∂σ 1

= −Gx(σ 2|ξ(α1, σ 1))ξσ(α1, σ 1) > 0
∂ψ
∂σ 2

= −g(σ 2|ξ(α1, σ 1)) < 0.

(13)

Properties of the cdf G imply ψ(0, σ 1, σ 2) ≥ 0 and ψ(1, σ 1, σ 2) = 1. The limits of ψ as

thresholds approach the supremum and infimum owe to limit properties of G.

Now, G(σ|x) and 1 − G(σ|x) are strictly log-supermodular in (σ, x) since the den-

sity g(σ|x) obeys the strict MLRP. Since x = ξ(α1, σ 1) is strictly increasing in α1,

G(s|ξ(α1, σ 1)) and 1 − G(s|ξ(α1, σ 1)) are then strictly log-supermodular in (s, α1). So

the secant slopes below strictly fall in α1, since σ 1 > σ 2:

ψ(α1)

α1

=
1−G(σ 2|ξ(α1))

1−G(σ 1|ξ(α1))
and

1− ψ(α1)

1− α1

=
G(σ 2|ξ(α1))

G(σ 1|ξ(α1))
.

(⇐) Deriving a Signal Distribution. Conversely, fix a function h with the

double secant property and a smoothly monotone onto function α1(x). Also, put α2(x) =

h(α1(x)), so that α2(x) > α1(x). We must find a continuous signal density g(σ|x) with

the strict MLRP and thresholds σ1 > σ2 that rationalize the h as the acceptance function

consistent with these thresholds and signal distribution.
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Step 1: A Discrete Signal Distribution. Consider a discrete distribution with

realizations in {−1, 0, 1}: g1(x) = α1(x), g0(x) = α2(x)−α1(x) and g−1(x) = 1−α2(x).

Indeed, for each caliber x, gi ≥ 0 and sum to 1. This obeys the strict MLRP because

g0(x)

g1(x)
=
α2(x)− α1(x)

α1(x)
=
h(α1(x))

α1(x)
− 1,

is strictly decreasing by the first secant property of h, and

g0(x)

g−1(x)
=
α2(x)− α1(x)

1− α2(x)
= −1 +

1− α1(x)

1− h(α1(x))

is strictly increasing in x by the second secant property of h.

Let the college thresholds be (σ 1, σ 2) = (0.5,−0.5). Then G(σ 1|x) = g−1(x) +

g0(x) = 1 − α1(x) and G(σ 2|x) = g−1(x) = 1 − α2(x). Rearranging yields α1(x) =

1 − G(σ 1|x) and α2(x) = 1 − G(σ 2|x). Inverting α1(x) and recalling that α2 = h(α1),

we obtain α2 = h(α1) = 1−G(σ 2|ξ(σ 1, α1)), thereby showing that h is the acceptance

function consistent with this signal distribution and thresholds.

Step 2: A Continuous Signal Density. To create an atomless signal distri-

bution, we smooth the atoms using a carefully chosen kernel function. Define g(σ|x) =∑
i={−1,0,1} gi(x)k(x, σ− i) and let k(x, s) = 1(|s| < 0.5) (1 + 2sw(x)), where the weight-

ing function w(x) has range [0, 1]. The transformation is mass-preserving since as w(x)

transfers mass to a point s > 0 it removes the corresponding mass from −s. The weight-

ing function determines the shape of the smoothing, so we now find conditions on w(x)

such that the strict MLRP holds. Consider σ0 < σ1 ∈ (−1.5, 1.5), and suppose first that

they are both close to the same atom i in that |σj − i| < 0.5 for j = 0, 1. Then

g(σ1|x)

g(σ0|x)
=
gi(x) (1 + 2(σ1 − i)w(x))

gi(x) (1 + 2(σ0 − i)w(x))
=

1 + 2(σ1 − i)w(x)

1 + 2(σ0 − i)w(x)

which will be strictly increasing in x if w(x) is a strictly increasing function. Imposing

this restriction on w(x), if they inherit mass from points i < j, we have

g(σ1|x)

g(σ0|x)
=
gk(x) (1 + 2(σ1 − k)w(x))

gi(x) (1 + 2(σ0 − i)w(x))

A sufficient condition for this to be strictly increasing in x almost everywhere is that it

is weakly increasing when σ1 − k = −0.5 and σ0 − i = 0.5 (i.e. gk(x)
gi(x)

(1−w(x))
(1+w(x))

increasing
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∀k > i ∀x). Since gk(x)
gi(x)

is strictly increasing, choosing a strictly increasing w(x) with

appropriately bounded derivatives achieves this. �

A.4 Monotone Student Strategies

Claim 1 Student behavior is monotone in caliber if (a) college 2 has payoff u ≤ 0.5,

and (b) college 2 imposes a low enough admissions standard relative to college 1.

By part (a), if a student applies to college 1, then any better student does too. By

part (b), if a student applies to college 2, then any worse student applies there or nowhere.

The proof proceeds as follows. We first show that (i) u ≤ 0.5 implies that if a caliber

applies to college 1, then any higher caliber applies as well. Second, we (ii) produce a

sufficient condition that ensures that the admissions threshold at college 2 is sufficiently

lower than that of college 1, so that if a caliber applies to college 2, then any lower

caliber who applies to college sends an application to college 2, and calibers at the lower

tail apply nowhere. From these two results, monotone student behavior ensues.

Proof of Part (i), Step 1. We first show that the acceptance function α2 = ψ(α1)

crosses α2 = (1/u)(1 − c/α1) (i.e., MB12 ≡ α1(1 − α2u) = c) only once when u ≤ 0.5.

Since (i) the acceptance function starts at α1 = 0 and ends at α1 = 1, (ii) MB12 = c

starts at α1 = c and ends at α1 = c/(1 − u), and (iii) both functions are continuous,

there exists a crossing point. And they intersect when α1(1− ψ(α1)u) = c.

[(1−ψ(α1)u)α1]′= 1−uψ(α1)−α1uψ
′(α1)>1−uψ(α1)−uψ(α1)=1−2uψ(α1)≥1−2u≥0,

where the first inequality exploits ψ(α1)/α1 falling in α1 (Theorem 1), i.e. ψ′(α1) <

ψ(α1)/α1; the next two inequalities use ψ(α1) ≤ 1 and u ≤ 0.5. Since MB12 is rising in

α1 when the acceptance relation hits α2 = (1− c/α1)/u, the intersection is unique.

Proof of Part (i), Step 2. We now show that Step 1 implies the following

single crossing property in terms of x: if caliber x applies to college 1 (i.e., if 1 ∈ S(x),

then any caliber y > x also applies to college 1 (i.e., 1 ∈ S(y)). Suppose not; i.e.,

assume that either S(y) = ∅ or S(y) = {2}. If S(y) = ∅, then S(x) = ∅ as well,

as α1(x) < α1(y) and α2(x) < α2(y), contradicting the hypothesis that 1 ∈ S(x). If

S(y) = {2}, then there are two cases: S(x) = {1} or S(x) = {1, 2}. The first cannot

occur, for by Theorem 1 α2(x)/α1(x) > α2(y)/α1(y), and thus α2(y)u ≥ α1(y) implies

α2(x)u > α1(x), contradicting S(x) = {1}. In turn, the second case is ruled out by the
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monotonicity of MB12 derived above, as caliber y has greater incentives than x to add

college 1 to its portfolio, and thus S(y) = {2} cannot be optimal.

Proof of Part (ii), Step 1. We first show that if the acceptance function passes

above the point (ᾱ1, ᾱ2) =
(
u(1−

√
1− 4c/u)/2, (1−

√
1− 4c/u)/2

)
— point P in the

right panel of Figure 6 — then there is a unique crossing of the acceptance function and

α2 = c/u(1− α1), i.e. MB21 = c. Now, the acceptance function passes above (ᾱ1, ᾱ2) if

ψ(ᾱ1, σ 1, σ 2) ≥ ᾱ2. (14)

This condition relates σ 1 and σ 2. Rewrite (14) using Theorem 1 as σ 2 ≤ η(σ 1) < σ 1,

where η is defined by ψ(ᾱ1, σ 1, η) = ᾱ2. Thus, condition (14) requires a large enough

“wedge” between the standards of the two colleges.

To show that (14) implies a unique crossing, consider the secant of α2 = c/u(1−α1)

(the curve MB21 = c). It has an increasing secant if and only if α1 ≥ 1/2. To see this,

differentiate α2/α1 = c/uα1(1 − α1) in α1. Notice also that MB21 = c intersects the

diagonal α2 = α1 at the points (α`1, α
`
2) = (1/2−

√
1− 4c/u/2, 1/2−

√
1− 4c/u/2) and

(αh1 , α
h
2) = (1/2 +

√
1− 4c/u/2, 1/2 +

√
1− 4c/u/2) > (1/2, 1/2).

Condition (14) gives ψ(α`1, σ 1, σ 2) > α`2. Since σ 2 < σ 1, we have ψ(α1, σ 1, σ 2) ≥ α2

for all α1 ≥ ᾱ1. Thus, the acceptance function crosses MB21 = c at or above (αh1 , α
h
2).

And since αh1 > 1/2, the secant of MB21 = c must be increasing at any intersection with

the acceptance function. Hence, there must be a single crossing point.

Proof of Part (ii), Step 2. We now show that this single crossing property in α

implies another in x: If caliber x applies to college 2 (i.e., if 2 ∈ S(x)), then any caliber

y < x that applies somewhere also applies to college 2 (i.e., 2 ∈ S(y) if S(y) 6= ∅).

Suppose not; i.e., assume that S(y) = {1}. Then there are two cases: S(x) = {2} or

S(x) = {1, 2}. The first cannot occur, for by Theorem 1 α2(x)/α1(x) < α2(y)/α1(y), and

thus α2(x)u ≥ α1(x) implies α2(y)u > α1(y), contradicting S(x) = {2}. The second case

is ruled out by the monotonicity of MB21 given condition (14), as caliber y has greater

incentives than x to apply to college 2, and thus S(y) = {1} cannot be optimal. Finally,

S(y) = ∅ if α2(y)u < c by (14), which happens for low calibers below a threshold. �

A.5 The Law of Demand

Claim 2 (The Falling Demand Curve) If either college raises its admission stan-

dard, then its enrollment falls, and thus its rival’s enrollment rises.
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We only consider the case when σ 1 rises, since the argument for σ 2 is similar. Also,

we focus on the nontrivial portfolio effect in each case, since the standards effect of an

increase in σ 1 is immediate: it lowers enrollment in college 1, and raises it in college 2.

Proof Step 1: The applicant pool at college 1 Shrinks. When σ 1 rises,

the acceptance relation shifts up by Claim 1, and thus the above type sets change as

well. Fix a caliber x ∈ C2 or x ∈ Φ, so that 1 /∈ S(x).35 We will show that x continues

to apply either to college 2 only or nowhere, and thus the pool of applicants at college 1

shrinks because α1(x) declines. If x ∈ C2, then α2(x)u− c ≥ 0 and α2(x)u ≥ α1(x), and

this continues to hold after the increase in σ 1, since α1(x) falls while α2(x) is constant.

And if x ∈ Φ, then clearly caliber x will continue to apply nowhere when σ 1 increases.

Proof Step 2: The applicant pool at college 2 expands. It suffices to

show that if any caliber x that applies to college 2 at σ 1 also applies there at a higher σ 1.

Fix a caliber x ∈ C2 or x ∈ B, so that 2 ∈ S(x). If x ∈ C2, then α2(x)u − c ≥ 0 and

α2(x)u ≥ α1(x); these inequalities continue to hold after σ 1 rises, since α1(x) falls while

α2(x) remains constant. And if x ∈ B, then MB21 = (1 − α1(x))α2(x)u rises in σ 1,

encouraging caliber x to apply to college 2. So x /∈ C1 ∪ Φ even after σ 1 rises. �

A.6 Existence: Proof of Theorem 2

For definiteness, we now denote the infimum (supremum) signal by −∞ (∞).

Definition of κ̄1(κ2, c). We will choose the capacity κ̄1 given κ2 so that when

college 2 has no standards, both colleges exactly fill their capacity. This borderline

capacity is less than 1 − κ2 since a positive mass of students — perversely, those with

the highest calibers — applies just to college 1, and some are rejected.

Fix any κ2 ∈ (0, 1), and let σL1(κ2) be the unique solution to κ2 = E2(σ 1,−∞), i.e.,

when college 2 accepts everybody. (Existence and uniqueness of σL1(κ2) follows from

E2(−∞,−∞) = 0, E2(∞,−∞) = 1, and E2(σ 1,−∞) increasing and continuous in σ 1.)

Define the threshold capacity κ̄1(κ2) = E1(σL1(κ2),−∞).

Limiting Behavior of κ̄1(κ2, c). Since κ2 = E2(σL1(κ2),−∞), κ̄1(κ2) equals 1−κ2

minus the mass of students who only applied to, and were rejected by, college 1. This

mass vanishes as c vanishes, for then everybody applies to both colleges. Therefore, the

threshold κ̄1(κ2) converges to 1− κ2 as c goes to zero.

35With a slight abuse of notation, we let Φ denote the set of calibers that apply nowhere. The same
symbol was previously used to denote the analogous set in α-space.
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Figure 8: Equilibrium Existence. In the left panel, since κ1 > κ̄1(κ2), the best response
functions Σ1 and Σ2 do not intersect, and equilibrium is at E with σ 2 = 0. The right panel
depicts the proof of Claim 2 for the case κ1 < κ̄1(κ2).

Robust Stable Equilibrium with Excess Capacity. Let κ1 ≥ κ̄1(κ2). We

claim that there exists a robust stable equilibrium in which college 2 accepts everybody,

and college 1 sets a threshold σ`1(κ1), the unique solution to κ1 = E1(σ 1,−∞), which

satisfies σ`1(κ1) ≤ σL1(κ2). For since college 2 rejects no one, σ`1(κ1) fills college 1’s

capacity exactly. The enrollment at college 2 is then E2(σ`1(κ1),−∞) ≤ κ2 (as σ`1(κ1) ≤
σL1(κ2) and E2(σ 1, σ 2) is increasing in σ 1), so by accepting everybody college 2 fills as

much capacity as it can. This robust equilibrium is trivially stable, as Σ2 is ‘flat’ at the

crossing point (see Figure 8, left panel). Moreover, if κ1 > κ̄1(κ2), then college 2 has

excess capacity in this equilibrium.

Robust Stable Equilibrium without Excess Capacity. Assume now κ1 <

κ̄1(κ2). We will show that the continuous functions Σ1 and Σ2 must cross at least once

(i.e., a robust equilibrium exists), and that the slope condition is met (i.e., it is sta-

ble). First, in this case σL1(κ2) < σ`1(κ1) or, equivalently, Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1).

Second, as the standard of college 2 goes to infinity, college 1’s threshold converges to

σu1(κ1) < ∞, the unique solution to κ1 = E1(σ 1,∞). This is the largest threshold that

college 1 can set given κ1. Similarly, as the standard of college 1 goes to infinity, col-

lege 2’s threshold converges to σu2(κ2) <∞, the unique solution to κ2 = E2(∞, σ 2), i.e.

the largest threshold that college 2 can set given κ2. Third, Σ1 and Σ2 are continuous.

By the Intermediate Value Theorem, they must cross at least once with the slope condi-

tion being satisfied (see Figure 8, right panel). Thus, a robust stable equilibrium exists

when κ1 < κ̄1(κ2). Moreover, in any robust equilibrium there is no excess capacity at

either college, since the best response functions satisfy Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1).

Hence, a robust stable equilibrium exists for any κ2 ∈ (0, 1). Capacities are filled
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when κ1 ≤ κ̄1(κ2), while there can be excess capacity at college 2 if κ1 > κ̄1(κ2). �

A.7 Stochastic Dominance in Robust Sorting Equilibria

Claim 3 (Sorting and the Caliber Distribution) In any robust sorting equilibrium,

the caliber distribution at college 1 first-order stochastically dominates that at college 2.

Proof Step 1: Monotone Student Strategy Representation. A mono-

tone student strategy is represented by the partition of the set of types:

Φ = [0, ξ2), C2 = [ξ2, ξB),B = [ξB, ξ1), C1 = [ξ1,∞) (15)

where ξ2 < ξB < ξ1 are defined by the intersection of the acceptance function with c/u,

α2 = (1−c/α1)/u (i.e., MB12 = c), and α2 = c/[u(1−α1)] (i.e., MB21 = c), respectively.

Proof Step 2: Enrolled Caliber Densities. Fix σ 1 and σ 2. Let f1(x) and

f2(x) be the densities of calibers enrolled at colleges 1 and 2, respectively. Formally,

f1(x) =
α1(x)f(x)∫∞

ξB
α1(t)f(t)dt

I[ξB ,∞)(x) (16)

f2(x) =
I[ξ2,ξB ](x)α2(x)f(x) + (1− I[ξ2,ξB ](x))α2(x)(1− α1(x))f(x)∫ ξB

ξ2
α2(s)f(s)ds+

∫ ξ1
ξB
α2(s)(1− α1(s))f(s)ds

I[ξ2,ξ1](x), (17)

where IA is the indicator function of the set A.

Proof Step 3: Log-Supermodularity of fi(x). We shall show that, if xL, xH ∈
[0,∞), with xH > xL, then f1(xH)f2(xL) ≥ f2(xH)f1(xL); i.e., fi(x) is log-supermodular

in (−i, x), or it satisfies MLRP. The result follows as MLRP implies that the cdfs are

ordered by first-order stochastic dominance.

Using (16) and (17), f1(xH)f2(xL) ≥ f2(xH)f1(xL) is equivalent to

α1HI[ξB ,∞)(xH)
(
I[ξ2,ξB ](xL)α2L + (1− I[ξ2,ξB ](xL))α2L(1− α1L)

)
I[ξ2,ξ1](xL) ≥

α1LI[ξB ,∞)(xL)
(
I[ξ2,ξB ](xH)α2H + (1− I[ξ2,ξB ](xH))α2H(1− α1H)

)
I[ξ2,ξ1](xH),

(18)

where αij = αi(xj), i = 1, 2, j = L,H. It is easy to show that the only nontrivial case is

when xL, xH ∈ [ξB, ξ1] (in all the other cases, either both sides are zero, or only the right
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side is). If xL, xH ∈ [ξB, ξ1], then (18) becomes α1Hα2L(1− α1L) ≥ α1Lα2H(1− α1H), or

(1−G(σ 1 | xH))(1−G(σ 2 | xL))G(σ 1 | xL) ≥
(1−G(σ 1 | xL))(1−G(σ 2 | xH))G(σ 1 | xH).

(19)

Since g(σ | x) satisfies MLRP, it follows that G(σ | x) is decreasing in x, and hence

G(σ 1 | xL) ≥ G(σ 1 | xH). Next, 1−G(σ | x) is log-supermodular in (x, σ), and hence

(1−G(σ 1 | xH))(1−G(σ 2 | xL)) ≥ (1−G(σ 1 | xL))(1−G(σ 2 | xH)),

as σ 1 > σ 2 in a robust sorting equilibrium. Thus, (19) holds, thereby proving that fi(x)

is log-supermodular in (−i, x), and so F1 first-order stochastically dominates F2. �

A.8 Comparative Statics: Proof of Theorem 3

(a) An Increase in College 1’s Payoff. Let the initial equilibrium point E0 be

(σe1, σ
e
2), and let the best reply loci after the increase in v be Σ′1(σ2) and Σ′2(σ1). Consider

σ′2 = Σ′−1
1 (σe1) (i.e. it is the σ 2 at which college 1’s standards remain unchanged as v

increases). Since v increasing unambiguously shifts Σ1 to the right, σ′2 < σe2.

Now consider the point A = (σe1, σ
′
2) shown in figure 5, and assume that student

applications are monotone at A (see the online appendix for the non-monotone case).

Then let the thresholds at E0 be (ξe2, ξ
e
B, ξ

e
1) and at A be (ξ′2, ξ

′
B, ξ

′
1). Since college 2 has

lower standards, ξ′2 < ξe2. Recall that the marginal benefit of an insurance application is

(1 − α1)α2u. Since standards at college 1 are the same as before and the standards at

college 2 are lower, the payoff to insurance is higher and ξ′1 > ξe1. So the set of applicants

to college 2 is strictly bigger than before. Also since college 1’s standards and capacity

at A remain the same, its application set [ξB,∞) must be the same as before, so that

ξeB = ξ′B. Since σ′2 < σe2, enrollment must rise on [ξe2, ξ
e
B) and [ξeB, ξ

e
1], and so even

ignoring the new applicants, college 2 has excess demand at A.

Thus, Σ′2(σe1) > σ′2, which implies that Σ′2 lies above the point A, and therefore

above Σ′1 at that point (by construction of A). Since Σ′1 is eventually entirely above Σ′2

(see the proof of Theorem 2), they must cross somewhere to the right of A, and so there

exists a robust stable equilibrium E1 in which σ 1 > σe1.

(b) An increase in the common cost c. To align the logic with (a), we prove

instead that a decrease in c increases σ 1. Then Σ1 shifts right but Σ2 shifts ambiguously.

The result follows as in (a) if there is excess demand at A. Relative to E0, at A
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applications are cheaper and standards at college 2 have fallen. So again ξ′2 < ξe2 and

ξ′1 > ξe1. By the argument in (a), ξeB = ξ′B, so enrollment rises on [ξe2, ξ
e
B) and [ξeB, ξ

e
1],

yielding the result.

(c) Increases in individual costs. We modify (15) for different costs: ξ1 is

defined by MB21 = c2, ξB by MB12 = c1, and ξ2 by α2u = c2. If c2 rises, then ξ1

drops, ξ2 rises, and ξB is unchanged; thus, the applicant pool at college 2 shrinks, and at

college 1 is unchanged. So the Σ2 curve shifts down, while Σ1 remains unchanged. The

functions cross at a lower threshold pair, and so both standards σ 1, σ 2 both fall. Next

consider an increase in c1. This raises ξB, which shrinks the applicant pool at college 1,

and increases the enrollment at college 2, at a fixed admission standard. This shifts Σ1

left and Σ2 up. While the effect on the standard σ 2 is ambiguous, we now deduce that

σ 1 falls. Differentiating (6) with respect to c1, and using Cramer’s Rule:

∂σ 1

∂c1

=
(∂E2/∂c1)(∂E1/∂σ 2)− (∂E1/∂c1)(∂E2/∂σ 2)

(dE1/dσ 1)(dE2/dσ 2)− (dE2/dσ 1)(dE1/dσ 2)
(20)

Since the robust equilibrium is stable, the slope of Σ1 is steeper that of Σ2, and thus the

denominator is positive. Let Pi(ξ|y) be the portfolio density shift to college i at type ξ

given an increment to standard or cost y, and let S2(A) be the own-standards effect at

college 2 in set A. Then parse the enrollment derivatives into the portfolio and standards

effects: dE1/dc1 = P1(ξB|c1) < 0, dE2/dσ 2 = Σi=2,B,1P2(ξi|σ 2) − S2(C2) − S2(B) < 0,

dE2/dc1 = P2(ξB|c1) > 0, and dE1/dσ 2 = P1(ξB|σ 2) > 0. If c1 slightly rises, then ξB

rises by some δ > 0. Thus, college 1 loses mass f(ξB)α1δ of students, and college 2 gains

mass f(ξB)α1α2δ of students who would have gone to college 1. Likewise, if σ 2 slightly

rises, then ξB falls by some δ′, and college 1 gains mass f(ξB)α1δ
′ and college 2 loses

mass f(ξB)α1α2δ
′. Thus, P1(ξB|σ 2)P2(ξB|c1)− P1(ξB|c1)P2(ξB|σ 2) equals

[f(ξB)α1δ
′][f(ξB)α1α2δ]− [f(ξB)α1δ][f(ξB)α1α2δ

′] = 0

Hence, the numerator in (20) reduces to

−P1(ξB|c1)[P2(ξ2|σ 2) + P (ξ1|σ 2)− S2(C2)− S2(B)] < 0

(d) Caliber improvement. In a robust sorting equilibrium, the applicant pool at

college 1 consists of calibers x ∈ [ξB,∞). When σ 1 falls in equilibrium, ξB must rise

since college 1 has the same capacity as before. Let (ξ0
B, σ

0
1) be the old equilibrium pair
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and (ξ1
B, σ

1
1) the new one, with ξ0

B < ξ1
B and σ0

1 > σ1
1. Then the distribution function

of enrolled students at college 1 under equilibrium i = 0, 1 is:

F i
1(x) =

∫ x
ξiB

(1−G(σi1|t)) f(t)dt∫∞
ξiB

(1−G(σi1|t)) f(t)dt

We must show F 1
1 (x) ≤ F 0

1 (x) for all x ∈ [ξ1
B,∞). For any x, the denominators

on both sides equal k1, so cancel them. Now notice that 0 = F 1
1 (ξ1

B) < F 0
1 (ξ1

B)

and limx→∞ F
1
1 (x) = limx→∞ F

0
1 (x) = 1. Since both functions are continuous in x,

if ∂F 1
1 /∂x > ∂F 0

1 /∂x for all x ∈ [ξ1
B,∞), then F 1

1 (x) < F 0
1 (x). But this requires

(1−G(σ1
1|x)) f(x) > (1−G(σ0

1|x)) f(x), which follows from σ1
1 < σ0

1. �

A.9 Sorting and Non-Sorting Equilibria: Proof of Theorem 4

Part (a): College 2 is Too Good. We construct acceptance chances (α1(x), h(α1(x)))

such that student behavior is non-monotone, college enrollment equals capacity, and

α1(x) and h((α1(x)) obey the requirements of Theorem 1. Then that theorem yields

existence of a signal distribution with non-monotone equilibrium student behavior.

Step 1: The Acceptance Function and Student Behavior. When u > 0.5,

the secant from the origin to MB12 = c falls as α1 tends to c/(1 − u) — as in the left

panel of Figure 6. So for some z < c/(1 − u), a line from the origin to (z, 1) slices

the MB12 curve twice. Let h : [0, 1]→ [0, 1] be defined by h(α1) = α1/z and on [0, z),

and h(α1) = 1 for α1 ≥ z. Observe that h(0) = 0 and h(1) = 1, and that h is weakly

increasing, with both h(α1)/α1 and [1−h(α1)]/[1−α1] weakly decreasing, so h obeys the

double secant property. Now consider student behavior. Moving along the acceptance

relation h, students with acceptance chance α1 < (cz̄)/u will apply nowhere; those in

the interval [(cz̄)/u, a) will apply to college 2 only; those between [a, a] will apply to

both; those in (a, c/(1 − u)) will apply to college 2 only, those in [c/(1 − u), 1 − (c/u)]

will apply to both, and those above 1− (c/u) will apply to college 1; where a, a are the

pair of intersections with the MB12 curve. Hence, student behavior is non-monotone.

Step 2: Transforming the type space. Notice that if one chooses a monotone

function α1(x), then we induce a distribution G(a) = P(α1(X) < a) (i.e., the probability

that a random student X has acceptance chance at college 1 less than a). Conversely,

we can obtain any distribution G(a) by choosing α1(x) = G−1(F (x)). The resulting

function α1(x) thus obtained will be smooth, monotone and onto provided that G has a
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Figure 9: Existence of Sorting and Non-Sorting Robust Equilibria. We depict
the proof of Theorem 4. In the left panel, when κ2 falls, Σ2 shifts up to Σ′2, inducing a robust
non-sorting equilibrium at E1. In the right panel, when κ1 falls, Σ1 shifts right to Σ′1. The
standards at the new robust equilibrium E1 obey σ 2 < η(σ 1), i.e., the equilibrium is sorting.

continuous and strictly positive density over [0, 1]. Therefore, we can restate our problem

as choosing a G with these properties and such that the enrollment equations hold.

Step 3: Enrollment. The enrollment equations are given by:∫ a

a

adG(a) +

∫ 1

c
1−u

adG(a) = κ1∫ a

cz̄
u

a

z̄
dG(a) +

∫ a

a

(1− a)
a

z̄
dG(a) +

∫ z̄

a

a

z̄
dG(a) +

∫ c
1−u

z̄

dG(a) +

∫ 1− c
u

c
1−u

(1− a)dG(a) = κ2.

We now decouple the equations by letting G(a)−G(a) = G(1− (c/u))−G(c/(1−u)) =

ε for some small ε (e.g. by using a uniform density). It is clear that the resulting

individual integral equations have an infinite number of solutions for G(a) on those

regions. Choosing one of them completes the proof. For then Theorem 1 yields a signal

density g(σ|x) and thresholds σ 1 > σ 2 such that h(α1(x)) is the acceptance function.

Part (b): College 2 is Too Small. The proof is constructive. Consider

(α1, α2) = (c, c/u) on the line α2 = α1/u. The acceptance function evaluated at α1 = c

lies below c/u when

ψ(c, σ 1, σ 2) < c/u. (21)

We will restrict attention to pairs (σ 1, σ 2) such that (21) holds. In this case, any student

who applies to college starts by adding college 1 to his portfolio, and this happens as
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soon as α1(x) ≥ c, or when x ≥ ξ(c, σ 1). Then enrollment at college 1 is given by

E1(σ 1, σ 2) =

∫ ∞
ξ(c,σ 1)

(1−G(σ 1|x))f(x)dx,

which is independent of σ 2. Thus, for any capacity κ1 ∈ (0, 1), a unique threshold

σ 1(κ1) solves κ1 = E1(σ 1, σ 2). (The Σ−1
1 function is “vertical” when (21) holds, since

the applicant pool at college 1 does not depend on college 2’s admissions threshold.)

The analysis above allows us to restrict attention to finding robust equilibria within

the set of (σ 1, σ 2) such that σ 1 = σ 1(κ1) and σ 2 satisfies ψ(c, σ 1(κ1), σ 2) < c/u.

Enrollment at college 2 is given by

E2(σ 1(κ1), σ 2) =

∫
B

G(σ 1(κ1)|x)(1−G(σ 2|x))f(x)dx,

which is continuous, decreasing in σ 2, and increasing in σ 1 (see Claim 2). Thus, κ2 =

E2(σ 1(κ1), σ 2) yields σ 2 = Σ2(σ 1(κ1), κ2), which is strictly decreasing in κ2.

Given κ1, let κ̄2(κ1) = E2(σ 1(κ1), σ 1(κ1)) be such that equilibrium ensues if both

colleges set the same threshold.36 Since Σ2 strictly falls in κ2, for any κ2 < κ̄2(κ1), a

robust equilibrium exists with σ 2 > σ 1(κ1). Then (i) for any κ1 ∈ (0, 1) and κ2 ∈
(0, κ̄2(κ1)], there is a unique robust equilibrium with σ 1 = σ 1(κ1) and σ 2 ≥ σ 1(κ1),

having (ii) non-monotone college and student behavior (Figure 9, left).37 �

Part (c): Conditions for Equilibrium Sorting. We prove that there exists

κ1(κ2) > 0 such that if κ1 ≤ κ1(κ2) and u ≤ 0.5, then there are only robust sorting

equilibria and neither college has excess capacity.

Fix κ2 ∈ (0, 1). We first show that the robust stable equilibrium with no excess

capacity derived in Claim 2 is also sorting when the capacity of college 1 is small enough.

More precisely, there is a threshold κ1(κ2), smaller than the bound κ̄1(κ2) defined in the

proof of Claim 2, such that for all κ1 ∈ (0, κ1(κ2)), there is a pair of admissions thresholds

(σ 1, σ 2) that satisfies κ1 = E1(σ 1, σ 2), κ2 = E2(σ 1, σ 2), and σ 2 < η(σ 1) (i.e., a robust

sorting equilibrium), and ∂Σ1/∂σ 2∂Σ2/∂σ 1 < 1 (i.e., the robust equilibrium is stable).

The proof uses three easily-verified properties of the η function implicitly defined

by inequality (14): (a) η is strictly increasing; (b) σ 2 = η(σ 1) → ∞ as σ 1 → ∞; (c)

σ 1 = η−1(σ 2)→ −∞ as σ 2 → −∞.

36It is not difficult to show that ψ(c, σ 1, σ 2) < c/u is satisfied if σ 2 ≥ σ 1(κ1).
37We are not ruling out the existence of another robust equilibrium that does not satisfy (21).
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For any κ1 ∈ (0, κ̄1(κ2)), we know from Claim 2 that there exists a pair (σ 1, σ 2) that

satisfies κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2), with (∂Σ1/∂σ 2)(∂Σ2/∂σ 1) < 1.

Claim 4 The pair (σ 1, σ 2) is a robust sorting equilibrium when κ1 is sufficiently small.

Proof: Let M(κ2) = {(σ 1, σ 2)|κ2 = E2(σ 1, σ 2) and σ 2 = η(σ 1)}. Graphically, this is

the set of all pairs at which σ 2 = Σ2(σ 1, κ2) crosses σ 2 = η(σ 1).

If M(κ2) = ∅ we are done, for then σ 2 = Σ2(σ 1, κ2) < η(σ 1) for all σ 1, including

those at which κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2). To see this, note that (i) σ 1 =

η−1(σ 2) → −∞ as σ 2 → −∞, while we proved in Claim 2 that σ 1 = Σ−1
2 (σ 2, κ2)

converges to σl1(κ2) > −∞. Also, (ii) σ 2 = η(σ 1)→∞ as σ 1 →∞, while we proved in

Claim 2 that σ 2 = Σ2(σ 1, κ2) converges to σu2(κ2) < ∞. Properties (i) and (ii) reveal

that if Σ2 and η do not intersect, then Σ2 is everywhere below η.

If M(κ2) 6= ∅, let (σs1(κ2), σs2(κ2)) = supM(κ2), which is finite by property (b) of

η(σ 1) and since σ 2 = Σ2(σ 1, κ2) converges to σu2(κ2) < ∞ as σ 1 goes to infinity (see

the proof of Claim 2). Now, as κ1 goes to zero, σ 1 = Σ1(σ 2, κ1) goes to infinity for any

value of σ 2, for college 1 becomes increasingly more selective to fill its dwindling capacity.

Since σ 2 is bounded above by σu2(κ2), there exists a threshold κ1(κ2) ≤ κ̄1(κ2) such that,

for all κ1 ∈ (0, κ1(κ2)), the aforementioned pair (σ 1, σ 2) that satisfies κ1 = E1(σ 1, σ 2)

and κ2 = E2(σ 1, σ 2) is strictly bigger than (σs1(κ2), σs2(κ2)), thereby showing that it also

satisfies σ 2 < η(σ 1). Hence, a robust sorting stable equilibrium exists for any κ2 and

κ1 ∈ (0, κ1(κ2)), with both colleges filling their capacities (see Figure 9, right panel).

To finish the proof, notice that, if there are multiple robust equilibria, both colleges

fill their capacity in all of them (graphically, the conditions on capacities ensure that Σ2

starts above Σ1 for low values of σ 1 and eventually ends below it). Moreover, adjusting

the bound κ1(κ2) downward if needed, all robust equilibria are sorting (graphically, for

κ1 sufficiently small, the set of pairs at which Σ1 and Σ2 intersect are all below η). �

A.10 Affiliated Evaluations

We now show that if students and colleges see noisy conditionally iid signals of calibers,

then this is formally a special case of (F).

Let t be a student’s true caliber, unknown to him and colleges. It has density p(t)

on [0, 1]. After seeing the signal realization X = x, drawn with type-dependent density

f(x|t), the student updates his beliefs to p(t|x) = f(x|t)p(t)/f(x). If a student of caliber
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t applies to a college, the college observes a signal σ drawn with density γ(σ|t) and cdf

Γ(σ|t) on [0, 1]. If a student applies to both colleges, then they observe conditionally iid

signals. We assume that f(x|t) and γ(σ|t) obey the strict MLRP.

Define the conditional joint density of signals g(σ1, σ2|x) =
∫ 1

0
γ(σ1|t)γ(σ2|t)p(t|x)dt.

Notice that g integrates to 1, and so is a valid density. Also, as an integral of products

of log-supermodular functions, it inherits this property, by Karlin and Rinott (1980). In

other words, the signals are affiliated. Next, define the density f(x) =
∫ 1

0
f(x|t)p(t)dt.

We now reinterpret the signal x in the conditional iid case as the student true caliber.

To show that this model is a special case of (F), we prove that student and college

optimizations have the same solutions as in the conditional iid case.

Student Behavior. It suffices to express the chances of two acceptance events for

the conditional iid model without reference to the type t, and thus as in the affiliated

model (F). First, the unconditional acceptance chance at college i = 1, 2 is

αi(x) =

∫ 1

0

(1− Γ(σi|t)) p(t|x)dt =

∫ 1

0

∫ 1

σi

γ(σi|t)p(t|x)dσidt =

∫ 1

σ i

∫ 1

0

g(σi, σj|x)dσjdσi

Next, the probability of being rejected at 1 and accepted at 2 is∫ 1

0

Γ(σ1|t) (1− Γ(σ2|t)) p(t|x)dt =

∫ 1

0

∫ σ 1

0

∫ 1

σ 2

γ(σ2|t)γ(σ1|t)p(t|x)σ1dσ2dt

=

∫ σ 1

0

∫ 1

σ 2

g(σ1, σ2|x)dσ1dσ2.

College Behavior. It likewise suffices to express the enrollment functions without

reference to the student type t. For instance, for college 1,

E1(σ 1, σ 2) =

∫ 1

0

(∫
C1∪B

f(x|t)dx
)(∫ 1

σ1

γ(σ1|t)dσ1

)
p(t)dt

=

∫
C1∪B

∫ 1

σ1

(∫ 1

0

γ(σ1|t)f(x|t)p(t)dt
)
dσ1dx

=

∫
C1∪B

(∫ 1

σ1

∫ 1

0

g(σ1, σ2|x)dσ2dσ1

)
f(x)dx.

The analysis of college 2 is analogous and thus omitted. �
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A.11 Affirmative Action: Proof of Theorem 5 (a)

Step 1: Equilibrium Conditions. Here, we assume a continuous signal cdf derivative

Gx. Given any discount pair (∆1,∆2), the capacity equations with two groups are:

κ1 = φEτ1 (σ 1 −∆1, σ 2 −∆2) + (1− φ)EN1 (σ 1, σ 2) (22)

κ2 = φEτ2 (σ 1 −∆1, σ 2 −∆2) + (1− φ)EN2 (σ 1, σ 2), (23)

where Eτi , ENi are the respective fractions of targeted and non-targeted groups enrolled at

college i, defined just as in (4) and (5), for the sets of signals (15). Since the signal density

g = Gσ and its derivative Gx are both continuous, all derivatives of the enrollment

function (using Leibnitz rule) are continuous too.

Step 2: Single College Preference Case. Differentiating equations (22)

and (23) with respect to ∆1:

J

φ

∂σ 1

∂∆1

=
∑
i=1,2

(−1)i+1 ∂Eτi
∂(σ 1 −∆1)

(
φ

∂Eτ3−i
∂(σ 2 −∆2)

+ (1− φ)
∂EN3−i
∂σ 2

)
J

φ

∂σ 2

∂∆1

=
∑
i=1,2

(−1)i
∂Eτi

∂(σ 1 −∆1)

(
φ

∂Eτ3−i
∂(σ 1 −∆1)

+ (1− φ)
∂EN3−i
∂σ 1

)

where the denominator, from Cramer’s Rule, equals

J =

(
φ

∂Eτ1
∂(σ 1 −∆1)

+ (1− φ)
∂EN1
∂σ 1

)(
φ

∂Eτ2
∂(σ 2 −∆2)

+ (1− φ)
∂EN2
∂σ 2

)
−
(
φ

∂Eτ1
∂(σ 2 −∆2)

+ (1− φ)
∂EN1
∂σ 2

)(
φ

∂Eτ2
∂(σ 1 −∆1)

+ (1− φ)
∂EN2
∂σ 1

)
is positive in any robust stable equilibrium — i.e. the two group version of the condition

that the slope of Σ1 exceed the slope of Σ2 in §4 and §A.8. Now, ∂σ 1/∂∆1 = φ > 0

and ∂σ 2/∂∆1 = 0 when ∆1 = ∆2 = 0, because the derivatives of the function Eτi , ENi at

colleges i = 1, 2 coincide. Thus, the feedback effects vanish when ∆1 = ∆2 = 0, and are

negligible in a neighborhood of it, by continuity of the enrollment derivatives.

Since ∆1 = π1, it follows that σ 1 increases while σ 1 − ∆1 decreases when π1 goes

up, as ∂(σ 1 −∆1)/∂π1|π1=0 = φ− 1 < 0.

The analysis of the derivatives of σ i, i = 1, 2, with respect to ∆2 is analogous.

Step 3: Both College Preference Case. Suppose now that π1 = π2 = π = 0

44



and thus ∆1 = ∆2 = ∆ = 0. Now let π increase. Replacing in the analysis above

∆i, i = 1, 2, by ∆ and differentiating, yields, after evaluating the expression at ∆ = 0,

∂σ i/∂∆ = φ > 0, i = 1, 2. As before σ i −∆ goes down, thereby proving the result. �
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