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Abstract

Online platforms invest large sums in their search technology. Motivated by this,
we investigate how lowering search costs affects the welfare of market partici-
pants, in a model where buyers with horizontally differentiated tastes search and
compete for goods in an auction. We identify a “matching effect”, whereby lower
search costs lead to better matches; and a “segmentation effect” whereby lower
search costs endogenously shift market participation in favor of some goods and
against others. We prove that that there is a unique equilibrium, and demonstrate
that the decentralized market achieves the social planner’s solution. Decreasing
search costs thus improves joint welfare; and yet surprisingly joint seller revenue

may fall.
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1. Introduction

New technologies often bring new markets and market structures. Just as advances in ship-
ping technology opened up countries to international trade in goods that were previously too
heavy to ship, advances in communication and computation have created new marketplaces
in goods, media, and advertising that could not have existed earlier. Many of these new
markets are organized around platforms, which bring together large numbers of consumers
and producers, offering each side easy access to the other. In some ways, these platforms
resemble marketplaces that have existed for centuries: platforms act as intermediaries to
facilitate transactions between agents that would otherwise not occur. In other respects,
however, these new platforms are sui generis. The platforms themselves often represent sub-
stantial investments, and they embody many proprietary technologies that facilitate trade.
In many cases, the platforms themselves are far more visible than the any of the transactions
that take place on them: eBay and Amazon, for instance, have become household names.

Platforms help to overcome several key frictions: (1) they provide market thickness; (2)
they reduce transaction costs; and (3) they reduce search costs (Hagiu 2009). The first
two functions are relatively well-understood, and they represent the two foremost challenges
that a platform must solve in terms of its development strategy. The consequences of search
within platforms, however, are less well understood, in spite of the growing importance that
search facilitation seems to be playing on many platforms. For instance, media platforms,
such as Netflix and Amazon, invest heavily in their recommendation systems, which help
to direct viewers and readers to movies and books that they are likely to enjoy. In fact,
Netflix, for several years, offered annual prizes to developers who could improve their user
rating prediction algorithms. Some platforms, such as dating sites, live or die by the efficacy
of their search systems: what matters for the paying members of a dating site is not the
number of potential matches that might exist on the platform, but rather the quality of
the few matches that actually do take place. The lesson seems to be that creating market
thickness on the other side is not always enough. In situations where match quality is a
central part of platform outcomes, a platform also has a role in making desirable matches
easier to achieve.

The implicit intuition behind such efforts to facilitate search within platforms is that
lower search costs represent a “win-win” situation for the agents on the platform and lead
to Pareto-improving outcomes. In the case of Amazon, for instance, low search costs make

it more likely that readers find books that they will want — they are better off since they



end up getting books that they like more. Sellers are also better off because the readers
most likely to purchase their books get exposure to them, and so their revenues are likely to
increase.

This “win-win” logic implicitly requires that the agents on the one side are not competing
for the goods on the other (e.g. book buyers do not interact). Yet in many markets, such
competition is the norm. In a dating market in which men search for women, a relatively
unattractive man has a better chance of being matched to an attractive woman if the search
technology is poor; since when the technology is good, she will be identified and receive offers
from equally attractive men. Similarly, in an auction market, bargains are more likely to
be had when search is difficult. Indeed the history of eBay is littered with anecdotes about
people who managed to earn a living arbitraging spelling mistakes.

To the best of our knowledge, this is the first paper to examine the implications of search
and search costs on outcomes and welfare, in a platform setting where agents on one side
compete for goods on the other side. We consider a market where buyers with horizontal
“Hotelling-style” preferences over two goods decide whether or not to search for their pre-
ferred good, before participating in an auction for that good. A finite version of this model
— say with N buyers and exactly 2 goods/sellers — is not analytically tractable, and an
important contribution of the paper is to set up a continuum model with an infinite number
of buyers and sellers. This allows us to reduce the large platform game to a continuum of
Poisson games, much as Myerson (2000) did in voting games, enabling analytic results.

We find that the “win-win” intuition does not hold under competition on the one side.
It is true that the total surplus generated by the platform increases with a better search
technology, since matches will generally be of higher quality. However, this need not be a
Pareto improvement. Sellers of the less-preferred product may end up with few bidders on
their goods, harming revenue. And buyers with weak preferences for a universally preferred
product may get lucky and win it when search is difficult; but be completely uncompetitive
when search is easy, and have to make do with the the other good (again the analogy to
dating makes this effect clear). In fact, we demonstrate that sellers can jointly lose with lower
search costs, if one product gains so many more buyers that revenues from the other product
collapse. We find that a sufficient condition for lower search costs to raise the revenues of all
sellers is symmetry: there are an equal number of sellers of each good, and the distributions
of valuations for each good are identical. In such cases, the measure of buyers faced by each
seller remains constant regardless of search intensity, so that the only channel affecting seller

revenues is the creation of better matches, which is revenue increasing.



Literature Review Two papers are closely related. The first is Hagiu and Jullien (2011),
who analyze a model of search intermediation. In their model, two types of consumers
must access two types of sellers through a search intermediary (i.e. a platform), who may
direct them to their preferred good or not. Their main result is that platforms sometimes
have an incentive to divert search, in the sense that they may direct buyers to their less
preferred sellers and prevent some surplus-enhancing trades from taking place. Our model
has some similarities to theirs but differs notably in treating the platform as fixed, rather
than a strategic player, and in allowing for competition between buyers for goods through
the auction process.

The other recent paper is a study by Tadelis and Zettelmeyer (2011), which provides a
direct motivation for our analysis. In a field experiment involving an auction platform for
used car transactions, they found that making car quality information available online —
rather than requiring potential buyers to inspect the cars in person — improved revenues for
all car grades, including those which were poorly rated. They attributed to this to improved
matching: buyers who valued low quality cars relatively more than average were able to
find those cars easily due to the information provision, and similarly those with a high taste
for quality were better able to match. Notice that this experimental treatment essentially
reduced search costs — albeit only for some subset of cars — and so is very similar to the
comparative statics exercise we will investigate below. We extend the simple model presented
in their paper to a much more general environment.

Most of the literature on platform markets has focused almost exclusively on network
effects (Armstrong 2006; Rochet and Tirole 2006; Weyl 2010; Weyl and White 2012), and the
implications of these effects for optimal pricing, either under monopoly or oligopoly. These
network effects also have important implications for the number of platforms that can exist
in equilibrium, and how they might be structured. In general, platform markets will support
only one or two platforms in equilibrium because of “tipping” effects (Ambrus and Argenziano
2009; Ellison and Fudenberg 2003). Recently, Hagiu and Lee (2011) have examined the issue
of exclusivity, and shown that a content provider will generally multi-home across multiple
platforms when they are able to maintain control over pricing. Halaburda and Yehezkel
(2011) have extended existing work on platform competition to the setting where both sides
of the market are uncertain about the value of a new technology.

The search mechanics of our model are based on well-established models of sequential
search (Diamond 1971; Mortensen 1970). What differentiates our model of search on plat-

forms from existing models of consumer and job search, however, is that there is many-to-one



matching, so that changes in search costs affect a buyer’s utility indirectly through compe-
tition in the auctions. We address these complications by using results on Poisson games,
building upon the work of Myerson (2000).

Our paper is organized as follows: the next section presents a simple discrete example
to illustrate the effects of search within platforms. The third section establishes the formal
model and notation; while the fourth presents the analysis and results, before we conclude.

All proofs are in the appendix.

2. A Motivating Example

In this section, we present an example similar to that in Tadelis and Zettelmeyer (2011)
that illustrates how decreasing search costs can increase average seller revenue. Consider
an auction platform market with two goods available for sale, A and B, and four buyers.
Buyers have a private valuation v of receiving either good that is independently and uniformly
distributed on [0, 1]. In addition, two of the buyers are commonly known to prefer good A,
and get an additional payoff of 1 if they win it; while the other two are commonly known
to prefer good B, and get a corresponding additional payoff of 1 if they win it. We assume
quasi-linear utility, so that the payoff of a buyer who prefers and wins good A is 1 +v—p
for p the price they pay.

The buyers play a two stage game. In the first stage, buyers make a search decision. To
keep this example simple, we focus on two cases. Either search is costless, and the buyer can
find their preferred good; or it is infinitely costly, and the buyer gets matched to a random
good. We will generalize to a full sequential search model with continuous search costs
below. Once buyers and goods are matched, the goods are sold in a sealed-bid second-price
auction. Buyers observe the kind of good that they’re bidding on and make a bid.

Now consider the revenues in each of the cases. In the costless case, the two buyers who
prefer good A will choose to enter the good A auction; and those who prefer good B will
enter the auction for good B. This will result in (symmetric) expected revenues from each

4

auction of 1 —}—% = 3, since the expected value of the second order statistic from a sample of n

uniform random variables is 2=t

n+1-°
the number of bidders in each auction are n 4 +nz and 4 —n 4, —n g respectively, where n, is

In the infinitely costly case, random matching implies that

the number of buyers who prefer good 7. n4 is independent of ny and both are distributed
1
2
and ng. Doing the relevant algebra, we get expected revenues of %.

Binomial (2,5). This leads to nine possible outcomes — one for each pair of draws of n 4



This confirms the intuition that improving search should raise seller revenues. There are
two reasons for this. First, with lower search costs, matching improves: the agents who
prefer a good end up bidding on that good. Second, there is less chance of coordination
failure, whereby all the agents end up in one auction and none in the other auction. To

see the impact of this second effect, notice that expected revenues under random matching
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conditional on there being exactly two agents in the auction are 2,

higher than in the case
of pure random matching.

This example is special in a number of ways. The environment was entirely symmetric, so
that costless search led to the market for each good being equally thick. This need not be
true in general: we will later show that lower search costs can dramatically thin the market
for one good, harming seller revenues. We also chose to tackle only the extreme cases
of costless and infinitely costly search, essentially making the search decision exogenous.
Once we endogenize it, each individual buyer’s search decision will depend in equilibrium
on who else is searching, making the problem more complex — the more buyers searching
for a particular good, the less attractive entering into an auction for that good becomes.
Finally, this example was discrete, which led to a lot of different cases. As the number of
buyers and sellers on the platform grows, this model very quickly becomes unmanageable.
For this reason we will move to a continuum framework so that auction participation will

vary continuously rather than discretely.

3. Model

There are a measure p of buyers, and a measure 1 of sellers on the platform. Sellers are one
of two types, A and B, which denotes the type of good that they have. A fraction « of sellers
are type A. Goods are sold off in second-price auctions. Buyers have quasi-linear utilities,
and their types are independently and identically distributed on X = [z, Z|, where a buyer’s
type x also denotes his valuation for the A good. A buyer of type = has a valuation for a
B good given by y(z), where y is continuous and strictly decreasing in z, so buyers with
relatively high valuations for the A good have relatively low valuations for the B good.' Let
Y denote the range of y.

Buyer types are independently and identically distributed according to F', where we assume

F is atomless with probability density function f. We will also let pu(X), for measurable

1. Notice that this does not impose a restriction on the absolute valuations: it could be that every buyer
values the A good more than the B good; rather, this is a restriction on relative valuations.



X C X, denote the measure of buyers with types in X, and p(z) denote the density of buyers
at x. Also, let F(-) be the cdf of the value distribution of buyers, i.e., F(x) = (1/pu)u({z" :
2’ < x}). It will also be convenient to define H(y) = 1 — F(y~*(y)) to be the cumulative
distribution function of valuations for the B good.

The goods are allocated according to a two-stage game. In the first stage, buyers are
matched to sellers via sequential search; in the second stage, goods are sold off in second-price
auctions. The search process is sequential search mediated by platform technology. Buyers
are initially randomly matched to sellers. Upon being matched, buyers observe the type of
good being sold on the auction (but not who else is possibly going to participate in this
auction). Each buyer can stay in the auction he is matched to, or at a cost ¢ > 0, he can
draw another match

The success of each draw is determined by a platform-wide parameter p, which we call
the search efficiency. With probability p, a buyer will be matched with an auction for the
good they’re looking for; with probability 1 — p, the match will be random. Hence, p = 0
corresponds to completely-random matching as in the standard sequential search model, and
p = 1 corresponds to a perfectly efficient search technology. Hagiu and Jullien (2011) refer
to this search process as platform intermediated search. It nests the standard sequential
search model, and allows for comparative statics on the search technology itself (through the
search efficiency p) and the search frictions ¢, which are conceptually distinct. The search
stage ends when nobody chooses to draw any more matches.

In the auction stage, we restrict the buyers to playing weakly dominant strategies, so that
all buyers bid their valuations. The distribution of types in auctions for each kind of good

will be determined in equilibrium by the search decisions.

Discussion: We have deliberately kept the primitives of the model as simple as possible.
We are interested in the equilibrium properties of a decentralized auction platform: the
platform doesn’t match bidders to auctions, nor does it clear the market for each good
through a multi-unit auction (which will generally be more efficient). This is in fact how
many auction platforms operate, although typically these markets are dynamic so that buyers
have multiple bidding opportunities.

An important restriction is to one-dimensional types with horizontal “Hotelling-style” pref-
erences. This simplifies the analysis. But it also emphasizes the importance of matching;
lowering search costs would seem to be particularly good for revenues in this environment,

since it facilitates assortative matching. The fact that we are able to show that total revenue



can decrease with search even here is thus a strong finding.

4. Analysis

We will proceed by backward induction. First, we develop the analytical tools necessary to
characterize expected payoffs and revenues from the auctions for each good. In this step we
take as given the distribution of types participating, which will be endogenously determined
by search.

Next, we use these expressions to show that the search strategies can be characterized by a
pair of thresholds, where those types who prefer good A sufficiently strongly search for it until
they find it; those with good B search similarly for it; and the rest don’t search. Finally, we
show existence and uniqueness of the Nash Equilibrium, consider some comparative statics

on search costs, and see what the implications are for efficiency and revenue.

4.1. The Auction Game

The mass and distribution of types bidding on each good is determined by the search strate-
gies. Let p? be the mass of types bidding on good j, and F7 be the cumulative distribution
function, for j = A, B. We would like to characterize the buyer’s interim expected surplus,
after they have searched into an auction for a particular good, but before they know who they
have been matched with and what the auction outcome is. As Myerson (2000) has shown,
random matching of buyers to auctions implies that the number of buyers in auctions for
good j is a Poisson random variable, with parameter p/. In fact, the number of buyers from
any subset of X is a Poisson variable with parameter equal to the measure of that subset,
and is independent from the number of buyers who show up outside of that subset. We

formalize this in a lemma, which is proved in the appendix:

Lemma 1. Let X, and X, be disjoint measurable subsets of X, and let ky and ky be random
variables denoting the number of buyers who show up at a given auction for good j with
valuations in X, and X, respectively. Then k,; and ky are independent Poisson random

variables with parameters p/(X,) and p?(X,) respectively.

This makes it easy to calculate the probability of winning, and hence the expected surplus.
For example, a bidder with valuation x wins an auction for good A iff their valuation is the

highest; or equivalently if there are no bidders with valuations higher than z. By Lemma 1,



this latter event is independent of the fact that they themselves are in the auction.” It

(1=F%()) " from the Poisson probability mass function.

therefore takes place with chance er”
Using this expression, we can derive expected utility and revenues. The derivation is quite

standard (see .e.g., Krishna 2009), applying integration by parts (proof in appendix).

Lemma 2. The interim expected utility of a bidder with valuation z for good j, and expected
seller revenue for a good of type j, are respectively given by

w(z) = / e W (1-F(s) RI=ml(z) — /ﬂ/ (1—F'(2)GI(z)dz
0 0
where z is the highest valuation for good j, G7(z) is the distribution of the first-order statistic

in j auctions, and m’(z) = foz sg’(s) ds is the expected payment of a buyer with valuation z.

4.2. Sequential search

The preceding lemma provides closed-form expressions for buyer utilities in the second stage
of the full model with search, as a function of the aggregate search behavior and resulting
distributions of types bidding on each good. This allows us to analyze individual search
decisions and from there derive the equilibrium of the full game. A search strategy is a
stopping rule: a buyer must decide whether or not to stop searching given the type of
good he is currently matched to and the results of previous searches. But since there are a
continuum of sellers the result of each search does not depend on the previous results. This
implies that the optimal search policy is stationary: it specifies whether or not to stop as a
function only of the current good held.

Since there are only two goods, a search policy is just a binary 2-vector, saying whether
or not to stop searching when holding each good. Types who stop regardless of whether
they are holding good A or good B we will term non-searchers. They will stick with their
initial random match. A second group are those who stop when holding A and continue
searching when holding B; and a third are those with the reverse behavior. There are only
three groups.’

The probability of finding one’s desired good depends on the search technology and the

relative proportions of each good. Recall that a fraction « of sellers sell good A. So a buyer

2. One can show this formally by taking X, as an open interval (z —e,z +¢), taking X, as (z+¢,Z) and
then considering limits as ¢ — 0 by L’Hopital’s rule.
3. The final possible policy — never stop — is clearly not optimal under costly search.



currently holding good B will find good A on the next draw with probability p, = p+(1—p)a;
similarly the chance of finding good B when holding A is p, = p+ (1 —p)(1—«). Notice how
the search technology parameter acts to make the relative proportions either unimportant
(with perfect search technology) or very important (with no search technology).

Our next step is calculate the optimal search behavior of each buyer, holding the behavior
of the other buyers fixed (i.e. it is a best response). This requires only that we classify
each type into one of the groups. Let u(z) denote the utility a buyer of type = gets from
participating in an A auction, and u®(x) denote his utility from a B auction. These are
well-defined given other buyer behavior through Lemma 2. Then the search decision amounts
to a simple comparison of the marginal benefit from searching against its marginal cost c.
A buyer will search into an A auction if p, (u®(z) —u®(z)) > ¢ and and will search into a
B auction if p, (u?(z) — u?(x)) > c. If neither condition holds, they will not search.

Now, by Lemma 2, the interim expected utility of a buyer for a good is increasing in their
valuation for that good. Moreover, since y(z) is strictly decreasing in x, when a buyer’s
valuation for good A increases, their valuation for good B decreases; and vice-versa. So the
interim utility difference u®(x) —u?(x) is strictly increasing in z. This means that the best

responses will take the form of threshold rules in the type space:

Lemma 3. The best responses are characterized by a pair of thresholds (x,,x,) such that
all buyers with type x > x, search into A, all buyers with type x < x, search into B, and the

remaining buyers do not search. Furthermore, for interior x, and x,, the thresholds must

satisfy
c
ut(z,) —u(z,) = —
Dq
c
UA(%) —u’(z,) = —p_
b

4.3. Equilibrium

We look for a pure strategy Bayes Nash equilibrium of the game. To prove existence and
uniqueness, we exploit the characterization of the best responses in Lemma 3 above. We
define a mapping M : X? — X? which takes any pair of thresholds (z,,x,) — which through
search induce distributions of bidders 4 and u® — and returns a new pair of thresholds
(xp,x.) that describe the individual bidder best responses to this aggregate search behavior.
A fixed point of this mapping is an equilibrium. In the appendix, we prove continuity of

M. Then since X? is convex (a two-dimensional interval), Brouwer’s fixed point theorem
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delivers existence.

The uniqueness argument is more involved. We define a mapping S(z,,x,) such that
S(zy,z,) = ciff (x,,z,) is an equilibrium (where c is a constant). We then show that the
Jacobian of S is globally positive, and the principal minors are non-vanishing. Following
Gale and Nikaido (1965), this implies that S is one-to-one, so S(x,,z,) = ¢ has a unique
solution.

Intuitively, we get uniqueness because of the negative relationship between the number
of people searching and the incentives to search: if more people search for good A (i.e. z,
is marginally lower), then searching for good A is a little less valuable (i.e. z, should be

marginally higher in response).

Theorem 1 (Existence and Uniqueness). An equilibrium ezists and is unique. A reduc-
tion in search costs, either through a decrease in the per-draw cost c, or through an increase

in the search efficiency p, implies x, increases and z, decreases, so that more types search.

The comparative statics are intuitive. When search costs decrease from some initial equi-
librium, the marginal types now strictly prefer to search, and the thresholds adjust smoothly
to restore indifference. The implication of this is that a platform can induce more search
and better matches by improving the search technology. The question we now turn too is

whether it wants to.

4.4. Welfare

In this section, we establish two basic welfare properties of equilibrium, and give some
support to the idea that reducing search costs is generally a good thing overall. First, the
equilibrium is efficient, in the sense that the market equilibrium coincides with the solution
to the social planner’s problem (where the social planner can control the assignment of
agents to goods, but not individual auctions). In this exercise we hold the search costs and
technology fixed. Second, we argue as a simple corollary that as search costs decrease, social
welfare is increasing.

To show this formally, we first define the social planner’s problem. The social planner
assigns to each buyer x an action in the set {a,0,b}, where a and b correspond to searching
into A and B respectively, and 0 corresponds to not searching. The objective function of
the social planner is total welfare net search costs, which we denote by W. To get a sense
of what social welfare looks like, note that each buyer’s contribution to total welfare is his

valuation of the object that he bids for times his probability of winning. His presence has
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no effect on welfare if he does not win, and if he does win, the total surplus generated is his
valuation, which is split between himself and the seller according to the price paid. We can

then write the surplus generated in the A market as

| G @t A a) da = BLx)

where X is the highest bid in a randomly chosen auction of good A. The surplus generated
in market B is similarly E[Y;], for Y] the highest bid in a randomly chosen auction of good
B. The total search cost incurred across the platform is ¢ times the expected number of
draws. Let u* = u(X,) =p- (1 — F(z,)) and u? = u(X,) = u- F(z,) be the measures of
buyers who search into A and B markets respectively. A fraction 1 — « of those in X, need

(1—a)u?

to search, and expect to search 1/p, times, so the total cost incurred by them is c.

a

Similarly the total cost incurred by those searching into B is %c. Hence, total welfare W

can be written as

W = aE[X,] + (1 — a)E[Y;] - (“ _p“)“ + O‘]fb ) ¢

The lemma below establishes that a solution to the social planner’s problem must have
a threshold form, e.g., it will consist of a pair (z},x}) such that all x < x} search into B,
all > x¥ search into A, and the rest do not search. The argument is by contradiction: if
the planner assigned type x to search for A but z’ > x to not search, then swapping their

assignments would be welfare improving.

Lemma 4. A solution to the social planner’s problem must consist of xj and x}, such that

all x < xp search into B and all x > x?, search into A.

We next show that the socially optimal thresholds must be the same as in the market
equilibrium. We prove this directly, showing that the first order conditions for the social
planner’s maximization problem correspond exactly to the threshold conditions required for

the market equilibrium.

Theorem 2 (Efficiency). Let (z},x%) be the social planner’s solution, and let (x,,x,) be
the market solution for a given set of search cost parameters, (¢,p). Then x; = x, and

x: =z,. That is, the market equilibrium maximizes total social welfare and is efficient.

The intuition for this result comes from McAfee and McMillan (1987). They observed

that in a VCG mechanism like the second-price auction, a buyer’s utility is equal to his
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contribution to social welfare, since his payment is exactly equal to the external effect of his
presence on the other buyers. As a result, when buyers maximize their own utilities in our
platform model with search, they also maximize their contribution to social welfare.

A corollary to this result is that a decrease in search costs always increases total welfare.
This follows immediately from the efficiency result: since the market equilibrium maximizes
welfare, and higher levels of welfare are possible with decreased search costs — agents, for
instance, can simply retain the same actions, but total welfare will be raised since search costs

paid are lower — it must be that equilibrium welfare is increasing as search costs decreases.
Corollary 1. As search costs decrease, total social welfare is increasing.

This shows that buyers and sellers are jointly better off as a result of decreased search
costs. But it does not say how the gains are distributed. The following section examines the

effect of search on seller revenues.

4.5. Revenue

As search costs fall and more buyers search, two things are happening for each type of seller:
(1) they gain buyers in the middle of the distribution of values, where previous non-searchers
begin to search into their auctions; but (2) they lose buyers at the bottom of the distribution
of values, where previous non-searchers were getting randomly matched into their auctions,
but now choose to search into the other auction.

Hence, there is a “matching effect,” of the type mentioned by Tadelis and Zettelmeyer
(2011), in the sense that lower valuation buyers are being “traded” for higher valuation
buyers. This is not, however, the entire story: there is no reason that the rate at which
buyers leave should generically be equal to that at which they enter. As a result, a seller
may lose buyers overall as a result of search, if, for whatever reason, the effect of decreasing
search costs on the marginal searchers into the other auction is greater than its effect on
those search into the seller’s auction. The loss in competitiveness may result in lower prices.

Figure 1 shows what happens to auction participation in an A auction as search increases,
i.e., the search thresholds change from (x,, z,) to (x}, z), with ; > x, and =, < z,. Recall
that auction participation can be conceptualized as a Poisson process, where the density
parameter is equal to the population density of participants, which we denote, again with
a slight abuse of notations, using u(z). Independence of non-overlapping sets allows us to

conceptualize participation in a particularly straightforward way.
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Figure 1: Effects of search on auction participation

The solid black line is the population density function, which is also the density function
in an A auction when no buyers search (since for any set in X, a fraction a of them are
placed into an A auction, and we normalize by the measure of A sellers, which is a). Now
consider the density of buyers in an A auction under thresholds (x,,z,). In [z,z,), all
buyers search into B, which means that no buyers appear in the A market, so the density
is zero. Along [z,, z,], no buyers search, so the density remains p(z). Finally, along (z,, 7],
the platform density u of buyers search into A, and we normalize that to a sellers, so the

density is p(z)/a, which is depicted by the dotted line. We can partition X into intervals

/
a’

defined by the points z;, x;, x,, and x,: the number of buyers who show up from each of
these intervals is an independent Poisson variable with their respective densities. Letting
k; denote a Poisson variable with measure equal to the shaded region ¢ in the figure, total
participation in an A auction can be written as k; + ky + k3 + ky.

If we move the thresholds now to (zj,x.), two things happen: the density in [x,,x})
becomes zero, and the density in (z/, x,] changes from p(x) to p(x)/p,. This means that k,
and k, remain the same, and k; is replaced by zero. ks is replaced with a Poisson random
variable of (1/a)u((z),x,]). Since the density is only scaled up, however, and Poisson
variables are infinitely divisible, this is equivalent to two independent Poisson variables,

* Hence,

one with parameter p((x.,z,]) and the other with parameter (1/a)u((z,,x,]).
participation can be summarized as k, + kg + k, + ks.

The net effect is that we remove the Poisson draw from [z,,z;) with a Poisson draw
from (z/,z,] (where the value distribution of a buyer in those regions is the conditional

distribution of valuations, conditional on being within the region). Obviously, the removal

x,] to be the sum of two independent pro-

().

4. Alternatively, we can consider the Poisson process in (z
cesses, one with density u(z) and the other with density (1/«

/
a’
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of ky by itself always hurts revenue, and the addition of k; by itself always helps revenue.
In general, the net effect cannot be signed, since the measure of buyers sorting in and those
sorting out will differ. In the special case where the value distributions of each good are
identical (i.e., the platform is symmetric), however, the effect on revenue is unambiguously

positive.

Definition 1. A platform is symmetric if permuting the labels A and B (e.qg., calling the A
good the B good and vice versa) does not change any of the value distributions or proportions

of goods in the seller population.

Note that the conditions for this to be true are quite specific: it must be that a = 1/2,
T=vy(z),z =y(T),y(r) =T—xand H(x) = F(x) for all z € X. That is, the distributions of
valuations for A and B goods are identical. Under symmetry, the two equilibrium thresholds
will also always be symmetric around the mean of the value distribution (since relabeling
the goods does not change the fundamentals, this is implied by uniqueness). Hence, the
measure of new searchers when the search cost decreases will be the same in each market;
from the point of view of any seller, this means that the measure exiting is equal to the
measure entering. That is, there is no net change in measure, but simply a replacement of
all the lower buyer types with higher buyer types.” The improved matching must lead to

higher revenue:

Theorem 3 (Revenue under Symmetry). For a symmetric platform, as search costs
decrease, either through a reduction in c or an increase in p, expected revenue is increasing

for all sellers.

By considering the symmetric case, it is also easy to see how revenue might decrease: the
measure of buyers leaving may be much larger than the measure of buyers entering, and so
even though those entering may have higher valuations, their number may be insufficient to
counteract the negative effects of decreased buyer density. Put another way, lower search
costs lead to better matching — a valuation effect — but also to a change in market thickness
— a segmentation effect. The segmentation effect will exert downward pressure on revenues
in one market and additional upward pressure on revenues in the other. Surprisingly, it is
possible that the segmentation effect can hurt revenues in the one market so much that the

increased revenues in the other market fails to compensate (i.e. sellers are worse off overall).

5. In terms of the figure, k; and k5 have the same parameter — since they are independent, this is equivalent
to replacing each buyer in [z;,2}), should at least one show up, with a buyer in (z/,,2,], which is always
revenue improving.
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Theorem 4 (Revenue under Asymmetry). Overall seller revenue may decrease as search

costs decrease.

We show this by constructing a numerical counterexample. Consider a platform where
a = 0.05 X =1[0,1], y(x) =5 — =z, and g = 3. In this market, the relatively abundant
good is also the one that people prefer, the B good, for which all buyers have valuations
between two and three. Under perfectly random matching, it is also the good that most
buyers will draw into. The low valuation buyers, however, have little chance of winning the
good, and hence would prefer to receive the A good with a higher chance of winning and
higher surpluses.

As the search efficiency p) increases, the effect is most dramatic for those who would prefer
to search into the A market, since that is the one that is harder to draw. When p = 0, most
buyers would still be able to draw into the B market relatively easily, but would find it
costly to draw A (the expected number of draws is 20). The expected number of draws for
a buyer who wants to get in to a B auction, by contrast, is only 10/19 ~ 1.052. A change
from p = 0 to p = 1, then, represents a tenfold decrease in the effective search cost for those
searching into A, and only an eleven percent decrease in search costs for those searching into
B. Hence, cost decreases through p will induce relatively more buyers to search into A than
into B.

Figure 2a shows the threshold values as p changes, and figure 2b shows how the measure
of buyers in each market changes. The dotted lines show results for the A market, and
the solid lines show results for the B market. As expected, z;, rises and x, falls, since
lower search costs induce more searching. Although the threshold x, moves more than the
threshold x,, B loses buyers overall, which is shown in figure 2b. The reason for this is that
the additional “searchers” into B would mostly have ended up in B anyway, as would the
additional searchers into A: searching into B has relatively little impact on the measure of
buyers in B, and searching out of B has a large impact.

These changes in participation are reflected in the market revenues, which are shown in
figure 2c. Revenue in market B drops, since B auctions are overall losing buyers, and in this
case the valuations of the buyers that they gain are relatively low. In contrast, A revenues
increase. Finally, figure 2d shows total revenues. Although the A revenues do increase, there
are relatively few A sellers, so the effect on total revenues is dominated by the decrease in
B revenues.

Our counterexample was constructed around a particular type of asymmetry: the exis-

tence of a small market with lower overall valuations and relatively low per-draw search
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Figure 2: Increasing p under asymmetric conditions

costs. We have run a number of numerical simulations, which seem to indicate that these
counterexamples are relatively rare. Overall revenue generally increases as search costs fall,
except when there are significant asymmetries. Numerical results are similar when, instead
of varying the search success probability p we directly vary the search cost c.

Although our numerical investigations do suggest that negative overall revenue effects are
“rare”, it should be kept in mind that we have constructed our model as a “best case” scenario
in terms of generating positive revenue effects as a result of matching: buyer valuations for
each good are deterministically negatively correlated with their valuations for the other good.
In more general settings, the negative revenue effects can only be exacerbated, since there
would no longer be a guarantee that the buyers leaving a market as a result of search are
always those with the lowest valuations. The fundamental lesson in terms of revenue is that
lowering search costs affects revenue in two ways, and that the net effect is not a Pareto

improvement: except under perfect symmetry, some sellers will lose.
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5. Conclusion

Recent years have seen substantial investments by platforms in reducing search costs. Yet,
there has been relatively little work on understanding what the implications of decreased
search costs are for the parties involved. The continuum framework developed here simplifies
auction participation in a large network to a Poisson process, should help to overcome many
of the technical barriers associated with analyzing platforms with large numbers of agents on
both sides of the market in situations where search matters. We have also provided positive
results to shed some light into the effects of search on platform welfare and revenue, which
may help to explain and guide platform policy related to search investments. In particular,
in a second-price auction platform — and by revenue equivalence, in all efficient single-good
auction mechanisms (Riley and Samuelson 1981) — total social welfare is increasing as search
costs decrease. Moreover, in a symmetric platform, all sellers will benefit from search, so
that total seller revenues and individual seller revenues will increase as search costs decrease.
If platform interests are aligned with seller interests, then (as would be the case if the sellers
were being charged, for instance), then a platform would want to invest in decreasing search
costs in symmetric situations. On the other hand, we have also shown that in a generic
setting, there are distributional consequences to increased search: one set of sellers will lose,
while the other gains, with ambiguous effects on total revenue. A formal examination of

platform incentives will require a richer model, which we hope to develop in future work.
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A. Appendix

This appendix includes the full proofs of details omitted over the course of the main text.

Proof of Lemma 1 (Independence). Let n denote the number of buyers who shows up in a
given auction, so n ~ Poisson(u). For any given n > k, the number with valuations in
some measurable set X, k; | n, is binomially distributed, since there are n buyers, each
with an independent probability of being in X of probability p(X;). We know n is Poisson
distributed, so the prior probability of exactly k buyers from X is given by

Py =) =30 Pl Py = k) =3 1 (1) (X80 = plx,))
n==k n==k )
:e_“(xl)M(Xl)k

k!

To see independence, consider the probability that k; = [ and k, = m, again letting n denote
the total number of buyers in an auction. Any given buyer is in X; with probability p(X}),
in X, with probability p(X,), and in neither with probability 1 — p(X;) — p(X,). Given n,
The number of buyers in each of these groups — X, X,, and X (X, UX,) — is multinomially
distributed, so

n!

P(ky =landky, =m|n) = W (n— = Z)!p<X1)lp(X2>m(1 —p(X;) = p(Xp))*

Taking the probability weighted sum over all n and rearranging gives the desired expression,

Proof of Lemma 2. These expressions come from standard auction theory results — the only
difference in our case is that the distribution of the order statistics faced by sellers is one
further step removed from the buyer value distributions. In a second-price auction, buyers bid
their valuations, so the distribution of the first-order statistic, G?(z) is also the probability
that 2z wins the good. Hence, the surplus of buyer z is foz G'(s)ds (e.g., Klemperer 2004,
p. 41).

To find G?(s), let v7(s) = p/(1 — F7(s)) be the measure of buyers with valuations above
s. Then the probability that s is greater than the valuations of all buyers in an auction
is simply the probability that the number of buyers with valuations above s in an auction
is zero, and by independence, that number is Poisson distributed with parameter 17(s);

hence, G’(s) = e (s, Expected revenue is equal to the expectation of the second highest

20



bid, which we denote Zj. The cumulative distribution function for ZJ — G(z) — can be

calculated as the probability that zero or one buyer shows up from the subset (z, z]:
Gy(2) = GI(2) + p(1 — FI(2))G/(2)
which has density

9(2) =g (2) + [—17 f1(2)GI(2) + 1 (1 — F(2)) g’ (2)]
=/ (1 —F(2))g’(2)

The expectation can then be directly calculated

Blz) = [ s@)dz=mi@) - [ (1= PG dz

O

Proof of Theorem 1. We prove our main theorem in two parts. First, we show existence
with Brouwer’s fixed point theorem. We can characterize equilibria by ordered threshold
pairs (z,,z,) € X? — such that z < x, search into B, x > x, search into A and the rest
do not search — and let T : X? — X? be a mapping from a pair of buyer thresholds to a
new pair that describes those buyers indifferent between searching (either into A or B) and
not searching. Since the buyer distribution is atomless and utilities vary continuously and
monotonically with type, this mapping must also be continuous. The set X? is compact, so
Brouwer’s theorem ensures the existence of a fixed point, which is an equilibrium.

Uniqueness and monotonicity are slightly more involved. First we introduce a bit of nota-
tion. Let x = (x,,x,), and define s(z;x) = u(z) — u?(x) be the difference between A and
B market utilities for a type & buyer — since this depends on the behaviors of other buyers,
we parameterize this by the thresholds. Then let S(x) = (s(x;;x), s(z,;x)) give the market
differences to the threshold types.

By Lemma 3, equilibria are characterized by S(x) = (—¢/p,,¢/p,) = c. Below we show
that the Jacobian of S is everywhere positive and all principal minors are non-vanishing.
Then by Gale-Nikaido, the mapping is one-to-one and hence S(x) = ¢ has a unique solution.
Moreover, by Cramer’s rule, we can sign the terms of the inverse of the Jacobian matrix.
Applying the implicit function theorem to S(x) = ¢ and substituting in the known signs of

the inverse Jacobian matrix gives monotonicity. [
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Lemma 5 (Useful expressions). Let F4 and FP denote the buyer distributions in each mar-
ket, and let G* and GP denote the distributions of the first-order statistics in the respective

auctions. Then

GA(z) = e—hA(1-F4(x)) and GB(y) = e—hP(1-FB(y))
where
() — {#A (F(x) — F(x,)) forz, <z <z,
L [GF (@) — (5 —1) Flz,) — Flay)] forz, <z <3z
5oy ) e (H(y) —H(y,)) fory, <y <uw,
FP(y) = _
L[5 — (5 — D) H(y,) — H(y,)] fory,<y<j¥
where
ph === (2 =1) Fla) - Flay) WP = F(r,) + -2 Flx,)
y=1y(z) y=y(T) Yp = y(xy) Yo = y(7,)

Proof. As before, we will prove the result for the A market. The total measure of buyers in

the A market, normalized by sellers, is given by p?, since

{g[lF(x)] for x >z,
plF(z,) = F2)]+ g1 = F(z,)] forz <z,

The probability that z is above the highest bid in a given auction is the probability that

zero buyers with valuation 2’ > z shows up, or e ¥(*) .6 [

6. Note also the role that independence plays in our analysis: since the number of buyers showing up from
each interval is independent, the above is equivalent to thinking of A auctions as a single-good platform where
the total measure of buyers is 4 and valuations are independently and identically distributed according to
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Proof of Theorem 1: Uniqueness and Monotonicity. To complete the proof, we show that

the Jacobian of S is positive, and then use that fact to sign the inverse of the Jacobian

matrix. Since u(z) = fo * GA(2)dz, and changes to either threshold, z, or x,, only affect

the winning probabilities of buyers with types below those thresholds. The derivatives of

u? and u? with respect to the threshold values will follow almost immediately from the

derivatives of G* and G® with respect to x, and x,. Again letting v(x) be the measure of

buyers in A markets with valuations above z, and taking the derivatives with respect to x,

and z, yields

dv(z)

dz,,

dv(z)

= —puf(z,)for x <z, and 0 otherwise
dx,

1
= —,u(——l) f(z,)for x >z, and O for z < z,
o}

Both inequalities are strict in the case of dv(z)/dx, since the derivative at precisely x,

depends on the direction in which z, is changing.

From this, we can see how G* changes with x, and z,:

Using these expressions in u

dG(x) _ {(é — 1) pf(z,)GNz) forx <z,

dx,, 0 otherwise

dGA(x) _ {uf(mb)GA(xb) for = < x,

dx

a

0 forz >z

a

4 we get

di%u“‘(xb) = G (z,) + pf(z,)u?(z,)
%u“‘(m‘b) = ﬂﬂf(xa)“A(xQ
dixbUA(%) = pf(a,)u”(z,)

d

Utilities on the B side can be expressed equivalently using B valuations (i.e., writing utilities

the population frequencies (since F4 is simply the measure function scaled by p#, the total measure.
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as functions of y, and y,) and B densities; the derivatives with respect to x will involve an
additional y” term. Further simplifications are can be made by observing that h(y)|y’(z)| =

f(z), which we substitute in to the expressions for ds(-)/dx; to get:

Ss() = Gy + 1y (@) G ) + f () [ () + Ty
st = nfa) [y )+ (e, )|

Ts(ea) = ifle) [T Ew(w) + )]

d

Tslay) = G+ @G (a,) + pfa) [ L ) + 0w,

a

The Jacobian is equal to

ds(zy) ds(z,)  ds(z,)ds(z,)
dx, dx dx, dx,

a

(*)

This is strictly positive if ds(z,)/dz, > ds(z,)/dz, and ds(z,)/dx, > ds(x,)/dx,. Using
K, and K, to stand in for large repeated terms above, we find:

d—xbs@b) = K, + pf(x,) [UA(%) + 1 ﬁpuB(%)}
A P B o dS(ﬂZ‘a)
> Ky + pf(zy) [U () + 1 _pu (xa)} =K+ dz,

s(en) = Kot (o) [Pt a,) + ()

where K, and K, are strictly positive. Substituting this into equation (*) above immediately
delivers the strictly positive Jacobian. Finally, a strictly positive Jacobian implies that the

inverse of the Jacobian matrix is signed as follows (Cramer’s rule):

sgn(J 1) = (t ;)

By the implicit function theorem, d(z;,z,)/dc = J~* - d(—c/p,,c/p,)/dc, so dx,/dc < 0
and dx,/dc > 0, as claimed. O
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Proof of Lemma /. Suppose not. Consider the set of individuals that is assigned to sort
into A and those that are assigned to sort into B (we can consider any sets of two possible
strategies and the analysis follows similarly). If the optimal assignment does not have the
structure described in the lemma, then we can find some set X4 of buyers who sort into A,
and another set X? of buyers who sort into B, each of measure € > 0, such that inf X? >
sup X“. That is, there is a set of buyers who sort into B each with strictly higher  than
another set of buyers who sort into A of same measure.

Consider what happens if we change the assignments of X“ and X?; that is, we construct
an alternative assignment that leaves all other search decisions the same, but tells those in
X4 to search into B and those in X7 to search into A. Since X“ and X? have the same
measure, the alternative assignment results in the same measure of bidders in each market.
Furthermore, the value distribution in each auction first order stochastically dominates the
value distribution in the original assignment, since the change is to have replaced a measure
of low valuation buyers with an equal measure of higher valuation buyers. This means that
the distribution of the first-order statistics in the alternative distribution also first-order

stochastically dominate the first-order statistic distributions of the original assignment, since

GA(z) = e~k (1-FA(x))

and p? stays the same in the alternative assignment. This means that E[z,] and Ely,] are
greater under the alternative assignment, and search costs remain the same, so total welfare
is raised by switching strategies. This contradicts the original assumption that the allocation

was socially optimal. O

Proof of Theorem 2. The expression for welfare is

W =a (z—/o GA(x) da:> +(1—a) (y—/OyGB(y) dy> - ((1 _pj‘)”A + “;‘f) c

Taking the derivative of this with respect to x, and z,, using expressions for dG’/dx, from

equation (1) above in the uniqueness proof, gives

aw
dx,

=apf(z,) {— /0 " GA(z) dx + /0 " GB(y) dy — 51
—anfa) |~ () = wP(m) - £

Dby
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aw

== |- [T e s [ 6B a2

—1 - a)uf(a,) | (0 e,) (e -
The terms in brackets are easily signed: when z;, is below the threshold of the market
solution, dW /dx, is positive since u(z,) — u®(y,) < ¢/p,, and similarly, when z, is above
the market solution threshold, dW /dz, is negative. A quick inspection shows that the first
order conditions for the social planner are equivalent to the threshold equilibrium conditions,
so we have (z} = x;, and x} = x,, i.e., the social optimum coincides with the market solution.

Hence, the search equilibrium is efficient in the sense that it maximizes total welfare. [

B. Numerical Implementation (not for publication)

This section contains details regarding our implementation of the numerical results. The
data was generated using code written in C++; performance and accuracy considerations
ruled out the use of Matlab or Mathematica, whose built-in optimization routines performed
poorly for our setting. To avoid rewriting widely used mathematical operations, we used two
third-party open-source libraries: GSL for numerical integration and NLopt for minimization.
Both libraries have been extensively tested for correctness, so we can be confident of our
results even for small magnitudes.

The implementation is quite straightforward: for sets of parameters (z,,x,), we define

utility functions, whose forms are given in the main text, and an error function, e(x,,x,) as

€<xb7xa> = €b<$b7'xa> +€a(xb’xa) (1)
where
|sp(y,2,) — ¢ for @, >0
e(zy,1,) = . (2)
0 otherwise
and

|s,(zy,2,) —c,| forz, <1
Ea(xlﬁ'ra) = { (3)

0 otherwise

The error function is minimized via the SBPLX algorithm, and the numerical minimization

procedure is terminated when € < 1077,
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C. General Sequential Search (not for publication)

This section describes a more general version of our search framework. In particular, we allow
for a continuum of types on both sides of the market, which allows for greater flexibility and
may better accommodate other sequential search settings, such as job search.

We focus on describing match outcomes given search decisions. Individual optimal behavior
may vary greatly depending on the context and allocation mechanisms involved; however,
our framework provides a general and powerful way to describe search outcomes, which are
often necessary to characterize agent utilities.

The set of buyer types is X, Borel-measurable, with measure function M (-) and density
m(-); the set of seller types is Y with measure N(-), density n(:), and total measure 1.
Utilities depend only on types, so we assume that buyer actions are completely determined
by their types. Following the sequential search literature, we can characterize search decisions
by acceptance sets y(z) for each  — that is, a buyer of type = keeps searching until he

draws some y € y(x), at which point he stops. We also let |z| denote the measure of a set z.

Lemma 6. For a seller of type y, the density of buyers he faces is given by

where y(x) is the set of all sellers that x buyers accept.

Sketch of proof. Buyers of type x search into y(x), where the relative density of y sellers is
n(y)/|y(x)|. Hence the density of = buyers is m(z)n(y)/|y(z)|, and the relevant density for

an individual seller is the buyer-seller ratio, so we divide by n(y) to get the result. O
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