
Jonathan Hennessy, Tirthankar Dasgupta*, Luke Miratrix, Cassandra Pattanayak
and Pradipta Sarkar

A Conditional Randomization Test to Account for Covariate
Imbalance in Randomized Experiments

DOI 10.1515/jci-2015-0018

Abstract: We consider the conditional randomization test as a way to account for covariate imbalance
in randomized experiments. The test accounts for covariate imbalance by comparing the observed test
statistic to the null distribution of the test statistic conditional on the observed covariate imbalance.
We prove that the conditional randomization test has the correct significance level and introduce
original notation to describe covariate balance more formally. Through simulation, we verify that
conditional randomization tests behave like more traditional forms of covariate adjustment but have
the added benefit of having the correct conditional significance level. Finally, we apply the approach
to a randomized product marketing experiment where covariate information was collected after
randomization.
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1 Introduction

In the context of randomized experiments, randomization allows for unbiased estimation of average causal
effects and ensures that covariates will be balanced on average. However, chance covariate imbalances do
occur. To quote Senn [1],

A frequent source of anxiety for clinical researchers is the process of randomization, and a commonly expressed worry,
despite the care taken in randomization, is that the treatment groups will differ with respect to some important prognostic
covariate whose influence it has proved impossible to control by design alone.

For the imbalance to be an issue, the covariate needs to be prognostic (i. e. related to the outcome) but the
covariate imbalance does not need to be statistically significant in order to affect the results [2]. Also, Senn
[1] argued that in hypothesis testing, “covariate imbalance is of as much concern in large studies as in small
ones” because “it is not the absolute imbalance which is important but the standardized imbalance and this
is independent of sample size.”

Restricted randomization and blocking are well-established strategies to ensure balance on key covari-
ates. More recently, Morgan and Rubin [3] introduced rerandomization as a way to ensure balance on many
covariates. However, restricted randomization, blocking, and rerandomization are not always feasible.
In the product marketing example that motivated this work, the covariate information was not collected
until after the units were assigned to treatment levels. The experiment involved roughly 2,000 experimental
subjects and each subject randomly received by mail one of eleven versions of a particular product. Each
subject used the product and returned a survey regarding the product’s performance. The outcome of
interest was an ordinal variable with three levels, 1, 2, and 3, and the goal was to identify which product
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version the subjects preferred. The survey also collected covariate information, such as income and
ethnicity, and the experimenters were concerned about the influence of covariate imbalance on their
conclusions.

While several methods exist to analyze ordinal data, including the proportional odds model, randomi-
zation tests are a natural choice because they require no assumptions about the distribution of the outcome.
Randomization tests are unique in statistics in that inference is completely derived from the physical act of
randomization. However, adjusting randomization tests for covariate imbalance is not straightforward. To
quote Rubin [4],

More complicated questions, such as those arising from the need to adjust for covariates brought to attention after the
conduct of the experiment … require statistical tools more flexible than FRTED (Fisher randomization tests for experimental
data).

There are two ways in which randomization tests can be used to adjust for covariate imbalance. One
approach is to adjust the randomization test by modifying the test statistic, e. g., regressing the observed
outcomes on the covariates and defining the test statistic in terms of the regression residuals. The second
approach is to implement a conditional randomization test by conditioning on the covariate imbalance.
In this article, we explore the second approach, i. e., conditioning as a way to adjust randomization tests for
covariate imbalance. The idea of conditioning is not new. Rosenbaum [5] used these tests for inference on
linear models with covariates. Zheng and Zelen [6] proposed using the conditional randomization test to
analyze multi-center clinical trials by conditioning on the number of treated subjects in each center. They
motivated the test primarily through simulations showing that the power of the conditional randomization
test is greater than the power of the unconditional test. While Zheng and Zelen [6] only considered the
multi-center clinical trial, they were confident the idea could be applied more generally.

In Section 2, we review the notation and basic mechanics of randomization tests. In Section 3, we introduce
conditional randomization tests and prove that the test has the correct significance level. In Section 4, we apply
the conditional randomization test to experiments with covariates. In Section 5, we evaluate the properties of the
conditional randomization test via simulation and, in Section 6, we apply the test to the product marketing
example. In Section 7, we summarize our findings and lay out steps for future work.

2 Randomization tests

Randomization tests [7] for randomized experiments have played a fundamental role in the theory and
practice of statistics. The early theory was developed by Pitman [8] and Kempthorne [9]. In fact,
Kempthorne [9] showed that many statistical procedures can be viewed as approximations of randomiza-
tion tests. To quote Bradley [10], “[a] corresponding parametric test is valid only to the extent that it results
in the same statistical decision [as the randomization test].”

To introduce our notation and framework, we briefly review the mechanics of randomization tests and
prove that they are valid. This formulation will allow us to more easily articulate the impact of conditioning
later on. Consider a fixed sample of N subjects or experimental units. Following Splawa-Neyman et al. [11] and
Rubin [12], let Yi(1) and Yi(0) be the potential outcomes for subject i under treatment and control, respectively.
These are the outcomeswewould see if wewere to assign a unit to treatment or control, and are considered to be
fixed, pre-treatment values. Such a representation is adequate under the Stable Unit Treatment Value
Assumption [13, 14], called SUTVA, which states that there is only one version of the treatment and that there
is no interference between subjects. We focus on finite sample inference, meaning we take the sample being
experimented on as fixed. Consequently, we can assemble all our potential outcomes into a “Science Table” that
fully describes the sample. The Science Table is essentially a rectangular array denoted byS inwhich each of the
N rows represents an experimental unit, the first two columns encode the two potential outcomes, and each of
the remaining columns encode any covariates.
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The individual or unit-level treatment effect for subject i is then defined as a given comparison between
Yi(1) and Yi(0). In particular, we focus on individual treatment effects of the form, τi = Yi(1)–Yi(0), though
other comparisons are possible. Of course, we cannot observe both potential outcomes because we cannot
simultaneously assign a unit to treatment and control. We instead observe Yobs

i =WiYi 1ð Þ+ 1−Wið ÞYi 0ð Þ,
where Wi is the binary treatment assignment variable that takes the value 1 if unit i is assigned to treatment
and zero otherwise. We can record the entire assignment as a vector, W = (W1, ..., WN). We also have the
number of treated units NT =

PN
i= 1 Wi and the number of control units NC = N – NT. In randomized market-

ing experiments that motivated our work, NC and NT are typically pre-fixed, although there are several
examples of randomized experiments where it is not possible to pre-fix these quantities (e. g., in medical
research). The vector of observed outcomes Yobs can be written as Yobs(S, W) to show its explicit dependence
on S and W, and is random because of the randomness of W.

We also have the assignment mechanism, p(W), a distribution over all possible treatment assignments.
We define s, the set of acceptable treatment assignments, as the set of all possible (allowed) assignment
vectors W = (W1, ..., WN) for which p(W) > 0. In most typical experiments, all treatment assignments in
s are equally likely. For instance, in the completely randomized design, p wð Þ= N

NT

� �− 1
for any w such thatP

wi =NT .
Most randomization tests evaluate the Fisher sharp null hypothesis of no treatment effect:

H0 :Yi 1ð Þ=Yi 0ð Þ for i= 1, ...,N.

To test this null, the experimenter first chooses an appropriate test statistic

t W ,Yobs,X
� �≡ t W ,Yobs

S,Wð Þ,X� �
, (1)

a function of the observed outcomes (and consequently of the Science Table and the treatment assignment)
and the covariates. Let w denote the observed assignment vector (realization of W) and yobs denote the
observed data (realization of Yobs). The observed value

tobs ≡ t w, yobs,X
� �≡ t w,Yobs

S,wÞ,Xð Þ�
(2)

of the test statistic is then compared to its randomization distribution under the sharp null.
To generate this randomization distribution, the missing potential outcome in each row of the Science

Table is imputed with the observed value in that row, because under the sharp null the observed outcome
and the missing outcome for any unit are equal. One therefore has a Science Table that is complete under
the null hypothesis. This table can be used to obtain the null distribution of t by calculating the value of
t from the outcomes that would be observed under each possible assignment vector in s. Finally, an
extreme (to be defined in advance by the experimenter) observed value of the test statistic with respect to its
null distribution is taken as evidence against the sharp null, and the sharp null is rejected if the observed
value of the test statistic is larger than a pre-defined threshold. This can be formally described by the
following four steps:
1. Calculate observed test statistic, tobs = t(w, yobs, X).
2. Using w, yobs and the sharp null hypothesis, fill-in the missing potential outcomes and denote the

imputed potential outcomes table by S
imp. Under the sharp null hypothesis of no treatment effect,

S
imp = S.

3. Using S
imp and p(W), find the reference distribution of the test statistic

t ~W ,Yobs
S
imp, ~W

� �
,X

� �
≡ t ~W , yobs,X

� �
, (3)

where ~W is a draw from p(W). Note that (3) holds because

Yobs
S
imp, ~W

� �
≡Yobs

S, ~W
� �≡ yobs
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by the equality of Simp and S under the sharp null hypothesis.

4. Next we define the p-value, given an ordering of possible t from less to more extreme. For example,
using the absolute value of t as the definition of extremeness, the p-value is

p=Pr t ~W , yobs,XÞj ≥ jtobsj� �
.

�
(4)

5. Reject the sharp null hypothesis if p ≤ α.

Because s and p(W) are used both to initially randomize the units to treatment and control and also to test
the sharp null hypothesis, randomization tests follow the “analyze as you randomize” principle due to
Fisher [7].

With the above description of the randomization test, it is straightforward to establish its validity,
i. e., the fact that it has unconditional significance level α. Let U denote a random variable that has the
same distribution as that of t ~W , yobs,X

� ��� �� and let FU(·) denote the cumulative distribution function (CDF)
of U. Then, successive application of (4) and (2) yields

p= 1− FU tobs
�� ��� �

= 1− FU t w,Yobs
S,wð Þ,X� ��� ��� �

.

The distribution of p over all possible observed randomizations is the same as the distribution of

1− FU t W ,Yobs
S,Wð Þ,X� ��� ��� �

,

which, under the sharp null hypothesis has the same distribution as that of 1–Fu (U) by the equivalence of
t W ,Yobs

S,Wð Þ,X� ��� �� and t W , yobs,X
� ��� ��. If FU (·) is a CDF, which is continuous by definition, then by the

probability integral transformation, p will have a uniform [0, 1] distribution under the sharp null. However,
due to discreteness of the randomization distribution, p stochastically dominates U ~ uniform [0, 1], and it
follows that:

Pr p ≤ αjH0ð Þ ≤Pr U ≤ αjH0ð Þ ≤ α, for all α,

proving that the randomization test has unconditional significance level α.

3 Conditional randomization tests

We begin the discussion of conditional randomization tests by reviewing some history and arguing that they
are appropriate to account for covariate imbalance observed after the experiment is conducted. While Cox [15]
introduced the conditional randomization test, the idea of conditional inference can be traced back to Fisher
and his notion of relevant subsets [16]. Conceptually, testing the null of θ= θ0 for some parameter is done by
comparing the observed data to hypothetical observations that might have been observed given θ0. To do this,
we need to select the sets of hypothetical observations that should be used as a point of comparison. Fisher
believed this set should not necessarily include all hypothetical observations and should be chosen carefully.
He called this set the relevant subset of hypothetical observations. To quote [17], relevant subsets

should be taken to consist, so far as is possible, of observations similar to the observed set in all respects which do not give
a basis for discrimination between possible values of the unknown parameter of interest.

The idea of “observations similar to the observed set” is admittedly vague, and it is not immediately
obvious why a subset of the hypothetical observations should lead to better inferences. The idea and
its implications have been extensively studied and debated in the statistics literature. See, for example
Cox [17], Kalbfleisch [18], and Helland [19]. However, certain principles have become well established and
we focus on those.
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Relevant subsets are closely related to ancillary statistics. By definition, the distribution of ancillary
statistics do not depend on the unknown parameter of interest. Also, observations with the same value of
the ancillary statistic share some similarity to each other. Because ancillary statistics do not depend on
the parameter of interest, different observations with the same value of the ancillary statistic should not
favor one parameter value over another. Thus, such observations form a relevant subset. The temperature
testing example by Cox [17] is perhaps the best known example of this idea. Birnbaum [20] formalized this
notion as the conditionality principle. The conditionality principle applies when running an experiment
E by first randomly selecting one of several component experiments E1, ..., Em and, second, running the
selected experiment. The conditionality principle says that the evidential meaning of the experiment is
the same as the meaning of the randomly selected component experiment. As Kalbfleisch [18] put it,
which experiment was selected is an experimentally ancillary statistic. More colloquially, “any experiment
not performed is irrelevant” [19]. Overall, this suggests that we compare what we have to the distribution
of what we would have had under the null, given that any ancillary (unrelated) pieces of information
(such as realized number of units treated) matches.

3.1 Conditional randomization test mechanics

Our development of the conditional randomization test parallels Kiefer’s [21] development of the conditional
confidence methodology, especially the notion of partitions. Let s1, ...,sm partition the set of acceptable
treatment assignments, s, such that si ∩sj =� for all i≠ j and ∪ m

1 = 1si =s. Then for any observed and
allowed random assignment w, define s(w) as the (unique) partition containing w. We shortly discuss
different ways in which s1, ...,sm are constructed, but for now, assume that the partitions as given.

Thus, we can frame this experiment as a mixture of component experiments, where each partition
corresponds to a component experiment. Following the conditionality principle, we should then only
consider the selected partition of treatment assignments when carrying out the test.

In a conditional randomization test, we define the “reference set” sref as the partition that contains the
observed treatment assignment. Then we use sref to generate draws from the randomization distribution.
We emphasize this by writing sref = sref(w). Consequently, conditional randomization tests do not entirely
follow the “analyze as you randomize” principle. It is worthwhile to note here that in the unconditional
randomization test, the reference set sref is the same as the set s of all acceptable treatment assignments.

As we did for randomization tests, we lay out the steps of the conditional randomization test. Given an
observed treatment assignment, W = w, from s and, observed Yobs = yobs, take the following steps:
1. Calculate observed test statistic, tobs ≡ t w, yobs,X

� �≡ t w,Yobs
S,wÞ,Xð Þ.�

2. Using w, yobs, and the sharp null hypothesis, impute the potential outcomes table S
imp, which equals

S under the sharp null.
3. Using S

imp and p W jW 2 sref wÞð Þ,ð find the conditional reference distribution of the test statistic
t ~W ,Yobs

S
imp, ~WÞ,XÞ≡ t ~W , yobs,X

� �
,

��
given that ~W 2 sref wð Þ, where ~W is a draw from p(W).

4. Next we define the p-value as:

p= Pr
���t ~W , yobs,X
� ���� ≥ tobs

�� ����� ~W 2 sref wÞð Þ.
�

(5)

5. Reject the sharp null hypothesis if p ≤ α.

3.2 The validity of the conditional randomization test

The conditional randomization test is valid if the test unconditionally rejects the sharp null with probability
≤ α. We show this now by relying on the validity of the unconditional randomization test. Define a
sequence of p-values p1, ..., pm, where
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pi = Pr t ~W , yobs,X
���� ≥ tobs

�� ����� ~W 2 si

� �
,

���� (6)

and define the rejection rule as pi ≤ α if our observed randomization w is in si. Then, the probability of
rejecting the sharp null hypothesis when it is true is:

Pm
i= 1

Pr pi ≤ αjH0
W 2 si

� �
Pr W 2 sið Þ

≤
Pm
i= 1

αPr W 2 sið Þ, by the validity of the unconditional randomization test,

= α

Thus, the conditional randomization test has unconditional significance level α. There are some restrictions
on the partitions, s1, ..., sm. For a given partition, si, in order for the p-value to ever be ≤ α, the number
of elements in si must be ≥ α−1. Otherwise, even the most extreme value of the test statistic would not lead
to the sharp null being rejected.

Additionally, in order for the test to have significance level α, the partitions must be specified before the
experimenter has access to the observed outcomes. Otherwise, the experimenter could consciously or
subconsciously manipulate the inference by changing the reference distribution. This follows Rubin’s
principle of separating design from analysis; see, for example, Rubin [22].

4 Implementation of conditional randomization tests:
partitioning of treatment assignments and test statistics

Having described the conditional randomization test and its mechanics, we now need to address the
following issues:
1. How to partition the set of acceptable treatment assignments. Since our research was motivated by the

need to adjust for covariate imbalance across treatment groups observed after conducting the experi-
ment, a natural strategy is to use a measure of covariate balance across treatment groups as a
partitioning variable (or variables). We discuss how to do this.

2. How to select a test statistic to use for the conditional randomization test. For example, should the test
statistic be adjusted for covariate imbalance by regressing the observed outcome on the covariates and
re-defining it in terms of regression residuals, as done by Rosenbaum [23]?

4.1 Partitioning of treatment assignments using a covariate balance function

The overall logic behind using covariate balance to partition treatment assignments is simple: in a balanced
randomization, even small deviations of the test statistic will tend to be relatively rare and we should reject
accordingly if they are observed. In an imbalanced randomization, however, it is easier to have extreme
values of the statistic, so we should not reject in such circumstances. Thus the location and spread of the
reference distribution should reflect this. We first illustrate this aspect with an example. Consider an
experiment with N = 100 units assigned according to a completely randomized design where
NT = NC = 50. Let the sharp null hypothesis of no treatment effect be true and the test statistic be
t = �Yobs

T − �Yobs
C , where �Yobs

T and �Yobs
C respectively denote the average observed outcomes of units exposed

to treatment and control. We observe some continuous outcome such as health. We also observe the
covariate of the units’ sex: there are 50 males and 50 females. For the sake of the example, assume that
males tend to have higher potential outcomes than females.
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The experimenter assigns units to treatment and control but ends up with an unbalanced treatment
assignment with NT1 = 35 men in the treatment group and NC1 = 15 men in the control group. This covariate
imbalance creates complications: males and females have different potential outcome distributions and so
even under the null we would expect a positive difference in the groups. At this point, the experimenter
knows that the probability of rejecting the sharp null is much higher than 0.05.

This is illustrated on Figure 1. The unconditional distribution of the test statistic is the solid black line
and the black dotted lines at –2 and 2 mark the rejection region for the unconditional test. The
unconditional probability the experimenter observes a test statistic in the rejection region is 0.05. The
distribution of the test statistic conditioned on NT1 however, is the red line; the probability of being less
than –2 or greater than 2 is 0.2. The red dotted lines mark the conditional rejection region based on the
conditional distribution. Now, given NT1 = 35, the experimenter faces a choice: use the unconditional
test, knowing the randomization went poorly, or use the conditional test and have conditionally valid
results. We believe the latter choice is correct; it is essentially adjusting the test based on the distribution
of the covariates. This is philosophically similar to the practice of using the covariates to construct an
adjusted test statistic [5].

We construct a conditioning partition by grouping potential assignment vectors using similarity on “balance.”
To do this, we first need a measure of balance, which we formalize now. Let the covariate balance function
B(w, X) be a function of w and X. The covariate balance function reports a relevant summary of the covariate
distribution for each level of the treatment. For instance, if the mean and variance are appropriate summaries
of the covariate distribution, the covariate balance function should report the mean and variance of each
covariate for each treatment level.

We can use the covariate balance function to partition the set of treatment assignments. Let b be the
set of all possible values of covariate balance function. For each b 2 b, let sb = w :B w,Xð Þ = bf g be the set
of treatment assignments with the same value of the covariate balance function, where Ubϵbsb = s.
We carry out the conditional randomization test using these partitions.

For categorical covariates, we can define the covariate balance function in terms of the cells of a
contingency table where the rows are the levels of the covariate and the columns are the treatment levels.
We start with the case of a single categorical covariate with J levels and a treatment with K levels, visualized
in Table 1. A natural covariate balance function is the contingency table itself (i. e. the matrix of internal
cells, [Nj,k]). Thus, B(w, X) = [Nj,k] and if B(w, X) = b, then sb is made up of those treatment assignments
that produce contingency table b.

Figure 1: Unconditional and conditional distributions of test statistic.
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We can also use the contingency table when there are multiple categorical covariates. The combinations of
the categorical covariates (i. e. the Cartesian product) can be treated as the levels of a single categorical
covariate. As an example, consider the case of two binary categorical covariates, X1 and X2, and a binary
treatment. The contingency table considering all combinations of the covariates is shown in Table 2.

In this case, we could let the covariate balance function be the contingency table. However, such a
covariate balance function implies that the interaction between X1 and X2 is as important as X1 and X2

individually. While plausible in some contexts, the interaction is generally less prognostic. The number of
units with X1 = 1 assigned to treatment and the number of units with X2 = 1 assigned to treatment are
typically of greater interest. We therefore might instead use a covariate balance function of

B w,Xð Þ= N10, 1 +N11, 1, +N01, 1 +N11, 1ð Þ. (7)

where N10,1 + N11,1 is the number of units assigned to treatment with X1 = 1 and N01,1 + N11,1 is the number
of units assigned to treatment with X2 = 1. If B(w, X) = b, sb consists of treatment assignments that
produce the observed contingency table as well as treatment assignments that produce different contin-
gency tables consistent with the marginal balance function B(w, X) = b.

The covariate balance function could also make use of a cluster analysis or other methods of dimension
reduction. In a cluster analysis, observations are assigned to clusters such that the observations within each
cluster are more similar to each other than to those observations in other clusters. Popular clustering
methods include k-means for continuous variables and k-modes for categorical variables [24]. Clustering
methods also exist for data sets with both continuous and categorical variables [25, 26]. Once the clusters

Table 1: Single categorical covariate: For the case of one
categorical covariate, the contingency table summarizes
the distribution of the covariate in each level of the
treatment. For a completely randomized design, a natural
covariate balance function is the matrix of internal cells.

W
  … K

X

 N, N, … N,K N,.
 N, N, … N,K N,.
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
J NJ, NJ, … NJ,K NJ,.

N., N., … N.,K N.,.

Table 2: Multiple categorical covariates:
For the case of two categorical covariates,
the combinations of the two categorical
covariates can be treated as the levels of a
single categorical covariate.

W
 

X = , X =  N, N, N,.
X = , X =  N, N, N,.
X = , X =  N, N, N,.
X = , X =  N, N, N,.

N.., N.., N..,.
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have been formed, the covariates can be replaced with a single categorical covariate indicating cluster
membership. The covariate balance function would then be the number of treated units within each cluster.
We explain this approach further using the example of our marketing experiment in Section 6.

Many categorical or truly continuous variables will give partitions containing very few, or even only
one, possible treatment assignment. Recall from earlier that, if we want any power, we require sbj j > α− 1

to allow for the size of the conditional test to be bounded by α. For continuous covariates one possible
remedy is to coarsen (i. e. round) the continuous covariates such that there are enough treatment
assignments with the same covariate balance. For example, one might create income buckets, such at
$20,000-$40,000, etc. Such an approach destroys some information but hopefully not too much if carried
out with the help of a subject matter expert. This is reminiscent of Coarsened Exact Matching [27], in
which all covariates are discretized and balance is described by the number of units in each combination
of the categorical covariates for each treatment level. Because the covariates in our motivating example
are all categorical, we focus on the categorical covariate case and leave the continuous case for future
work.

4.2 Choice of test statistic

A common test statistic in two-level randomized experiments (e. g., treatment-control studies) is the simple
difference of the observed outcomes in the treatment and control groups, i. e.

bτsd = �Yobs
T − �Yobs

C , (8)

where �Yobs
T and �Yobs

C denote the average observed responses in the treatment and control group respectively.
A standardized version of bτsd can also be used. However, keeping in mind the alternative strategy of
adjusting randomization tests for covariate imbalance by modifying the test statistic, one may be tempted to
use an adjusted test statistic for conditional randomization tests as well.

A popular method of adjusting randomization tests for covariate imbalance is to first regress the
observed potential outcomes on the covariates. The residuals from the regression are treated as the
“adjusted outcomes” and the randomization test is carried out by calculating the test statistic using the
adjusted outcomes in place of the observed potential outcomes. For instance, if Yobs

i is continuous we can
let the residuals be

eobsi =Yobs
i − f Xið Þ (9)

where f(·) is a flexible, potentially non-parametric, function that does not depend on Y under the null.
The test statistic can be, for instance, the difference between the mean of the residuals in the treatment and
control group,

bτres = �eobsT − �eobsC . (10)

This approach is described in both Raz [28] and Rosenbaum [23]. Tukey [29] also described a similar
procedure but recommended first creating “compound covariates,” typically linear combinations of existing
covariates, and using the compound covariates in the regression, which is similar in spirit to principal
component regression. If the outcome is discrete, Gail et al. [30] proposed using components of the score
function derived from a generalized linear model as the adjusted outcome.

When the covariate is categorical, this adjustment is often called post-stratification and we refer to the
levels of the covariate as strata. Pattanayak [31] and Miratrix et al. [32] studied post-stratification from the
Neymanian perspective and derived the unconditional and conditional distributions of two estimators. The
post-stratified estimate of treatment effect (which can be used as a test statistic) is defined as
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bτps = XJ

j= 1

Nj

N
bτsd;j, (11)

where bτsd;j denotes the standard test statistic given by (8) for the jth stratum for j = 1, ..., J.
We now state a result which shows that the conditional randomization tests using bτsd and bτps are

equivalent, if there is one categorical covariate.

Proposition 1. Let X denote a categorical covariate with J levels, observed after a two-armed randomized
experiment is conducted with N units. Let Nj denote the observed number of units that belong to stratum j,
and let NTj and NCj denote the number of units assigned to treatment and control respectively, in stratum
j, such that NTj + NCj = Nj, and

PJ
j= 1 Nj =N. Then the conditional randomization test using the standard test

statistic bτsd defined by (8) and the balance function (NTI, ..., NTJ) is equivalent to the conditional randomi-
zation test using the composite test statistic bτps defined by (11).

Proposition 1 can be proved by adapting a proof from Rosenbaum [5], and arguing that bτps is a
monotonic function of bτsd. Please refer to Appendix A for details. It is worthwhile to note that the fact
that bτsd and bτps leads to the same conditional randomization test procedure can be intuitively understood
from the fact that bτps itself can be viewed as a “conditional estimator.” Also, the equivalence of the two
procedures does not necessarily mean that the test statistics are equally advantageous and disadvantageous
under all situations. Using bτps has some advantages. For example, Ding [33] showed that asymptotic
Neymanian inference sometimes gives more powerful tests, and thus using bτps and its Neymanian variance
to test the null hypothesis may be a better choice in terms of power. On the other hand, bτps may be
disadvantageous to use when the number of categories of the discrete covariate is large because bτps has bad
repeated sampling properties with finite samples.

We conclude this Section with the remark that using a conditional randomization test or using a
randomization test with an adjusted statistic are both more robust strategies than ANCOVA, which
involves regressing yobs on w and X and testing the treatment effect by carrying out a t or F test for
the inclusion of w, because randomization-based methods do not assume that the model is correctly
specified. The nominal size for the randomization test using the residuals is maintained even when
relevant covariates are not included in the regression and the assumed distribution for the outcome is
incorrect. Stephens et al. [34] carried out an extensive simulation study to compare such randomization
tests to model-based regression approaches, including Zhang et al.’s [35] semi-parametric estimator. They
found that the model based approaches often inflate the probability of Type I error, whereas permutation
methods do not.

5 Simulation study

We next illustrate via simulation the unconditional and conditional properties of the conditional randomi-
zation test as compared to two unconditional randomization tests. For this simulation, the relevant
unconditional properties of the tests are the average rejection rates over repeated runs of the experiment.
The conditional properties of the test are the average rejection rates where the covariate balance is held
fixed. For a given experiment, the conditional rejection rates are arguably more relevant than the uncondi-
tional rejection rates. While the unconditional rejection rates measure the performance of the test over all
treatment assignments, the conditional rejection rates measure the performance of the test for treatment
assignments like the observed one.

We examine a completely randomized design with two treatment levels and a categorical covariate
Bi 2 f1, ..., Jg. Define dummy variables Xij with Xij = 1 if unit i is in stratum j and 0 otherwise. NT units are
assigned to treatment and NC = N – NT units are assigned to control. Let the covariate balance function be
the number of treated units in the strata,
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Bðw,XÞ= ðNT1, ...,NTJÞ, (12)

with NTj the number of treated units and Nj the number of units in the jth stratum. Then NT =
PJ

j= 1 NTj and
NC =

PJ
j= 1 NCj.

We compare the conditional and unconditional randomization tests over several simulation settings
and with both bτsd, the simple difference statistic, and bτps, the post-stratified test statistic. Since the
conditional randomization tests with bτsd and bτps are equivalent, we only report results for the conditional
randomization test using bτsd. We let N = 100, NT = 50, and NC = N – NT = 50. We also let the number of
strata be J = 2 and N1 = N2 = 50. See Table 3. Because there are only two strata and two treatment levels,
the covariate balance function is completely determined by NT1, the number of treated units in the first
stratum.

We generate the Science Table, the complete potential outcomes table, by varying two parameters, τ and
λ. Here, τ is the additive unit-level treatment effect and λ measures the association between X and Y(0) (i. e.
the prognostic ability of X).

τ=Yið1Þ−Yið0Þ
λ= EðYð0ÞjX = 2Þ− EðYð0ÞjX = 1Þ (13)

We let τ take on one of 11 values, τ 2 f0, 0.1, 0.2, ..., 1g and λ take on one of three values, λ 2 f0, 1.5, 3g.
We generate the complete potential outcomes by first drawing Yið0ÞjXi and then filling in Yi(1) as follows.

Yið0ÞjXi ⁓ NðλXi, 1Þ
Yið1Þ=Yið0Þ+ τ

After generating the potential outcomes, we randomly assign units to treatment and control and record
whether each of the three tests (two unconditional tests and one conditional test) rejects the sharp null,
H0: Yi(1) = Yi(0) for i = 1, ..., N, at the 0.05 significance level. We repeat this 1,000 times and record the
average rejection rate for each test.

We randomly assign the units in one of two ways. We either assign them using the completely randomized
assignment mechanism or we assign them holding NT1 fixed at either 25, 30, 35, or 40. Assigning the units using
the completely randomized assignment mechanism allows us to evaluate the unconditional properties of the
test and holdingNT1 fixed allows us to assess the conditional properties of the test (i. e. how the test performs for
particular values ofNT1). Since we are implicitly interested in situations where the covariate is prognostic, when
evaluating the conditional properties, we let λ = 3.

5.1 Unconditional properties

Figure 2 reports the unconditional rejection rates for different values of τ and λ. The units were assigned
using the completely randomized assignment mechanism.

Table 3: Simulation design: We use a
completely randomized design where
N = 100 and NT = 50.

W
 

X
 NT NC N = 

 NT NC N = 

NT =  NC =  N = 
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When λ = 0, Figure 2(a), the covariate is not prognostic and the three tests are virtually the same. All reject
the null hypothesis with probability 0.05 (the horizontal dotted line) under the null of τ = 0, and, as
expected, the power increases as τ increases. In Figure 2(b), the covariate is more prognostic, λ = 1.5, and
the unconditional test using bτps and the conditional test appear unchanged but the power of the uncondi-
tional test using bτsd, shown in the black line, falls. The unconditional test using bτsd is the one test that
ignores the covariate balance. It is more of the same in Figure 2(c), where again the unconditional test usingbτps and the conditional test appear unchanged. However, the power of the unconditional test using bτsd falls
even lower. In summary, as the covariate becomes more prognostic, the power of the unconditional test
using bτsd decreases while the power of the other two tests remain the same. We should adjust for covariate
imbalance either by modifying the test statistic or by conditioning, but little distinguishes between the two
approaches.

5.2 Conditional properties

Figure 3 reports the conditional rejection rates for the three tests under the most prognostic scenario,
varying the values of τ and NT1. In all subfigures λ = 3.

When NT1 = 25, Figure 3(a), the prognostic covariate is perfectly balanced. When τ = 0, both the
unconditional test using bτps and the conditional test reject the sharp null with probability 0.05.
The unconditional test using bτsd rejects the sharp null with probability less than 0.05. A simple
argument explains this phenomenon: because the covariate is perfectly balanced, EðbτsdjNT1 = 25Þ=0,
the value of τ. The unconditional randomization test using bτsd compares the test statistic to a reference
distribution centered at 0 with variance varðbτsdÞ; however, conditioned on NT1 = 25, the observed test
statistics have a smaller actual variance, i. e., varðbτsdÞ > varðbτsdjNT1 = 25Þ because the covariate is

Figure 2: Unconditional average rejection rates for different τ and λ.
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prognostic. Because of this, the test statistics rarely end up in the tails of the reference distribution and
the rejection rate is less than 0.05.

As we move from perfect covariate balance to covariate imbalance, Figure 3(b), the unconditional test
using bτps and the conditional test appear unchanged, but the unconditional test using bτsd begins to
break down. When τ=0, EðbτsdÞ=0 but because the covariate is prognostic, EðbτsdjNT1 = 30Þ < 0. Thus, the
unconditional test is comparing the observed test statistics, which tend to be negative, to a reference
distribution centered at 0. As seen in Figure 3(b), this gives a rejection rate greater than 0.05 when τ = 0.
As τ increases, EðbτsdjNT1 = 30Þ increases since the positive treatment effect counteracts the effect of the
covariate imbalance. Thus, the observed test statistics are pushed closer to 0 and the rejection rate falls.
Eventually, the treatment effect overcomes the covariate imbalance and the rejection rate begins to rise,
which we see at τ = 1.

In Figures 3(c) and 3(d), as the covariate imbalance increases, the unconditional test using bτsd repeats this
pattern. More interestingly, as the covariate imbalance increases, we also begin to see differences between the
unconditional test using bτsd and the conditional test. In Figure 3(d), for example, the unconditional test usingbτps rejects the sharp null with probability over 0.05 when τ = 0: the test has the wrong conditional
significance level. In contrast, although the power of the conditional test has dropped slightly, its conditional
significance level is still 0.05. The key to understanding why the conditional significance level is incorrect for
the unconditional test using bτps is that the conditional variance of bτps increases with the covariate imbalance.
Thus, var bτpsjNT1 = 40

� �
> var ðbτpsÞ and the observed test statistics are more spread out than the reference

distribution they are being compared to.
The unconditional properties supported the notion that we should adjust for covariate imbalance either

by modifying the test statistic or by conditioning. The conditional properties indicate that only modifying
the test statistic is inferior to conditioning because unconditional tests with modified test statistics can still
have the wrong conditional signficance level.

Figure 3: Conditional average rejection rates for different τ and NT1: In all simulations, λ = 3.
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6 Product marketing example

Our product marketing experiment involved roughly 2000 experimental subjects and K = 11 treatment
levels, which were eleven versions of a particular product. Each subject randomly received by mail one
of the products. Each subject used the product and returned a survey regarding the product’s perfor-
mance. The outcome of interest was an ordinal variable with three levels, 1, 2, and 3 (with 3 being the
best), and the goal was to identify which product version the subjects preferred. The survey also
collected covariate information, such as income and ethnicity, and the experimenters were concerned
about the effect of covariate imbalance on their conclusions. Critically, covariate information was not
collected until after the units were assigned to treatment and thus blocking and rerandomization were
not possible.

After removing observations with missing values under the assumption that missingness is not related
to the product, there were N = 2256 experimental units. The number of units assigned to each treatment
level is given on Table 4.
We first conduct an omnibus test and then a set of pairwise tests. In the omnibus test, we test the sharp null
hypothesis that all K unit level potential outcomes are equal:

H0 :Yið1Þ = ... =Yið11Þ for all i= 1, ...,N. (15)

If we reject the sharp null, we move on to the pairwise tests, where we compare all
11
2

� �
= 55 pairs of

treatments to rank the products.

For the omnibus test, we use the Kruskal-Wallis statistic as the test statistic [36]. This statistic is
typically used in the Kruskal-Wallis test, a non-parametric test similar to one-way ANOVA, and is similar
to the F-statistic in that it is a ratio of sum of squares. Larger values of the statistic indicate that the
treatment levels are different. The test statistic is given by

ðN − 1Þ
PK

j= 1 Njðrobsj − robsÞ2PN
i= 1 ðrobsi − robsÞ2

, (16)

where robsj is mean rank in the jth treatment level and robs is the mean rank overall. In our example, the
response is ordinal, and thus we can directly use the observed data y instead of the ranks r in (16).

For the pairwise test, we use the difference of the mean ranks as the test statistic. While testing the
difference between treatment groups j and ej, we use observed outcomes only from those units that are
assigned either to treatment j or ~j.

To explore the difference between the conditional and unconditional tests, we first analyze the data
from the unconditional perspective, and then re-analyze the same data conditioning on blocks formed out
of covariates. For both the omnibus and pairwise tests, the randomization distributions of the test statistics
were obtained from 1000 permutations in each case. We first report the results of the unconditional
versions of the omnibus and pairwise tests, followed by the conditional tests. We do not consider

Table 4: Number of units assigned to each treatment level: The number of units
assigned to each treatment level was relatively equal.

Treatment

          

# of Units           

Percentage           
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adjustments for multiple testing, because that is not the focus of this paper. To account for multiple testing,
one can use simple but conservative methods like the Bonferroni correction or methods that control the
False Discovery Rate but the procedures proposed in this paper remain exactly the same.

6.1 Unconditional test

The results of the unconditional omnibus test using the Kruskal-Wallis statistic is shown in Figure 4, in
which the vertical red line is the observed value of the test statistic and the dashed line is the 95th quantile
of the reference distribution. The histogram is the (unconditional) distribution of the test statistic under the
sharp null hypothesis. The observed test statistic is 18.92, and the p-value is approximately zero. Thus there
is a very strong evidence that the products are different.

The results of the pairwise tests are summarized in Table 5, in which treatments are arranged in descending
order with respect to their average outcomes (treatment 1 has the largest average whereas treatment 7 has
the smallest). From Table 5 we observe that treatment 1 appears to be the most favored one, although the
difference between treatments 1 and 2 is not statistically significant at level 0.05. Next, we perform the
conditional test to check if these two treatments can be separated further by conditioning on the observed
covariate distribution.

6.2 Conditional tests

For this analysis, we consider the following eight covariates, all of which are categorical: (i) order of
detergent (3 levels), (ii) under stream (2 levels), (iii) care for dishes (5 levels), (iv) water hardness (5 levels),
(v) consumer segment (4 levels), (vi) household income (11 levels), (vii) age (6 levels) and (viii) hispanic (2
levels). This gives 3 × 2 × 5 × 5 × 4 × 11 × 6 × 2 = 79200 different unique combinations of our covariates.
To reduce the number of potential categories, we then cluster the observations based on these covariates
(but not outcomes or treatment assignment) to create a new pre-treatment categorical covariate that we can

Figure 4: Unconditional randomization test using Kruskal-Wallis test statistic.
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condition on. We consider clustering a simple but useful first step in carrying out a conditional randomiza-
tion test. The advantage of the clustering method is that we can replace the eight categorical covariates with
one categorical covariate, the cluster indicator.

Because the covariates are categorical, we use the k-modes algorithm introduced by Huang [24], which
extends the k-means algorithm to handle categorical variables. Details of this step are described in
Appendix B, in which we make an attempt to identify the correct number of clusters using an elbow plot
shown in Figure 5. It appears from the plot that choosing the optimum number of clusters as seven is a
reasonable choice. Table 6 shows the two-way distribution of experimental units over the seven clusters
and assigned treatments.

We then carry out the conditional randomization test by conditioning on the number of units in each cluster
assigned to each treatment level. The result of the omnibus test is similar to that of the unconditional test,
and the p-value is approximately zero. We next perform the pairwise conditional test, and the results are
summarized in Table 7. Comparing the p-values in Tables 5 and 7, it appears that the conditional test
provides us with marginally stronger evidence that treatment 1 is better than treatment 2. We thus conclude
that product 1 is the most preferred product and that versions 1, 2, 5, and 4 are clearly preferred to the seven

Table 5: The p-values for unconditional pairwise tests.

          

 . . . . . . . . . .
 . . . . . . . . .
 . . . . . . . .
 . . . . . . .
 . . . . . .
 . . . . .
 . . . .
 . . .
 . .
 .


Figure 5: The elbow is determined at k = 7, the vertical dashed line.
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other products. Product 7 is definitively the worst. Note that in this example, the improvement achieved by
conditioning is marginal. A plausible explanation is that the covariates were actually not as prognostic as
they were believed to be.

7 Conclusion

We considered conditional randomization tests as a form of covariate adjustment for randomized experi-
ments. Conditional randomization tests have received relatively little attention in the statistics literature
and we built upon Rosenbaum [5] and Zheng and Zelen [6] by introducing original notation to prove that
the conditional randomization test has the correct unconditional significance level and to describe covariate
balance more formally. Our simulation results verify that conditional randomization tests behave like more
traditional forms of covariate adjustment but have the added benefit of having the correct conditional
significance level.

The conditional randomization test conditioning on the observed covariate balance shares similarities
with rerandomization [3]. Rerandomization is a treatment assignment mechanism that restricts s to the set
of treatment assignments which satisfy a pre-determined level of covariate balance. A balance criterion,
B(w, X), determines if the treatment assignment is acceptable, B(w, X) = 1, or unacceptable, B(w, X) = 0.
Thus, s = {w: B(w, X) = 1}. As a result, the observed treatment assignment is guaranteed to be balanced on
covariates. The experiment is then analyzed using a randomization test where the reference set is s.

The conditional randomization test is like a POST-HOC RERANDOMIZATION TEST. In a conditional randomization
test, we observe some treatment assignment, w and covariate balance, B(w, X) = b, and then act as if that
treatment assignment were drawn from some partition with the same covariate balance, sb.

Table 6: Clusters and treatment levels: The rows are the seven clusters and the columns are
the eleven treatment levels. Entries are counts of subjects in that cluster given that product.

          

            

            

            

            

            

            

            

Table 7: The p-values for pairwise conditional tests.

          

 . . . . . . . . . .
 . . . . . . . . .
 . . . . . . . .
 . . . . . . .
 . . . . . .
 . . . . .
 . . . .
 . . .
 . .
 .

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The rerandomization test and conditional randomization test would be identical if, for instance, sb = {w: B
(w, X) = 1}. Both methods allow for balancing multiple covariates simultaneously.

As pointed out by a reviewer, the proposed approach has benefits in both “unlucky” and “lucky”
randomizations. For an “unlucky” randomization, it will adjust the null distribution to account for covariate
imbalance, working to preserve Type I error in a conditional sense. For a “lucky” randomization, it will
restrict the tails of the null distribution increasing power.

One limitation of conditional randomization tests is that drawing randomizations from a partition
can be computationally expensive, if done with simple re-sampling and acceptance/rejection
approaches. For a single categorical covariate, we can sample more directly. However, for multiple
categorical covariates where we control all of the margins, this becomes more difficult. Thus, one area of
future research is exploration of sampling techniques using different types of covariate balance func-
tions. Whereas clustering appears to be a useful first step, balance functions that take into account the
joint distributions of covariates and thus have a tensor structure may practically be more meaningful.
However, sampling from reference sets based on such balance functions can be challenging and requires
further investigation.

Acknowledgement: We are grateful to two reviewers for their insightful comments that resulted in sub-
stantial improvements in the contents and the presentation of the paper.

Appendix A

We here prove that tests using bτps are equivalent to tests using bτsd when conditioning on the balance of a
categorical covariate.

First note that bτps = β̂W , where β̂W is the estimate of βW from the linear regression with interactions
between X and W:

Yobs
i = β0 + βWWi +

XK
k = 2

βkXik +
XK
k = 2

γkðWi � XikÞ+ �i (17)

where

Xik =

1 :if the ith unit is in the kth stratum

− 1 :if the ith unit is in the first stratum

0 :otherwise.

8><
>: (18)

The dummies Xi follow the sum contrast coding. We next show that, conditioning on the observed
balance, bτps is a monotonic function of bτsd.

Let [w, F] denote the design matrix, where F includes a column of ones for the intercept and columns

for the categorical indicator variables and interactions. Also, note that wTyobs = bτsd + 1
NC
1Tyobs

� �
= 1

NT
+ 1

NC

� �
.

Let PF = F(FT F)−1FT be the projection matrix onto the columns of F. We then use the regression anatomy
formula [37].

bτps = β̂W =
wTðI −PFÞyobs
wTðI −PFÞw .

Note that conditioning on the observed balance implies that wTF is a constant and thus

bτps = wTyobs − k1
k2

=
1
k2

� �bτsd + 1
NC
1TYobs

1
N + 1

NC

−
k1
k2
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where k1 = wTPFy
obs and k2 = wT(I–PF)w. Finally, since wTyobs is a monotonic function of bτsd, bτps is also a

monotonic linear function of bτsd.
Finally, because bτps is a monotone scaling of bτsd, Pr ðbτps > tobsps Þ= Pr ðbτsd > tobssd Þ under the null since the

rejection region for the post-stratified estimator is merely the rescaled rejection region for the simple-
difference estimator, i. e., any potential randomization w will result in an equivalently “extreme” test
statistic, as defined by its quantile.

Appendix B

We used k-modes to collapse the categorical covariates into a few groups to allow for easier conditional
randomization. The k-modes algorithm relies on a dissimilarity measure, d( ), which measures the dissim-
ilarity between two observations. The dissimilarity measure is the number of categorical variables which are
different between the two obervations. So, if Xi = (1, 2, 4, 2,1,10, 3,1) and Xj = (2,1, 4, 2,1,10, 3,1), then d(Xj,
Xj) = 2. The smaller the dissimilarity measure the more similar the two observations. This is a simple
measure: it gives equal weight to all covariates and completely ignores the ordinal structure of some of the
categorical variables. For instance, an income value of 11 is much closer to an income value of 10 than to 1
but this aspect is ignored here. Other dissimilarity measure are certainly possible. The mode of a set of
observations, {X1, ..., Xn}, is the vector Q that minimizes

Xn
i= 1

dðQ, XiÞ. (19)

The k-modes algorithm follows the familar steps of the k-means algorithm: Start with k candidate modes.
Then assign each observation to the closest mode according to the dissimilarity measure. Recalculate the
modes of each cluster and repeat these last two steps until convergence. We determined an appropriate
number of clusters, k, via an elbow plot, shown in Figure 5.

In this case, k= 7 seems to be a reasonable choice. The contingency table, in Table 6, summarizes the
number of units in each cluster assigned to each treatment level.
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