
Conducting Sparse Feature Selection on Arbitrarily Long Phrases in Text
Corpora with a Focus on Interpretability

Luke Miratrix1∗ and Robin Ackerman2

1Harvard Graduate School of Education, Cambridge MA, USA

2US Department of Labor, Boston MA, USA

Received 2 November 2014; revised 13 June 2016; accepted 16 June 2016
DOI:10.1002/sam.11323

Published online in Wiley Online Library (wileyonlinelibrary.com).

Abstract: We propose a general framework for topic-specific summarization of large text corpora, and illustrate how it can be
used for analysis in two quite different contexts: an Occupational Safety and Health Administration (OSHA) database of fatality
and catastrophe reports (to facilitate surveillance for patterns in circumstances leading to injury or death), and legal decisions
on workers’ compensation claims (to explore relevant case law). Our summarization framework, built on sparse classification
methods, is a compromise between simple word frequency-based methods currently in wide use, and more heavyweight, model-
intensive methods such as latent Dirichlet allocation (LDA). For a particular topic of interest (e.g., mental health disability,
or carbon monoxide exposure), we regress a labeling of documents onto the high-dimensional counts of all the other words
and phrases in the documents. The resulting small set of phrases found as predictive are then harvested as the summary.
Using a branch-and-bound approach, this method can incorporate phrases of arbitrary length, which allows for potentially rich
summarization. We discuss how focus on the purpose of the summaries can inform choices of tuning parameters and model
constraints. We evaluate this tool by comparing the computational time and summary statistics of the resulting word lists to three
other methods in the literature. We also present a new R package, textreg. Overall, we argue that sparse methods have much
to offer in text analysis and is a branch of research that should be considered further in this context. © 2016 Wiley Periodicals,
Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2016

Keywords: concise comparative summarization; sparse classification; regularized regression; Lasso; text summarization; text
mining; key-phrase extraction; text classification; high-dimensional analysis; L2 normalization

1. INTRODUCTION

Regularized high-dimensional regression can extract
meaningful information from large text corpora by produc-
ing key phrase summaries that capture how a specific set of
documents of interest differs from some baseline collection.
This text summarization approach has been called Concise
Comparative Summarization (CCS) [1], underscoring two
fundamental features of this tool: (i) the comparison of a
collection of documents to a baseline set in order to remove
generic terminology and characteristics of the overall cor-
pus; and (ii) the resulting production of a short, easy-to-read
summary comprised of key phrases. Such summaries can
be useful for understanding what makes a document col-
lection distinct and can be used to inform media analysis,
understand incident reports, or investigate trends in legal
decisions.

∗ Correspondence to: Luke Miratrix
(lmiratrix@stat.harvard.edu)

Many classic methods of text summarization tend to
focus on single words or short phrases only. Approaches
such as latent Dirichlet allocation (LDA) [2] also do
not extend naturally to phrases. On the other hand, one
regression-based method [3,4] that does allow for longer
phrases does not allow for rescaling of the counts of phrases
in the text based on the overall frequency of appearance of
such phrases, which can negatively impact summary qual-
ity. In this paper, we merge two CCS approaches to allow
for rescaled, arbitrary-length key phrases that can include
gaps. We briefly discuss how this is done below. Our new
CCS tool can be easily used via our new R package, tex-
treg, which allows for rapid exploration of text corpora
of up to a few gigabytes in size.

Even given these tools, when a researcher desires to
conduct a specific analysis, he or she is faced with many
choices. In particular, the implementation and regulariza-
tion of the regression itself can be done in several ways,
and the impact of choosing from among these ways is
one of the foci of this paper. In particular, we argue

© 2016 Wiley Periodicals, Inc.

2 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

that if the researcher has specific goals for interpretation
in mind, these goals can inform the choice of the tun-
ing parameters. For example, when faced with a corpus
where only a few documents are of interest and the rest
are to be used as a baseline, a researcher may choose to
allow only positive weights on phrases, in order to sim-
plify interpretation. Similarly, choice of the tuning param-
eter can be governed by a researcher’s level of interest in
pruning rare phrases. We also offer a method for testing
for a significant relationship between the text and docu-
ment type, which also provides a threshold regularization
value.

We compare this tool with other related state-of-the-art
methods. First, we compare it with multinomial inverse
regression (MNIR) [5], a text regression method that is
primarily designed to be distributed across many cores in
order to handle massive data. We also compare it with a
classic Lasso approach (see, e.g., [6]), which is similar to
this method run on precomputed document-term matrices
without some of the flexibility. We finally compare to
the original Ifrim et al’s. [3,4] method, which is one of
the building blocks of this work. In these comparisons,
we investigate computation time, prediction accuracy, and
different features of the resulting word lists. The different
approaches give very different types of lists, and we hope
this work gives some guidance to the practitioner as to how
to sort through the options.

As a case study, we use this tool to examine a large
collection of occupational fatality and catastrophe reports
generated by the Occupational Safety and Health Admin-
istration (OSHA) in the United States. As a motivating
example, we examine hazardous exposure to methylene
chloride, a neurotoxin, during bathtub refinishing oper-
ations. In 2013, OSHA and the National Institute for
Occupational Safety and Health (NIOSH) jointly issued
a Hazard Alert calling attention to a recurring pattern of
this nature following the deaths of least 14 workers since
2000 in related circumstances. However, the sheer volume
of information describing occupational fatalities and catas-
trophes (Fat/Cats) may have initially obscured this pattern
in the years preceding its detection. Although OSHA main-
tains a database of narrative reports describing Fat/Cats,
similar patterns of preventable exposure to occupational
hazards may be difficult to identify efficiently through man-
ual review alone, given the large number of narratives in
this database. Thus, using methylene chloride as a case
study, we consider whether text mining techniques can help
identify important patterns in circumstances of hazardous
exposures.

In our framework, a summary list of key words and
phrases ideally represents and reveals the overall content of
a collection of narrative reports. For example, one summary
for all narratives related to ‘Methylene Chloride’ contained

the words ‘bathtub’ and ‘stripper’. To qualitatively evaluate
our tool, we manually examine these words and phrases in
the context of the original reports and consider whether
our text summarization tool effectively characterizes the
circumstances of the bathroom refinishing fatalities.

In general, we explore whether we can construct text
mining algorithms that, when applied to an entire corpus,
can uncover ‘needles in the haystack’ patterns such as the
connection between bathroom refinishing and overexposure
to methylene chloride. At this stage, we are not focused on
rates or relative risks of particular patterns; we are, instead,
focused on the crude detection of textual patterns that
may represent meaningful information about how certain
types of injuries and fatalities occur. Such findings, even
if they involve only a few recorded deaths or injuries,
may facilitate the prevention of many future fatalities,
particularly in the context of emerging hazards.

We also examine our tool’s ability to extract information
from a collection of legal decisions from the Employees’
Compensation Appeals Board (ECAB), which handles
appeals of determinations of the Office of Workers’ Com-
pensation Programs (OWCP) in the U.S. Department of
Labor (DOL). Here we investigate what information we
can extract about different categories of cases. In particular,
we examine cases involving a question as to whether the
work environment caused a mental health condition (an
‘emotional condition’, in the parlance of ECAB). We find
that while the CCS tool does extract meaningful information
relating to the cases of interest, further work needs to be
done to obtain more nuanced summaries.

Overall, the CCS approach does allow for exploration of
text and does extract meaningful information. Extending
the earlier fixed-length phrase tools to allow for longer
phrases and phrases with gaps does increase the expressive
capability of the summaries. The methods for picking
a tuning parameter, while possibly a bit aggressive and
conservative, do provide an alternative paradigm for data
analysis with an eye to extracting human meaning from
text.

2. OVERVIEW OF SUMMARIZATION

This paper extends the concept of CCS discussed in
[1], incorporating a prior approach proposed by [3] to
result in an overall improved methodology. CCS involves
comparing a prespecified set of documents to a baseline
set. One can think of it as a regularized regression of some
labeling of the m documents (normally +1 and −1) onto
the collection of all possible summary key phrases. For
example, in one analysis we label documents relating to
incidents involving carbon monoxide (CO) as +1 and the
remaining documents as −1. Each potential key phrase, or

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 3

‘feature’, is considered to be a covariate in the regression,
and is in principle represented as an m-vector of measures
of the feature’s presence (e.g., appearance count) in each
of the m documents. By using sparse regularization, only
a small subset of these possible summary key phrases is
selected. These phrases are taken as the final summary.
So, for example, the resulting phrases of our CO-related
regression would ideally indicate what is different about
CO-related events when compared to other workplace
injuries and fatalities. At root, we are taking those phrases
most useful for classifying a set of documents by the given
labeling as the summary of the positive set of documents
as compared to the negative, baseline, set.

It is worth emphasizing that the focus is not predictive
quality; the selected features themselves are the object
of interest, and the quality can only be measured by
their usefulness in the original human interpretation-
based question that motivated the exploration. Thus, these
methods in principle require human analog experiments to
validate their findings. This can be done; see [7,8], or [1]
for examples. We are using text classification tools, but
the classification is a byproduct. There are many possible
choices for how to implement this regression including
whether to use logistic or linear regression, and whether
to rescale the frequency appearance of the phrases before
regression. Prior work has shown that rescaling phrase
frequency is quite important; failing to appropriately do so
can result in summaries that have little informative content
even while predictive accuracy is maintained. This is not
surprising; term frequency in text is a known and serious
concern when data mining large text corpora (e.g., [1,9]),
as was first illustrated in the information retrieval literature
(e.g., [10,11]).

In text classification and, by extension, key-phrase
extraction via text classifiers, there is some desire to allow
for phrases as well as unigram (single word) features. One
approach is to calculate and use all phrases up to n words
long as the overall feature set. For long phrases, this can
quickly become intractable, as there is a blowup in the num-
ber of possible phrases a corpus may contain. To solve this
problem, Ifrim et al. [3,4] allow for arbitrary length phrases
by generating the features ‘on-the-fly’ as part of the opti-
mization. As an added benefit, this approach easily allows
for ‘gaps’, i.e. phrases with wildcard words, which greatly
enhances the potential expressiveness of the resultant
summaries.

Ifrim et al.’s algorithm, based on the work of [12]
and, even earlier, [13], fits an elastic-net-penalized logistic
regression with the features consisting of the entire space
of all phrases (also see [14] or [15] for other examples
of regression on text and [16] or [17] for an overview
of elastic nets and other regularized regression methods in
general). Ifrim et al. initially propose an algorithm to solve

a penalized logistic regression of

β̂ = arg min
β

m∑
i=1

yic
′
iβ + log

(
1 + exp(yic

′
iβ)

) + CR(β),

with β ∈ Rp, ci being the feature vector for document i

with the cij as binary indicators of the presence of feature
j in document i, yi the −1/1 class label, p the number
of features including all phrases, C a regularization tuning
parameter, and R(β) some regularization function. They
later extend this to allow for alternate loss functions such
as a hinge loss. However, they do not allow for rescaling
features. By modifying their methods, we show how
rescaling can be incorporated into their overall approach.
They also do not allow for an intercept term, which can
introduce difficulty with the summarization process if the
number of positive features is not close to 50%. We extend
their algorithm to allow for a (nonpenalized) intercept term
as discussed in [1]. We implemented these modifications
by extending their code, and then wraped the resulting
algorithm in a new R package, textreg, to make it easier
to use in a rapid and exploratory manner. We also provide
some useful tools and visualizations to help researchers
understand the resulting summaries.

The core idea behind the algorithm is a greedy coordinate
descent coupled with a branch-and-bound algorithm. With
each step, the algorithm searches the entire feature space
for the feature that has the highest gradient at the current
β. This is obviously a very large search space, but it can
be pruned using a relationship that bounds the size of a
gradient of a subphrase by a known calculation on any
parent phrase. In the search, we track the current optimal
feature, and then for each new feature considered, if the
bound on all the children of that feature is smaller than the
current optimum, prune all those children from the search.

2.1. Related Work

CCS is distinct from classification. Classification is
focused on sorting documents, such as for attributing
authorship [18,19] or counting types of news events [20,21].
Text classification has been attempted using a wide array
of machine learning methods such as naive Bayes, linear
discriminant analysis, or support vector machines [22],
which easily allow for large numbers of features (the
words and phrases) to be incorporated. For comparisons
of these different methods on text, see [19], [23], or [24].
For Support Vector Machines (SVMs) as an approach in
particular for text, see the book of [25]. For such methods
and these evaluations, however, the features themselves are
not of primary interest, but classification is. We, instead,
attempt to extract meaning from documents by contrasting

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

4 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

sets to each other. This is most similar to key phrase
extraction, a literature in its own right. See, for example,
[26–28].

Interpreting text is a difficult task, and can be done in
a variety of ways. For example, [29] use text to predict
roll call votes with an LDA algorithm [2] in order to
understand how the language of law is correlated with
political support. Ref. [7] model political text to explore
who dominates policy debates. Truly validating a finding is
generally quite difficult and requires a great deal of effort to
do properly, as these papers illustrate quite well. Our tools
are primarily intended for exploration; validation is not
within CCS’s scope without additional human validation
efforts or alternative techniques.

Of the many approaches to text analysis, variations of
LDA [2] in particular have recently been widely investi-
gated and used. These consist of a Bayesian hierarchical
model that describes documents in a corpus as a mixture of
some number of different distributions on the words. They
can reveal structure in a corpus and have been shown to cap-
ture human meaning. However, generating novel models for
specific circumstances is difficult. Even mild changes to the
model can be technically quite challenging and consist of
an entire research topic in its own right. They are either
computationally expensive or only solved approximately
(via, e.g., variational methods). In the spirit of diversity
in research approaches, we take a different path.

This is not to say that using sparse regression methods
on text is new; see, for example, [23,30,31]. [32] use
sparsity to model topics by representing them as small
collections of phrases that stand out against a background.
[33] showcase several methods, such as sparse principal
components analysis (PCA), to investigate large corpora.
There are many others.

One aspect of our approach, which we believe is novel,
is allowing for complex features in the form of overlap-
ping phrases, especially phrases with wildcard words, while
maintaining the ability to rescale features. This allows great
flexibility in the expressiveness of the possible summaries
generated, and it is not obvious how to naturally extend
methods such as LDA, which rely on a generative model
where words are picked i.i.d. from some distribution, to do
this.

3. RESCALED N -GRAM REGRESSION

Initial methods regress the yi on the ci , where ci is either
the vector of counts with cij being how often phrase j

appears in document i or of binary indicators of appearance,
with the elements cij ∈ {0, 1} indicating the presence of
phrase j in document i. This can be problematic in that
common phrases (e.g., ‘the’, or, less obviously, ‘usually’)

end up having much higher variance than less common
ones, and thus it is easier to pick them up due to random
fluctuations. See Section 4 for further discussion.

Rescaling the features can correct this as pointed out in,
e.g. [34]. In particular, Lq -rescaling (for q ≥ 1) transforms
the vectors ci into new covariate vectors xi as

xij = cij

zj

, where zj ≡
(

n∑
i=1

c
q

ij

)1/q

.

This is similar to standardizing columns in a Lasso regres-
sion; if you do not, then phrases with high variability need
smaller coefficients to have similar impacts on prediction.
This makes them ‘cheaper’ under the regularization and
therefore appears more frequently due to random chance.

Once our feature space has been standardized with each
phrase having an Lq -length of 1, we regress our y onto
these rescaled x and an intercept. This is a high-dimensional
problem with p � m. As we want a small number of
phrases, we use a sparse regularization L1 penalty. We also
use a squared hinge loss to obtain

L(β) =
n∑

i=1

[(
1 − yi(β0 + x ′

iβ)
) ∨ 0

]2 + C

p∑
j=1

|βj |,

with a ∨ b denoting the maximum of a and b. For this
loss function, an over-prediction is not penalized. From a
prediction standpoint, we wish β0 + x ′

iβ = yi ; if we fall
short, we have quadratic loss; if it does, the loss is zero;
and if we overshoot, we still have zero loss. There is no
penalty for ‘over-predicting’ a document’s label. We use the
squared hinge loss, as this is similar to the Lasso, shown
to be effective in [1], but also monotonic, which is needed
for the optimization algorithm. Also note that the penalty
term does not include the intercept, β0.

To generalize this framework, taking notation from Ifrim
et al., let our loss for an individual document be ξ(mi)

with mi = yi(μ + x ′
iβ). We can use any monotonic loss

functions with ξ ′ ≤ 0 everywhere. The squared hinge loss
from above is ξ(m) = ((1 − m) ∨ 0)2; this is very similar to
an ordinary least-squares (OLS)-type penalty of (1 − m)2.
Logistic would be ξ(m) = log(1 + e−m).

Regardless of the choice of ξ , the loss term can be
expressed in the original counts as

L(β) =
n∑

i=1

ξ

⎛
⎝1 − yi

⎛
⎝β0 +

p∑
j=1

cij

zj

βj

⎞
⎠

⎞
⎠ + C

p∑
j=1

|βj |

=
n∑

i=1

ξ(mi) + C

p∑
j=1

|βj |.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 5

We then obtain β̂ as

β̂ = arg min
β

L(β). (1)

Alternatively, by letting β̃j ≡ βj/zj , we can move the zj to
the penalty term and regress on the counts ci ; this gives the
identical loss as seen by considering m̃i = yi(μ + c′

i β̃) on
the rescaled columns: scaling a column by zj is the same as
penalizing the associated βj by zj . This has ties to weighted
Lasso approaches such as the adaptive Lasso [35], in
that we now have feature-specific penalties. The gradients
change, however, which can affect the optimization (see
Appendix B).

Solving Eq. (1) is done with greedy coordinate descent.
See Algorithm 1. For greedy coordinate descent, we
repeatedly find the feature with the highest gradient, and
then optimize its corresponding βj with a line search over
the loss function. Because this is a convex problem, this
will converge on the global maximum as each iteration
will decrease L(β) and since the gradient along all the
coordinates can only be 0 if we are at a maximum. For
a proof see, e.g. [36] or [37]. We keep a cache of all
the nonzero features in our model; we do not need to
ever calculate or store all possible features. The main
computational cost of the algorithm is in finding the feature
with the largest gradient. To do this, we dynamically
generate the features by exploiting the nested structure of
any multiword phrase having a smaller phrase as a prefix.
This inner algorithm is shown in Algorithm 2. Here we
first examine all unigrams, then bigrams, and so forth, until
there are no more eligible phrases. We first calculate the
gradient for all unigrams and enter them into the queue.
Phrases in the queue are placeholders for their family of
superphrases. When we pull a phrase out of the queue, we
check to see if we can prune all of its children, and if
we cannot, we determine the phrases’ children, calculate
gradients for these children, and finally enter them into
the queue. This algorithm would work without pruning,
but if we were able to prune all the at-zero children of

a feature before examining them, we could achieve large
speed-ups. And, indeed, some pruning is possible due to a
trick of bounding a child’s gradient based on the structure
of its parent, although the rescaling makes keeping this
bound tight more difficult than in the original Ifrim et al.
presentation. The main idea is, if a bound on the gradients
of a family of features is less in magnitude than our current
best gradient, we can prune them all. We discuss finding
such bounds next.

3.1. Bounding Gradients

Take any feature j with corresponding appearance
pattern across the documents cj . For any feature k with
feature j as a prefix, we know that cki ≤ cji for i =
1, . . . , n, which we write as ck
 cj . We also know that
cki ≥ 0 for i = 1, . . . , n, because they are counts, so 0
 ck .
That is, given a phrase j , any phrase with phrase j as a
prefix can only have a count vector bounded between 0 and
phrase j ’s count vector.

During our search, we consider phrases from shorter
to longer. For each phrase j , we, based on that phrase’s
appearance pattern in the text, calculate a bound bj on the
magnitude of the highest gradient a ‘best case’ hypothetical
superphrase with that prefix could have. If this bj is
smaller than the current best achieved gradient |�|, then
we can prune from consideration all phrases with phrase
j as a prefix because, if bj ≤ |�|, we have for any

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

6 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

superphrase k of j∣∣∣∣ d

dβk

L(β)

∣∣∣∣ ≤ bj ≤ |�|.

Therefore we want bj to be as small as possible, i.e. tight,
to make phrases easier to prune.

As derived in Appendix B, one such overall bound is,
for any q ≥ 1,

∣∣∣∣ max
k:0
xk
xj

d

dβk

L(β)

∣∣∣∣ ≤ 0
∨

max

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

yi=−1,cij >0

∣∣ξ ′(mi)
∣∣r
⎞
⎠

1/r

,

×
⎛
⎝ ∑

yi=1,cij >0

∣∣ξ ′(mi)
∣∣r

⎞
⎠

1/r
⎫⎪⎬
⎪⎭ − C,

where 1/r = 1 − 1/q. For any phrase j , these bounds can
be computed by summing over only those documents that
have phrase j , rendering them computationally tractable.
Because the rescaling allows for theoretically very predic-
tive yet relatively rare phrases, these bounds are unfortu-
nately quite loose, making it hard to substantially trim the
search tree. One possible avenue for improvement would
be to integrate the preprocessing step suggested by [38].

As special cases, q = 1 gives r = ∞ and a bound of
the maximum

∣∣ξ ′(mi)
∣∣ for any document i that has phrase

j , and q = ∞ gives r = 1 and a bound of the maximum
of the two sums of the

∣∣ξ ′(mi)
∣∣ across the negative and

positive documents containing phrase j —which is Ifrim’s
bound, corresponding to no rescaling, up to the scaling
of the maximum occurrence of the phrase in any single
document.

All of the above is easily extended to an elastic net [17].
See note in Appendix B.

4. CHOICES OF RESCALING AND ADDITIONAL
CONSTRAINTS

Choices of rescaling (e.g., the q in the Lq -rescaling) and
further restrictions on the optimization problem can focus
the CCS tool on different aspects of the summary. We can
seek to generate summaries with more general or more
specific words for example, or enforce a contrast of a target
set to a larger background set which eases interpretability.
We discuss how to do this in the following subsections.

4.1. Rescaling

Phrases vary greatly in their overall appearance in text,
with a very long tail of words and phrases that appear in
nearly every document, and the bulk of phrases appearing
only one or two times. A phrase’s rate of appearance is

connected to its underlying variance if we represent the
phrase with its count vector. This can cause problems
when selecting the most meaningful phrases. In particular,
common phrases can easily dominate because they have
greater variance. Typically, this is handled with stop-word
lists, which are lists of words that are a priori deemed low-
information and dropped before analysis. For a thorough
discussion of this, see [34]. And, as [34] discusses, stop-
word removal is finicky, not general, and imperfect. They
cannot easily be adapted to differing contexts or languages.
Furthermore, how to implement stop-word removal when
phrases are the object of interest is unclear. Rescaling,
however, can not only serve the function of a stop-word
list but also do a superior job [1].

Rescaling is critical, as is widely known in information
retrieval. Without rescaling, stop words are easily selected
by virtually all text mining procedures. Even with stop
words being dropped, typically the ‘runner up’ most
common phrases are then selected, primarily due to random
variation in their appearance pattern. To see this, test
nearly any off-the-shelf text mining tool without removing
stop words first; more often than not, these methods will
fail, and their results will be dominated by these low-
information words. Stop-word lists are a hard-threshold
solution when a soft-threshold tapering is more appropriate.
Rescaling offers such a tapering approach. The question
then becomes which rescaling to use, or, alternatively, how
much tapering do we want. We use Lq -rescaling because
it offers a class of choices (and integrates well into the
gradient descent algorithm). With Lq -rescaling, different
choices of q weight phrases relatively differently, allowing
for focus on more common or uncommon phrases at the
desire of the researcher.

Overall, lower q means generally higher normalization
factors Z, which will change the appropriate C for regular-
ization. The main point of concern, however, is the relative
sizes of the weights for rare phrases compared to com-
mon phrases. In general, an L1.25-rescaling heavily penal-
izes common phrases while an L3-rescaling does not. On
the other hand, L3-rescaling penalizes rare phrases slightly
more than lower choices of q. To illustrate, see Fig. 1; here
we consider a sequence of phrases that appear once in each
of m out of 1000 documents. The different series of weights
have been rescaled, so a phrase that appears 5% of the time
(50 times) has the same weight for all choices.

4.1.1. tf-idf rescaling.

A related strategy for rescaling is tf-idf rescaling, from
information retrieval [10]. It is typically something like the
following (variations exist):

xij = cij

ni

· rj with rj ≡ log
n

dj

,

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 7

100 200 5001 2 5 10 20 50

0
1

2
3

4

Different Rescaling Results in Different Z

m

z

p=1.25
p=2
p=3
tf−idf

Fig. 1 Impact of different choices of rescaling. Here we see
different rescaling factors z for phrases with a single appearance
for each of m documents out of 1000 total documents. More
common phrases are penalized more greatly relative to rare
phrases. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

with dj being the total number of documents containing
the phrase j . It differs in that it corrects for each document
length with the ni ; we do not do so. If documents are
roughly the same length, this becomes less relevant. Tf-idf
also puts more of an extreme difference between weights
for rare and common phrases, scaled by the total number
of documents. For rare and mid-range phrases, the tf-idf
rescaling is similar to a Lq -rescaling with large q.

4.2. Interpretation and Negative Coefficients

CCS returns a list of phrases with nonzero coefficients β.
Interpreting these coefficients can be quite difficult. Just as
in OLS, a model-based interpretation for βk would be that
changing feature k by 1 would change the prediction by βk

holding other features fixed (which, given normalization,
means changing feature k by a count of 1 would change
the outcome by βk/zk). However, given the lack of a well-
motivated model in our context, interpreting the magnitude
of these coefficients is somewhat dubious.

Nonetheless, we still wish to interpret the sign of the
coefficients: positive indicates that a feature is associated
with our positive class of documents, and negative indicates
the negative class. When the negative group is a baseline,
however, it is not an object of direct interest. This is
especially the case if it is much larger and more diverse
than the positive class. In this case, the regression is
ideally subtracting out baseline characteristics, leaving the
researcher with what makes the positive class distinct and
noteworthy. Here, interpreting negative coefficients can be
difficult. One interpretation would be that such features are
‘conspicuous in their absence’.

Unfortunately, even when there is a mix of positive
and negative features, we can still end up with unclear
interpretations of the sign due to the ‘holding other features
constant’ aspect of the above. For example, a negative
weight for a feature might be offsetting the positive
weight for a highly correlated alternate feature, and in
fact both features may have a positive correlation with the
labeling. In this case, interpreting the negative sign as, e.g.
conspicuous in its absence, is erroneous. It is more accurate
to say the feature is conspicuous in its absence given its
normal association with the second feature. This can be
hard to communicate.

One solution is to extend the optimization to consider
only the set of positive β, forcing negative coefficients to
not exist. This is an easy extension of the above algorithm:
simply drop the lower bound on the gradient search and
truncate any line-search update of a βk at 0.

This is not to say that negative features are useless. For
example, if we allow negative features and find that all the
coefficients are positive, it would suggest that the positive
group has a clearer signal than the negative group. Only
phrases found in the positive group are differentiating the
groups. This might suggest distinct language use, larger
vocabulary, or specific turns of phrase on the part of the
positive group, which could be of interest in its own right.

5. PICKING THE REGULARIZATION
PARAMETER

For most regularized regression settings, picking the reg-
ularization parameter C is a notoriously difficult problem.
In general, higher Cs lead to fewer features, i.e. more con-
cise summaries. Low C summaries will be more verbose.
However, an overly low C allows for overfitting, which
in our context means obtaining features that are detected
solely due to random fluctuations in the appearance pat-
terns of phrases. We need to ensure that C is sufficiently
large to mostly prune out such noise.

Classically, selection of C is done using methods such as
cross-validation to optimize prediction accuracy on out-of-
sample predictions. As prediction is not our primary focus,
we look for other methods to select C that enhance the
quality or interpretability of the summaries generated. The
lack of appropriateness of prediction accuracy is somewhat
motivated by the literature; prediction accuracy is, for
example, not the same as model selection, as is illustrated
by the choice between AIC and BIC (Akaike and Bayesian
information criterion) selection methods in regression. We
present two methods, rooted in the goals of CCS, to select
C. The first is to conduct a permutation test to select a
C that gives a statistically significant summary in that
the summary being nonempty indicates the presence of

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

8 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

systematic differences in the text between the positively
and negatively marked documents. The second is to select
a minimum C to guarantee the pruning of very rare phrases.
We discuss how one might select which approach to use in
the discussion after the case studies, below.

5.1. A Permutation Test on the Summary

One might wonder if the phrases returned by CCS are
simply due to random chance. There are so many different
phrases, so it is reasonable to believe some will randomly
be associated with any document labeling. We can control
this with a permutation test. This is an exact test, and the
resulting p-value is easy to interpret.

To test whether it is meaningful to generate a summary at
all, repeatedly randomize the labeling across the documents,
regress, and find the corresponding C∗ that zeros out all the
features, given our random permutation of the labels. This
gives a ‘null distribution’ of what C is appropriate if there
were no signal. Finally, compare our originally observed
Cobs to this distribution of fake C∗s. We calculate a
p-value of

p = Pr
{
Cobs ≥ C∗} .

If p is small, we conclude that the needed regularization
to zero out our originally observed signal is greater than
that for a random signal; i.e. there is a relationship between
the labeling and the text. Similarly, if we pick a C that is at
the 95th percentile of our permutation distribution, we are
95% confident that the resulting summary being nonempty
is due to the relationship of the labeling and the text, and
not due to random chance.

The individual phrases, however, are not specifically
tested as being significant; it is possible that they would
change, for example, given mild perturbations to the data.
Nevertheless, this test provides a useful minimum bound
for the final C. Any C lower than this bound could result
in a nonempty summary purely due to random chance.

In a similar manner, one can check the coherence of the
final summaries by generating summaries under different
permutations of the labeling (potentially adjusting C with
each iteration to get similar length summaries for all
permutations) and creating a list of lists with the actual
summary randomly inserted. If humans can then reliably
pick out the actual summary from the fake ones, this is
indication that the structure of the summary is not due to
random chance. This idea is based on assessing the quality
of EDA (exploratory data analysis) visualizations; see [39].

5.2. Pruning Rare Phrases

Most potential phrases are rare, showing up only a
handful of times in even very large corpora. Selecting from

such phrases introduces a severe multiple testing problem,
and we seek to appropriately regularize the regression with
C to solve it. In particular, rare phrases that show up
only a few times can be selected if they happen to fall
only in the positive set. More generally, with improper
rescaling of features, a term that shows up once in the
positive examples with a high count and several times
in the negative examples with a low count can also be
selected. This often is contrary to the interpretive goal
behind selecting predictors. We want phrases that are
general summaries, informing the researcher of aspects
across multiple documents. These problems can be partially
remedied by proper selection of the tuning parameter C.
Here we investigate minimal C to guarantee that quite rare
phrases are dropped.

We find such C by investigating the so-called perfect
predictors. Consider a feature j such that cij = 0 if yi = −1
and cij = 1 for some of the documents, where yi = +1.
For the moment, assume we do not have multiple counts
in any document. This is a perfect predictor, predicting
r ≡ ∑

i cij ≤ s of the s positive documents. These perfect
predictors could be used to identify a subset of the positive
examples while incurring no loss for the negative examples.
The only cost of including such a predictor is due to the
regularization term C. If we set C high enough, the cost
will be prohibitive and we will not select. In fact, the
cut-off of

C∗ = 2(1 − μ)r1−1/q,

with μ = 1
m

Ŷi , with Ŷi being the prediction for document
i without any such hypothetical phrase, suffices. See
Appendix B for a derivation.

For this C∗, any perfect predictor of r documents will
be pruned. For comparison, see Table 1, which shows (for
both μ ≈ −1, the case of few positive and many negative
examples, and μ ≈ 0, the case of roughly equal numbers
of positive and negative documents) the needed cutoffs for
r = 1, 2, 4. This cutoff will generally be overly aggressive;
if other predictors also predict these documents, then the
gain of including the perfect predictor is potentially less.

5.2.1. No rescaling

As discussed at the end of Section 3.1, no rescaling is bad
for appropriately handling common phrases. No rescaling
is also bad for appropriately handling rare ones, as we can
see by its connection to the infinity-norm and the top row
of the table. No rescaling of features makes it very difficult
to prune perfect predictors.

5.2.2. Singleton predictors

As a special case, ‘singleton predictors’ are those that
appear only once in the entire corpus, and appear for a

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 9

Table 1. Needed C to prune rare perfect predictors.

μ ≈ −1 μ ≈ 0

q C∗ r = 1 r = 2 r = 4 r = 1 r = 2 r = 4

∞ 2(1 − μ)r 4 8 16 2 4 8
4 2(1 − μ)r3/4 4 ≈ 6.7 ≈ 11.3 2 ≈ 3.4 ≈ 5.6
2 2(1 − μ)

√
r 4 4

√
2 8 2

√
2 4

4/3 2(1 − μ)r1/4 4 ≈ 4.75 ≈ 5.7 2 ≈ 2.4 ≈ 2.8
1 2(1 − μ) 4 4 4 2 2 2

positive example. Normally, if such a rare phrase appears
once in a positive example, it can be pruned as described
above. Regardless of q, in order to remove singletons that
predict for a document with no other predictors, we must
have C ≥ 2(1 − μ).

This can be generalized somewhat. Consider, for q = 2,
whether the count of a phrase for a single positive document
is s and the count for t negative documents for that same
phrase are 1 each. The L2 normalizing constant is then

Z =
n∑

i=1

cki = s2 + t

and xki = s/
√

s2 + t ≈ 1 for the single positive document
and xki = 1/

√
s2 + t ≈ 1/s for the few negative docu-

ments. This is approximately the same as the singleton
phrase circumstance, and will therefore be pruned as above.

Proper selection of the tuning parameter is a better
approach for pruning than cutting by dropping phrases
with low counts (ignoring computational issues), as it can
also prune near-singleton phrases with high counts. This
circumstance indeed arises. In a study of the Fat/Cats
corpus, below, the word ‘lion’, used eight times for a report
involving a plague-ridden mountain lion corpse (positive
example) and nine times in various negative examples, was
kept as a predictor in the final summary of ‘Disease’ when
C was too low (C = 0.5).

5.3. Regularization with Cross-Validation

The traditional form of selecting a tuning parameter
is via cross-validation, where some metric of predictive
performance is optimized. For example, in our context
we could calculate the predicted labeling of set-aside
documents and select C such that the average squared
distance between predictions and actual is minimized.
As we will see, this tends to give longer lists that can
be less interpretable, as a more important signal can be
buried among less relevant terms. Generally, predictive
performance is not directly a measure of our primary
focus: the interpretability and significance of the selected
phrases.

5.4. Regularization with Early Stopping and the
Elastic Net

The original Ifrim et al. method includes a penalty term in
the loss function but also regularizes by stopping before full
convergence. Different choices of C do affect the resulting
model, but early stopping is an easy way to obtain a list
of specified length quite quickly (although if the list is
nonsensical, then this is obviously not a good move). Ifrim’s
initial paper in fact has no penalty term in the loss function
at all—their entire regularization is due to early stopping.

The relationship of these forms of regularization is
unclear; early stopping clearly has great computational
advantages and there is no need for convergence checks;
we simply stop when we have found enough features of
interest. However, it is unclear, for example, whether this
approach alone will successfully prune out rare phrases.

6. COMPUTATIONAL COMPARISONS

We compare our CCS tool to three other methods in
two studies. The first compares running time and general
characteristics of the final word lists, generally using default
values and recommended approaches for setting the tuning
parameters. The second compares prediction accuracy for
the four methods. In a third study, we also examine the
CCS tool under different choices of q.

For our data, we use our Fat/Cats corpus and our ECAB
corpus, both of which we describe more fully in the case
studies section below.

6.1. The Four Methods

The main comparison method is MNIR [5], a text regres-
sion method that is primarily designed to be distributed
across many cores in order to be able to handle massive
data. It parallelizes the regression by conducting individual
inverse regressions of the counts of phrases onto the fea-
ture space (which is in our case the binary labeling). It is
regularized, giving a sparse feature vector. The recommen-
dation of MNIR, regarding tuning, is to use AIC or BIC
penalization. We select BIC because we are more interested

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

10 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

in interpreting the covariates than in the quality of predic-
tion, and BIC is known to be superior for model recovery
as compared to AIC (see, e.g., [40] or, more generally,
[16]). We used the textir [5] package. MNIR resulted
in very long lists (of often more than a thousand words),
so we truncated the list by taking the words with the top
1000 weights. For practical use, we would advocate greater
regularization via, e.g. cross-validation, to restrict the list
further.

We also compare to a classic linear Lasso approach (see,
e.g., [6]). Earlier work [1] shows that the gains from logis-
tic over linear are minimal, and the computational expense
is large. We use the glmnet package [41], selecting the
regularization parameter with cross-validation on the root-
mean-squared error (RMSE) test error. The standard pack-
age automatically standardizes the columns, so this method
uses L2-rescaling. Generally, the Lasso lists were short, but
if they were above 1000 words we truncated as above.

We finally compare to the original n-gram method of
Ifrim et al. Other than our own, there does not seem to be
an R package implementing this approach, so we replicated
their method by using our binary features option and not
rescaling the columns. For a more direct comparison, we
select the tuning parameter with our permutation approach.
They initially advocated early stopping to regularize, but in
later work (and in their C++ package which we extended
and modified for our package) they introduced direct
regularization.

In the first two studies, we used L2 normalization for our
method. We select C two ways: the permutation approach
discussed above and to a fixed C = 8 to prune perfect
predictors for three or fewer documents. We did not allow
gaps in phrases, and did not upper-bound phrase length.
For the permutation, we permuted ten times and took the
maximum as the C, as the C from the permutations do not
vary much.

We ran our trials primarily on the cleaned Fat/Cat
dataset stemmed with Porter stemming [42] via the tm
[43] package. See Section 7.1 for further details. For the
latter two methods, the data was stored in a flat file of
cleaned and stemmed text, with each line corresponding
to a single document. For the first two methods we
generated a document-term matrix from this text, dropping
all terms that appeared fewer than five times to keep
the matrix manageable. This resulted in 8698 unigrams,
81 863 bigrams, and 122 528 trigrams. There were
49 558 documents in total. We ran the Lasso twice,
first with unigrams and then with all unigrams through
trigrams. For MNIR we only used unigrams; the number
of features generated when we expanded to trigrams was
computationally prohibitive on a single computer.

To obtain labeling, we selected a random sample of 100
of the 1400 keywords associated with the Fat/Cat reports,

weighted by the frequency of the keywords’s appearance, to
form the labeling schemes to evaluate. For each keyword,
we dropped any phrases from consideration as a feature
(e.g., phrases with ‘carbon’ or ‘monoxide’ for the carbon
monoxide keyword were dropped) by either passing these
words as banned words to our algorithm or dropping the
relevant columns from the document-term matrix.

To further understand computational timing, we also
replicated our first comparison study on the ECAB legal
decisions discussed below. Here we had seven judges that
were part of overlapping subsets of decisions, and we
compared each judge to the baseline (this is not our labeling
of primary interest in the case study below).

For the first computational comparison, we ran the four
methods on the full data and compared the runtimes and
characteristics of the final word lists. For the second
computation comparison, we set aside a random 15% of
the data, and then predicted the labeling of the set-aside
data using each method. The Lasso, the Ifrim et al., and
our method all produce nominal predictive scores, often
overly low due to the massive imbalance of the positive and
negative classes. To find a cutoff point for classification,
we fit a logistic regression model on whatever predictive
value came out of the method on the training set, and then
classified by determining whether the predicted log-odds
were above or below 0. For the MNIR method, we first
projected the results of the inverse regression, as described
in [5], and used the resulting score as the covariate in the
logistic regression modeling step. We also calculated AUC
(area under the curve) scores using the raw predictive scores
for all methods.

Our third investigation was on the impact of different
choices of q for Lq -rescaling when using our method. We
again generated word lists for each of our 100 keywords,
and calculated average length and average frequency of
words for the resulting lists for q = 1.2, 2, and 4. We put
no upper bound on phrase length.

Simulations were run on a MacBook pro with a 2.9 GHz
Intel Core i5 processor, 16 GB memory, and a solid-state
drive. Reproducible R code for all simulations is available
on request.

6.2. Comparison Results

For each labeling and each method, we calculated
different statistics on the word lists. We also timed the total
time to generate a list. Table 2 shows the average of these
measures across the 100 labelings. A few general trends are
evident.

6.2.1. List characteristics

Overall, the resulting lists are very different in character.
We calculated the average list length, and then, for lists

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 11

Table 2. Results of comparison study on OSHA reports (top)
and ECAB legal decisions (bottom). Runtime does not include
time to generate the document-term matrix for the Lasso and
MNIR.

Time List length Word freq

Method (avg. seconds) (avg.) (avg.) (median)

Ifrim 21.5 25 15 285 10 178
Lasso 87.6 194 5441 217
Lasso (trigrams) 86.6 440 657 13
Lasso (pentagrams) 101.1 502 503 12
MNIR 42.1 8696 3818 392
textreg 71.2 25 1441 371
textreg (fixed C) 46.4 24 1711 472
Ifrim 63.8 8 17 861 16 872
Lasso 38.5 261 3643 109
Lasso (trigrams) 138.8 800 898 21
MNIR 163.9 25 990 31 16
textreg 540.3 14 12 595 10 639
textreg (fixed C) 555.6 64 2481 653

truncated at the top 1000 terms, calculated the mean and
median frequency of the words to gauge how common or
rare the selected phrases were. We finally averaged these
means and medians across the different labeling runs. We
see that the methods are quite different in terms of these
scores.

MNIR gives very long lists of very specific words; this
is probably due to the inverse regression, which selects all
phrases that are relevant without much regard to correlation
structure between them. The Lasso also tends to have longer
lists, but the average appearance of the selected words is on
par with the n-gram feature-rescaled regressions. However,
when the Lasso had access to trigrams, which can be highly
targeted and specific, the median frequency plummeted to
13. For pentagrams, it went to 12. As expected, the Ifrim et
al. method, due to no column rescaling, selects very general
terms, with a median frequency of around 10 000.

For the OSHA dataset, the permutation C values tended
to be close to the fixed C, giving overall word lists that
were similar as well. For the ECAB dataset, with longer
documents, the permutation-selected C was much higher,
and thus the word lists were much shorter due to the greater
regularization. The resulting words were also typically more
general.

Overall, it is clear that the practitioner can use different
methods to get different types of lists. We believe,
generally, that one wants short lists of phrases, and that
those phrases should not be overly general.

6.2.2. Runtime

Runtimes were generally comparable for our OSHA
data but widely different for the ECAB data. We discuss
the OSHA data first. The Lasso method, even including
its cross-validation step, was quite comparable to the

textreg method with respect to time due to its very fast
implementation. It is also robust to very wide feature
matrices; note the average time for using all trigrams is
the same as for just unigrams. The Ifrim method is faster
than the textreg methods, likely due to improved pruning.
MNIR is also quite fast, even though it is designed for
parallel systems and we ran on a single core. Generally, the
computational times to generate summaries are comparable.
However, MNIR on the trigrams was not workable. As
MNIR is linear in the number of features, the blowup
of features was too much of a time increase. Of course,
multiple machines and a parallel structure could avoid this.

We were quite surprised by the time statistics being
insensitive to number of terms for the glmnet package. To
investigate further, we calculated a document-term matrix
for all phrases up to five words, giving 363 132 unique
terms, giving the extra row in Table 2. Here, the average
runtimes for the Lasso increased modestly by about 16%
to a mean of 101 seconds.

The computational times were more spread out for the
ECAB data; see the bottom half of Table 2. We now see
a substantially increased time from moving to unigrams
to trigrams for the Lasso, and the timing of the textreg
methods exploded. On investigating this time differential
further, we found that many selected phrases had five or
more words. Furthermore, most runs reached the maximum
number of iterations before convergence, indicating flat
surfaces. This is a weakness of greedy coordinate descent,
which we discuss further below. Overall, we potentially
have, due to the use of boilerplate language in legal
writing, long yet informative phrases that we wish to
see in our summaries. This could make pre-generation
of candidate phrases prohibitively expensive. The MNIR
method selected all unigrams; each unigram apparently has
enough difference in use across judges to be selected under
the BIC penalization.

The times for the Lasso and MNIR do not include the
time to generate the document-term matrix, which was 7.4
minutes for 5 g and 3.7 minutes for trigrams.

6.3. Predictive Accuracy Results

To assess predictive accuracy, we used the macro-
averaged F1-statistic [44] (F1 calculated for each of the
100 trials and then averaged). See Table 3. All methods
would sometimes score none of the test set documents
as positive, giving undefined F1 scores. These are also
indicated in the table. Figure 2 shows these scores along
with the component precision and recall, as well as AUC
scores, for those keywords where all methods had defined
F1. The predictive accuracy is comparable across the
methods, although our text regularization does suffer some
due to overregularization from the permutation method.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

12 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

Table 3. F1 scores for different methods averaged across
keywords examined (with standard deviations). Number of
keywords with no defined F1 (out of 100) are also indicated.

Method F1 SD No. missing

MNIR 0.22 0.22 19
Lasso 0.28 0.24 6
Lasso (trigrams) 0.36 0.25 6
Ifrim 0.25 0.24 16
textreg 0.23 0.23 7

Overall, the predictive accuracy is low; recall, in particular,
tends to run around 20% for all methods, although the Lasso
with trigrams was noticeably superior.

We also examined AUC scores. Here, we again see the
cost of textreg’s overregularization: conservative classifica-
tion reduces sensitivity greatly, lowering the ROC (receiver
operating characteristic) and AUC scores. The AUC scores
are deceptively high due to the imbalance between positive
and negative examples.

Generally, the superior performance of the Lasso on
trigrams indicates that rescaling features coupled with the
richer feature set of multiple words is useful for prediction
tasks. Our methods results indicate that overregularization
is detrimental to prediction due to, primarily, diminished
ability to predict positive documents as positive (shown by
the recall scores).

6.4. Selection of q Results

As anticipated, different values of q produce lists of
different quality. Results are given in Table 4. Higher q

corresponds to lists with relatively more common words
and phrases. Low q produces lists that tend to have phrases
with more words. For the q = 1.2 list, more than half the
phrases were three words or longer. We also found that the
length of the list increased with q. For q = 4, we had longer
lists with more common words. For low q, the algorithm
selected very targeted phrases, and not too many of them.
The regularization parameter C is not comparable across q.
Therefore we recalculated it via the permutation approach
for each run and value of q. Mean values for C are shown
in the table for reference.

Generally, we find a rule of thumb worth remembering:
longer lists tend to have more general terms. This can
happen by adjusting either C or q (see the first simulation
and compare different C, for example).

6.5. Discussion

Overall, our method succeeds in accommodating multiple
word phrases while also allowing for an intercept and the
rescaling of features. As shown, these extensions are critical
for generating manageable lists with phrases that are not
overly common. Further, picking C and q does control
both list length and commonality of words on the lists as
predicted by our initial discussion.

In terms of computational time, our method did not
perform particularly well when compared to the Lasso
of the glmnet package, especially considering that the
Lasso’s overall time includes that of cross-validation.
As our method is similar to Lasso regression on a

Ifrim textreg MNIR Lasso−1 Lasso−3

0.0

0.2

0.4

0.6

0.8

1.0

f1

Ifrim textreg MNIR Lasso−1 Lasso−3

0.0

0.2

0.4

0.6

0.8

1.0

au
c

Ifrim textreg MNIR Lasso−1 Lasso−3

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

Ifrim textreg MNIR Lasso−1 Lasso−3

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Fig. 2 Out-of-sample classification rates for different methods. Lasso on trigrams (Lasso-3) is generally the best, although there is
substantial variability. Keywords in which any of the methods failed to return F1 scores were dropped. Charts are substantively the same
with these keywords included.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 13

Table 4. Word list characteristics of different rescaling norms. Length is length of list, mean size is the average number of words in the
selected phrases, and frequency refers to phrase occurrence in the corpus. Mean C is the average regularization value.

Time List length Phrase length Word freq Word freq C
Method (avg. seconds) (avg.) (avg.) (avg.) (median) (avg.)

textreg (q=1.2) 78.7 8 2.9 310 110 4.6
textreg (q=2) 72.8 24 2.2 1492 435 7.1
textreg (q = 4) 135.3 35 1.8 8035 1761 19.0

preconstructed phrase matrix (differing only in that it uses
a hinge loss instead of a squared loss), one might naturally
ask whether an alternative approach would be to simply
generate the full document-term matrix and use glmnet.
We are not entirely convinced, as we discuss next.

First, generating full document-term matrices including
phrases with wildcards could be computationally tedious,
especially if we imagine extensions such as optionally
included words. At the very least, it is expensive in both
time and memory, and grows increasingly so with the
number of possible phrases; the 7 minutes to generate all
5-grams is well over the model-fitting times. The stored
matrix was twice the size of the initial raw text. Second,
the hinge loss is different from the classic L2 loss, and there
could be core differences in overall behavior here; this is
an area for future investigation. Third, the speed of the
glmnet package is partially due to the LARS (least angle
regression) approach where the entire regularization path is
computed at once. It is arguably also due to the package
being particularly well developed and optimized for effi-
ciency. There may be similar ways to substantially speed
up our package and method to make it more competitive.

For example, one potential slowdown, determined from
examining the convergence paths of many runs, is that
we often see an initial selection of a small list of phrases
and then a slow hill climb where with each step a differ-
ent already-selected phrase is selected for adjustment. This
comes from the coordinate descent; the optimal gradient
path is at an angle, and so following it requires small steps
in the associated coordinate directions to trace that path.
Unfortunately, with each such step the algorithm conducts
a full search for the highest gradient across all phrases,
which is expensive. Instead we might after each phrase is
selected, find the maximum point given the set of all phrases
selected at that point. Then, only if a new phrase were
introduced would the algorithm have further steps. This is
effectively the LARS [6] approach, and is an important area
for enhancement.

Furthermore, the greedy ascent iteration often involves
the intercept ratcheting down as features ratchet up. This
suggests another possible direction of forcing the intercept
to be −1 (for corpora with rare positive labeling rates)
rather than estimating it; a −1 intercept corresponds to
predicting all documents as negative by default, distinct

from no intercept which predicts 50–50 uncertainty as
default or allowing the intercept to move which tends to
predict the overall base rate as default. Specifying the
intercept value would save an intercept update with each
step; the optimization problem is then finding a collection of
phrases to give positive documents positive weight without
affecting the negative documents too heavily.

Regardless, for truly massive data, especially when the
number of documents grows large, neither our approach nor
the Lasso will work. Instead, methods that allow for easy
parallelization, such as MNIR, will be the key. Another
area for future exploration, therefore, is to determine how
to over-regularize MNIR to get shorter lists, which also
might induce lists with more common phrases.

7. CASE STUDIES

We illustrate the CCS tool with two case studies. For
the first case study, we also compare the resulting sum-
maries from CCS with the three other methods discussed
above. An overview of the code to generate these results
using our textreg R package (available on CRAN) is in the
Appendix. Full scripts and data are available on our web-
site.1 For other studies using similar tools, see, for example,
[1] or [33]. Before presenting our results, we discuss data
representation.

7.1. Data Representation and Cleaning

There are many choices one might make in preparing a
corpus for statistical analysis. It is common to, for example,
convert text to lowercase and to drop all punctuation. We
take that approach here, although we convert all digits to
‘X’ (to preserve the presence of numbers, in case that
is informative) and convert hyphens to blank spaces (so
the sequence of hyphenated words would coincide with
a nonhyphenated similar phrase—something not possible
with single word analyses).

Most text analysis packages would then convert the
raw text into an m × p matrix of counts, dropping

1 Website address is http://scholar.harvard.edu/lmiratrix/
software/textreg-r-package

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

http://scholar.harvard.edu/lmiratrix/software/textreg-r-package
http://scholar.harvard.edu/lmiratrix/software/textreg-r-package

14 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

any stop words, but because of the greedy coordinate
descent algorithm, unknown phrase length, and the related
generation of features on the fly, we store the text as raw
strings, with one string per document.

There is some controversy as to whether to ‘stem’
documents, which is where the tails of many words are
cropped so as to collapse the number of possible words.
For example ‘clean,’ ‘cleaning’, and ‘cleaner’ might all be
cropped to ‘clean+’ This has the disadvantage of making the
resulting text output somewhat difficult to read, especially
when considering phrases. Stemming can also lose textual
meaning if the different suffixes are in fact important in the
context. It has the advantage, particularly for phrases, of
collapsing several different versions of phrases into one. We
provide stemming as an option but, to enhance readability
of output, append a ‘+’ to the end of all stemmed words (and
their roots) to indicate they have been potentially cropped.
We also provide tools to wildcard search for stemmed
phrases in the original text so as to recover examples of
the complete phrases.

Sometimes a given context would involve words that are
known a priori, or nearly a priori, to have no meaning.
We therefore provide an option for custom-made, short
stop-word lists (i.e., a list of banned words) that are
prohibited from being in any summary phrase. Generally,
these lists are built in an iterative process. The first
summary generated will often contain words that are
immediately recognizable as inconsequential to a researcher
with pre-existing contextual knowledge, even though they
are correlated with the labeling. The researcher would
then drop these words, rerun the algorithm, and repeat as
necessary. We do not see any way to avoid this; the case
studies below illustrate why.

7.2. Fat/Cats

Our main investigation relies on OSHA’s publicly
available summaries of occupational Fat/Cats (Fat/Cats),2

in the United States, from 2000 to 2010. These summaries
describe workplace incidents that have resulted in death
or the inpatient hospitalization of three or more workers.
When such an event occurs, an employer must report
it to OSHA.34 In the course of conducting the resulting
investigation, OSHA generates a narrative report, part of
which becomes publicly available and is annotated with

2 Website address is http://ogesdw.dol.gov/views/data_catalogs.
php.

3 29 C.F.R. 1904.39(a)
4 OSHA recently expanded the list of reportable events to

include the loss of an eye, amputation, or inpatient hospitalization.
Occupational Injury and Illness Reporting Requirements-NAICS
Update and Reporting Revisions, 79 Fed. Reg. 56129-56188
(September 18, 2014)(amending 29 C.F.R. 1904.39).

any of a set of about 1400 keywords to categorize the
narrative reports in terms of specific chemicals involved,
machinery involved, body parts affected, and other salient
features. The publicly available records primarily consist of
a title and a short paragraph summary of the incident, along
with the date, whether the incident involved a fatality, and
several other covariates.

We concatenated the title and paragraph description to
form the documents. These documents tend to be 56–136
words long (these are the first and third quantiles), with a
minimum length of four words and a longest report of 791
words. After stemming, there were 49 840 unique unigrams
(word stems), of which 12 700 appeared 10 or more times
and 4704 appeared 100 or more times.

To investigate this corpus, we can, for any keyword,
generate a labeling of the narrative reports by setting those
reports tagged with the keyword as +1 and the remainder
as −1. Using CCS on this would then summarize the
collection of reports marked with a keyword by comparing
them to all other reports. Ideally, this would take out
words common to these reports (e.g., ‘employee’ or other
general work-place terms), leaving us with phrases that
make the identified set stand out. We would interpret
this summary as a distillation of what is distinct about
this category of Fat/Cats as compared to Fat/Cats in
general. By periodically summarizing reports for each
keyword of interest, researchers may gain information about
emerging hazards and trends in circumstances. Hopefully,
the resulting summaries would be faster to read than the
individual narratives, but still contain hints as to general
themes within these narratives.

As chemical exposure is an area of particular interest
for enhanced surveillance and understanding, we generated
a background comparison set of documents by identifying
keywords that we deemed to be at least loosely associated
with chemical exposure. We then defined the ‘chemical
family’ of narratives as all narratives that were labeled with
at least one of these keywords. This allowed us to compare
various categories of narratives within the limited context
of this chemical family, as well as within the larger context
of all other types of narratives. Changing the background
set highlights different aspects of what sets apart a marked
collection of reports.

As an overview of the overall number of narratives of
different topics of interest, Table 5 shows the appearance
pattern of the categories examined. We discuss Methylene
chloride and Carbon monoxide here, and defer Chemical
reaction to a supplementary document. The table also shows
how many narratives involved a fatality.

7.2.1. Methylene chloride

As it is our motivating example, we first examined
Methylene chloride. We initially selected a value of C = 4

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

http://ogesdw.dol.gov/views/data_catalogs.php
http://ogesdw.dol.gov/views/data_catalogs.php

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 15

Table 5. Number of narratives with different keyword labelings.
Second pair of columns restrict database to only reports related to
chemical exposure.

General Chemical

% # %

Methylene chloride 17 0.03% 17 0.2%
Carbon monoxide 243 0.5 243 3.5
Chemical reaction 115 0.2 115 1.6
Fatality 20 691 41.8 2575 36.7
Total 49 558 100.0 7014 100.0

Table 6. Methylene chloride (L2-rescaling, against all reports). #
Phrase is total occurrence of phrase; # Reports is number of reports
containing phrase; # Tag is number of methylene chloride reports
containing phrase; % Tag is the percent of phrase appearances in
methylene chloride reports; and % Phrase is percent of methylene
chloride reports containing phrase.

Phrase
#

Phrase
#

Reports
#

Tag
%

Tag
%

Phrase

A bathtub 9 9 5 56 29
Paint stripper 5 5 3 60 18
Stripper contained 3 3 3 100 18
And reglazing 2 2 2 100 12
From a bathtub 2 2 2 100 12
Remover contained 2 2 2 100 12
Stripping agent 2 2 2 100 12
Tub head 2 2 2 100 12

to ensure that we prune all singleton perfect predictors
(see Section 5.2). There are 17 reports marked with the
‘Methylene Chloride’ keyword. Running CCS on these
reports returns two words, ‘methylene’ and ‘chloride’. As
these words are not of interest, we immediately added
these words to the ban list and reran. Table 6 displays the
resulting summary comparing these 17 narratives to all the
other narratives.

The summarizer picks up on the coherent theme across
these reports of bathroom refinishing. This example is quite
encouraging, given our prior knowledge of the dangers of
methylene chloride, but the utility of CCS in detecting
yet unknown patterns remains to be seen. If we select C

based on the 95th percentile of 100 permutations, we obtain
C = 5.65. The needed C to result in a null summary is,
by comparison, Cobs = 6.92. We conclude that there is a
statistically significant relationship between the text and the
keyword (beyond the presence of the banned words), and
that the summary is thus informative. The corresponding
summary for C = 5.65 is quite succinct, containing only
‘a bathtub’ and ‘stripper contained’. Picking C to give
statistical significance appears, here, to drop informative
phrases.

The summaries do not necessarily capture information in
all tagged documents. In this case, for example, six of the

methylene chloride reports do not have any of the phrases
in Table 6, and so are not represented. A manual review
of these reports revealed that four involved ‘stripper’s
for tile, floors, and furniture. One involved an explosion
and one, quite terse, only referred to methylene chloride
gas.

7.2.2. Carbon monoxide

We also examined reports relating to carbon monoxide,
an asphyxiant odorless gas. We ran CCS with different
values of q for Lq -rescaling to examine the impact of
different levels of rescaling. We compared the CO cases
to all other cases involving any of a set of keywords
predetermined to be related to some sort of chemical
exposure (i.e., those narratives marked as members of
the ‘chemical family’). To reduce computational time, we
limited attention to phrases that appear at least five times
in the corpus. Results are in Table 7.

To obtain these results, we summarized in an iterative
process; words such as ‘carbon’, ‘monoxide’, ‘gas’, ‘poi-
soning’, ‘exposed’, ‘exposure’, ‘overexposed’, ‘carboxyhe-
moglobin’, ‘ppm’, ‘levels’, ‘partspermillion’, ‘overcome’,
and ‘co’ were eventually dropped. We also removed the
more specialized ‘hyperbaric’, having to do with a med-
ical intervention for CO poisoning and ‘cohb’, an abbre-
viation for carboxyhemoglobin, a molecular complex that
hemoglobin and carbon monoxide form in the body. All
of these words appeared in initial summaries and are due
to the technical and/or obvious aspects of CO poisoning;
they do not reveal trends or characteristics of interest and
thus obscure the desired results. None of these words would
have appeared on any conventional stop-word list. As they
are in fact correlated with the category, we see no way of
automatically removing them.

The final results reflect several known patterns in CO
poisoning. For example, the exhaust from gasoline- and
propane-powered engines are major culprits of these expo-
sures, particularly in combination with poorly ventilated
enclosed spaces. The appearance of the phrase ‘cold room’
appears to reflect incidents in which propane-fueled fork-
lifts and floor cleaning devices were the source of carbon
monoxide exposure within cold storage areas, where venti-
lation can be poor.

In investigating hospitalization, we found 17% of the
CO poisoning cases contained ‘were hospitalized’ versus
only 5% of the other chemical-related narratives and 1%
of the non-chemical narratives. The fire department was
mentioned in nearly 9% of these narratives versus a baseline
of 0.5%. This all may be due to lower rates of fatality, with
only 36% of the CO poisoning cases involving fatalities as
compared to 37% for other chemical family reports and
43% for non-chemical-family reports. Interestingly, ‘dead’

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

16 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

Table 7. Different summaries of carbon monoxide (compared to chemical family narratives).

Phrase q = 1.2 q = 1.5 q = 2 q = 3 q = 4 # Reports # Tagged % Tagged % Phrase

A propane powered 0.25 0.02 0.05 0.07 17 15 88 6
Their blood 0.16 0.13 5 5 100 2
Gasoline powered 0.15 0.29 0.28 0.25 0.21 41 30 73 12
Concrete saw 0.11 0.24 0.18 0.17 0.08 10 9 90 4
An X hour 0.10 6 6 100 2
The fire department measured 0.09 4 4 100 2
In a cold 0.09 4 4 100 2
Operating a propane 0.09 0.13 6 6 100 2
Propane operated 0.07 4 4 100 2
Were using a gasoline 0.07 5 5 100 2
Propane powered 0.25 0.23 0.22 0.13 34 28 82 12
Powered 0.20 0.35 0.41 0.44 169 85 50 35
Forklifts 0.13 0.21 0.26 0.22 23 16 70 7
For fresh 0.13 4 4 100 2
The generator was 0.06 9 7 78 3
X hour 0.02 0.03 16 11 69 5
Overexposure 0.15 0.26 0.28 37 18 49 7
Exhaust 0.04 0.10 0.10 112 35 31 14
Generator was 0.04 0.08 14 10 71 4
Blood 0.03 0.06 0.04 98 30 31 12
A gasoline 0.08 0.10 48 26 54 11
Average 0.07 0.05 16 10 62 4
Found 0.06 0.06 554 68 12 28
Were treated 0.05 0.05 111 22 20 9
The fire department 0.05 0.01 90 21 23 9
Hour 0.03 0.03 85 23 27 9
Source of the 0.01 0.02 32 12 38 5
Ventilation 0.01 0.02 130 32 25 13
Enclosed 0.01 0.01 66 18 27 7
Were taken 0.01 0.02 97 23 24 9
Employees 0.01 0.01 1400 126 9 52
Employees were 0.01 0.01 590 66 11 27
Were 0.00 0.01 2777 168 6 69
Fire department 0.02 211 36 17 15
A propane 0.02 96 26 27 11
Were hospitalized 0.01 384 42 11 17
Dead 0.01 372 38 10 16
Warehouse 0.01 92 19 21 8

appears in 16% of the CO narratives as compared to 5% in
the remainder of the chemical family.

Different rescalings give different styles of summaries.
The smaller q = 1.2 and q = 1.5 have very specific phrases
(e.g., ‘were using a gasoline’ and ‘their blood’) that appear
only in the positively marked documents. Larger q give
more phrases overall, and give phrases that appear at higher
rates in both the positive and negative class. For example,
‘employees’, with more than 10 000 appearances, appears
for q = 4.

Overall, infrequent and specific phrases are relatively
easy to interpret, and the more common phrases less so.
But their patterns of appearance are striking. ‘Employees’,
for example, appears in 52% of the CO narratives
versus a baseline of a mere 11%! Less surprisingly,
‘enclosed’ appears 7% of the time versus less than 0.5% at
baseline.

Table 7 contrasts ‘Carbon Monoxide’ to all incidents
labeled with other chemical-related keywords. We also
compared CO cases to the full set of cases in the database.
That is, we summarized the same collection of reports but
used a different baseline point of comparison. Results are
in Table 11, in the Appendix. They are broadly similar.

We also analyzed the data using stemming. See Table
12 in the Appendix. Results are again broadly simi-
lar (but possibly harder to read). Stemming collapses
phrases, which can be helpful, but hampers human read-
ability.

Finally, we compare CCS to the other methods of MNIR,
the Lasso, and the Ifrim et al. approach. The methods
returned summaries of very different lengths: MNIR was
293, Lasso 65, Ifrim 20, and textreg 12. We had to truncate
MNIR and Lasso to display the lists, but we did this
by taking the union of the top 20 words of each list to

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 17

see maximum overlap. See Table 8, with words sorted by
frequency of appearance in the corpus.

We see that the lists are quite different with mild overlap.
MNIR generally targets rare phrases, most of which are not
displayed, and Ifrim very general ones. MNIR, restricted to
unigrams in this instance due to computational concerns,
has less overlap than it might otherwise. Textreg has
mid-range phrases with a few very rare phrases that are
perfect predictors. These phrases were not included in the
document-term matrix due to their rarity, so could not be on
the Lasso or MNIR lists. Many of the phrases have similar
meanings. For example, Ifrim has the general versions (e.g.,
‘gasolin+’) for the more specific (gasolin+ power+) of the
Lasso and textreg.

7.3. Legal Decisions

In the context of legal decisions, our motivating question
is whether we can efficiently learn about the characteristics
of certain types of cases by extracting associated phrases
and topics from a corpus of those cases. As an exploratory
case study, we chose to examine publicly available
decisions from the ECAB, which considers appeals to
determinations by the OWCP in the U.S. DOL. OWCP
handles compensation claims from federal workers injured
during the course of employment. EBAC handles as many
as 2000 appeals per year.

Within this case law, one particular area of interest
is how ECAB handles compensation claims for so-called
‘emotional conditions’. These cases can be challenging for
a number of interesting reasons. For example, establishing
whether an employee’s condition was legitimately caused
by workplace conditions requires an analysis of causation
that is unique in many ways from that which is appropriate
in the context of a physical condition.

To further probe the potential utility of CSS in extracting
useful information from large bodies of technical text,
we performed an exploratory analysis on the collection
of ECAB decisions that relate to both mental health
conditions and causality. We sought to determine whether
automated summaries would reveal meaningful patterns.
These decisions are publicly available through DOL5. We
examined the years 2005–2010 by scraping them from the
website.

We ended up with 11 214 legal decisions, documents
generally ranging in length from 1602 to 2691 words (these
being the first and third quartiles) and a median length of
2074 words. The shortest was 281 words and the longest
12 664. There are 107 302 unique words, of which 37
474 appear 10 or more times and 11 264 appear 100 or

5 Website address is http://www.dol.gov/ecab/decisions/main.
html

Table 8. Different summaries of carbon monoxide (comparing
different methods).

Phrase MNIR Lasso Ifrim textreg Freq.

Power+ generat+ to+ 0.4 3
Level+ of approxim+ 0.4 4
Food+ poison+ 0.1 5
For fresh+ 0.3 5
Propan+ power+ floor+ 0.2 5
Tailpip+ 6.6 5
Their blood 0.2 5
Unventil+ 5.6 5
Vanguard 5.6 5
Over+ expos+ to+ 0.2 6
Decatur 6.2 7
Receiv+ oxygen+ 0.1 7
Mek 5.2 8
Twa 7.2 8
Carbonyl 7.3 9
Exhaust+ fume+ 0.1 9
Intern+ combust+ engin+ 0.2 9
Newton 5.5 9
Power+ concret+ 0.1 11
Qa 5.4 11
Transient 5.4 11
Stratton 5.6 12
Three employe+ are expos+ 0.3 12
Weight+ averag+ 0.1 12
Brigg+ 5.4 13
Emiss+ 5.4 13
Fd 6.2 14
Poison+ at+ 0.2 0.2 17
Employe+ overcom+ by 0.1 27
Overexpos+ 5.9 0.2 0.5 51
Overexposur+ 5.1 0.1 0.1 55
Propan+ power+ 0.2 0.3 56
Gasolin+ power+ 0.2 0.3 74
Overcom+ by 0.1 0.1 207
Poison+ 5.8 0.2 0.9 0.5 210
Overcom+ 4.3 0.1 249
Ventil+ 3.5 0.0 321
Gasolin+ 3.2 0.1 412
Expos+ to+ 0.0 0.0 490
Exposur+ 4.1 0.1 0.2 0.1 519
Exhaust+ 3.1 0.0 565
Propan+ 2.9 0.1 620
Expos+ 2.8 0.0 1053
Level+ 2.1 0.0 3282
Found+ 1.7 0.0 3502
Power+ 1.4 0.0 5779
Forklift+ 0.6 0.0 9118
Fell+ 0.0 19483
Were+ 1.2 0.0 27668
When 0.0 36629
His 0.0 53632
Was 0.0 176175

more times. These counts include case identifiers and other
character strings as words. We do not attempt to remove
them directly.

We automatically labeled all of the decisions with two
sets of dummy variables, one for emotional condition
and one for discussion of causality or work-relatedness
of the injury. For each, we labeled documents if they

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

http://www.dol.gov/ecab/decisions/main.html
http://www.dol.gov/ecab/decisions/main.html

18 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

Table 9. Manual review of labeling quality for legal decisions.

% Correct Estimated

Labeling Total (sample) Positive Negative Sense. Spec.

‘Emotional condition’ 1479 94/100 1390 89 0.83 0.99
No ‘emotional condition’ 9735 97/100 292 9443
Total cases 11214
‘Causality/work-relatedness’ 4236 99/100 4194 42 0.75 0.99
No ‘causality/work-relatedness’ 6978 80/100 1396 5582
Total Cases 11214

Table 10. Summary of cases involving an ‘emotional condition’ and a discussion of causality. Different columns correspond to the
number of dropped phrases. First column is only ‘emotion’ and ‘condition’. The rest are adding more and more phrases. Column B adds
‘ecab’, Column C ‘depression’, and Column D ‘xx’ (for illustration purposes). Column D includes many other terms.

Main +‘ecab’ +‘depression’ +‘xx’ +Many

Illness that is 0.46 0.48 0.48 0.60 0.60
Cutler xx ecab 0.32
Requirement imposed by the 0.31 0.31 0.31 0.32 0.32
Psychiatrist 0.05 0.05 0.05 0.06 0.06
Incidents alleged to have caused 0.05 0.05 0.05
Lillian Cutler 0.04 0.03 0.03
Compensable 0.03 0.03 0.03 0.03 0.03
Disorder 0.01 0.01 0.01 0.01 0.01
Factor of employment and 0.01 0.01 0.01
A factor of employment 0.01 0.01 0.01 0.02 0.02
Not covered 0.01 0.01 0.01 0.03 0.03
Reaction to 0.01 0.00 0.00
Anxiety 0.00 0.00 0.01 0.01 0.01
Cutler xx ecab xxx xxxx 0.00
depression 0.00 0.00
Lillian Cutler xx 0.00 0.30 0.30
Compensable factor of employment and 0.01 0.01
Results from an 0.06 0.06
Environment or 0.01 0.01
An administrative or personnel 0.01 0.01
Requirement imposed 0.01 0.01
Allegations 0.00 0.00

contained any of a set of handpicked key phrases. Once
we tuned our collection of key phrases, we took a
random sample of the positively and negatively marked
documents and conducted a manual review. The labeling
is clearly not perfect, as is illustrated in Table 9. Ideally,
the CCS method will still be able to produce relevant
summaries despite the noise of the missed labels. Although
it is possible that specific types of positive decisions are
systematically missed due to the ad hoc labeling, discovery
of meaningful summary phrases would nevertheless be
suggestive.

Column 1 of Table 10 shows a first-pass summary
of those cases that both involve an emotional condition
and revolve around issues of causality. We see fairly
general terms and some boilerplate language. Here, it
is necessary to explore the raw text to discover the
contexts for these phrases. This is easily done using our

package. For example, one positively marked decision
has:

Not every injury or illness that is related to
a claimant’s employment is compensable. In the
case of Lillian Cutler, the Board explained some
distinctions as to the type of employment situations
giving rise to a compensable emotional condition
under FECA.

C.E., Docket No. 10-461 (issued November 23,
2010) (emphasis added).

Another is:

To establish that an emotional condition arose in
the performance of duty, a claimant must submit
the following: (i) medical evidence establishing that
she has an emotional or psychiatric disorder; (ii)
factual evidence identifying employment factors or

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 19

incidents alleged to have caused or contributed to
the condition; and (iii) rationalized medical opinion
evidence establishing that the emotional condition
is causally related to the identified compensable
employment factors.

T.G., 58 ECAB 189 (2006) (emphasis added).

As an illustration of stability of CCS, consider the
other columns of Table 10. Each column corresponds to
dropping more and more terms from consideration. Note
that the transition from the third to fourth column drops
one of the case references, ‘Lillian Cutler’, even though
we did not explicitly drop those words and phrases. CCS-
selected phrases are picked in the context of other phrases.
Because we removed ‘xx’ (indicating a case number),
‘Lillian Cutler’ is no longer selected, along with other
phrases including parts of this phrase and ‘xx’. Instead,
we obtain a cluster of phrases showcasing different aspects
of these cases. Dropping phrases can affect a summary
only if those phrases are in the summary. The final two
columns are the same because none of the additional
phrases was in the summary from column 4. Care must
be taken to understand the complex dependencies between
phrases.

Thus, in the context of ECAB decisions, the CCS
tool provides phrases that flag boilerplate language and
case citations. To some degree, these phrases appear to
reflect precedent and common statements of law that
characterize a given category of cases. While our results
are exploratory, inexact, and not particularly revealing in
and of themselves, they do suggest that a refined CCS tool
might one day facilitate the development of automated case
content analysis or aid the development of refined legal
taxonomies.

7.4. Discussion

As the above studies illustrate, using these tools to under-
stand text is a very different, and far less precise, activity
than working to correctly classify text. The common prob-
lems with machine-learning approaches (selecting methods,
selecting tuning parameters, etc.) are only exacerbated by
this uncertain area. The researcher is left with many deci-
sions to make and only vague guidance on how to make
them.

With our method, two such decisions are prominent: what
method to use for selection of the regularization parameter
C, and what method to use for selection of the feature-
normalization parameter q. We also need to determine how
to remove domain-specific stop words.

7.4.1. Picking C

For selecting C, we have several options, especially
if we include picking a regularization parameter by
optimizing predictive performance. Which option to select
is a difficult, especially since there is no easy metric of final
quality if one’s focus is not prediction. The computational
investigations shed some light on this problem. Ideally,
one would use the maximum of the permutation approach
and the rare-phrase pruning approach. This will guarantee
finding a summary only if one should be found, and also
will discard rare phrases that do not speak of general
trends across the positive documents. The free test from
the permutation-selected C of whether the phrases as
a whole are in fact significantly associated with the
text is a real boon, in our view. It moves toward
presentation of results that are known to not be entirely
noise.

That said, future work on stability (where documents
are perturbed to see how the selected phrases change, for
example) is a must. Furthermore, we acknowledge that
the above examples suggest that the permutation-selected
C is severe, more severe than from cross-validation or
similar methods. This means we can lose human meaning
as illustrated by the methylene chloride example: the
richness of the summary was much greater with a slightly
reduced C. Relaxing regularization toward what would be
achieved with prediction-oriented approaches to achieve
longer lists may be informative, but (other than improved
prediction) this could undermine the guarantees provided
by the above. Perhaps, work on testing individual phrases
via false discovery rates could find a better balance.

Regardless, one should always compare the finally
chosen C to Table 1 to see to what degree it is discarding
perfect predictors, and to what degree it would leave the
remainder to be potentially picked up. This provides a
human interpretation of the impact of the regularization.

7.4.2. Picking q

Selecting q is also admittedly difficult. By design, it
gives different views of the data, from the quite general
to the very specific. We advocate for exploring a range of
values as the best practice. In the above case studies, for
example, the full range of terms on the tables provided the
most complex and rich story; perhaps pooling the lists and
exploring these pooled lists would be one way forward.
We underscore that we view these tools as exploratory;
the researcher can extract small snippets of text to see
whether they offer some clue toward a more thorough
investigation. This is similar in spirit to, for example,
XGobi [45].

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

20 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

7.4.3. Stop words

Even though we avoid using stop-word lists as a
first-pass approach, we still need to generate specialized
stop-word lists. We see no way to have removed these
words without human intervention, as, from a prediction
standpoint, the removed words are key indicators of a
given labeling. Unfortunately, selecting them occludes
terms that could enhance human understanding. We can
see this with the calculated C thresholds: as we add
words to the ban list, the C plummets because we are
removing the words that are most correlated with the
labeling. Eventually, we could reach a point where we
have ‘conditioned out’ all the connection of the labeling
to text. This is another potential avenue for exploring such
data. Overall, we advocate generating modest-length stop-
word (ban) lists using substance-matter knowledge, coupled
with rescaling, over using generic stop lists that allow
milquetoast words through due to their being not obviously
wrong.

8. CONCLUSIONS

We presented a method for comparing sets of documents
that is simple, sparse, and fast. We argued that these
qualities are important for text analysis, especially if it is
to be used for surveillance or other exploratory tasks. Here,
‘simple’ means the summaries cannot be too technical in
nature. For example, the presence/absence of features is
easier to interpret than regression weights. We need sparsity
as humans are lazy; the number of phrases in a summary
must be few. The faster the summaries can be computed,
the better. Otherwise, exploratory analysis and discovery
are bogged down.

We do not, however, argue that the results of these tools,
or in fact any other text analysis tools that we know of,
can be taken as ultimate proof of any particular substantive
theme or meaning. Summaries can be quite suggestive, but
researchers would need to investigate further to substantiate
those suggestions. Alternatively, secondary analyses such as
blind scoring of the key phrases for sentiment could lead
to traditional statistical conclusions. In these cases, CCS
should be viewed as a dimension reduction tool, providing
a targeted, small number of informative features for a very
complicated form of data.

On the technical side, we have effectively provided an
implementation of Lasso-style regression where the full set
of features is dynamically created and the loss is a squared
hinge loss rather than a normal quadratic loss. This work
shows that implementing sparse regression with greedy
coordinate descent offers a viable direction for summa-
rization using phrases rather than words. Furthermore, the

approach of dynamically building features shows promise
for other customizations such as skipping or dropping words
to automatically detect related phrases, collapsing them into
single features.

Admittedly, more work needs to be done to optimize this
particular implementation to see exactly how fast it could
be; currently the algorithm is suboptimal because it does
not fully fit currently selected features at each iteration.
That said, compared to methods with a precomputed design
matrix, it is comparably fast, is more flexible in the n-
grams considered, and allows for some trickiness such as
having gaps in the key phrases (i.e., wildcard words) and
the enforcement of nonnegative weights. Additionally, the
textreg package is quite natural to use, allowing users to
avoid calculating the phrase matrix and, instead, work with
raw text. It also easily allows for rescaling schemes other
than L2.

Going beyond text analysis, these methods also hint
at ways of incorporating many interaction terms among
features in high-dimensional regression. Phrase features
are simply interactions of nearby word features, and thus
similar bounding methods may exist. This is another area
for future exploration.

ACKNOWLEDGMENTS

We would like to thank three anonymous reviewers and
an AE for their detailed comments; the paper has been
much improved by this feedback. Also enormous thanks
to Matt Taddy for his invaluable and speedy support with
his textir package used in our comparison studies. This
work builds on conversations and ideas discussed in the
StatNews research group in UC Berkeley led by Bin Yu and
Laurent El Ghaoui. In particular, we thank Garvesh Raskutti
for his ideas on the impact of different rescaling choices. We
are very grateful for these opportunities and inspirations.
We also thank Kevin Wu for a portion of the code in the
R package, and Janet Ackerman for collaboration on an
earlier incarnation of this project and initial data collection.
The analyses, opinions, and conclusions expressed in
this paper do not necessarily reflect the views of the
U.S. DOL.

APPENDIX A

Appendix A consists of supplemental tables showing alternate sum-
maries of the case studies discussed above. Table A1 compares carbon
monoxide narratives to all the other narratives. Table A2 demonstrates a
series of summaries on a stemmed corpus.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 21

Table A1. Different summaries of carbon monoxide (when comparing against all other cases).

Phrase q = 1.2 q = 1.5 q = 2 q = 3 q = 4 # Reports # Tagged % Tagged % Phrase

Were using a gasoline 0.28 0.31 5 5 100 2
Propane-powered floor 0.28 5 5 100 2
Their blood 0.28 0.52 0.45 0.64 0.65 5 5 100 2
Hemoglobin 0.15 5 5 100 2
In the cold room 0.15 0.16 5 5 100 2
They were found 0.34 0.15 4 4 100 2
Powered forklifts 0.31 0.18 9 8 89 3
Gasoline powered 0.30 0.47 0.56 0.53 66 30 45 12
Propane powered 0.28 0.40 0.53 0.53 52 28 54 12
Overexposure 0.18 0.34 0.53 0.58 37 18 49 7
Exhaust fumes 0.13 6 5 83 2
Exhaust 0.03 0.10 0.11 196 35 18 14
Calculated 0.18 12 7 58 3
Generator was 0.13 0.17 24 10 42 4
Employees were treated 0.10 0.13 40 12 30 5
Evacuated 0.07 0.10 104 18 17 7
The fire department 0.06 241 21 9 9
Ventilation 0.05 0.07 203 32 16 13
Were treated 0.05 0.04 217 22 10 9
A propane 0.05 0.05 128 26 20 11
Powered 0.03 0.03 740 85 11 35
Blood 0.03 0.04 355 30 8 12
Were hospitalized 0.02 0.03 778 42 5 17
Found 0.01 0.02 2885 68 2 28
Employees 0.00 0.01 5575 126 2 52
Stratton 0.27 12 7 58 3
Headaches 0.16 36 10 28 4
Source of the 0.09 60 12 20 5
A gasoline 0.07 70 26 37 11
Passed out 0.06 108 11 10 5
Enclosed 0.05 180 18 10 7
Fire department 0.03 778 36 5 15
Cold 0.03 219 16 7 7
Hours 0.01 1277 33 3 14
Room 0.01 1580 42 3 17

Table A2. Different summaries of carbon monoxide (using stemming, compared to chemical family).

Phrase q = 1.2 q = 1.5 q = 2 q = 3 q = 4 # Reports # Tagged % Tagged % Phrase

Poison+ at+ 0.33 0.12 0.10 0.08 0.03 17 17 100 7
Propan+ power+ 0.12 0.38 0.55 0.56 0.49 34 28 82 12
Gasolin+ power+ 0.11 0.38 0.54 0.56 0.54 43 32 74 13
For fresh+ 0.10 0.19 0.10 4 4 100 2
Poison+ 0.09 0.36 0.49 0.53 0.53 141 96 68 40
An+ X hour+ 0.04 6 6 100 2
Were+ use+ a+ gasolin+ 0.04 5 5 100 2
Was oper+ a+ propan+ 0.03 6 6 100 2
The cold room+ 0.03 0.02 7 7 100 3
Concret+ saw+ 0.08 0.21 0.10 10 9 90 4
XXX cubic+ 0.06 4 4 100 2
The generat+ was 0.06 0.09 10 8 80 3
Forklift+ were+ 0.01 0.05 8 7 88 3
Averag+ 0.13 0.16 0.10 17 11 65 5
Headach+ dizzi+ 0.06 6 5 83 2
Intern+ combust+ 0.05 8 6 75 2

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

22 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

Table A2. Continued

Phrase q = 1.2 q = 1.5 q = 2 q = 3 q = 4 # Reports # Tagged % Tagged % Phrase

The cold 0.04 17 10 59 4
Exhaust+ 0.03 0.07 0.08 142 38 27 16
Generat+ 0.03 0.05 0.03 110 31 28 13
Sourc+ of the 0.02 0.10 0.08 33 13 39 5
X hour+ 0.01 0.03 57 18 32 7
Hour+ 0.03 0.04 362 47 13 19
Found+ 0.02 0.03 561 69 12 28
A+ gasolin+ 0.02 0.02 48 26 54 11
Cold 0.01 66 16 24 7
Fire+ depart+ 0.01 0.01 217 37 17 15
Ventil+ 0.01 0.01 173 42 24 17
Power+ 0.01 0.02 459 95 21 39
Were+ treat+ 0.01 0.01 112 22 20 9
Were+ 0.01 0.01 2778 168 6 69
Employe+ were+ 0.01 0.00 612 67 11 28
Room+ 0.00 0.00 475 43 9 18
Employe+ are 0.01 305 37 12 15

APPENDIX B: DERIVATIONS

We here show three derivations used in the above work. We first show
how to obtain the bound on the gradient. Second, we give an alternate
formulation of the loss function, which gives a different approach for
finding the feature with the maximal gradient. We then show how to
obtain the minimal λ∗ to ensure perfect predictors are pruned.

Bound on the Gradient

The gradient for phrase j is

d

dβj

L(β) =
n∑

i=1

ξ ′(mi)yi

cij

zj

+ C
d

dβj

|βj |

=
∑

yi=1,cij >0

ξ ′(mi)
cij

zj

+
∑

yi=−1,cij >0

− ξ ′(mi)
cij

zj

+ C
d

dβj

|βj |

Now consider all phrases k with phrase j as a prefix that are currently
not in the model (i.e., which currently have βk = 0), and maximize
over the possible gradients (a similar argument gives a bound below for
negative gradients). For vectors a, b, let a
 b denote a component-wise
relationship of ai ≤ bi for i = 1, . . . , m. Then the set

{
a : 0
 a
 cj

}
contains all potential appearance patterns for a phrase with phrase j as a
prefix. We do not wish to calculate what the actual phrases are, hence we
optimize over this set of potential phrases. This results in the following
optimization problem:

U = max
0
a
cj

∑
yi=1,cij >0

ξ ′(mi)
ai

za

+
∑

yi=−1,cij >0

−ξ ′(mi)
ai

za

+ C
d

dβj

|βj |

≤ max
0
a
cj

∑
yi=−1,cij >0

−ξ ′(mi)
ai

za

− C = max
0
a
cj

1

za

〈w, a〉 − C

with za = |a|q being the Lq norm of a, w a m-vector of weights with
wi = −ξ ′(mi), and 〈·, ·〉 the inner product.

Because ξ ′(mi) is everywhere nonpositive, the first term in the first
line above is negative. The second line follows because setting ai = 0
for any document with yi = 1 only increases the gradient, as doing so
will simultaneously drop negative terms and shrink zj . The penalty term
is negative because we are examining gradients at 0; if we step ε in
the negative direction (as indicated by the first term), the gradient will
immediately be shrunk toward 0. The mi , which include the intercept μ,
are fixed constants, determined by the current location of our optimization
path. We are effectively maximizing over an inner product of a and a
vector of weights w with wi = ξ ′(mi) for i = 1, . . . , n. Overall, this bound
is assessing the maximum possible utility of a hypothetical super phrase,
which boils down to maximizing weights put on positive examples.

The normalization za renders this problem difficult. We can bound the
optimization using the following relationship:

|x|2|w|2 ≤ |x|q |w|r

for q, r such that 1/q + 1/r = 1.
This inequality gives

U = max
0
a
cj

1

|a|q |a|2|w|2 cos θ − C

≤ max
0
a
cj

1

|a|q |a|q |w|r cos θ − C

= max
0
a
cj

|w|r cos θ − C

≤ |w|r − C

with θ being the angle between a and w.
Coupling this with a similar argument for minimization gives the

overall bound.

A note on the Elastic Net: The elastic net [17] is where we
penalize our loss function with (using Ifrim et al.’s notation)

CRa(β) = Ca

p∑
j=1

∣∣βj

∣∣ + C(1 − a)

⎛
⎝ p∑

j=1

∣∣βj

∣∣2

⎞
⎠

1/2

.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 23

This regularization tends to keep groups of correlated features rather than
picking one; it can borrow from the stability of ridge regression. It can be
potentially useful when many small features have weak signals. Setting
a = 1 corresponds to L1 regularization.

For our problem, the gradient search is just changed to a subtraction of
Ca rather than C for the at-zero potential new features. The gradients
calculated for features already in the model have an extra term of
C(1 − a)2βj due to the derivative of the second term above.

Alternate Gradient Formulation

By redefining β, we can change the optimization problem to have a Lq -
rescaling term in the penalty. This gives different bounds on the gradients
for super-phrases based on a sub-phrase. However, it also changes the
gradients themselves, which would change the path of the optimization
problem. That is, different features will initially have the largest gradient.
Assuming true convergence, the final solution will be identical, however.

In particular, define β̃j = βj /zj . The loss term can then be re-expressed
as

L(β) =
n∑

i=1

ξ(mi) + C

p∑
j=1

zj |β̃j |.

The gradient for phrase j is then

d

dβj

L(β) =
n∑

i=1

ξ ′(mi)yicij + Czj

d

dβj

|βj |

=
∑

yi=1,cij >0

ξ ′(mi)cij +
∑

yi=−1,cij >0

− ξ ′(mi)cij + Czj

d

dβj

|βj |.

Again, consider all phrases with phrase j as a prefix and maximize
over the gradient, yielding the following optimization problem:

U = max
0
a
cj

∑
yi=1,cij >0

ξ ′(mi)ai

+
∑

yi=−1,cij >0

−ξ ′(mi)ai + Czj

d

dβj

|βj |

= max
0
a
cj

∑
yi=−1,cij >0

∣∣ξ ′(mi)
∣∣ ai − C

(
n∑

i=1

a
p

i

)1/p

.

As before, the second line comes from noticing that setting ai = 0
for any document with yi = 1 will only increases the gradient due to
dropping the negative terms and shrinking zj . The penalty term is still
negative because, if we step ε in the negative direction from 0 (which
is indicated by the first term), the gradient will immediately shrink
toward 0.

If we consider only phrases that have at least r occurrences in our
corpus, then we can roughly bound with

max
k:xk
xj

d

dβk

L(β) ≤
∑

yi=−1,cij >0

∣∣ξ ′(mi)
∣∣ cj − Cm1/p.

This is from maximizing both terms separately. For the first, we simply
add the maximum weight, without regard to the normalizing constant.
For the normalizing constant, given a total count of r occurrences, the

maximum zj would be putting singletons on each of r documents, giving
the r1/p total.

Similarly, bounding from below gives an overall bound of

∣∣∣∣∣ max
k:xk
xj

d

dβk

L(β)

∣∣∣∣∣ ≤ 0
∨

max

⎧⎨
⎩

∑
yi=−1,cij >0

∣∣ξ ′(mi)
∣∣ cij ,

×
∑

yi=1,cij >0

∣∣ξ ′(mi)
∣∣ cij

⎫⎬
⎭ − Cr1/p

.
This bound appears to be less useful than the one presented in the

main paper. Furthermore, not rescaling by zj tend to make more common
phrases be selected first, as we are not rescaling the first term, allowing it
to grow quite large.

Perfect Predictors

Take the count vector for a perfect predictor cj . It has r 1s and m − r

0s. For the regression, the count vector cj is q-rescaled, giving

xj = 1

zj

cj = 1

r1/q
as zj =

(
m∑

i=1

|cij |q
)1/q

= r1/q .

Assume that feature cj has been set aside and we have optimized
without it. We have Ŷ = Xβ̃ (with β̃j ≡ βj /zj except for the intercept) for
our current set of predictions, and an overall predicted mean μ = 1

m

∑
Ŷi .

Now reintroduce feature cj . Our loss function, when only considering
feature cj , is then

�(βj) =
m∑

i=1

(
Yi − Ŷi

)2 + C|βj |

=
m∑

i=1

(
Yi − Xiβ̃ − xij βj

)2 + C|βj |

=
∑

i:xij>0

(
1 − Xiβ̃ − βj

r1/q

)2

+ C|βj |,

where we have dropped those terms not dependent on βj . This is convex.
Take the derivative and set equal to 0 to find the minimum:

�′(β) = − 2

r1/q

∑
i:xij>0

(
1 − Xiβ̃ − βj

r1/q

)
+ Csgn(β)

= − 2

r1/q

∑
i:xij>0

(
1−Xiβ̃

)
+ 2

r1/q

∑
i:xij>0

βj

r1/q
+Csgn(β)

= − 2

r1/q

∑
i:xij>0

(
1 − Xiβ̃

)
+ 2βj r

1−2/q + Csgn(β).

The βs will not be negative, and hence we examine the positive case,
allowing us to drop the sgn() term. Set �′(β) equal to 0 and solve, giving

β̂j = r1/q

⎛
⎝ 1

r

∑
i:xij>0

(
1 − Xiβ̃

)⎞
⎠ − 1

2
r2/q−1C.

The term in the outer parenthesis is the average prediction for the
documents having the perfect predictor cj .

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

24 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

If for a document i with cik = 1 there are not really any other predictive
features, then Ŷi = Xiβ̃ ≈ μ. If this is true for all of the documents
predicted by ck , then the above is then approximately

β̂j ≈ r1/q−1r(1 − μ) − 1

2
r2/q−1C

= r1/q (1 − μ) − 1

2
r2/q−1C.

If some documents are predicted by other features included in the model,
then the sum will be less and the necessary C for pruning will be reduced.
Rearrange to obtain an approximate cutoff for C to drop all perfect
predictors that perfectly predict r documents.

The q = 2 case.: For q = 2, we have

β̂j = √
r

1

r

⎛
⎝ ∑

i:xij>0

(
1 − Xiβ̃

)⎞
⎠ − 1

2
C

≈ √
r(1 − μ) − 1

2
C.

For the positive examples, xij = 1/
√

r , giving prediction of

Ŷi ≈ μ + 1√
r

(√
r(1 − μ) − 1

2
C

)
= 1 − 1

2
√

r
.C

The first term of β̂j takes our prediction perfectly to +1, and the second
term shrinks the coefficient away from 1 by half of C. Predictions from
predictors that predict for more documents will be shrunk less than those
for fewer. The raw coefficients will also be larger.

APPENDIX C: USING THE TEXTREG PACKAGE

Our text regression package, textreg on CRAN, is a wrapper for an
extensively modified version of the C++ code written by Georgiana Ifrim.
It is also designed to integrate with the tm package, a commonly used R
package for dealing with text. Our package is fully documented, but it is
research code, meaning gaps and errors are possible; the authors would
appreciate notification of anything that is out of order.

The primary method in this package is the regression call textreg().
This method takes a corpus and a labeling vector and returns a
textreg.result object that contains the final regression result along
with diagnostic information that can be of use. The (somewhat edited)
function heading along with default values is

The main arguments to this method are listed below:

corpus A vector of strings or a corpus object built out of strings.

labeling A vector of +1/0/−1 values, where 0 means drop from
consideration.

banned A vector of unigrams (words) that should not be allowed in any
summary phrase.

C The C tuning parameter for regularization.

Lq The q for the Lq -rescaling of terms. A value of 10 or above is treated
as infinity.

maxIter The maximum number of iterations allowed before terminating
even under no convergence.

verbosity 0 means silent. Larger numbers mean more diagnostic printout.

positive.only Only allow positive features (other than the intercept).
Useful if there are few positive documents and many negative,
baseline, documents.

binary.features The feature vectors are 0–1 vectors indicating whether
a phrase is in or not in any given document. This is compared to
vectors of counts of how many times a phrases in a document.
These feature vectors are Lq -rescaled regardless.

no.regularization If TRUE, then features will not be rescaled (which
recovers the Ifrim et al. algorithm).

min.support Phrases that do not appear this many times are not
considered viable features. Increasing this number can greatly
decrease the running time of the algorithm, but it will force
the dropping of very rare phrases regardless of rescaling or
regularization choice.

min.pattern,max.pattern Minimum and maximum lengths for phrases
that are considered.

gap Number of words that can appear in a gap. A phrase can have
multiple gaps of this length.

The resulting textreg.result object can be printed, plotted, and
explored. Try, in an R Console, typing rs by itself or plot(rs).
The method reformat.textreg.model(rs) gives a nice table (see,
e.g., Table 6) of summary statistics for the final phrases. The side-
by-side summary table such as Table 7 is made by passing a list of
textreg.result objects to make.list.table(). The method
calc.loss(rs) gives the final loss of a result rs, and predict
(rs) will return individual document-level predictions of the labeling.
The method rule.to.matrix(rs) gives back the n × r design
matrix for the final selected r phrases including intercept.

To pick a tuning parameter, one can use

This method returns a R + 1 length list of numbers. The first number
is the choice of C that will return a null model for the labeling given,
and the subsequent R numbers constitute our found C values that return a
null model under a random permutation of the labeling (holding the zeros
fixed). It takes the same parameters as textreg except for maxIter
and C. Be sure to use the same remaining values for both calls so that
find.threshold.C culminates with a C corresponding to the correct
model family.

For exploring text, sample.fragments(phrase, labeling,
corpus) is useful. See also grab.fragments(). To profile specific
phrases, possibly even phrases not in the results, use make.phrase.
count.table().

One can make cluster plots of how phrases relate with clus-
ter.phrases(rs), or make matrices of co-occurrence of phrases
using make.phrase.correlation.chart(rs).

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Miratrix and Ackerman: Sparse Feature Selection on Arbitrarily Long Phrases 25

All of the above, and a bit more, is demonstrated and more fully
explained in the vignette ‘Bathtub Demo’, that comes with the package.
Please read through it for further discussion and ideas.

REFERENCES

[1] J. Jia, L. Miratrix, B. Yu, B. Gawalt, L. E. Ghaoui,
L. Barnesmoore, and S. Clavier, Concise comparative
summaries (CCS) of large text corpora with a human
experiment, Ann Appl Stat 8 (1) (2014), 499–529.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet
allocation, J Mach Learn Res, 3 2003, 993–1022, .

[3] G. Ifrim, G. Bakir, and G. Weikum, Fast logistic regression
for text categorization with variable-length n-grams, In 14th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008, 354–362.

[4] G. Ifrim and C. Wiuf, Bounded coordinate-descent for
biological sequence classification in high dimensional
predictor space, In 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2011, 708–716.

[5] M. Taddy, Multinomial inverse regression for text analysis,
J Am Stat Assoc, 108 (503) (2013), 755–770.

[6] R. Tibshirani, I. Johnstone, B. Efron, and T. Hastie, Least
angle regression, Ann Stat, 32 (2) (2004), 407–451.

[7] J. Grimmer and A. Bayesian, Hierarchical topic model for
political texts: measuring expressed agendas in senate press
releases, Polit Anal, 18 (1) (2010), 1–35.

[8] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D.
M. Blei, Reading tea leaves: how humans interpret topic
models, In Neural Information Processing Systems (NIPS),
2009.

[9] J. M. Bischof and E. M. Airoldi, Capturing semantic content
with word frequency and exclusivity, In 29th International
Conference on Machine Learning, Edinburgh, Scotland,
February 2012.

[10] G. Salton and C. Buckley, Term weighting approaches in
automatic text retrieval, Inf Process Manag, 24 (5) (1988),
513–523.

[11] G. Salton, Developments in automatic text retrieval, Sci-
ence, 253 (5023) (1991), 974–980.

[12] T. Kudo and Y. Matsumoto, A boosting algorithm for classi-
fication of semi-structured text, In Conference on Empirical
Methods in Natural Language Processing, Barcelona, Spain,
Association for Computational Lingusitics, 2004, 301–308.

[13] R. Schapire and Y. Singer, BoosTexter: a boosting-based
system for text categorization, Mach Learn, 39 (2/3) (2000),
135–168.

[14] A. Genkin, D. D. Lewis, and D. Madigan, Large-scale
Bayesian logistic regression for text categorization, Tech-
nometrics, 49 (3) (2007), 291–304.

[15] T. Zhang and F. J. Oles, Text categorization based on
regularized linear classification methods, Inf Retr, 4 (2001),
5–31.

[16] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements
of Statistical Learning (Second Edition). New York, NY,
Springer, 2009.

[17] H. Zou and T. Hastie, Regularization and variable selection
via the elastic net, J R Stat Soc Series B Stat Methodol, 67
(2) (2005), 301–320.

[18] F. Mosteller and D. L. Wallace, Applied Bayesian and
Classical Inference: The Case of “The Federalist” Papers,
New York, Springer-Verlag, 1984.

[19] E. M. Airoldi, A. G. Anderson, and S. E. Fienberg, Who
wrote Ronald Reagan’s radio addresses? Bayesian Anal, 1
(2) (2006), 289–320.

[20] G. King and W. Lowe, An automated information extraction
tool for international conflict data with performance as good
as human coders: a rare events evaluation design, Int Organ,
57 (3) (2009), 617–642.

[21] D. J. Hopkins and G. King, A method of automated
nonparametric content analysis for social science, Am J
Polit Sci, 54 (1) (2009), 229–247.

[22] C. Cortes and V. Vapnik, Support-vector networks, Mach
Learn, 20 (1995), 273–297.

[23] G. Forman, An extensive empirical study of feature
selection metrics for text classification, J Mach Learn Res,
3 (2003), 1289–1305.

[24] S. Dumais, J. Platt, and D. Heckerman, Inductive learning
algorithms and representations for text categorization, In
Proceedings of the Seventh International Conference on
Information and Knowledge Management, ACM, 1998,
148–155.

[25] T. Joachims, Learning to Classify Text Using Support
Vector Machines. The Springer International Series in
Engineering and Computer Science, New York, NY,
Springer, 2002.

[26] S. Rose, D. Engel, N. Cramer, and W. Cowley, Automatic
keyword extraction from individual documents, In Text
Mining: Applications and Theory, M. W. Berry and J.
Kogan, eds. Chichester, UK, John Wiley & Sons, Ltd, 2010,
1–20.

[27] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G.
Nevill-Manning, Domain-specific keyphrase extraction, In
The Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), California, Morgan Kaufmann,
1999, 668–673.

[28] J. Chen, B. Zhang, D. Shen, Q. Yang, Z. Chen, and Q.
Cheng, Diverse topic phrase extraction from text collection,
In World Wide Web Conference, Edinburgh, Citeseer, 2006,
1–9.

[29] S. Gerrish and D. M. Blei, Predicting legislative roll calls
from text, In The 28th International Conference on Machine
Learning (ICML-11), 2011, 489–496.

[30] L.-W. Lee and S.-M. Chen, New methods for text
categorization based on a new feature selection method and
a new similarity measure between documents, In Advances
in Applied Artificial Intelligence, 2006, 1280–1289.

[31] Y. Yang and I. O. Pendersen, A comparative study on
feature selection in text categorization, In ICML-97, 14th
International Conference on Machine Learning, Nashville,
TN, 1997, 412–420.

[32] J. Eisenstein, A. Ahmed, and E. P. Xing, Sparse additive
generative models of text, In 28th International Conference
on Machine Learning, Bellevue, WA, 2013, 1–8.

[33] L. E. Ghaoui, G.-C. Li, V.-A. Duong, V. Pham, A. N. Sri-
vastava, and K. Bhaduri, Sparse machine learning methods
for understanding large text corpora: application to flight
reports, In Conference on Intelligent Data Understanding,
2011, 159–173.

[34] B. L. Monroe, M. P. Colaresi, and K. M. Quinn,
Fightin’ words: lexical feature selection and evaluation for
identifying the content of political conflict, Polit Anal, 16
(4) (2008), 372–403.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

26 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

[35] H. Zou, The adaptive lasso and its oracle properties, J Am
Stat Assoc, 101 (476) (2006), 1418–1429.

[36] T. T. Wu and K. Lange, Coordinate descent algorithms for
lasso penalized regression, Ann Appl Stat, 2 (1) (2008),
224–244.

[37] Z. Q. Luo and P. Tseng, On the convergence of the coordi-
nate descent method for convex differentiable minimization,
J Optim Theory Appl, 72 (1) (1992), 7–35.

[38] L. E. Ghaoui, V. Viallon, and T. Rabbani. Safe feature
elimination for the lasso and sparse supervised learning
problems. arXiv preprint arXiv:1009.4219 (2010).

[39] H. Wickham, D. Cook, H. Hofmann, and A. Buja, Graphical
inference for Infovis, IEEE Trans Vis Comp Graph, 16 (6)
(2010), 973–979.

[40] T. P. Speed and B. Yu, Model selection and prediction:
normal regression, Ann Inst Stat Math, 45 (1) (1993),
35–54.

[41] J. Friedman, T. Hastie, and R. Tibshirani, Regularization
paths for generalized linear models via coordinate descent,
J Stat Softw, 33 (1) (2010), 1.

[42] M. F. Porter, An algorithm for suffix stripping, Program,
14 (3) (1980), 130–137.

[43] D. Meyer, K. Hornik, and I. Feinerer, Text mining
infrastructure in R, J Stat Softw, 25 (5) (2008), 1–54.

[44] Y. Yang and X. Liu, A re-examination of text categorization
methods, In Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, 1999, 42–49.

[45] A. Buja, D. Cook, and D. F. Swayne, Interactive high-
dimensional data visualization, J Comp Grap Stat, 5 (1)
(1996), 78–99.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

