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Summary. Applied researchers are increasingly interested in whether and how treatment effects
vary in randomized evaluations, especially variation that is not explained by observed covariates.
We propose a model-free approach for testing for the presence of such unexplained variation.
To use this randomization-based approach, we must address the fact that the average treatment
effect, which is generally the object of interest in randomized experiments, actually acts as a
nuisance parameter in this setting.We explore potential solutions and advocate for a method that
guarantees valid tests in finite samples despite this nuisance. We also show how this method
readily extends to testing for heterogeneity beyond a given model, which can be useful for as-
sessing the sufficiency of a given scientific theory. We finally apply our method to the National
Head Start impact study, which is a large-scale randomized evaluation of a Federal preschool
programme, finding that there is indeed significant unexplained treatment effect variation.
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1. Introduction

Researchers and practitioners are increasingly interested in whether and how treatment effects
vary in randomized evaluations. For example, we might be interested in assessing the effect of
scaling up a promising intervention evaluated on a limited subpopulation (O’Muircheartaigh
and Hedges, 2014). If we use only observed characteristics to predict the programme’s effec-
tiveness on the new population, we might wonder whether we are missing critical unexplained
variation, which could undermine our generalization. Similarly, we might want to determine
whether different theoretical models are sufficiently rich to explain observed behaviour in a
randomized experiment. For instance, is a simple model of constant treatment effects within
subgroups sufficient to explain observed labour supply behaviour in welfare reform experiments?
Or is there meaningful unexplained variation, as predicted by labour supply theory (Bitler et al.,
2010)? The goal of this paper is to build a framework to assess treatment effect variation that
is not explained by observed covariates, which is also known as idiosyncratic variation (e.g.
Heckman et al. (1997) and Djebbari and Smith (2008)).

Unfortunately, assessing such variation is difficult—to paraphrase Anna Karenina: ‘constant
treatment effects are all alike; every varying treatment effect varies in its own way’. In general,
researchers investigating specific types of idiosyncratic variation must therefore rely on strong
modelling assumptions to draw meaningful conclusions from the data (Cox, 1984; Heckman
et al., 1997; Gelman, 2004). The key contribution of our paper is an approach that tests for
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the presence of unexplained treatment effect variation without requiring any such modelling
assumptions. In the simplest case, the method proposed is a test of the null hypothesis that the
treatment effect is constant across all units. More generally, the approach tests whether there is
significant unexplained variation beyond a specified model of treatment effect.

Of course, all treatment effects vary in practice, especially in the social sciences, which are
our area of application. The key question is whether the unexplained variation is sufficiently
large to be of substantive importance. As with all omnibus-type testing procedures, rejecting
this null hypothesis does not provide any indication of the source of the unexplained variation.
Rather, we view this procedure as a non-parametric first step in characterizing the results of a
randomized experiment.

In the simplest no-covariate case, the goal of this approach is to test whether the treatment
outcome distribution is the same as the control outcome distribution shifted by the average
treatment effect (ATE), a constant. Such testing would be straightforward if this shift were
known—we could simply apply standard Kolmogorov–Smirnov- (KS) type tests. However,
since the shift is not known, it is a nuisance parameter that we must estimate. In this case,
otherwise sensible methods, such as ‘plug-in’ (PI) approaches, can fail, even asymptotically (e.g.
Babu and Rao (2004)). Incorporating covariates only compounds this problem.

Testing features of distributions in the presence of nuisance parameters has a long history
in statistics and econometrics, where in the latter it is known as the Durbin problem (Durbin,
1973). Several references tackle this issue in the context of comparing treatment and control
outcome distributions, appealing to various asymptotic justifications to bypass the nuisance
parameter problem. These include a martingale transformation (Koenker and Xiao, 2002) and
subsampling (Chernozhukov and Fernández-Val, 2005).

We take a different approach, exploiting the act of randomization as the ‘reasoned basis for
inference’ (Fisher, 1935). The corresponding Fisher randomization test (FRT) does not rely on
further model assumptions, asymptotics or regularity conditions (for a review, see Rosenbaum
2002a). For the constant treatment effect case, when the ATE is assumed known, the FRT
procedure yields an exact p-value for the sharp null hypothesis of a constant treatment effect
(for one generalization, see Abadie (2002)). When the ATE is unknown, the null hypothesis is
no longer sharp. To correct for this, we first construct a confidence interval (CI) for the ATE,
repeat the FRT procedure pointwise over that interval and then take the maximum p-value. As
Berger and Boos (1994) showed, this procedure guarantees a valid test, despite the presence of
the nuisance parameter. This process readily generalizes for testing treatment effects beyond a
hypothesized model.

Our FRT-based approach has several key advantages. First, since the FRT approach is justified
by the physical randomization alone, it yields valid inference in finite samples without relying
on asymptotics or requiring absolutely continuous outcomes. Second, the FRT automatically
accounts for complex experimental designs, such as stratified and matched pair randomizations
or even re-randomization (Morgan and Rubin, 2012). Third, this procedure is valid for any test
statistic, though some statistics will be more powerful in certain settings. With this flexibility,
researchers can easily extend the FRT approach, tailoring the specific test statistic to their
particular problem of interest.

Using this framework, we assess treatment effect variation in the National Head Start impact
study (HSIS), which is a large-scale randomized evaluation of Head Start, a Federal preschool
programme (Puma et al., 2010). After evaluating a range of null models, we find that there is
substantial unexplained treatment effect variation, even when considering heterogeneity across
age of student, dual language learner status and baseline academic skill level, suggesting that
policy makers should not base key decisions on the topline results alone.
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The paper proceeds as follows. Section 2 describes treatment effect variation by using the
potential outcomes framework as well as how variation depends on the chosen outcome scale.
Section 3 gives an overview of various measures of treatment effect variation. Section 4 outlines
the FRT method that we propose, and Section 5 generalizes this approach to incorporate co-
variates. Sections 6–8 provide some simulation studies, apply this approach to Head Start and
discuss next steps. The on-line supplementary material contains all proofs as well as additional
details.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Defining treatment effect variation

Following the causal inference literature, we describe our approach by using the potential out-
comes framework (Neyman, 1990; Rubin, 1974). We focus on the case of a randomized experi-
ment with a binary treatment Zi and continuous outcome Yi. Let N be the number of subjects in
the study, with N1 of them randomly assigned to treatment and N0 of them assigned to control.
As usual, we invoke the stable unit treatment value assumption, which states that there is only
one version of the potential outcomes and that there is no interference between subjects (Rubin,
1980).

With this set-up, the potential outcomes for subject i under treatment and control are Yi.1/

and Yi.0/. The science table is the N ×2 table containing the potential outcomes for all N units
(Rubin, 2005). Each individual’s observed outcome is a function of the treatment assignment
and the potential outcomes:

Yobs
i =ZiYi.1/+ .1−Zi/Yi.0/,

where the randomness comes only from the random treatment assignment. Let Z and Yobs

denote the treatment assignment and observed outcome vectors respectively. We define the
individual treatment effect in the usual way as τi =Yi.1/−Yi.0/, but note that other contrasts
are also possible. Finally, we define the finite sample ATE as

τ = 1
N

N∑

i=1
{Yi.1/−Yi.0/}:

This is a statement about the N units that we observe. In other words, we condition on the
sample at hand.

The treatment effect is constant if τi = τ for all i=1, : : : , N. Otherwise, we say that the treat-
ment effect varies across experimental units. In the language of hypothesis testing, we can define
the constant treatment effect null as

HC
0 : Yi.1/−Yi.0/= τ ∀ i for some τ : .1/

If τ were known to be τ = τ0, this hypothesis becomes sharp.

2.1. Constant shift
We cannot, however, directly observe any individual level treatment effects τi, since we only ever
observe one potential outcome for each unit. Instead, we observe the marginal distributions
of the treatment and control groups. Because of this, much of the literature (see, for example,
Cox (1984)) defines a ‘constant treatment effect’ as a statement that the marginal cumulative
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distribution functions (CDFs) of the potential outcomes of the experimental and control unit
distributions F0.y/ and F1.y/ are a constant shift apart:

H0 : F1.y/=F0.y − τ / for some τ : .2/

Rejecting H0 implies rejecting the more restrictive null hypothesis HC
0 that τi = τ for all i, but

rejecting HC
0 does not necessarily imply rejecting H0. That said, it is difficult to imagine the

practical situation in which there is a substantial, varying treatment effect that nonetheless
yields parallel CDFs. Even more interestingly, the two nulls appear to be indistinguishable
given observed data. Therefore, although not formally correct, we generally view tests for HC

0 as
tests for H0. Simulation studies, which are not shown, suggest that this practice generally leads
to valid, if somewhat conservative, tests. Understanding this relationship is an important area
of future work and is closely related to the interplay between Neyman and Fisher style tests.
See, for example, Ding (2014).

2.2. Treatment effect variation and scaling
Whether a given treatment effect is constant critically depends on the scale of the outcomes.
For example, a job training programme that has a constant effect in earnings does not have a
constant effect in log-earnings. This scaling issue is a particularly salient issue if the outcome is,
say, test scores in an educational context where scale is not necessarily well defined.

Cox (1984) demonstrated the importance of scaling in a special case first explored by G. E. H.
Reuter: if the marginal CDFs of Y.1/ and Y.0/ do not cross, there is a monotone transformation
such that the distributions of the transformed treatment and control outcomes are a constant
shift apart. Unfortunately, G. E. H. Reuter has since died and his proof is lost to the literature;
we provide a proof of this theorem in the on-line supplementary material.

Theorem 1. Assume that F1.·/ and F0.·/ are both continuous and strictly increasing CDFs
of the marginal distributions of Y.1/ and Y.0/ respectively, with strict stochastic dominance
F1.y/<F0.y/ for all y on [F−1

0 .0/, F−1
1 .1/]. There is an increasing monotone transformation

g such that the CDFs of g{Y.1/} and g{Y.0/} are parallel.

Although the applicability of this result is limited to non-crossing CDFs, it nonetheless em-
phasizes the importance of scale and of understanding the problem at hand. In general, whether
a given transformation is substantively reasonable depends on the context: a cube root trans-
formation might be very sensible if the outcome is in cubic centimetres but not if the outcome
is in dollars (Berrington de González and Cox, 2007).

3. Measures of treatment effect variation

There are many approaches to measuring treatment effect variation, dating back to early work
on non-additivity in randomized experiments (see Berrington de González and Cox (2007)).
We briefly highlight three basic measures: comparing marginal variances, comparing marginal
CDFs and comparing marginal quantiles. The usual testing procedures with the measures that
are discussed here typically yield reasonable inference only when particular conditions, such as
normality or asymptotic regularity, are met. In the next section, we show how the FRT can yield
exact p-values with any of these test statistics, regardless of whether these conditions are met.

To fix notation, assume that the potential outcome for treatment z is drawn from the dis-
tribution of Y.z/, with marginal probability density function fz.y/, CDF Fz.y/, quantile function
F−1

z .q/, mean μz and variance σ2
z . Sample analogues are denoted with circumflexes.
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3.1. Comparing variances
Following Cox (1984), we can assess treatment effect heterogeneity by examining the marginal
variances of the treatment and control outcomes. In particular, if the treatment effect is con-
stant, Yi.1/=Yi.0/+τ and var{Yi.1/}=var{Yi.0/}. Therefore, unequal sample variances imply
treatment effect heterogeneity, although the converse is not necessarily true. This makes the
variance ratio

tvar = σ̂2
1=σ̂2

0

an attractive statistic, especially if the researcher believes that the treatment plausibly induces
greater variance (e.g. Gelman (2004)).

Furthermore, if the marginal distributions of potential outcomes are normal, then tvar follows
an F -distribution and the corresponding test is the uniformly most powerful test of equal vari-
ance. However, as we show in the on-line supplementary material, the F -test is highly sensitive
to departures from normality, even asymptotically. We also provide a test that uses higher order
moments, such as kurtosis, to improve inference in this case.

3.2. Comparing cumulative distribution functions
In general, second-order moments might not capture some important features of heterogeneity,
especially when τi varies with Yi.0/. For example, a classroom intervention might have the
largest effect on the lowest performing students. An alternative approach compares marginal
CDFs rather than higher order moments, suggesting the use of a KS-like test to compare the
treatment and control groups. The classic KS statistic, which measures the maximum pointwise
distance between two curves, is tKS = maxy |F̂1.y/ − F̂0.y/|. This test, however, could reject if
the treatment effect is constant but non-zero, since it is an omnibus test for any difference in
distribution.

To focus on heterogeneous treatment effects, we want to shift one of the CDFs by the ATE, and
then to compare the resulting distributions. In particular, if τ were known, we could calculate

tKS.τ /=max
y

|F̂0.y/− F̂1.y + τ /|:
Under the null hypothesis, the two aligned CDFs should be the same and we can directly
compare the observed test statistic with the null distribution for the classic, non-parametric
distribution-free KS test.

In practice, τ is unknown and is therefore a nuisance parameter. One natural approach is to
plug in the difference-in-means estimate, τ̂ = μ̂1 − μ̂0, yielding the ‘shifted’ KS (SKS) statistic:

tSKS =max
y

|F̂0.y/− F̂1.y + τ̂ /|:
As we prove in the on-line supplementary material, however, comparing this test statistic with the
usual null KS distribution yields invalid p-values. In particular, tSKS converges to an asymptotic
distribution that depends on the underlying distributions of the outcomes.

3.3. Comparing quantiles
A third approach focuses on quantiles rather than on CDFs. In this formulation,

F−1
1 .q/=F−1

0 .q/+ τ .q/,

where τ .q/ is the quantile process for the treatment effect. If the effect is constant, then τ .q/ is
constant across q. On the basis of this, Chernozhukov and Fernández-Val (2005) proposed a
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class of test statistics based on the estimated quantile process,

tQP =‖τ̂ .q/− τ̂‖,

where τ̂ .q/ is an estimate of the treatment effect at the qth quantile, and ‖ ·‖ is some norm, such
as sup.

As in the CDF case, τ remains a nuisance parameter, so the Durbin problem remains. Cher-
nozhukov and Fernández-Val (2005) solved this via subsampling. Their main argument is that,
under some regularity conditions, a particular form of recentred subsampling can yield asymp-
totically valid tests for whether τ .q/ is constant, despite dependence on τ̂ . Chernozhukov and
Fernández-Val (2005) and Linton et al. (2005) also proposed a bootstrap variant of the subsam-
pling procedure, though the bootstrap does not have the same general theoretical guarantees as
subsampling. For other approaches for inference on quantiles, see Doksum and Sievers (1976),
Rosenbaum (1999) and Koenker and Xiao (2002).

4. A randomization test for treatment effect variation

Our analytic approach is based on the FRT. To perform an FRT, a researcher needs three main
ingredients: a randomized treatment assignment mechanism, a sharp null hypothesis and a test
statistic t.Z, Yobs/, such as those in the previous section. Under the sharp null, all missing poten-
tial outcomes can be imputed and are thus known. Given all the potential outcomes, a researcher
can then enumerate the possible values of a specified test statistic under all possible randomiza-
tions. This enumeration forms the exact null distribution, called the reference distribution, of
that statistic.

4.1. Fisher randomization test with known τ
First consider a sharp null hypothesis of no heterogeneity for a known τ :

Hτ
0 : Yi.1/=Yi.0/+ τ ∀ i:

Given this null, we can immediately impute all missing potential outcomes from the observed
data. For a unit with Zi = 1, the potential outcome under treatment is Yobs

i and the potential
outcome under control is Yobs

i −τ . For a unit with Zi =0, the potential outcome under treatment
is Yobs

i − τ and the potential outcome under control is Yobs
i .

The steps of the FRT are then as follows:

(a) Calculate the test statistic for the observed data, t = t.Z, Yobs/.
(b) Given the observed outcomes Yobs

i , the treatment assignment Zi and the sharp null Hτ
0 ,

generate the corresponding science table.
(c) Enumerate all possible treatment assignments Z̃, under the given treatment assignment

mechanism. These are all possible treatment assignments that we could have observed for
a given experiment. Typically, there are too many possible enumerations so we instead
take a random sample from the set of all possible assignment vectors.

(d) For each possible assignment Z̃, compute
(i) the observed outcomes Ỹ

obs
given Z̃ and the science table, and

(ii) the test statistic t̃ = t.Z̃, Ỹ
obs

/.
The resulting distribution of t̃ across all randomizations is the exact distribution of the
test statistic given the units in the sample and the null hypothesis.

(e) Compare the observed statistic t with its null distribution and obtain the p-value

p.τ /≡Pr.t � t̃/:
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This procedure yields an exact test for any test statistic assuming that τ is known. For instance,
we can use as test statistics any of the measures of treatment effect heterogeneity that were
discussed in the previous section, such as tvar, tSKS and tQP.

4.2. Fisher randomization test with unknown τ
When τ is unknown, the null hypothesis is no longer ‘sharp’ in the sense that we can no longer
impute all the missing potential outcomes. We provide two options.

4.2.1. Fisher randomization test plug-in method
One option is to impute the science table with the estimated τ̂ instead of τ , and to run the FRT
to obtain the distribution of t for that table. Ideally, if τ̂ is close to τ , the resulting science tables
will be close in that the exact reference distribution for the imputed science table should look
similar to the true reference distribution for our sample. If this is so, then inference from this PI
procedure should be close to the case where τ is known, i.e. p.τ̂ /≈p.τ /. Nonetheless, as Berger
and Boos (1994) discussed, there are no general theoretical guarantees from such a procedure.
In fact, as we show in the simulation studies, this approach can lead to invalid results when τ̂ is
highly variable, such as for skewed distributions, though it does appear to have sensible size for
approximately normal outcomes.

Nevertheless, this approach is distinct from appealing to the asymptotic distribution of a
given test statistic. Instead, this attempts to generate a reference distribution based on the data
at hand, which may make the Durbin problem far less severe. Even so, as we show next, we can
guarantee validity with a mild extension of this approach.

4.2.2. Fisher randomization test confidence interval method
An alternative approach is to find the maximum p-value across all values of the nuisance pa-
rameter, τ ′ ∈ .−∞, ∞/:

psup = sup
τ ′

p.τ ′/

where p.τ ′/ is obtained by performing an FRT under the sharp null hypothesis Hτ ′
0 . Although

psup is conservative, it is still valid since Pr.psup �α/�Pr{p.τ /�α}�α. This approach, how-
ever, leads to two complications in practice:

(a) maximizing a quantity over the entire real line is computationally intractable and
(b) doing so can lead to a dramatic loss in statistical power.

Berger and Boos (1994) proposed a convenient fix to these issues—rather than maximize over
the entire real line, they instead maximize over a .1−γ/-level CI for τ , CIγ :

pγ = sup
τ ′∈CIγ

p.τ ′/+γ:

Following Rosenbaum (2002a), we could obtain an exact (under HC
0 ) CI, CIγ , by inverting FRTs

for a sequence of sharp null hypotheses, Yi.1/−Yi.0/= τ ′. In practice, we approximate this CI
on the basis of the Neyman variance estimator (Neyman, 1990). The following proposition
guarantees the validity of the resulting p-value.

Proposition 1. Given that CIγ is a .1 −γ/-level CI for τ , pγ is a valid p-value, in the sense
that Pr.pγ �α/�α under the null hypothesis.
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Fig. 1. p-values over the range of the nuisance parameter (the rug plot indicates the grid of sampled τ ):
, bounds of 99.9% CIγ on τ ; ........ , p-values from, bottom to top, plugging in τ̂ , using the known τ and
maximizing the p-value over CIγ

As Berger and Boos (1994) noted, the behaviour of the p-values at the tails of the nuisance
parameter interval can be complex and, unsurprisingly, depends on both the specific test statistic
and the value of the nuisance parameter. For example, they might climb or be driven to zero.
Although we cannot provide theoretical guarantees, in our experience, the p-values for our
chosen test statistics tend towards 0 or remain flat for values of τ ′ that are moderately far from
τ , which suggests that our method does not sacrifice much in terms of power.

To illustrate this procedure, we simulate a balanced randomized experiment with a constant
treatment effect, N =200, Yi.0/∼IID exponential.1/, and Yi.1/=Yi.0/+2. Fig. 1 shows p-values
from FRTs for a fixed data set under Hτ ′

0 for τ ′ in a 99.9% CI, following the procedure described
above using tSKS as the test statistic. If the true τ were known, we could obtain the exact p-value
of p=0:16. The p-value at the observed value of τ̂ is too low, around p=0:09, demonstrating
why a simple PI approach may yield incorrect size. Finally, taking the maximum p-value over
the 99:9% CI yields a p-value of p = 0:17, which is only slightly larger than the true value of
0.16. This figure, with the ‘mountain’ shape, is typical for this test statistic under many data
generation processes.

5. Incorporating covariates

In practice, we typically observe a vector of individual level pretreatment covariates X that are
possibly related to the outcome. This can help to increase the power of our test and also enable
exploration of variation beyond that which can be explained by X.

5.1. Using covariates to improve power
To improve power we allow the chosen test statistic to account for the relationship between the
covariates and outcome, such as via a linear regression of outcome on covariates and treatment
with no interaction. In the linear regression case, for example, we can generate a ‘regression-
adjusted KS statistic’. This statistic compares the CDFs of the residuals of a regression of Y on
X and Z (with no interaction of X and Z). Let êi =Yobs

i − Ŷ i be the residuals of a prespecified
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regression, with Ŷ i being the associated predicted values. Then define our test statistic as

tRKS =max
y

|F̂ e1.y/− F̂ e0.y/| .3/

where F̂ e1.y/ and F̂ e0.y/ are the empirical CDFs of the residuals êi for the treatment and control
groups respectively.

To motivate this, consider the simple regression of Y on Z. The residuals of this regression
are êi =Yobs

i − μ̂1 for the treated units and êi =Yobs
i − μ̂0 for the control units. Since τ̂ = μ̂1 − μ̂0

and F̂0.y/ − F̂1.y + τ̂ / = F̂0.y − μ̂0/ − F̂1.y − μ̂1/, the regression-adjusted KS statistic for the
simple regression of Y on Z is equivalent to the SKS statistic: without covariates, tSKS = tRKS.

Now, by including covariates we hope to remove outcome variation due to covariates, making
variation in treatment effect more readily apparent. As long as X is predictive of Y , regression
adjustment reduces residual variation in the marginal outcomes but cannot directly reduce vari-
ation in the treatment effect. In general, covariate adjustment will therefore yield more powerful
test statistics. Importantly, since the validity of the approach is justified by randomization alone,
this adjustment does not require any underlying model assumptions. This approach is analo-
gous to classical, model-assisted covariate adjustment in randomized experiments (Rosenbaum,
2002b; Lin, 2013).

We can easily repeat this approach with tvar, redefining the test statistic via the residual variance
after a regression of Y on X. However, accounting for covariates with quantile-based statistics
is more complicated, with two basic approaches in the literature. In the conditional approach,
we redefine tQP via the estimate of τ .q/ in a quantile regression of Y on both X and Z, as in
Koenker and Xiao (2002). In the unconditional approach, we redefine tQP via the estimate of
τ .q/ in a weighted quantile regression of Y on Z, with weights defined as a given function of X,
as in Firpo (2007) or Firpo et al. (2009).

5.2. Treatment effect variation beyond covariates
In many applications, the constant treatment effect null hypothesis may be of limited scientific
interest. Instead, we wish to investigate whether there is significant treatment effect variation
beyond a particular model for the treatment. For example, Bitler et al. (2010) proposed the
constant treatment effect within subgroups model, which assumes that the ATE differs across
observable subgroups (e.g. by education or age group) but is otherwise constant within those
subgroups.

To make this more precise, let W be an n× .k+1/ matrix of the unit vector and k pretreatment
covariates. The unit vector corresponds to the overall ATE and the covariates allow for modelled
treatment effect heterogeneity. We then replace the null hypothesis of a constant treatment effect
with the assumption that the individual level treatment effects are a particular function of W:

HW
0 : Yi.1/−Yi.0/=βTWi ∀ i for some β, .4/

where β is some (unknown) vector of coefficients for W. Under the null, there is some β such
that the set of Yi.1/−βTWi yields the same CDF as the set of Yi.0/.

We can easily test this hypothesis by using the regression-adjusted KS statistic tRKS con-
structed via the residuals of a regression of Y on W, Z and W ×Z. This regression yields point
estimates β̂ with a corresponding .k +1/-dimensional .100−γ/% confidence region. To obtain
the FRT PI p-value, we simply use the science table based on β̂. To obtain the FRT CI p-value,
we must repeat the FRT procedure for each point in a potentially high dimensional grid. We
defer a detailed discussion of the estimation issues in this setting to Ding et al. (2015).
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We can also extend this regression approach to account for covariates that are not assumed to
interact with the treatment (i.e. those in X but not W). Furthermore, we can allow the treatment
effect model to be arbitrarily flexible, including series expansions on the covariates, such as
splines or higher order polynomials. See Crump et al. (2008) for a discussion of non-parametric
estimation in this context.

5.3. Subgroup variation
We briefly turn to the special case in which the treatment effect is assumed to vary across discrete
groups. Let Yobs

ik be the observed outcome of unit i in group k, for i=1, : : : , nk and k =1, : : : , K,
with n1k the number of treated units in group k.

For example, consider a stratified experiment, where both nk and n1k are fixed. Of course,
we can always analyse a stratified experiment as if it were K separate, completely randomized
experiments. However, we can also test whether variation across strata explains the full variation
in treatment effects. This corresponds to the following joint null hypothesis of stratum-specific
treatment effects T ≡ .τ1, : : : , τK/:

H
joint
0 : Yik.1/=Yik.0/+ τk ∀ i, ∀ k, for some T :

Under this null, the pooled CDF of the recentred-by-stratum outcomes of all the units under
treatment (i.e. the residuals from outcome regressed on strata) would be the same as for the
control.

To test the null, we then need a measure of discrepancy between the estimates of the two CDFs
as our test statistic. Several choices are possible. First, we can use tRKS, the regression-based test
statistic above, letting W be a matrix of indicators for stratum membership and β be T (with no
intercept). However, if the proportions of treated units differ across strata or if homoscedasticity
is implausible, pooling may not be appropriate. Instead, we can post-stratify by weighting each
group-by-stratum empirical CDF with weight proportional to the stratum size. The revised F̂ ez

is then

F̂ ez.y/=
K∑

k=1

nk

n
F̂ ekz.y/

where F̂ ekz.y/ is the empirical CDFs of the Yobs
ik − μ̂kz for those units in stratum k with Zi = z.

Similarly, we might instead take a weighted average of individual stratum level test statistics
as

tWSKS =
K∑

k=1

nk

n
tSKS,k:

Fig. 2 demonstrates this last approach by extending the results from Fig. 1 into two dimensions.
Here we have two distinct subgroups, one of 75 units and one of 375 units, and simulate a
balanced randomized experiment with a treatment effect that is constant within each subgroup,
but not constant overall. The baseline distributions are exponential. We then test for treatment
effect heterogeneity beyond these discrete subgroups. To do this we search over a confidence
set, which is depicted in Fig. 2, for a maximum p-value. We again see the ‘mountain shape’
and end up with a final p-value of 0.46, versus p = 0:43 for known τ and p = 0:39 for the
plug-in τ̂ . As in the one-dimensional case, the plug-in p-value is lower than the true p-value.
Moreover, the maximum p-value is only modestly higher than the truth, as the p-values fall
away at moderate distances from the true τ . This plot is typical over several simulation settings.
Finally, as expected, if we do an omnibus test for heterogeneity beyond a single ATE, we reject
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Fig. 2. p-values over the region of the nuisance parameters (the p-values due to the maximum, the PI and
the oracle truth are all marked on the plot): , 1�γ confidence region for the nuisance parameters

with p<0:005. Our model of constant treatment effect within groups is thus significantly better
than a single average, and we have no evidence for needing a more complex model.

The constant treatment effect within subgroups model of Bitler et al. (2010) is equivalent
to H

joint
0 except that the number of treated units in each group, nk1, is possibly random rather

than fixed. Here simply conditioning on the observed nk1 for each group (i.e. considering only
randomizations that maintain the nk) and performing the analysis as above yields valid inference.
This is a conditional randomization test; the analogue of post-stratification for testing rather
than estimation (see, for example, Holt and Smith (1979) and Miratrix et al. (2013)).

6. Simulation studies

We now turn to a series of simulation studies that confirm the validity of the FRT approach and
assess power under a range of plausible scenarios.

6.1. Validity results
First, we examine the various methods under the null hypothesis of a constant treatment effect.
To assess validity, we repeat the following steps 5000 times each for a given test statistic and
underlying distribution:

(a) generate a sample from the underlying distribution, assuming a constant treatment effect;
(b) randomly assign treatment and obtain observed outcomes;
(c) calculate our test statistic tSKS; finally
(d) calculate a p-value by using each of several different approaches described below.

We assess five methods.
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(i) Naive PI : this method calculates the usual KS p-value, assuming that the estimated treat-
ment effect is in fact the true treatment effect.

(ii) FRT PI and FRT CI : these methods are the two FRT-based approaches discussed above.
For this simulation, we use a 99.9% CIγ for τ̂ (i.e. γ =0:001).

(iii) Subsampling: this method is the subsampling approach of Chernozhukov and Fernández-
Val (2005), with their recommended subsampling size of b=20+n1=4.

(iv) Bootstrap: this method is based on the bootstrap that was proposed by Chernozhukov and
Fernández-Val (2005) and Linton et al. (2005), using the tSKS test statistics. To generate
the bootstrap distribution, we de-mean the treatment and control groups and sample with
replacement from the pooled vector of residuals, keeping the number of treatment and
control units fixed.

We assess these five methods for the following distributions: the standard normal, t5, standard
exponential and log-normal, each with a constant treatment effect of 1 unit.

Table 1 shows the rejection rates for a test of size α=0:05 for each method and data-generating
process. As expected, the naive PI approach fails dramatically, either yielding hyperconservative
or highly invalid size. The FRT PI approach appears to work well for the symmetric normal and
t5-distributions but leads to invalid size for the skewed exponential and log-normal distributions.
The FRT CI approach corrects for this, yielding exact or conservative size for all data generation
processes that are assessed here, where conservative indicates lower than nominal rejection rates.
It is encouraging that, even when the FRT CI is conservative, it is not dramatically so, suggesting
that we are not giving up too much power due to the maximization procedure. Subsampling
yields correct, if slightly conservative, rejection rates overall. Finally, the bootstrap approach is
invalid for the normal, t5- and exponential distributions.

The bootstrap approach that we used seemed the most promising choice. Other alternatives
to the bootstrap exist, but they seem to perform even more poorly. For example, one seemingly
obvious bootstrap is to sample repeatedly, with replacement, N1 treatment cases and N0 control
cases from their respective original samples, calculating the resulting test statistic. Ideally, this
would capture the variability of the entire process, giving a valid p-value for the actual observed
test statistic. Unfortunately, even if the null hypothesis were true, the bootstrap null would
generally not be in this context, and so we would end up simulating our distribution under a
‘near alternative’ which gives poor size. We confirmed this intuition with simulations, which are
not shown in this paper, that indeed show that this approach can fail catastrophically.

Table 1. Size of αD0.05 tests, in percentage points, for various methods under HC
0 †

Method Results for the following models and values of n:

Normal t5 Exponential Log-normal

100 1000 100 1000 100 1000 100 1000

FRT PI 4.5 5.1 5.4 5.2 11.3 7.7 15.1 7.0
FRT CI 1.9 3.8 2.1 3.7 4.1 4.9 4.5 5.0
Subsampling 2.3 4.6 1.5 1.6 2.1 2.3 1.1 0.7
Bootstrap 9.3 8.8 7.4 8.3 6.3 6.1 5.0 6.5
Naive PI 0.0 0.0 0.0 0.0 12.3 21.4 36.2 44.7

†Estimates are based on 5000 replications, which implies a simulation standard error of ap-
proximately 0.3 percentage points.
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6.2. General power simulations
To assess the power of these methods under select alternatives we mirror a set of simulation stud-
ies that were conducted by both Koenker and Xiao (2002) and Chernozhukov and Fernández-
Val (2005). For these simulations, we repeatedly generate data with different levels of treatment
effect heterogeneity, denoted by στ , and we estimate the probability that a method would reject
the null hypothesis of constant treatment effect (at α= 0:05) given draws of data and random
treatment assignment. Since the bootstrap, FRT PI, and naive PI are invalid tests, we do not
include them here.

We use a binary version of the data generation process from Chernozhukov and Fernández-
Val (2005):

Yi.0/= "i,

τi =1+στ Yi.0/:

with "i ∼N.0, 1/. This model can also be expressed as the classic additive treatment effect model
under normality, Yi.1/=Yi.0/+τi, where Yi.0/∼N.0, 1/; τi ∼N.1, σ2

τ / on the margin, and στ =0
corresponds to a constant treatment effect. Note that, as Cox (1984) observed, the F -test is the
uniformly most powerful test in this setting.

We then extend the simulations from Chernozhukov and Fernández-Val (2005) by imposing
log-normality rather than normality. In particular, we assume a treatment effect of the form

log{Yi.0/}= "i,

τi =1+στ Yi.0/:

Then marginally Yi.1/∼ log-normal{log.στ +1/, 1}+1. In either case, for στ >0, the treatment
effect increases with Yi.0/, which is non-negative. Rosenbaum (1999) called this kind of treatment
effect variation a dilated effect.

Table 2 shows the main power results. For normal outcomes, both the FRT CI and the
subsampling methods have correct size when στ =0. However, subsampling appears to be more
powerful for στ >0, perhaps because the asymptotics ‘kick in’ quickly under normality. For log-
normal outcomes, however, the situation is reversed, with much greater rejection rates under
the FRT CI method than under subsampling.

7. Application to the Head Start impact study

Initially launched in 1965, Head Start is the largest Federal preschool programme today, serving
around 900000 children each year at a cost of roughly $8 billion. The National HSIS is the first
major randomized evaluation of the programme (Puma et al., 2010). The published report
found that, on average, providing children and their families with the opportunity to enrol in
Head Start improved children’s key cognitive and social–emotional outcomes. The report also
included ATE estimates for a variety of subgroups of interest, though there is only significant
impact variation across a small number of the reported pretreatment covariates.

After these findings were released, many researchers argued that the reported topline results
masked critical variation in programme impacts. For example, Bitler et al. (2013) showed that
the treatment is differentially effective across quantiles of the test score distribution; Bloom and
Weiland (2015) explored variation in programme impacts across select subgroups and across
the 351 Head Start centres in the study; and Feller et al. (2014) investigated differential effects
based on the setting of care that each child would have received in the alternative treatment
condition.
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Table 2. Rejection rates for αD0.05 tests, in percentage points, under
select alternative hypotheses with different levels of treatment effect
variation στ and data generation processes†

N Results for FRT CI Results for subsampling

στ =0 στ =0.2 στ =0.5 στ =0 στ =0.2 στ =0.5

Normal outcomes
100 2.3 5.5 23.1 2.4 8.4 39.2
400 3.5 24.8 93.0 4.0 40.1 98.4
800 3.5 52.3 100.0 4.6 72.9 100.0

Log-normal outcomes
100 4.7 7.3 19.3 1.2 2.2 5.9
400 4.7 19.8 70.5 0.6 3.4 32.9
800 4.6 35.1 94.1 0.8 9.1 70.7

†Estimates are based on 5000 replications, which imply a simulation stan-
dard error of approximately 0.3 percentage points.

All these approaches, however, estimate treatment effect variation by relying on a specific
set of models, such as quantile or hierarchical regression. Given the breadth of research in this
area, a natural question is whether the topline and subgroup ATEs for the HSIS are indeed
sufficient summaries of the programme’s effect. We investigate this question by focusing on the
Peabody picture vocabulary test, which is a widely used measure of cognitive ability in early
childhood. We also utilize a rich set of pretreatment covariates, including pretest score, child’s
age, child’s race, mother’s education level and mother’s marital status. In addition, we follow
the experimental design and ensure that the randomizations that are used in the FRT procedure
are stratified by Head Start centre. For the sake of exposition, we restrict our analysis to a
complete-case subset of the HSIS, with N1 = 2238 in the treatment group and N0 = 1348 in the
control group. Note that this restriction could lead to a range of inferential issues which we do
not explore here; see Feller et al. (2014) for a detailed discussion.

As shown in Table 3, we apply the FRT procedure to a set of increasingly flexible null hy-
potheses. The least flexible models, models 1 and 2, assesses the null hypothesis of constant
treatment effect across all units without and with covariate adjustment, using the tSKS-statistic
and the tRKS-statistic respectively. Model 3 adjusts for pretreatment covariates and allows the
treatment effect to vary by child’s age (3 versus 4 years old). The most flexible model, model 4,
allows the treatment effect to vary by child’s age, child’s dual language learner status and an in-
dicator for whether the child was in the bottom quartile on an assessment of pre-academic skills
before the study. The resulting p-values are roughly p= 0:03 for the model without covariates
and p<0:01 across all three models that adjust for covariates, clearly demonstrating significant
unexplained variation regardless of the exact specification. This provides evidence that there is
indeed substantial treatment effect variation beyond that explained by these subgroups.

8. Discussion

Researchers are increasingly interested in assessing treatment effect heterogeneity. We propose a
framework to unify and generalize some existing statistical procedures for inference about such
variation, using randomization as the ‘reasoned basis for inference’ for the testing procedure. As
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Table 3. FRT p-values for the HSIS, based on 2000
repetitions†

Model p-value Treatment effect Control for
varies by covariates

1 0.033 — —
2 0.005 — �
3 0.005 Age �
4 0.003 Age �

Dual language learner
Pre-academic skills

†Models 1 and 2 correspond to a null hypothesis of constant
treatment effect. Models 3 and 4 allow the treatment effect to
vary across given covariates.

a result, the method does not rely on any further model assumptions, asymptotics or regularity
conditions. We use simulation studies to confirm that this approach yields valid results in finite
samples and that its power is competitive with some existing approaches, especially subsampling.
Finally, we apply this method to the National HSIS, a large-scale randomized evaluation, and
find that there is indeed significant unexplained treatment variation.

Other randomization-based approaches to heterogeneity also exist. These methods typically
specify a model for heterogeneity and test based on that model. For example, Rosenbaum (2011)
provided randomization tests for rare but substantial effects, Rosenbaum (2001) constructed
a randomization-based interval estimate for the attributable effect of a treatment on a binary
outcome and Rosenbaum (1999) proposed a randomization-based procedure for non-negative
and non-decreasing quantile treatment effects under the assumption of rank preservation; see
section 2.4.4 of Rosenbaum (2010) for discussion of testing general null hypotheses of non-
zero treatment effects. By contrast, we attempt to test for heterogeneity in an unstructured way,
though the choice of test statistic is motivated by the problem at hand. As additional assumptions
on the structure of the heterogeneity will increase statistical power, using these approaches may
be more appropriate than our omnibus method when such assumptions are met.

There is one important complication that we do not directly address here: the case of discrete
outcomes. Even though the FRT procedure still yields valid inference in this setting, the constant
treatment effect hypothesis may no longer be of scientific interest. This is a fundamental issue
and is not specific to any particular testing procedure. For example, consider a semicontinuous
outcome distribution, with a large point mass at zero, such as in the Connecticut Jobs First
evaluation, where roughly half the sample has no earnings (Bitler et al., 2006). Here, the constant
effect null hypothesis implies that welfare reform has the same dollar impact regardless of
whether the individual starts with zero earnings, which is nonsensical. In future work, we hope
to explore different approaches for this setting, including latent variable formulations and prin-
cipal stratification (Nolen and Hudgens, 2011).

In the end, our approach offers a flexible framework for assessing treatment effect variation
in randomized experiments, allowing researchers to incorporate a broad range of test statistics
and to accommodate complex experimental designs. Most of all, our goal is to give applied
researchers a set of tools so that inference about treatment effect variation can becomes a
standard step in the analysis of randomized experiments. Next steps are to explore the role of
covariates in treatment effect variation and, in particular, the interplay between systematic and
idiosyncratic treatment effect variation.



670 P. Ding, A. Feller and L. Miratrix

Acknowledgements

The authors thank Alberto Abadie, Marianne Bitler, Paul Rosenbaum, Don Rubin, Tyler Van-
derWeele and participants at the Atlantic Causal Inference Conference, the Joint Statistical
Meetings and the Harvard–Massachusetts Institute of Technology econometrics workshop for
helpful comments. We especially thank Sir David Cox for his insights and for bringing G. E. H.
Reuter’s lost proof to our attention. We also thank the Joint Editor and two reviewers for their
very helpful feedback. The research that is reported here was partially funded under co-operative
agreement #90YR0049/02 with the Agency for Children and Families of the US Department
of Health and Human Services. The opinions expressed are those of the authors and do not
represent these institutions.

References

Abadie, A. (2002) Bootstrap tests for distributional treatment effects in instrumental variable models. J. Am.
Statist. Ass., 97, 284–292.

Babu, J. G. and Rao, C. R. (2004) Goodness-of-fit tests when parameters are estimated. Sankhya A, 66, 63–74.
Berger, R. L. and Boos, D. D. (1994) P values maximized over a confidence set for the nuisance parameter. J. Am.

Statist. Ass., 89, 1012–1016.
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