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Local scale models
State space alternative to integrated GARCH processes
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State space alternative to autoregressive conditional heteroskedasticity models are proposed. The
initial model, which is labelled the Gaussian local scale model, has a measurement density which is
Gaussian, conditional on the unobservable precision. The precision is assumed to be a gamma
variable which evolves by being scaled by a beta variable. The resulting forecast is a student’s
t random variable, with a scale which is approximately an exponentially weighted moving average
(EWMA) of the squares of the past observations. The degrees of freedom of the student’s ¢ distribu-
tion is controlled by the size of the discount parameter of the EWMA procedure. The Gaussianity of
the measurement density is potentially inadequate when the model is applied to heavy tailed finance
data. Instead, this assumption can be replaced by an exponential power density which allows the
observed excess kurtosis to be modelled. The choice of the exponential power means that the
model still maintains conjugacy, so allowing the derivation of an exact filter and likelihood function.
This model is called the generalised local scale model. It has been used to model two exchange
rate series.
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1. Introduction

The recent development of time series models for heteroskedastic processes
has had a profound influence on the way many economists specify their time
series models. Engle’s (1982) seminal work on autoregressive conditional hetero-
skedastic (ARCH) processes has set the tone for this literature. If Y,_, denotes
the information set available at time ¢t — 1, then a Gaussian pth-order ARCH
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process specifies that
Vel Yiei ~NO o + ay pP-g + -+ + 4yl ). (1)

In practice, a more useful model is the generalised ARCH (GARCH) process.
This model is usually credited to Bollerslev (1986), although the GARCH(l, 1)
was discovered at the same time by Taylor (1986) who called it an ARMACH
process. The Gaussian GARCH(1, 1) process is given by

yil Yooy ~ N(O, 62), , (22)

where
62 =0+ a ¥, + o002 ,. ‘ (2b)

When a; + a, = 1, the process is called integrated GARCH (IGARCH). If ay is
strictly positive, then the IGARCH model is no longer covariance stationary,
but it is strictly stationary. Its properties have recently been studied by Nelson

(1990a). Although at first sight the integration restriction seems very strong,
Bollerslev and Engle (1993) suggest that there is, for high frequency financial
data,a ‘... pronounced empirical regularity [providing] a strong motivation for
the 1 GARCH class of models’. Further, Nelson (1992) has prov1ded a theoretical
rationale for the tendency to estimate IGARCH models in high frequency
financial time series.

The IGARCH recursion for ¢? is reminiscent of an exponentially weighted
moving average (EWMA) updating equation for the squares of the observations,
with «; playing the role of a smoothing constant, while o, is a slope term.
Although this analogy is informative, we can see that knowledge (perhaps
obtained by consistent estimation) of oy and «; will (asymptotically) reveal the
value of the evolving variance. This is quite an unusual use of the EWMA
technique as it directly forms a stochastic element, rather than estimating the

-level of an unobserved component.

To develop this analogy a little further, recall that Muth (1960) showed that

the Gaussian local level model,

Vo=l + &, ¢, ~ NID(0, 62), ' (3a)
Pe = Pe—q + sy n, ~ NID(0, a3), (3b)
Ho |y Yo ~ N(mo, po), (3¢c)

where (¢,), (n,), and uo| Y, are totally independent, provides a rationale for
taking an EWMA of the observations. By this we mean that the unobservable
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level yu,—; is estimated by m,—; = Ey,.,|Y,~,, which is an EWMA of the
observations if ¢ is reasonably large. This result, which gives the filtered estimate
of the level, implies that for the local level model,

Vel Yoy ~N(my—y, pi—y +a,f+af)=N(m,_1,j;). )

This one-step density is the natural location model analog to the IGARCH
model.

Of course, Ey, | Y, is not the only object of interest, for if we wanted to estimate
the level of the series at time ¢, we may wish to use the whole data set to carry this
out. This operation, which is called smoothing, delivers the quantity Ey, | Y7 and
is more precise than the corresponding filtered estimate unless o 2 is zero; see, for
example, de Jong (1989). «

In this paper we develop local scale models which have unobservable vari-
ances. Typically the filtered estimate of the variance is approximately an
EWMA of the squares of the observations, so providing some rationale for the
IGARCH mechanism with a nonnormal one-step-ahead forecast density.
A smoothing algorithm for the unobservable variance is derived. Empirical
work indicates that it offers a large efficiency gain over the corresponding filter.

The notion of an evolving unobservable variance has much appeal in eco-
nomics. The IGARCH mechanism allows the variance to depend only on past
observations which are observed by the econometrician. This is a perfectly
reasonable way of constructing the one-step-ahead forecast density, but it tells
us only a small amount about the actual volatility on a specific day. This is
because the IGARCH estimate of the variance at time t ignores y?, the most
informative of all the observations, as well as all the future observations. This
will lead the econometrician to lose over half of the available information if he
uses the IGARCH mechanism for this purpose.

Evolving, unobservable variance models are not new, they have been fre-
quently suggested in the finance literature. A review article on this topic has
recently been written by Taylor (1991). He concentrates on the autoregressive
stochastic variance, or stochastic volatility, model. This has been analysed by
Hull and White (1987), Scott (1987), Wiggins (1987), Chesney and Scott (1989),
and Melino and Turnbull (1990) in order to solve the Black-Scholes option
pricing problem. It turns out that the local scale model is very close to these
models, as we will see in section 2.

The rest of this paper is organised in the following manner. In section 2,
a Gaussian local scale model is proposed. The model has a Gaussian measure-
ment density, with a gamma transition equation. The third section develops an
exact filter for the model allowing the tracking of the evolving variance. Further,
the one-step-ahead forecast is shown to be a scaled student’s t random variable.
The model is capable of dealing with irregularly spaced observations, missing
values, and can provide analytic multi-step prediction densities, unlike the
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ARCH-based models. In the fourth section, the corresponding smoother is
- developed. In section 5, the model is combined with the Gaussian state space
form. The role of the Kalman filter in this new setup is outlined. In section 6, the
measurement density is generalised from a normal to an exponential power
density [sometimes called the generalised error distribution; see Box and Tiao
(1973)]. The new model allows much more flexible behaviour and can deal with
the extreme observations which frequently occur in financial series. The corre-
sponding filter, smoother, and likelihood are derived for this model. The local
scale models are applied to two exchange rate series in section 7. Various
nonlinear generalisations of the model are discussed in section 8. All the main
themes of the paper are pulled together in section 9, where the conclusions are
put forward.

2. A Gaussian local scale model

In this paper the precision 8,, which is the inverse of the variance, will be
directly modelled. The measurement density of the state space model takes on
the form ‘

%16 ~N@©, 67, t=1..,T &)

.. The normal density mixes exactly with the gamma density and so we must
become interested in a transition equation for gamma random variables.

There has been considerable interest in gamma transition equations in the
statistical modelling literature [see, in a different context, Lewis, McKenzie, and
Hugus (1989)]. Most of the work can be traced back to Bather (1965), although
it was Smith and Miller (1986) who first wrote down gamma-based state space
models. Their measurement equation was exponential, allowing the time series
analysis of extreme values. This work was picked up by Harvey and Fernandes
(1989a, b) in their time series analysis of Poisson observations and insurance
claims; see also Harvey (1989, pp. 348-363).

The basic transition equation of Harvey and Fernandes (1989a, b) was

0,=w"10,_,1, t=1,..,T, (6a)
where we(0, 1] and

7 ~ Beta(wa,_, (1 — )a,.- ;).  (6b)
w controls the speed at whicﬁ the precision moves. In the limit, as

® - 1,0, - 0,_, almost surely, while as w reduces, the movements in 8, become
progressively more exaggerated. The rather curious g, term is needed so that
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the densities are conjugate; its role will become clearer in section 3. It comes
from the prior distribution for 6, ,, which in turn is driven by the prior for 6.
To be more precise, we assume that 6,| Y, ~ G(ay, by). The notation
X ~ G(a, B) is written when X is a gamma random variable. The form of the
density is taken to be

x*~! B*exp(— xp)

f(x;a, B) = @) ,

x,a, B >0. (7

This setup of a measurement density, transition equation, and prior density
precisely analogs the usual Gaussian state space form for the local level
model - see the Introduction.

In the next section, we will see that we can derive a filter for this local scale
model so that 8, | Y, and 6, | Y, are both gamma random variables. This means
that conjugacy is maintained as we go through time. This result exactly matches
the Kalman filter for the Gaussian state space form, where the conditional
distributions for the state are all Gaussian.

Before we progress we will have to slightly alter our transition equation.
Unfortunately, using a similar argument to that of Nelson (1990a) on integrated
GARCH processes, it is possible to demonstrate that if w < 1, §, = 0 almost
surely as t — oc0. A simple explanation for this is that log6,/6,-, approximates
the growth rate in the level of the precision, and since logé,/0,-, =
logn, — log w, its growth rate is negative on average by Jensen’s inequality.

The transition equation which allows the elimination of this problem is

9!=ert6t*1”t9 t = 19 cevy T’ (83)
where
r,=—Elogn = ¥(a,-,) — ¥(wa,-,), (8b)

since this equation has a zero expected growth rate. Eq. (8) is the transition
equation which is adopted throughout the remaining parts of this paper.
Here ¥(-) denotes the Euler Psi, or digamma, function. This function can be
evaluated using the approximations developed in Abramowitz and Stegun
(1970, p. 258). An alternative expression for the computation of r,, based on
Weierstrass’s infinite sum representation of the log of the gamma function, is
discussed in Shephard (1990). :

This new transition equation is a random walk in its logarithm. We follow
Nelson’s (1990a) arguments by writing

) T
log6, =logfy + Y, (logn, — r,). )

t=1
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1If we start a, in a steady state (this will be defined in the next section and will
occur if w < 1), then (log#n, — ;) are zero mean, independent and identically
distributed, random variables. As a result, we can see that lim sup log 6, = co and
lim inflog 8, = — 00 as t - oo, with probability one. Hence, (6,) is nonstationary
and consequently (y,) inherits the same property. Again, this is the property that
we would expect, for the local level model is nonstationary.

The local scale model is very close to the unit root autoregressive stochastic
variance models discussed in Harvey, Ruiz, and Shephard (1992). There a rather
similar state space model is used with

¥16, ~N(@©,0, 1), (10a)
and
logf, =logh,_, + w,, w, ~NID(@©,c2). | (10b)

The measurement density can be written as

yt = 8101_1/27 8t ~ NID(09 1)’ (lla)
implying that
= logy2 = loge? — logé,. ; (11b)

So, z, has a non-Gaussian, but linear state space representation. Hence the
Kalman filter can be used to provide the best linear (using log y?) estimator of
the evolving precision, while a pseudo-likelihood function allows 62 to be
estimated; see Harvey, Ruiz, and Shephard (1992).

The only difference between the Gaussian local scale model and this unit root
AR stochastic variance model is that the distribution of w, is changed, with it
being

w, = logn, — Elogy, (12)

in the local scale model case, rather than Gaussian. This small change will allow
an exact filter to be derived, rather than relying on a best linear one. As a result
the exact likelihood can be found for the local scale model. The price that is paid
for this exactness is the lack of modelling flexibility induced by being forced, in
order to maintain conjugacy, to have a random walk in the transition equation
rather than some more general autoregression.
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3. Filtering the Gaussian local scale model

The complete Gaussian local scale model is given by

ytlet ~ N(ant_1)3 t= 19 '-°9T; (133)

0! = ertot—lnb t= 1, teey T9 (13b)
0ol Yo ~ G(aq, bo). (13¢c)

If we combine the transition equation with the prior, then we have that

011 Yo ~ G(wag, e "bo) = G(ay |0, by}0) (14)
Bayes” theorem then delive}rs

0,1Y, ~G(ayjo+3%, bijo+3y1) =G(ay, by). (15)
As these results give a conjugate form, the model is recursive by induction, not

losing its form as we progress through time.
If we run the filter through time, we get the conditional densities

0,1 Y, ~ G(a, b,) and 6,|Y,_; ~ G(ay -1, biji-1)s (16a)
where

@G =ay-1+% - =o0a,_, (16b)
and

by=bysoy + 42, by-y =e b, (16¢)

This implies that if a; =4 and b, = 1 y? [see Harvey (1989, p. 351) for some
justification for this], then

T
ar=%) o'"! (17a)
i=1
and
r ,
br =% Z )’T—i+1J’%—i+1, (17b)

i=1
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where yr = 1 and

yroi= [] e ~'T-en | (17¢)

If w is reasonably large, for example greater than 0.8, then e =" will be very close
to w, implying ag/br is roughly the inverse of the exponentially weighted
moving average (EWMA) of the squares of the observations. If the Harvey and
Fernandes (1989a, b) transition equation had been used, then the EWMA result
would be exact. These results are important for E6,|Y; = a,/b,, so the filtered
estimate of 0, is the inverse of an EWMA.

A similarly simple result also holds for the one-step-ahead forecast density. It
takes the form

SO Yooty = | £, 6, Yoe1)d6,
0

= [ £(10)1(6, Y1) d6,
’ (18)

_ 1 <bt|t—1>at 1 F(at)
/27 b, N2 ATE I'(a;;-1)

1 I'(a,) < yi )“" 1
=3 1 + .
2T - I'(ay;-1) 2b,)1-1 N Drje-1/a -1

This implies that y,| Y, is distributed as a student’s ¢ distribution with 2a,,,
degrees of freedom, with location 0, and scale b,|,- ;/a,|,- 1. We will write this as

T2a,|,_,(0a btlt—l/atlt—l)- (19)

The scale in this distribution is approximately an EWMA of the squares of the
observations, with the data only entering (19) through the b, |, term. As such it
provides a sound theoretical foundation for estimating scale by using the
EWMA of the squares — see Taylor (1986, p. 104) who uses this technique to
predict volatility and Taylor and Kingsman (1979) who suggested ways of
estimating the discount parameter of the EWMA. In their work they do not
impose the connection between this parameter and the degrees of freedom of the
forecast density.

A somewhat similar distributional result has been established for the continu-
ous time limit (as the space between observations goes to zero) of the stationary
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GARCH(1, 1) process by Nelson (1990b, theorem 2.3). He proves the inter-
esting result that the unconditional distribution of the precision for the
GARCH(1, 1) process asymptotically converges to a gamma random variable,
implying the unconditional distribution of the observations is student’s t.
Although the genesis of our results are very different, the stylised facts are similar
for they both indicate heavy tailed behaviour for our models caused by changing
variances.

Eq. (18) implies that the prediction density can be used to enable us to write
down the likelihood function, for unknown w, by using the prediction decompo-
sition. In an obvious notation,

T
lOgL(‘U y1Ye) = Z logL (w; y | Y1)

T
= const + Y. a,log(b,,-1/b,) + logI'(a,) (20)

t=1
- logr(atlt—l) - %logbtlt—l'

The sequence a, rapidly‘converges to a steady state as t increases if w < 1. This
is important for the one-step-ahead forecast density is indexed by 2a,/,-,, in its
degrees of freedom. It is easy to see that

204),-1 = 0/(1 — w). (21)

Low values of w mean that the forecast density will have very thick tails, while
as w — 1 the density will converge to normality. The rth moment of the fore-
cast will exist if 0 > r/(1 + r). If w = 4, the forecast density is Cauchy and none
of its moments will exist. w has to be greater than £ for the fourth moment to
exist. ,

The local scale model can be extended to include fixed location shifts in the
measurement equation. A straightforward example of this is the linear regres-
sion model y,| 0, ~ N(x;8, 6, ). The above analysis can be carried over to this
case with the only change being that b,.; = b,y + (V141 — X141 8)?/2. Of
course, the unknown f vector could then be estimated by maximum likelihood
methods. ' .

The local scale model can also be generalised to deal with the possibilities
of irregularly spaced or missing observations. If we write the measurement
density as y,+;|0.+; ~N(0,0%) and 6,.,e " "*10;!|9, ~ Beta(w?+'a,,
(1 — w*+*1)a,), where the tth observation occurs at time t, and 4, = t, — t,—1,
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then the previous arguments carry over to deliver the updating equations

Arype = 0% a, (22a)
Aevy = vy + 3, (22b)
b.yij. =€~ ""b, (22¢)
b4, =br+1|r+%yt2+1. (22d)

The only complication of this formulation is that a,,; does not in general
converge to a steady state. The expected value of 6, | Y, can be interpreted as the
inverse of an EWMA of past squared observations in which the power to which
each of the observations’ weights are raised is equal to the time elapsed since it
occurred.

For high frequency data, 4, will vary considerably, meaning in turn that w*:
will change substantially. As 4, lengthens, w4 will increase, allowing 6, to move
more rapidly implying an increase in kurtosis in the data. Conversely, small 4,
will reduce the nonnormality implied by the model. Hence, in the context of
financial data, one consequence of the model is that periods which exhibit heavy
trading will be modelled more like Brownian motion than thin periods which
will display fatter tails.

The extension to irregularly spaced observations also allows us to construct
s-step-ahead predictions for regularly spaced data. This is because the multi-step
forecast could be thought of as being a single-step forecast for irregularly spaced
data. An interesting feature of the resulting forecast density is that the degrees of
freedom fall as s increases, changing the shape of the density, increasing its
kurtosis, and reducing the number of moments which exist.

This density will only approximate the actual multi-step prediction density
because it ignores the intermediate observations which affect the stochastic path
of the actual precision. To assess the degree of error induced by this approxima-
tion we will compare the moments of the true multi-step precision,

9T+s:9T|: 1—[ err*'l”frn}a (23)

i=1

with the one-step approximation, 0%,, = 8;n%,,e’7+1, conditional on the
value of 6;. Using the properties of beta random variables, we determine that

5 e é=1 : s
BO%, [0, = 0;[ I e} [ 99"—”} : (24a)

i=1 j=0 8r +J
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Table 1.
Ratio of multi-step-ahead to one-step-ahead forecasts.
Steps

Moments 1 2 3 4 5
1 1.000 1.000 1.001 1.001 1.002
2 1.000 1.000 1.000 1.001 1.001
3 1.000 1.000 0.999 0.999 - 0998
4 1.000 0.999 0.998 0.994 0.994
while

-1 w‘aT + ]

E0F% 1101 = 0%erT n —_. (24b)
j=0 ar+j

If w is large [Jerr+ = e’?+1 if s is small. Likewise if w is large, ar will be large
implying the products will be similar if s is not too big. These approximations
deteriorate as ¢ increases.

To strengthen these general remarks, we give in table 1 results for the case
w = 0.93. The reported numbers are the ratio of the two moments, with
Ef%.s|07 in the numerator. The table indicates a remarkable agreement be-
tween the two sets of figures, which suggests that the degree of approximation
incurred by using the multi-step predictor is extremely mild.

4. Smoothing the Gaussian local scale model

Potentially there are large efficiency gains to be achieved from developing
a smoother for tracking the unobservable precision. The filter’s density 6,| Y,
uses only contemporaneously available data, the IGARCH mechanism looks at
6,1 Y, and so holds even less, while the smoothing density exploits all the
historical data and so should be more precise. The likelihood of substantial
efficiency gains means that smoothing has attracted a great deal of attention in
the literature on Gaussian state space models; see, for example, Anderson and
Moore (1979) and de Jong (1989). In this section we develop summaries of the
0,| Y1 density.

Clearly the exact density of 6,| Y7 could be computed by using a numerical
integration procedure such as that suggested by Kitagawa (1987). However,
using this routine on such a lengthy series is likely to be both expensive and
perhaps numerically unstable. Consequently, Harvey’s (1989, p. 359) suggestion
of a quasi-smoother for Ef,| Y is adopted. The quasi-smoother uses the
property that the filtered estimate of 6, is approximately the inverse of the
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EWMA of the squared observations and that the local level model provides
a statistical rationale for the EWMA process. Hence the corresponding
smoother for the local level model is used on the squares of the observations to
obtain approximately a double EWMA [see Whittle (1991)], using a value for
the signal-to-noise ratio, 62/c2, of (1 + w? — 2w)/w.

5. State space location models

The Gaussian local scale model can be incorporated into autoregressive or
even mixed autoregressive integrated moving average models. However, the
unobserved component nature of the model fits more naturally within the
structural time series models of Harvey (1989) or the dynamic linear models of
West and Harrison (1989). These models are formulated directly in terms of
interpretable components of interest, such as trends, seasonals, and cycles. We
will now examine how the endogenous heteroskedasticity of the local scale
model can be mixed into these models.

The basic model will be the state space form with the gamma transition
equation for the precision

Vel 6,y ~ N(Z,p, 07 ' H,), (25a)
Pel Oy pte— 1 ~ N(Typt— 4, OI_IQt)a (25b)
6,70, 416,-1 ~ Beta(wa, -4, (1 — w)a,-,), (25¢)

where Z,, H,, T;, and Q, are known matrices. If S, = (6,, 6, ,, ..., 6,), then the
Kalman filter provides the densities

Ves1 1 Yo Sta1 ~ N(Zy g ymy 110, 054 Foi ), (26a)

Perr ] Yoo Sy ~ N(Mys 1y 053 P ), (26b)

Y, S, ~N(m,, 67 1P), (26¢)
where

Mypy = Tioamy, my=my,_y + Py—1Z,F (3 — Z,my),—y), (26d)

Fr = ZtPllt—IZ; + H,, P, = Pr|r/—1 - Ptlt—IZ;Ft_lthr{r—la (266)

Pl+1|!=(0t+1/01)Tt+1PtT;+l+Qt+1- (26f)
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The presence in the filter of the unknown ratio 6,,; to 6, will mean that
numerical integration rules would have to be used to compute the exact density
of y:+1|Y,. Following the suggestion of West and Harrison (1989, p. 370), we
will avoid the need for these calculations by replacing 6, . ,/0, with an estimate
derived from the information available up to time t. The value selected
is ¢4y =(ab,—1)/(b;a,-,), which results in P, taking the form
Ce1 141 P Ty + Qi+1. Thus, ¢, is roughly the ratio of the discounted esti-
mates of the variance in the current and previous time periods. If w is one, then ¢,
will converge to one. If we were to think of P,,_,Z;F; ! as the discount
parameter, then smaller values of w will allow ¢, to move around unity, opening
and closing the filter, responding to the heteroskedasticity in the data.

Given this approximation, if we write d, = b,/a, and d, 11|, = by 1|¢/Gr+ 1105
then we find

Ves1| Y ~ T2a,+,|,(Zt+1mt+1|n d:+1|ze+1), (27a)
He+1 l Yt ~ T2a,+.|,(mr+1|n dt+1|tPt+1|t)9 (27b)
| Y, ~ T2a,(mn let)' (270)

The density of | Y, has r moments if w > 1 — (1/r). Therefore, if @ > 2, the
fourth moment will exist.

To complete the location and scale filter we have to deal with the scales’
recursions. Only the equation for b changes to become

’ =1
Vi1 FraqVess

bl+1=bt+1|t+ D) s

(28a)

where
Ve =Y — LiMyp-y. (28b)

A simple example of this procedure is the local level model, which is given by
Z,=H, =T =1, Q, = q. This model, one of the most fundamental in time

series, provides a rationale for the EWMA forecasting scheme. The location
filter becomes

ptlt—l

Mivipe = M-y + ———m
Pee-1 + 1

(ye = mtlt—1)9 (29a)

Dtje-1

—rieml 29b
p,|,-1+1+q’ (29b)

Div1)t = Cr41



194 N. Shéphard, Local scale models

while the local scale’s b recursion becomes

_ 2
bt+1|:=|:b,|,-1+(y'“ M+ 1o) ]e"’”‘. (29¢)
P + 1

6. A generalised local scale model

- The Gaussian local scale model implies the one-step-ahead forecasts are

independent scaled student’s t random variables with degrees of freedom which
are approximately w/(1 — w). It maybe necessary to replace the Gaussian
measurement density with an exponential power density in order to fatten the
tails of the one-step-ahead forecast distribution even more so that the model is
consistent with the kind of data found in financial applications. This observation
is motivated by the ARCH literature; see, for example, Nelson (1991), Bollerslev
(1987), Baillie and DeGennaro (1990), Engie and Bollerslev (1986), and Baillie
and Bollerslev (1989). The exponential power density is extensively discussed in
Box and Tiao (1973, pp. 156-243). Thus, if X is distributed as an exponential
power variable, then we write X ~ EP(8, f8), where the density is

£(3;8, ) = k0¥ +P exp(~ $0]x|20+P), (302)
where

k=1 =210+ 4 4(1 + B)), 0>0 Be(—-11], (30b)
and

EX =0, VX=2(1+B)9—(1+B)W (31)

L1+ py2

The density for X is symmetric. As B moves from —1 to 1 the density is
transformed from the uniform, which is platykurtic, into the double exponential,
which is leptokurtic. When B is zero, the density is Gaussian. Hence, when we
apply the exponential power density to finance data we should expect f to be
nonnegative.

Our generalised local scale model will be given by

yl6, B~EP(6,8), t=1,..T, (32a)
0, =e"6,_y1, t=1,..,T, (32b)

00| Yo ~ G(ao, bo). (32¢)
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It is then relatively straightforward exercise to see that this model is recursive
and that

0,1Y,-y ~G(wa,-y,e""b,-1) = G(atlt—h btlz-—l)a (33a)
0,1Y, ~ G(atlt—l + %(1 + B), btlt—l + %I%'zl(ﬂ-m) = G(a, b). (33b)

This means that

T
aT=(1;ﬂ) T o1, (34a)
i=1
T s
br=4 ) o' M yroie [P, (34b)

i=1
if @ is reasonably large. So by/ar is approximately a scaled version of the
EWMA of |y,|#**#) So if B approaches unity, which will be the case for the
double exponential, then the EWMA will be built out of the absolute values of
the observations. ’

The one-step-ahead forecast density is

Sl Y1) =k

Fa) (bye-)*_ I'(a) |:br|:-1 ]al :
F(atlr—l) (b,)i-1 F(a,|,_1) b, bf(l"'ﬁ)

tlr—1
(35)

This density is a scaled version of what might be called a generalised student’s
distribution. To reveal its structure write

Xy = yt(atlt—l/bllt—l)*(l-".ﬁ)’ (36a)
then
2/(1+8)\ —a
Fal Yieg) = kr (14 TN (36b)
2at|t—1
where
k* =k I'a) (36¢)

(F(agp-1)ad Py

So x;|Y,—y ~ Tag,,_, (0, 1) if B is zero. Otherwise, B will move the density away
from the student’s ¢, with f > O having fatter tails and f < O thinner, ceteris
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paribus. As a,|,-; — 00, the density converges to an exponential power distribu-
tion. Thus this forecast density provides a rather interesting cross between
student’s t and the exponential power distributions which are usually used for
speculative prices. Clearly all the odd moments of x,| Y,_, are zero if they exist,
while the even moments can be derived analytically by using the complete beta
integral; as they do not have a simple analytic form we will not reproduce them
here. Likewise the distribution function can be calculated by using a call to
a routine which computes the incomplete beta integral, for

r 1 s
Y._)dt =14 FA+p) -1 a,,,-,—ld,
gf(x" =)= 25 +ﬁ),a,|,_1)§,"" (1=2) :
(37a)
where
S = r2/‘(1+ﬂ)/(r21’(1+ﬁ) + 2at|[71)- (37b)

7. Empirical application of the local scale model

The logarithmic transformation of the UK sterling and German DM
exchange rates against the US dollar are often thought to approximately follow
random walks with heteroskedastic disturbances. Here we model the centred
first difference of the logs of the weekday close of these rates from 1/10/81 to
28/6/85, giving T = 946, although when we come to report our estimated models
it should be noted that they were computed using only the last 846 observations
as 100 observations were used to startup the procedures [this data was also used
in the empirical application reported in Harvey, Ruiz, and Shephard (1992)].
The inherent irregularity of the data, such as the lack of observations over the
weekend and bank holidays, will be ignored.

The Box—Ljung statistics for ten lags on the series is 11.19 and 10.03 for the
sterling/dollar and DM/dollar rate, respectively, suggesting the random walk
hypothesis is maintainable. If the transformed observations are squared, the
Box-Ljung statistics become 128.25 and 67.79, indicating strong evidence for
nonlinearity. When the Gaussian local scale model was fitted to the ster-
ling/dollar and DM/dollar, the estimator of w took on the values 0.916 and
0.914, respectively, giving 10.9 and 10.6 degrees of freedom for the one-step-
ahead forecast densities. The resulting smoothed and filtered estimates of the
precision are displayed in fig. 1 for the sterling/dollar rate and in fig. 2 for the
DM/dollar rate. They indicate that there are substantial gains to be made from
exploiting historically available information to pin down the precision.

To allow for the possibility of heavy tailed behaviour, generalised local scale
models were estimated for these series. The estimated values of w and f were
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Fig. 1. Sterling/dollar rate: Smoothed (full line) and filtered (dotted line) precision.
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Fig. 2. DM/dollar rate: Smoothed (full line) and filtered (dotted line) precision.
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0.926 and 0.14 for sterling and 0.912 and —0.01 for the DM. The log-likelihoods
(ignoring constants) for these models were —35.3 and —60.8, respectively,
against —36.8 and —60.8 for the Gaussian local scale model. This implies the
estimated value of f is not significantly different from zero in both cases,
although there is some evidence that the series for Sterling has heavy tails. These
results suggest that the fat tails observed in exchange rates are almost com-
pletely due to the estimation of the unobservable precision.

To benchmark these results, a variety of GARCH(1, 1) models were estimated
for these two series. To allow for a fair comparison with the estimated local scale
models, the normal assumption of the GARCH model in eq. (2) will be general-
ised. Fat tails will be allowed by introducing the student’s t GARCH(1, 1) model
analysed by, for instance, Bollerslev (1987). This has that

v+ 1
()
1 2 l'2 —(v+1)/2
(e5)

S 2V, ) » = —_—
Sl Yi—qiv, 00, 04, 3) W F(E) 2

g
(38a)
U:2=°¢0+OC1J}:271+0‘20:2~1- (38b)

Table 2 reports the results from an unconstrained estimation of (38), the case
where v = oo [the normal case, the model (2)], and the IGARCH model, where
®, 1s constrained to be 1 — o;.

The estimates indicate that the DM has less fat tails than sterling, which
agrees with the local scale results. The IGARCH constraint that a; + a; = 118
rejected using a conventional likelihood ratio test for both exchange rates, even
though o, + a5 1s 0.96 and 0.97 for the DM and sterling, respectively.

Table 2 also gives the AIC and BIC criteria for the fit of the models [see Tong
(1990, pp. 285-292) for an interesting discussion of these techniques]; they take
the form AIC = —2log(maximised likelihood) + 2(number of independently
adjusted parameters) and BIC = —2log(maximised likelihood) + log(T)(num-
ber of independently adjusted parameters). These statistics attempt to penalise
the fall in the likelihood by a factor which reflects the movement to a more
involved model — in this case ones with heavy tails and more complicated
dynamics. Its application here is standard for each possible model is fully
parametric. Once again, these measures support the adoption of the general,
unconstrained, fat tailed GARCH(1, 1) model, eq. (38).

Table 2 also reports the AIC and BIC for the local scale models. For
both exchange rates fat tailed GARCH(1, 1) beats both of the local scale
models using AIC, but the parsimonious local scale models overturn this on the
BIC measure. Again, these statistics suggest no benefit from the use of the
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Table 2.
Estimates of GARCH(1, 1) type models.
Series® v oo oy o, Lik. AIC ‘ BIC
(1) DM o0 0.0175 0.10 0.87 — 623 130.7 1449
(2) DM 16 0.0021 0.10 0.90 — 60.9 127.9 142.1
(3) DM 12 0.0101 0.07 0.90 - 54.7 117.4 1364
(4) DM - 608 1256 135.1
(5) DM —60.8 123.6 128.4
(1) Sterling o0 0.01 0.1 0.89 — 437 934 107.6
(2) Sterling 12 0.0001 0.07 0.93 - 373 80.5 94.8
(3) Sterling 8 0.0072 0.06 0.90 —31.8 71.5 90.5
(4) Sterling ‘ — 353 74.6 84.1
(5) Sterling — 36.7 75.3 80.1

*(1)—~(5) indicate: (1) GARCH (1, 1) with Gaussian errors, (2) IGARCH (1, 1) with student’s
terrors, (3) GARCH (1, 1) with student’s ¢ errors, (4) generalised local scale model, (5) Gaussian local
scale model.

generalized local scale model over the simpler Gaussian local scale model.
Interestingly, the Gaussian local scale model outperforms its natural competi-
tor, the fat tailed IGARCH model, on all measures of fit: likelihood, AIC, and
BIC. .

As the BIC measure is a consistent model selection criteria and AIC is
well-known for being biased towards overparameterised models, the results
presented in table 2 seems to indicate that the tightly parameterised Gaussian
local scale model has certain discernible empirical advantages over the four-
parameter fat tailed GARCH(1, 1) model.

8. Conditional Gaussian local scale model

A rich class of interesting extensions to the Gaussian local scale model can be
generated by allowing the measurement and transition equations to be condi-
tional on Y,_,, so that

Yel(8y, Yoy ) ~ N(z,(Yi— 1), h(Y,-1)0,7 %), (39a)
exp(— r( Yt—l))gt_—llgtl(gt—i, Y,-1)
~ Beta(wa, -, (1 — w)a,-,), (39b)

00| Yo ~ G(ao, bo). (39¢)
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This model, which is labelled the conditionally Gaussian local scale model, is an
analog of the conditionally Gaussian state space models studied in Harvey
(1989, ch. 3) and Lipster and Shiryayev (1978). Clearly 6,| Y,_, and 6, | Y, are still
gamma variates, but now the updating equations are

a4 = Gyj1-1 +%9 Al1-1 = WGy, (40a)

Ve —z(Y, 1))2

P b TR )

s btlt-—l = exp(—71(Y;-1))b;-1. (40b)

The density for y,|Y,-; maintains its generic form, but different a,,-, and
b}~ now feed into it.

A simple example of the use of this setup is the generation of an ARCH-M
type model; see Engle, Lilien, and Robins (1987). This model has its location
dependent on the expected one-step-ahead conditional volatility and so, in
a simple example, it could take on the form

z2(Y,—1) = a + B(byr=1/Gry=1) 3, (41a)

or perhaps
=a' + B'log(b:|-1/a.-1). 41b)
A second example, which may prove useful in the modelling of asset pricing, is
where we allow r,( Y, ) to depend on the sign of the previous observations. This

type of model is very powerfully motivated by Nelson (1991) when he introduces
his exponential GARCH (EGARCH) model. The suggestion we have is that

logf, =log0,_, +logn, — r(Y,-,), (42a)
where

r(Y,_1)=Elogn, + 0v,_; + y(lv,-1| — E|v,-4]), (42b)
with

Ve = Ye(@yje-1/bej 1) 2. (42c)

For positive values of v,_, 0r,(Y,-,)/0v,—; = 6 + y, while the corresponding
term is 6 — 7y for negative values. More general models for r, can be produced by
the mechanism of eq. (2.3) in Nelson (1991).
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9. Conclusion

The Gaussian local scale model provides a parsimonious alternative to
integrated GARCH models and provides a rationale for estimating the under-
lying variance at a given point in time by an EWMA of the squares of the past
observations. As such it can be regarded as a natural analog of the basic
Gaussian local level time series model. Generalisations to allow for the capture
of fat tailed behaviour can be dealt with in this framework.

The local scale model involves an unobservable precision and so fits within
the framework of structural time series models. Further, this particular model
dovetails into the state space formulation which is so central to the modelling of
Gaussian components such as level, slope, seasonal, and cycles.

In the empirical applications of this paper the Gaussian local scale model
performs well against its fat tailed GARCH(1, 1) rival. As the Gaussian local
scale model is so much easier to fit than GARCH models, this suggests that it
might be a model which can be usefully applied when modelling the changing
second moment of a time series.
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