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Abstract We use extreme value theory to develop point process statistical models relating the probability
of extreme winter particulate pollution events in Beijing (“winter haze”) to local meteorological variables.
The models are trained with the 2009–2017 record of fine particulate matter concentrations (PM2.5) from the
U.S. embassy. We find that 850‐hPa meridional wind velocity (V850) and relative humidity successfully
predict the probability for 24‐hr average PM2.5 to exceed 300 μg/m3 (95th percentile of the frequency
distribution) as well as higher thresholds. We apply the point process models to mid‐21st century climate
projections from the Coupled Model Intercomparison Project Phase 5 model ensemble under two radiative
forcing scenarios (RCP8.5 and RCP4.5). We conclude that 21st century climate change alone is unlikely
to increase the frequency of severe PM2.5 pollution events (PM2.5 > 300 μg/m3) in Beijing and is more likely
to marginally decrease the probability of such events.

Plain Language Summary We use extreme value theory, a branch of statistics concerned
with outliers and unusual events, to develop a model relating the probability of extreme pollution
events in Beijing to local weather variables. Haze in Beijing is worst in the winter, so we restrict our
study to December, January, and February. We train our models with the 2009–2017 record of fine
particulate matter concentrations measured at the U.S. embassy, a pollutant behind many of these haze
events. We find that north‐south wind velocity and relative humidity successfully predict days when
daily mean particulate matter concentrations will exceed a threshold of 300 μg/m3. We apply our
statistical models to mid‐21st century climate projections under two scenarios: business‐as‐usual
emissions and significant reduction in emissions. We find that the frequency of haze events is most
likely to decrease because of climate change, driven mainly by a decrease in relative humidity. This
result illustrates the importance of including humidity in estimates of future fine particulate
matter concentrations.

1. Introduction

Beijing in winter experiences severe air pollution events, commonly referred to as “winter haze.”
Concentrations of fine particulate matter (PM2.5) can exceed 300 μg/m3 on a 24‐hr average basis. Efforts
are underway to reduce emissions, but some studies have suggested that climate change may partly offset
the air quality gains by favoring the meteorological conditions leading to winter haze (Cai et al., 2017;
Zou et al., 2017). Here we use extreme value theory (EVT) to investigate this climate penalty as it applies
to severe pollution events.

Cai et al. (2017) found that a meteorological index based on meridional wind velocity, zonal wind gradient,
and vertical temperature gradient was strongly correlated with winter haze days exceeding 150 μg/m3 in
Beijing. They then used climate simulations from the Intergovernmental Panel on Climate Change
(IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) multimodel ensemble driven by the
RCP8.5 (business‐as‐usual) emissions scenario to project a significant increase in this index over the 21st
century, resulting in a 50% increase in haze event frequency. Zou et al. (2017) linked Arctic sea ice loss
in the previous autumn and heavy snowfall over Eurasia to poor ventilation conditions over the East
China Plain, again implying that 21st century climate change would worsen winter haze. On the other
hand, Horton et al. (2014) using the CMIP5 RCP8.5 archive found no change between 1986–2005 and
2046–2065 in the frequency of stagnation events over Beijing.
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EVT offers a statistical framework to predict the probability of rare occur-
rences (Coles, 2001). Here we model the probability of extreme haze days
in Beijing in relation to meteorological variables using an EVT nonsta-
tionary Poisson point process (PP) model, which simultaneously fits the
rate of PM2.5 exceedances above a certain threshold and the probability
density function (PDF) of PM2.5 above that threshold. EVT has been
applied to extreme pollution episodes in Europe, the United States, and
South America (Eastoe, 2009; Martins et al., 2017; Rieder et al., 2013,
2015; Shen et al., 2016) but has not been applied to Beijing haze to
our knowledge.

2. Data and Methods

We use the 2009–2017 wintertime (December‐January‐February [DJF])
time series of 24‐hr average PM2.5 measured at the U.S. embassy in
Beijing, starting in December 2009 and ending in February 2017
(http://www.stateair.net/web/historical/1/1.html). The measurements

are referenced to a fixed relative humidity (RH) following standard practice. Previous studies have
shown that the U.S. embassy data set is representative of PM2.5 in Beijing (Li et al., 2018). Cai et al.
(2017) used it for their analysis of the relationship between Beijing haze events and
meteorological variables.

We use the National Center for Environmental Prediction and National Center for Atmospheric Research
reanalysis at 2.5° by 2.5° resolution (Kalnay et al., 1996) to construct the meteorological covariates of winter-
time Beijing haze previously identified by Cai et al. (2017) in their Haze Weather Index. These include (1)
850‐hPa meridional wind velocity (V850), averaged spatially in the area around and to the southeast of
Beijing (30–47.5° N, 115–130° E), (2) the difference in the 500‐hPa zonal wind (δU500) north of Beijing
(42.5–52.5° N, 110–137.5° E) versus south of Beijing (27.5–37.5° N, 110–137.5° E), and (3) the vertical
temperature difference (δT850–250) between the lower troposphere at 850 hPa (32.5–45° N, 112.5–132.5° E)
and the upper troposphere at 250 hPa (37.5–45° N, 122.5–137.5° E). V850 in particular has a well‐established
relationship with severe haze in Beijing reflecting the ventilation by the prevailing northerly (negative V850)
wind (Li et al., 2018; Shen et al., 2018). We also consider (4) the RH at Beijing International airport
obtained from the National Oceanic and Atmospheric Administration (NOAA) Integrated Surface
Database (https://www.ncdc.noaa.gov/isd/data‐access), since several previous studies have reported a
positive correlation of Beijing haze with RH (Leung et al., 2018; Wang et al., 2014; Zhang et al., 2018;
Zheng et al., 2015). High RH is not only an indicator of stagnation but also provides a high aerosol water con-
tent for secondary PM2.5 formation to take place (Song et al., 2018; Wang et al., 2014; Woo &McNeill, 2015).
RH and V850 are correlated, but the combination of the two provides a better predictor of Beijing haze than
either variable alone (Shen et al., 2018). Shen et al. (2018) showed that the Beijing airport RH data are more
reliable than the National Center for Environmental Prediction and National Center for Atmospheric
Research reanalysis and are strongly correlated with weather station data at other sites in the North
China Plain. All meteorological variables are used as 24‐hr averages matched to the PM2.5 observations.

Figure 1 shows the PDF of wintertime 24‐hr average PM2.5 in Beijing for 2009–2017. We fit the high tail of
the PDF to a Poisson PP model. EVT holds that if we consider a sufficiently large number of independent,
identically distributed measurements of a random variable X and restrict our attention to the codomain
[u,∞) for a sufficiently large threshold u, the PDF of X ∈ [u,∞) converges to a PP model regardless of the
original underlying distribution of X (Coles, 2001). Our PP model simulates the Poisson process limit of
24‐hr average PM2.5 in Beijing above a u = 300 μg/m3 threshold, representing the 95th percentile of the
data (Figure 1).

We can fit the PP model to different meteorological predictors. Consider a fit PP(V850, RH) to V850 (v) and
RH (r), the two meteorological variables identified in Shen et al. (2018) as the strongest predictors of Beijing
haze. Let y denote 24‐hr average PM2.5. The probability that y will exceed the threshold u given (v, r) is mod-
eled with the marginal distribution

Figure 1. Frequency distribution of daily wintertime (December‐January‐
February) 24‐hr average PM2.5 in Beijing for 2009–2017, starting in
December 2009 and ending in February 2017. Data are from the U.S.
embassy site. The arrow indicates the 300 μg/m3 threshold used in our
definition of extreme events and representing the 95th percentile of the
frequency distribution.
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Here μv, r is the location parameter written as a linear function of v and r,
ϕv (>0) is the scale parameter written as an exponential function of v, and
ξ is the shape parameter which describes the shape of the distribution
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where the summation is done over all observations (yt, vt, rt) at times
t ∈ [1,n] from 2009 to 2017. Here I(yt > u) is the indicator function equal
to 1 if yt > u and 0 otherwise. L is a product of two factors: factor (b) repre-
sents exceedances (yt > u) explicitly as a product of independent general-
ized Pareto densities, while factor (a) incorporates information from all
observations, even those that are not extreme. L is maximized when μv,
r, ϕv, and ξ best explain the data. The optimization is performed with
extRemes, an EVT package in the statistical software R (Gilleland &
Katz, 2011). The forms of μv, r and ϕv in equations (2) and (3) were chosen
after testing a range of possible forms (such as ϕ= edv + fr + g) to maximize

the value of L subject to the Akaike Information Criterion (AIC). The AIC penalizes models with a large
number of optimized parameters p and rewards those with a high maximum likelihood value L:

AIC ¼ 2p−2 lnL: (5)

The model with the lowest AIC is preferred (Akaike, 1974).

In some EVT studies (e.g., Rieder et al., 2010), declustering as suggested in Davison and Smith (1990) is
applied to data above a threshold. A cluster would be defined here as a series of consecutive days where
PM2.5 exceeds a threshold u. When declustering is applied, only the maximum of each cluster is used in
the EVT analysis. We applied declustering as a sensitivity test to our PP (V850, RH) model and found that
it applied greater weight to RH by preferring forms (μr,ϕ, ξ), (μr,ϕv, ξ), and (μr,ϕr, ξ) over our standard model
form (μv, r,ϕv, ξ). This is because low‐wind conditions have greater persistence than high‐RH conditions. We
choose not to use declustering in our standard model because of the limited size of our data set.

3. Results and Discussion

Figure 2 (top panel) shows the model probabilities for PM2.5 to exceed the u= 300 μg/m3 threshold as a func-
tion of V850 and RH. Maximum probabilities are for low wind (stagnant conditions) and high RH (condu-
cive to PM formation). The observations show a similar pattern. We see from Figure 2 that V850 and RH
are only partly correlated in the observations; low‐wind conditions can be associated with low RH and

Figure 2. Probabilities of exceedance of extreme 24‐hr average PM2.5
thresholds in wintertime (December‐January‐February) Beijing haze, as
described by an extreme value point process model PP(V850, RH) condi-
tioned on 850‐hPa meridional wind velocity (V850, positive northward) and
relative humidity (RH). Colored contours in the top panel show the model
probability of PM2.5 exceeding 300 μg/m3 as a function of V850 and RH.
Symbols show the 2009–2017 observations of 24‐hr average V850 and RH,
with observed exceedances of the 300 μg/m3 threshold indicated in green
and other (nonexceedance) observations in black. The bottom panel shows
the ability of the same point process model to reproduce the observed
probability of occurrence of higher thresholds. Predicted exceedance prob-
ability is computed by averaging the probabilities calculated in equation (1)
for each of the 719 observed days as we vary the threshold u from 300 to
577 μg/m3. The identity line is plotted for reference.
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extreme events do not occur then. Although the model describes an
increased probability of extreme events at high RH and V850, the prob-
ability of these events remains relatively low as expected from their
extreme nature. For example, the probability of exceeding 300 μg/m3

when RH > 60% and |V850| < 5 m/s is 24% in the observations and 25%
in the model (as compared to 5% in the general population). The model
probability of an extreme event increases to above 50% when RH exceeds
85% and V850 is in the range of −3 to +2 m/s. The observations are con-
sistent with this though the sample is small.

An important property of the PP model is threshold invariance. Although
we fit the model with u = 300 μg/m3, EVT predicts that the same para-
meters μv, r, ϕv, and ξ should yield accurate estimates for any value
u > 300 μg/m3 in equation (1) (Coles, 2001). This is verified in the bottom
panel of Figure 2, and the implication is that the model describes not only
the probability of exceeding 300 μg/m3 but also the PDF above
that threshold.

We also attempted to fit our EVT model to all four meteorological
covariates identified in section 2 for Beijing haze: V850, RH, δU500, and
δT850–250. However, this was unsuccessful because of excessive correla-
tions between the variables. To get around this problem, we performed
a principal component analysis of the four variables and found that the
first two principal components account for 90% of the variance. Thus,
we fit the PP model to just these two components. The first principal com-
ponent gives an almost‐equal weighting to δU500, V850, and δT850–250,
with RH counting for slightly less; the second principal component is
dominated by RH. Best performance for the EVTmodel takes the location
parameter as a linear combination of the first two principal components

and the scale parameter as an exponential function of the first principal component. The resulting probabil-
ity heatmap and threshold exceedance plot for this PP(V850, RH, δU500, δT850–250) model are given in
supporting information Figure S1.

For a more direct comparison with Cai et al. (2017), we fit yet a third model using the three covariates iden-
tified in that paper (V850, δU500, and δT850–250). A principal component analysis shows that the first prin-
cipal component accounts for 84% of the variance. We fit our PP(V850, δU500, δT850–250) model with just
that vector as a covariate. The location parameter is again a linear function, and the scale parameter is
an exponential.

By calculating and comparing the AIC for these three candidate PP models (AICi with i ∈ {1, 2, 3}), we can
determine which model iminimizes information loss. We do this by comparing Aikake weights wi, given by

wi ¼
exp 1

2 AICmin−AICið Þ� �
∑3

j¼1 exp
1
2 AICmin−AICj
� �� � ; (6)

where AICmin = min (AICi). The Aikake weights represent the relative likelihood of a model given the data
and for our threemodels are 0.87, 0.13, and 0.00, respectively, for PP(V850, RH), PP(V850, RH, δU500, δT850–
250), and PP(V850, δU500, δT850–250). This provides strong evidence for preferring the PP(V850, RH) model, a
conclusion supported by previous work pointing to V850 and RH as the most powerful predictors of Beijing
haze (Shen et al., 2018; Zheng et al., 2015).

We can now project the effect of 21st century climate change on the frequency of extreme Beijing haze events
by applying our PP(V850, RH)model to daily meteorological projections from the ensemble of global climate
models participating in the IPCC Coupled Model Intercomparison Project (CMIP5, see Table S1 for details).
We use the 18 models that report daily V850 and RH data for future climate scenarios. We analyze two cli-
mate change scenarios, RCP8.5 (business‐as‐usual) and RCP4.5 (more moderate climate forcing). RH in the
CMIP5 models is sampled as a spatial average over the same region as V850 (30– 47.5° N, 115–130° E) to be

Figure 3. Projected changes in the wintertime (December‐January‐
February) meridional wind velocity at 850 hPa (V850) and relative humid-
ity (RH) over Beijing from 2006–2015 to 2051–2060. Results are from the
ensemble of Coupled Model Intercomparison Project Phase 5 climate mod-
els reporting daily V850 and RH and for two climate forcing scenarios
(RCP4.5 and RCP8.5). Values are changes in the number of winter days per
decade for each (V850, RH) bin, computed for individual models and then
averaged across models. The scale is the same as for the extreme haze
probability map in Figure 2.
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more consistent with the scale resolved by climate projections. Results are
similar when RH is sampled only for the Beijing grid cells, as reported
below. We analyze projections of climate change from 2006–2015 to
2051–2060 as sufficiently distant to obtain a significant signal while suffi-
ciently near to be relevant to air quality management. We also show pro-
jections to 2090–2099 in supporting information S1.

Present‐day RH statistics (mean and standard deviation) in the CMIP5
models often differ from the Beijing airport data used to fit our PP model.
For consistency in application of the PP model, we adjust all four of the
2006–2015 meteorological variables for each CMIP5 model to match the
observed means and standard deviations used in the PP model, and we
apply the same adjustment to the CMIP5 model values through to 2060.
We execute this adjustment by multiplying the model meteorological data
by a constant factor to adjust the standard deviation and adding a constant
factor to adjust the mean.

Figure 3 shows the two‐dimensional distribution of mean projected
changes of DJF V850 and RH for the ensemble of models under the two
scenarios of climate forcing and on the same scale as Figure 2. Here we
take the change from the 2006–2015 period to 2051–2060 for each model
and then average these changes over the models. We find a significant
decrease in RH from 2006–2015 to 2051–2060 but no significant change
in V850. These trends are broadly consistent with projected climate trends
for eastern China as a whole (Shen et al., 2018).

Previous studies of 21st century climate change have projected a general
decrease in RH over land due to faster warming of the land surface relative
to the ocean and poleward expansion of the Hadley cell (Byrne &
O'Gorman, 2013; Fu & Feng, 2014; Lau & Kim, 2015). This effect is appar-
ent in 1973–2016 trends from the Hadley Center observation data
(Figure S3), which show a prevailing decrease of RH over China including
Beijing. The CMIP5 model simulations for the same 1973–2016 period
also show a decrease over most of China but an increase over parts of east-
ern China, with a slight decrease over Beijing. Themore consistent CMIP5
projections of decreasing RH by mid‐21st century likely reflect the stron-
ger greenhouse forcing.

There is however an important difference in the pattern of RH decrease
between the two scenarios. In RCP8.5, the decrease in RH does not affect
the subdomain of low V850 and high RH with the highest probability of
extreme haze as modeled in Figure 2, whereas it does in RCP4.5. The
trends in Figure 3 computed for individual CMIP5 climate models can
be combined with the extreme haze probabilities in Figure 2 to project
the effect of climate change on extreme haze. For a given model, we calcu-
late the expected number of extreme days for a given year by summing the
probabilities for individual days as calculated by equation (1) over the 90

DJF days. Results are shown in Figure 4 (top panel) for the ensemble of CMIP5 models. The model medians
show a decrease in both the RCP4.5 and RCP8.5 scenarios. By calculating a 2006–2060 linear regression of
the annual number of haze days averaged over the ensemble of models, we find that the decrease in the
RCP4.5 scenario is significant at the 5% level and amounts to 0.58 ± 0.20 fewer extreme haze days per year
in 2060 than in 2006, representing a 10% decrease. The decrease in the RCP8.5 scenario is not statistically
significant. In the RCP4.5 scenario, 69% of the CMIP5 models show a decrease in the frequency of haze days
between 2006 and 2060. In the RCP8.5 scenario, 56% of the models show a decrease.

The middle and bottom panels of Figure 4 show results from the alternative but inferior PP models. The
PP(V850, RH, δU500, δT850–250) model shows significant decreases in the frequency of extreme haze days

Figure 4. Change in the number of extreme Beijing haze days per year for
the 2051–2060 versus 2006–2015 climate as predicted from extreme value
theory using climate projections from 18 Coupled Model Intercomparison
Project Phase 5 models. Extreme haze days are defined by 24‐hr average
PM2.5 > 300 μg/m3 and are assumed to occur in winter (December‐January‐
February) only. The three panels show predictions from different Poisson
point process (PP) models fit to different combinations of local meteorolo-
gical variables including meridional wind velocity at 850 hPa (V850),
relative humidity (RH), meridional gradient in 500‐hPa zonal wind velocity
(δU500), and vertical temperature difference between 850 and 250 hPa
(δT850–250). The boxplots show statistics for the ensemble of CoupledModel
Intercomparison Project Phase 5 models: medians, 25th and 75th percen-
tiles, and ranges. All changes with the exception of RCP8.5 in the topmost
panel are statistically significant at the 95% level (see text).
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by 2060 for both the RCP4.5 and RCP8.5 scenarios, by 0.87 ± 0.49 days (10%) and 0.54 ± 0.39 days (10%),
respectively, for the two scenarios. By contrast, the PP(V850, δU500, δT850–250) model shows a significant
increase for both scenarios, by 0.87 ± 0.27 days (20%) for RCP8.5. This is consistent with Cai et al. (2017),
who found from the same three variables in the RCP8.5 scenario a 50% increase in the frequency of haze days
>150 μg/m3 between the 1950–1999 and 2050–2099 climates (as compared to 2006–2015 vs. 2051–2060 in
our work). Projections to 2100 show similar but amplified patterns (see Figure S2). However, we cannot
do an exact comparison of our results to Cai et al. (2017) because 26% of winter days have PM2.5 concentra-
tions higher than 150 μg/m3 (Figure 1), so an extreme value model is not applicable for that threshold.

We repeated the statistical comparison of haze frequency between the 2006–2015 and 2051–2060 climates for
two higher thresholds, 350 and 400 μg/m3, to check the sensitivity of our results to threshold selection. For
all three PP models, the significance and sign of the changes in the frequency of haze days was consistent at
these higher thresholds. We also repeated our analysis for RH averaged over the two gridcells containing
Beijing alone, rather than the larger (30– 47.5° N, 115–130° E) region, to check the sensitivity of our results
to region selection. For all three PPmodels in both RCP scenarios, the significance and sign of the changes in
the frequency of haze days were consistent, with one exception: The PP(V850, RH, δU500, δT850–250) model
does not project a significant change under the RCP8.5 scenario when RH is averaged over this smaller
region, whereas there is a slight decrease projected when RH is averaged over the larger region.

In summary, we find from EVT that the probability of severe wintertime PM2.5 pollution events in Beijing
(24‐hr average PM2.5 > 300 μg/m3, 95th percentile of the frequency distribution for winters 2009–2017)
can be successfully represented by a PP model with meridional wind velocity (V850) and RH as the two
meteorological predictors. The probability of extreme events is the highest under low wind and high RH,
as would be expected from stagnation and chemistry. RH is an important predictor variable, independent
of V850; occurrences of low V850 together with low RH do not lead to extreme PM2.5. Alternative PP models
including as additional meteorological variables the gradient in 500‐hPa zonal wind (δU500) and the vertical
temperature gradient (δT850–250) are not as successful at predicting extreme events. Application of the
PP(V850, RH) model to 2006–2060 CMIP5 simulations of climate change following the RCP4.5 scenario
reveals a 10% decrease in the probability of meteorological conditions leading to extreme PM2.5. The
RCP8.5 scenario shows no significant trend. A PP(V850, RH, δU500, δT850–250) model shows significant
decreases in extreme PM2.5 in both scenarios. RH is generally expected to decrease under 21st century warm-
ing land due to increased land‐ocean temperature contrast and the poleward expansion of the Hadley circu-
lation. As emissions in China decrease, our extreme events analysis will become relevant to lower PM2.5

exceedance thresholds such as the current China Grade 2 PM2.5 24‐hr standard of 75 μg/m3. We conclude
that 21st century climate change is unlikely to increase the frequency of severe PM2.5 pollution events in
Beijing and is more likely to decrease it.
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