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Abstract we develop a statistical model using extreme value theory to estimate the 2000-2050 changes in
ozone episodes across the United States. We model the relationships between daily maximum temperature
(Trmax) @and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process
(PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures,
defined as ozone suppression. The PP model sometimes fails to capture ozone-T,,,ax relationships, so we refit the
ozone-Tax slope using logistic regression and a generalized Pareto distribution model. We then apply the
resulting hybrid-extreme value theory model to projections of Tpax from an ensemble of downscaled climate
models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3da™
in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9da™" at many sites.

1

1. Introduction

Temperature is the most important meteorological factor in driving ozone episodes in polluted regions [e.g.,
Camalier et al,, 2007; Jacob and Winner, 2009, and references therein; Porter et al., 2015]. Lin et al. [2001] found that
the probability of ozone exceeding a threshold increases with temperature; for example, during 1980-1998, the
probability of daily maximum 8 h average (MDA8) ozone exceeding 85 ppbv was 20% at 303 K and 49% at 310K
in New England. More recently, high summer temperatures in the central United States in 2012 led to values of
the annual fourth MDA8 ozone of 78.0 ppbv, more than 8 ppb higher than the 2008-2014 average of 69.8 ppbv
(http//www3.epa.gov/airtrends/ozone.html). The 2012 enhancement occurred even though emissions of ozone
precursors have declined dramatically in recent years [Kim et al., 2006; Bloomer et al., 2009]. In the coming
decades, global climate change will likely cause more frequent and/or persistent heat waves in the United
States [Meehl and Tebaldi, 2004; Steiner et al., 2010; Gao et al., 2013; Wu et al., 2014], and a key question is
whether such trends will increase the frequency or severity of ozone episodes. In this study we develop a sta-
tistical model based on extreme value theory (EVT) to calculate the 2000-2050 changes in temperature-
driven ozone episodes at sites across the United States.

Surface ozone is produced via oxidation of volatile organic compounds and CO in the presence of nitrogen
oxides (NO,), and the relationship of ozone with temperature arises from a set of complex chemical and bio-
physical mechanisms. In the eastern United States, surface ozone typically shows a linear relationship with
surface temperature with slopes ranging from 2 to 6 ppbv/°C in the Northeast and Midwest, depending on
emissions and meteorological regime [Camalier et al., 2007; Bloomer et al., 2009; Rasmussen et al., 2012;
Sillman and Samson, 1995]. At extreme temperatures, however, the linear relationship between temperature
and ozone can change. For example, Steiner et al. [2010] diagnosed suppression of ozone formation at high
temperatures at sites in California. These authors hypothesized that suppression arises from (1) reduced
isoprene emission due to biophysical constraints at high temperatures and (2) saturation of ozone formation
from the decomposition of peroxyacetyl nitrate (PAN), a reservoir of NO,. To date, the phenomenon of ozone
suppression has not been reported elsewhere in the United States. In this study, we look for evidence of
ozone suppression at high temperatures outside of California.

Most previous efforts examining the climate penalty on future ozone episodes have relied on chemical
transport models or chemistry climate models (CCMs) [e.g., Wu et al., 2008; Gao et al., 2013; Rieder et al., 2015],
but such models have difficulty in capturing present-day ozone variability [e.g., Fiore et al., 2009; Doherty et al.,
2013; Parrish et al, 2014]. An alternative method is to use a statistical approach. Most previous statistical
approaches for calculating surface ozone assumed linear relationships between ozone and the driving
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meteorological variables [e.g., Schlink et al., 2003; Holloway et al., 2008; Chang et al.,, 2014]. Rieder et al. [2013], how-
ever, pointed out that the extreme tails of surface ozone data are typically non-Gaussian, so linear regression
likely underpredicts the present-day number of exceedances. An alternative representation of extreme ozone
events takes advantage of extreme value theory (EVT). Instead of fitting the entire data set, EVT focuses on accu-
rate simulation of extreme ozone tails. For example, Rieder et al. [2013] used EVT by applying a stationary general-
ized Pareto distribution (GPD) model to MDA8 ozone levels at sites across the United States. That study found
that 1 year ozone return levels dropped by over 8 ppbv from 1988-1998 time period to 1999-2009 in the eastern
United States. Applying GPD to the future ozone simulated by a CCM, Rieder et al. [2015] found that climate
change could increase the 1year return level of MDA8 ozone in the east by ~1 ppbv by the 2100s. The GPD
model is appropriate in modeling the ozone distribution over a high threshold but cannot provide information
on exceedance rates.

In contrast, the point process (PP) model, another approach, can simulate both the distribution above a
specified threshold and the rate of exceeding this threshold. Here we apply PP to model the observed
relationships between surface temperature and MDA8 ozone in May-September over 2003-2012. A novel
feature of our approach is that it takes into account the possible suppression of ozone concentrations at
extreme temperatures. The resulting hybrid-EVT model incorporates the nonstationarity of the ozone-
temperature relationship. To calculate ozone exceedances in the 2050s, we apply our model to projections
from an ensemble of climate models. Use of the ensemble increases confidence in our results.

2. Data

We obtain the 2003-2012 hourly ozone from the EPA Air Quality System (EPA-AQS, http://www.epa.gov/ttn/airs/
airsags/) and convert it to daily maximum 8 h average (MDA8) ozone. The ozone season is defined as the period
from May to September, when ozone episodes are most frequent [Bloomer et al., 2009]. We also compare the
results in AQS with those in the EPA Clean Air Status and Trends Network (CASTNet, http://epa.gov/castnet/).
Sites missing more than 10% of the data in this time frame are discarded, resulting in 816 AQS sites and 67
CASTNet sites across the United States.

The daily maximum temperature (T, is from the North American Regional Reanalysis (NARR), with a grid
resolution of 32 km x 32 km [Mesinger et al., 2006]. CASTNet includes site-based hourly temperatures, so we
use NARR temperature data to interpret only the AQS measurements. Future projections of daily maximum
temperature are from the Coupled Model Intercomparison Project Phase 5 (CMIP5), under the representative
concentration pathway (RCP) 4.5 scenario [Taylor et al., 2012]. The original CMIP5 outputs are available only at
coarse horizontal resolution (e.g., ~200 km). In order to capture the fine-scale features of atmospheric circula-
tion, we use the Bias-Correction and Constructed Analogues (BCCA) data set, which includes meteorological
variables statistically downscaled from the CMIP5 ensemble [Maurer and Hidalgo, 2008]. The BCCA database
has a grid resolution of 1/8°x1/8° (http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/) [Bureau of
Reclamation, 2013]. Here we use the BCCA daily maximum temperatures from an ensemble of 19 CMIP5
models for the 2000-2009 and 2050-2059 time periods (Table S1 in the supporting information).

3. Observed Ozone Suppression

In this study, we define ozone suppression as a marked decrease in the ozone-temperature slope that occurs
at high temperatures. To diagnose suppression, we check the stationarity of the ozone-temperature slopes at
each AQS and CASTNET site using the Z test, as in Paternoster et al. [1998]. More specifically, we test whether
there is a break in the slopes, with slopes in the higher-temperature regime significantly less than the slopes
in the lower temperature regime. The formula of the Z test is given by

my — My

\/SE + SER

where the my and my are the ozone-temperature slopes at high- and normal-temperature regimes,
respectively, and SE and SEy are the standard errors of the slopes associated with the two regimes.

7= (M

For each site, we first rank all daily T,,ax Values across the 10 years. We then test a series of temperature values,
in increments of 0.1 K from the 95th to 97.5th percentile range, for the cutoff temperature T, above which
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Figure 1. Distribution of EPA sites exhibiting “ozone suppression” at high temperatures in the (a) AQS and (b) CASTNET
data sets during May to September for 2003-2012. Red points denote sites with significant ozone suppression at the
p < 0.05 level, and black points are all other sites.

ozone suppression occurs. Of the candidate T, values for each site, we choose the one that yields the mini-
mum p value for E1. The total number of observations at each site varies from 1377 to 1530, depending on
the fraction of missing data. A p value < 0.05 for E1 implies a significant reduction in slope, which we take
as evidence of ozone suppression at high temperatures at that site. Figure 1 identifies those sites exhibiting
ozone suppression in the AQS and CASNET networks over 2003-2012, with high similarity in the spatial
distributions between these two networks. About 20% of the sites in AQS and 23% of sites in CASTNET show
significant ozone suppression. Besides California, ozone suppression occurs in ~37% of sites in the Northeast,
~30% of sites in the Midwest, and a few sites in the deep South. By testing with different temperature data
sets and different preprocessing methods (Text S1 and Figure S1), we confirm that the spatial distribution of
ozone suppression in Figure 1 is robust.

For California, a region with relatively frequent days with T,,,,, exceeding 310K, Steiner et al. [2010] proposed
two mechanisms to explain the observed ozone suppression. First, they posit that isoprene emissions may be
reduced above 310 K due to denaturation at high temperatures of the enzymes needed for isoprene produc-
tion [Guenther et al., 1993]. Second, they suggest that the temperature effect on the lifetime of PAN, an impor-
tant reservoir for NO,, diminishes at very high temperatures, with ozone production leveling off.

We find that reduction in isoprene emissions at higher temperatures is unlikely to explain the observed ozone
suppression in the Northeast and Midwest. In these regions, the change in slope of ozone-temperature
occurs below ~305 K (Figure S2). The leaf temperatures at which the isoprene-temperature relationship flat-
tens or reverses show large interspecies variability, but all are greater than 308 K [Guenther et al., 1993;
Sharkey et al.,, 1996; Singsaas and Sharkey, 2000; Rasulov et al., 2010]. The leaf-air temperature difference
depends on many environmental variables, but at air temperatures above 306 K, the leaf temperature tends
to be lower than air temperature [/dso et al., 1981; Andrews et al., 1992]. Taken together these observations
suggest that the isoprene suppression is unlikely to occur at air temperatures of ~305K and the cause of
ozone suppression in the Northeast and Midwest must lie elsewhere.

We turn to a chemistry model GEOS-Chem to test whether the decrease in PAN lifetime in high-temperature
regimes can account for ozone suppression across the United States. The details of model setup can be found
in Text S2. We conduct two 9year simulations for May-September from 2004 to 2012, a control simulation
and a sensitivity simulation. In both simulations, we test for ozone suppression as described above. The con-
trol simulation (C) yields evidence of ozone suppression at high temperatures in grid squares across the West,
Midwest, and Northeast, but not in the Southeast (Figure 2a). GEOS-Chem also diagnoses ozone suppression
in the Intermountain West and northern Great Plains, where few observations exist. In the sensitivity simula-
tion (S), surface air temperatures are increased everywhere by 1K in the model. This adjustment affects only
the chemistry processes and biogenic emissions but has no effect on other meteorological fields. The ozone-
temperature slopes at each site in high-temperature and more normal temperature regimes can be written as

My = Qs — en @

N = Osn N

where O represents the daily MDA8 ozone concentrations averaged over the high (H, > 95th percentile) and
normal (N, 50th to 95th percentiles) temperature regimes; my and my' represent the change in ozone per
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(a) Ozone suppression in GEOS-Chem (b) Chemical effect in dO3/dT

XN

4

) =

AY

Figure 2. (a) Simulated ozone suppression in GEOS-Chem (May-September 2004-2012). Red points denote sites exhibiting
significant ozone suppression at the p < 0.05 level. (b) Difference in the slope dOs/dT for two temperature regimes, high
(> 95th percentile) and normal (50th to 95th percentiles). The slopes are calculated by applying a uniform 1 K increase in
surface temperatures in a sensitivity simulation. Positive values show where modeled dOs/dT is greater in the high-tem-
perature regime than in the normal regime. Negative values show the opposite and reveal where the model predicts that
ozone suppression at high temperatures takes place due solely to photochemical effects.

unit temperature for these two regimes; and C and S refer to the two simulations. If ozone suppression in the
model occurs due to temperature alone, my should be less than my". Figure 2b, however, reveals only weak
ozone suppression at high temperatures in the southern Great Plains.

Our results suggest that ozone suppression is not caused by temperature-dependent effects in chemistry or
emissions as hypothesized by Steiner et al. [2010] but instead arises from meteorological processes that
accompany high surface temperatures. Typically, ozone is linearly correlated with temperature, which, in
turn, is linearly correlated with other meteorological variables such as solar radiation, synoptic circulation,
and stagnation [Jacob and Winner, 2009, and references therein]. At high temperatures, the linearity of these
correlations among meteorological variables may begin to break down, changing the ozone-temperature
slope. The breakdown in such correlations would likely not be captured in a box model such as that used
in Steiner et al. [2010]. Although 3-D chemistry models historically have had difficulty representing observed
ozone variability [e.g., Fiore et al., 2009; Pfister et al., 2014; Rieder et al., 2015], they can better capture the full
suite of meteorological effects on ozone episodes.

4. Hybrid Extreme Value Model

The extreme value model is used to study the high tail of the MDA8 ozone distribution, which has greatest
relevance for ozone air quality management. We model the daily MDA8 ozone concentrations conditionally
on daily maximum temperature (Tyhax), Using a nonstationary PP model, which formulates the Poison process
limit of extreme ozone concentrations above a threshold [Coles, 2001; Rieder et al., 2013]. More details about
this model can be found in the supporting information Text S3. We estimate the model parameters by
maximizing the likelihood function L, which is given by

1 <& f(u— ) —1/¢ 1 f( B ) —1/¢=1Y >yl
Hueom€) = expq =22 ”qs:m] AL e 1+yt¢rﬂﬂ] E)
a =1 =
Iut,T = f(tv T) (4)
¢r = exp(g(T) 5

where y, is the daily observed MDA8 ozone from each individual AQS site, n, is the number of observations in
each year, u, ris the location parameter conditioned on both time t (e.g., 2003 and 2004) and daily maximum
temperature T, ¢p7 (> 0) is the scale parameter conditioned on Tp,ax, & is the shape factor, and fand g are linear
functions. The value of n, is 153, the total number of days from 1 May to 30 September. /[y, > u] is one if the
observed y, is greater than the threshold u (90th percentile values of ozone in this study) and zero, otherwise.
The numerical optimization is carried out using the extRemes package in R [Gilleland and Katz, 2011].
Application of the PP model to U.S. ozone air quality requires that we take into account trends in the emis-
sions of ozone precursors. For example, ozone levels have declined concurrently with the ~40% reduction
in power plant NO, emission in the eastern United States beginning in 2002 [Kim et al., 2006; Bloomer
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et al., 2009]. To include this trend in the PP model, we define the location parameter x as a function of time t
(E4). The responses of the scale and shape parameters to time are relatively weak, so we define the scale para-
meter as a function of just T, (E5) and fix the shape parameter to a constant value.

Because the single PP model is optimized by considering all available observations, it functions best when the
ozone-temperature relationship shows little variability across different temperature regimes. Thus, the PP
model may fail to capture ozone suppression at extremely high temperatures. Here we use the generalized
Pareto distribution (GPD) model to formulate the ozone distribution at those sites where ozone suppression
occurs. The GPD accounts for only the intensity of values above the high threshold (u) and not the probability
of ozone exceeding this threshold [Coles, 2001]. In order to account for the frequency of exceedances, we use
a logistic regression model, which we call the hybrid-EVT model.

As an example of this problem and our approach to solving it, Figure S4a shows the distribution of mean daily
MDAB8 ozone concentrations and Tp,ax in May-September from 2003 to 2012 in Nanticoke, PA (76.0°W, 41.2°N).
The Z test described in section 3 suggests that ozone suppression occurs at T,,ax > 303 K. The 90th percentile
ozone at this site is 70 ppbv (threshold u), and Figure S4b shows the observed and fitted fraction of ozone above
this threshold, revealing a bias in modeled T,,,x above 303 K. The bias suggests that the PP model fails to
capture the ozone suppression at this site. To remedy this problem, we refit the part of data above the cutoff
temperature (T,) for ozone suppression using a logistic regression and a GPD. The GPD is defined by two
parameters, the scale parameter ¢* and the shape parameter &£* while the logistic regression is defined by
two parameters denoted as 0; and 6,. The probability density P of ozone is defined as

ﬁm—M}%”
¢*

GPD

P(y,|T > Ty) = logit(T|6;,6,) ¢y {1 4 ©
——— —

logistic regression

where T, is the cutoff temperature for observed ozone suppression, the logit(T|6,,65) is the probability of
ozone exceeding T, using a logistic regression conditioned on daily maximum temperature, and ¢* and &*
are the scale and shape parameters of the GPD. The number of data points characterized by ozone suppres-
sion is relatively limited, making it challenging to use a nonstationary GPD. For simplicity, we therefore use a
stationary GPD with fixed scale and shape parameter. In the resulting hybrid-EVT model, the likelihood L of an
ozone exceedance over the entire data set is

-1/
1 E(u—ppr) no)
_ 1422 et _
exp{ na; + or rE or

. _ —1/& =1
ogie(7[0r05)o; |1+ =] (T>T)

0-*
7)

or

—1/&-1 Ilye>u]
1 +€Z(¢Vr :ur‘T):l } (TSTX)

L(ﬂr‘rvo'T, < 0'*-,5*,-91,92) =

As seen from the equation, the likelihood consists of two parts, the PP model and logistic GPD. Because these
two parts are independent of each other, the maximum likelihood estimation can be divided into two inde-
pendent parts, reducing the computation complexity. We perform this calculation in extRemes [Gilleland and
Katz, 2011]. We find that the distribution of ozone in the high tails can be adequately fitted using this hybrid-
EVT model. For the model evaluation, we use a tenfold cross validation, in which we use observations in
1year as the test data and the rest as training data. This process is repeated for every year in the time series.
The coefficient of determination (R%) between annual mean observed and simulated ozone episodes across
the United States is as high as 0.98, as seen in Figure S5.

5. The 2000-2050 Trend in Ozone Episode Days in RCP4.5

Increasing greenhouse gases will lead to higher temperatures across North America, with potential implica-
tions for the frequency or duration of extreme ozone episodes. Figure S6 shows the change in the mean and
99th percentile daily Tinax values for May-September across the United States, projected by 19 downscaled
CMIP5 models from 2000-2009 to 2050-2059 for RCP4.5. Mean daily T,.x increases by 2-2.5 K over much of
the North in this time frame, including the northern Intermountain West, northern Great Plains, the Midwest,
and the Northeast. In the deep South and Southwest, mean daily T,,,., increases ~1.2-1.8 K.
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To estimate the frequency of future ozone episodes, we apply the hybrid-EVT model to the CMIP5 future
temperature projections. First, we assume the anthropogenic emissions of ozone precursors remain at
the present level (2003-2012) during the 2050-2059 time frame. Second, we apply a parametric boot-
strap to the hybrid-EVT model and simulate the 2003-2012 observed ozone observations 500 times. In
each bootstrap step, the fitted hybrid-EVT model calculates the ozone concentration distribution as a
function of T,.x at each site for the CMIP5 historical (2000-2009) and future scenarios (2050-2059).
The ozone distributions over these time frames are calculated by averaging the ozone distribution for
all days. Third, we calculate the cumulative probability of ozone episode days for 2000-2009 and
2050-2059 in each model and at each site. For all sites in the East and most sites in the West, an ozone
episode day is defined as a day with MDA8 ozone greater than 75 ppbv. In California, where 53 sites
experience MDA8 ozone of 75 ppb more than 20% of the time, we define an ozone episode day as the
90th percentile of 2003-2012 ozone concentrations. Fourth, we calculate the mean and standard devia-
tion in the changes of ozone episode days across the 19 CMIP5 models at each site. These metrics can be
written as

Ototal = 9)

where Ax;; is the changes in ozone episode days by 2050s in the ith (1<i<19) model and jth (1<j<n)
bootstrap simulations, Ax is the average change in ozone episode days across all models and all bootstrap
simulations, and ooty is the standard deviation across all models and bootstrap simulations.

Figure 3a shows the predicted changes in the number of ozone episode days in May-September from 2000-
2009 to 2050-2059. We find that the number of episode days increases by an average of 2.3 days across all
sites in the United States from 2000 to 2050, with many sites in the California, Northeast, and Great Lakes
regions revealing increases of 3 to 9da™", with the relative change ranging from 40% to 100%. This spatial
distribution of projected ozone exceedance days arises from two causes. First, the present-day number of
ozone episodes is already large in some regions (e.g., Northeast, Midwest, and Southwest, Figure S3a), imply-
ing a greater potential for more frequent ozone episodes as temperatures rise. Second, as shown in Figure S6,
the Northeast, Midwest, and southern California regions all experience more frequent extreme temperatures
in the future atmosphere, driving relatively large increases in ozone episode days in these areas. Changes in
ozone episode days in the Southeast, however, are generally below 1da™" or even negative. This result is
consistent with Figure S3, which shows that surface ozone in the Southeast is relatively insensitive to changes
in Thax Or even exhibits a negative response to increasing Tax [Camalier et al., 2007; Bloomer et al., 2009; Wu
et al., 2008; Porter et al., 2015]. In addition, the projected increases in temperature in the Southeast are 1-2K
less than elsewhere in the United States (Figure S6).

Figure 3b shows the total standard deviation (oyota1, E9) calculated from the 19 projections in different CMIP5
models over all bootstrap simulations. The uncertainty is greatest in the Northeast and Southwest, reaching
2-5da”", but much less in other regions, showing a similar spatial pattern with the average changes of
ozone episodes in Figure 3a. We further decompose the total standard deviation into two parts: the internal
part caused by uncertainty of the parameters in the hybrid-EVT model and the external part caused by differ-
ent temperature projections (Text S4). As seen from Figure S7, the external standard deviation is much
greater than the internal one in the Northeast, Midwest, and California, suggesting that the uncertainty in
the projections of ozone episode days stems mainly from the range of T, projections in the CMIP5 ensem-
ble. To test the robustness of our results, we repeat this analysis using the daily mean temperatures from
CMIP5 instead of daily T,,ax. As shown in Figure S8, the changes in ozone episodes calculated in this way exhi-
bit a similar spatial pattern as those calculated with T,,a (Figure 3a), with an average of additional 1.9d a”! by
the 2050s across the United States. The 90th and 10th percentile changes in ozone episodes as calculated
using Tpnax from the 19 CMIP5 models are displayed in Figure S9.
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(a) Change in ozone episode days in 2050s
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Figure 3. (a) Mean changes from 2000-2009 to 2050-2059 in ozone episode days due to climate change in the RCP4.5
scenario, as calculated using statistically downscaled projections of daily maximum temperatures from 19 CMIP5 models.
(b) The standard deviation of the changes in ozone episode days across the 19 CMIP5 models at each site. The sites where
the inclusion of Tyy,ax does not improve the EVT model for daily MDA8 ozone are denoted by black triangles.

6. Discussion and Conclusions

Using extreme value theory (EVT) and downscaled CMIP5 temperatures, we develop a hybrid-EVT model to
examine the impact of 2000-2050 climate change on ozone episode days at 816 sites across the United
States. We define an ozone episode day as those days when MDA8 ozone is greater than 75 ppbv and use
daily Tiax as the sole predictor. We first examine the stationarity of the ozone-temperature slopes using
observed MDA8 ozone and daily T,,.x during the ozone season (May-September) from 2003 to 2012. At very
high temperatures (above the 95th percentile), we find that 20% of U.S. sites exhibit a significant decrease in
the ozone-temperature slope. Our study marks the first time such ozone suppression has been detected not
just in California [Steiner et al., 2010] but also in the Northeast, Southwest, and deep South.

Our hybrid-EVT model consists of two parts: (1) a point process model to simulate the ozone tails and (2) a
logistic regression and a generalized Pareto distribution (GPD) model to capture the observed ozone
suppression. Using this model, we find that observed and simulated ozone episode days closely correlate
across the United States. Combining the model with future projections of statistically downscaled values
for Tmax from CMIP5 following the RCP4.5 scenario, we find that ozone episodes increase by 3-9da' in
the Northeast, Midwest, and Southwest from 2000 to 2050 and by 0-2 days elsewhere. Our method assumes
constant anthropogenic emissions at present-day levels, and the climate penalty we report considers only
the influence of climate change on ozone episodes. Our results point to the need for ambitious emission

controls to offset this penalty, especially in the Northeast and Southwest.

This study represents the first time that statistically downscaled meteorology from a large ensemble of
climate models has been used to project future changes in ozone air quality. Using the median results of such
an ensemble significantly decreases uncertainty in our projections. To our knowledge, this study is also the
first to quantify the relationship of ozone and temperature in the United States using a hybrid-EVT model that
takes into account ozone suppression at extremely high temperatures. Drawbacks of the model include its
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assumption of constant anthropogenic emissions. The model also has difficulty predicting changes in ozone
episodes in the deep South, where ozone and surface temperature exhibit relatively low correlation. Previous
studies have shown that synoptic-scale phenomena such as the Bermuda High and the Great Plains low-level
jet control MDAS8 ozone variability in the South [e.g., Shen et al., 2015], but the influence of these phenomena
on ozone episodes is unknown. Despite such limitations, the hybrid-EVT model promises to serve as a useful
tool to rapidly assess the climate penalty on U.S. ozone air quality.
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