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Abstract

This paper presents an approximate analytical solution to the optimal consumption and portfo-
lio choice problem of an infinitely-lived investor with Epstein-Zin-Weil utility who faces a constant
riskless interest rate and a time-varying equity premium. When the model is calibrated to US stock
market data it implies that intertemporal hedging motives greatly increase, and may even double,
the average demand for stocks by investors whose risk-aversion coefficients exceed one. The optimal
portfolio policy also involves timing the stock market. Failure to time or to hedge can cause large

welfare losses relative to the optimal policy.
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I Introduction

The choice of an optimal portfolio of assets is a classic problem in financial economics. In
a single-period setting the problem is well understood, and analytical solutions for optimal
portfolio weights are available in important special cases. When mean-variance analysis is
appropriate, for example, optimal portfolio weights are known functions of the first and

second moments of asset returns.

In a multi-period setting the problem is far less tractable. Explicit solutions for portfolio
weights are available in the special cases where investment opportunities are constant or the
investor has log utility and hence acts myopically; but these cases are tractable precisely be-
cause they reduce to the familiar single-period problem. Merton [1969, 1971] and Samuelson
[1969], followed more recently by Cox and Huang [1989], have shown that in general shifting
investment opportunities can have important effects on optimal portfolios for investors with
long horizons. These papers characterize some properties of optimal portfolios, but do not
deliver analytical solutions for portfolio weights as functions of state variables.

Interest in long-horizon portfolio choice has recently been stimulated by empirical evi-
dence that the conditions under which the multi-period problem reduces to the single-period
problem do not hold. Expected asset returns seem to vary through time so that investment
opportunities are not constant; the evidence for predictable variation in the equity premium,
the excess return on stock over Treasury bills, is particularly strong (see Campbell [1987],
Campbell and Shiller [1988a, 1988b], Fama and French [1988, 1989], Hodrick [1992], or the
textbook treatment in Campbell, Lo, and MacKinlay [1997], Chapter 7). Economists re-
searching the equity premium puzzle find that average excess stock returns are too high to
be consistent with a representative-investor model in which the investor has log utility (see
Campbell [1996], Cecchetti, Lam, and Mark [1994], Cochrane and Hansen [1992], Hansen
and Jagannathan [1991], Kocherlakota [1996], Mehra and Prescott [1985], or the textbook
treatment in Campbell, Lo, and MacKinlay [1997], Chapter 8).

In response to these empirical findings, several recent papers have used numerical meth-
ods to solve for optimal portfolios in models with realistic predictability of returns. Investors
are generally assumed to have power utility defined over wealth at a single terminal date.
Different papers choose different investment horizons and make different assumptions about



investors’ ability to rebalance their portfolios. Kandel and Stambaugh [1996] consider the
effects of predictability on the optimal portfolio of a single-period Bayesian investor who
takes account of parameter uncertainty, while Barberis [1998] extends this work to study
the optimal portfolio of a long-horizon Bayesian investor who rebalances annually or not
at all. Brennan, Schwartz, and Lagnado [1997] consider a long-horizon investor who rebal-
ances frequently, while Balduzzi and Lynch [1997a,1997b] consider a long-horizon investor
who faces fixed and proportional transactions costs which reduce the frequency of optimal
rebalancing.! The results in these papers, though dependent on the particular parameter
values they assume, illuminate the effects of predictability on portfolio choice. Kim and
Omberg [1996] work with a similar framework but, by assuming continuous time and zero
transactions costs, are able to solve the portfolio choice problem analytically.?

A limitation of these models is that they abstract from the choice of consumption over
time. Since the investor is assumed to value only wealth at a single terminal date, no
consumption takes place before the terminal date and all portfolio returns are reinvested
until that date. This simplifies the analysis but makes it hard to apply the results to the
realistic problem facing an investor saving for retirement. In addition, these models cannot
easily be related to the macroeconomic asset pricing literature in which consumption is used
as an indicator of marginal utility.

This paper extends the previous literature in three major respects. First and most im-
portant, we consider a model in which a long-lived investor chooses consumption as well as
an optimal portfolio, to maximize a utility function defined over consumption rather than
wealth.? Second, we assume that the investor has Epstein-Zin-Weil preferences (Epstein and

I Most of these papers, like our paper, work with a single state variable driving the equity premium. Only
Brennan, Schwartz, and Lagnado [1997] consider multiple state variables.

2Kim and Omberg study the choice between a riskless asset with a constant return and a risky asset
whose expected return follows a continuous-time AR(1) (Ornstein-Uhlenbeck) process. They assume that
the investor is finitely-lived and has HARA utility defined over terminal wealth. They find that the optimal
portfolio weight is linear and the value function is quadratic in the state variable.

3Since the first version of this paper was circulated, some numerical results have been obtained for the
long-horizon portfolio choice problem with utility defined over consumption. Balduzzi and Lynch [1997a,
1997b] consider some cases with endogenous consumption, and Brandt [1998] uses the Generalized Method
of Moments to estimate consumption and portfolio rules that best satisfy the intertemporal Euler equation
given the stochastic properties of historical data.



Zin [1989], Weil [1989]). This allows us to distinguish the coefficient of relative risk aversion
from the elasticity of intertemporal substitution in consumption; power utility restricts risk
aversion to be the reciprocal of the elasticity of intertemporal substitution, but in fact these
parameters have very different effects on optimal consumption and portfolio choice. Third,
like Kim and Omberg [1996] but unlike other previous research, we solve the problem ana-
lytically. This provides economic insights that are hard to get from numerical solutions, and
it enables us to distinguish general properties of the solution from results that depend on

particular parameter values.

In order to keep our problem analytically tractable, we make several simplifying assump-
tions. We assume that there are two assets: a riskless asset with a constant return, and a
risky asset whose expected return, the single state variable for the problem, follows a mean-
reverting AR(1) process. The assumption that the riskless return is constant simplifies our
analysis and enables us to isolate the effects of time-variation in the equity premium.

We work in discrete time, and assume that the investor is able to rebalance the portfolio
every period. Our approximate solution method becomes more accurate as the period length
shrinks; thus our model applies to an investor who is able to rebalance frequently. We also
abstract from transactions costs and restrictions on borrowing or short sales. We make
these assumptions not only for tractability, but also because we want to focus on the pure
intertemporal effects of return predictability on optimal consumption and portfolio choice
for long-horizon investors. Transactions costs and portfolio restrictions, while interesting in
their own right, may obscure these effects.

Finally, we assume that the investor is infinitely lived. In a model with endogenous
consumption every period, Fischer [1983] notes that “the notion of the horizon loses its
crispness. Date T is still the horizon in the sense that the individual looks no further ahead
than T. But now events that occur at ¢t < T matter not only because they affect the
situation at 7' but also because consumption at ¢ and later depends on the state of the world
at time t.” (p. 155). An infinite horizon is particularly convenient analytically because the
problem becomes one of finding a fixed point rather than solving backward from a distant
terminal date. It may be an appropriate assumption for investors with bequest motives, as

discussed in the macroeconomic literature on Ricardian equivalence, and it approximates



well the situation of investors with finite but long horizons.*

The endogeneity of consumption in our model makes it impossible for us to follow Kim
and Omberg [1996] and derive an analytical solution that is exact for all parameter values.’
Instead, we find an approximation to the portfolio choice problem that can be solved using
the method of undetermined coefficients. We approximate the Euler equations of the problem
using second-order Taylor expansions, and we replace the investor’s intertemporal budget
constraint with an approximate constraint that is linear in log consumption and quadratic
in the portfolio weight on the risky asset. This enables us to find approximate analytical
solutions for consumption and the portfolio weight. Like Kim and Omberg [1996] we find that
the optimal portfolio weight is linear in the state variable, while the log consumption-wealth
ratio and the log value function are quadratic in the state variable.

The approximate solution holds exactly in some special, but important, cases noted by
Giovannini and Weil [1989]. In all other cases its accuracy is an empirical issue. Camp-
bell, Cocco, Gomes, and Maenhout [1998] compare the approximate analytical solution to a
discrete-state numerical solution, and find that the two are very similar except at the upper
extreme of the state space. We briefly summarize these findings in Section IV.6 of this paper.

Our solution method uses the intertemporal Euler equation as its starting point. In this
sense, it belongs to the class of stochastic dynamic programming methods. Cox and Huang
[1989] have proposed an alternative solution method which transforms an intertemporal
optimization problem with complete markets into an equivalent static optimization problem
that can be solved using standard Lagrangian theory. He and Pearson [1991] have extended
the Cox-Huang approach to settings with incomplete markets. In a related paper, Campbell
and Viceira [1997], we formulate a problem of optimal consumption and portfolio choice with
time-varying interest rates, constant risk premia, and complete markets, and we explore the

4Brandt [1998] compares his finite-horizon results to ours. For the parameter values he uses, the finite-
horizon solution converges quickly to the infinite-horizon solution and is very similar by the time the finite

horizon reaches 20 years.
>The lack of an exact analytical solution is not due to the fact that we work in discrete time. Schroder and

Skiadas [1998] use stochastic differential utility, a continuous-time version of Epstein-Zin-Weil preferences
due to Duffie and Epstein [1992], and show that it is possible to characterize the solution in terms of
quasilinear parabolic partial differential equations—which are relatively easy to solve numerically—but an
exact closed-form solution exists only in the same special cases as in discrete time.



relation between the loglinear approximate solution method and the Cox-Huang approach.

Our paper builds on the work of Campbell [1993]. Campbell considers the simpler prob-
lem where only one asset is available for investment and so the agent need only choose
consumption. He shows that this problem becomes tractable if one replaces the intertem-
poral budget constraint by a loglinear approximate constraint. He uses the solution in a
representative-agent model to characterize the equilibrium prices of other assets that are in
zero net supply, in the spirit of Merton’s [1973| intertemporal CAPM. Campbell [1996] esti-
mates the parameters of the model from U.S. asset market data, while Campbell and Koo
[1997] evaluate the accuracy of the approximate analytical solution by comparing it with a
discrete-state numerical solution.

The organization of the paper is as follows. Section II states the problem we would like
to solve, while Section III explains our approximate solution method. Section IV calibrates
the model to postwar quarterly U.S. stock market data and briefly discusses the accuracy
of the approximate solution. Section V calculates the welfare cost of suboptimal portfolio
choice, and Section VI concludes.

II The Intertemporal Consumption and Portfolio
Choice Problem

II.1 Assumptions

We consider a partial-equilibrium problem in which:

(A1) Wealth consists of two tradable assets. Asset 1 is risky, with one-period log (continu-
ously compounded) return given by r,.1; asset f is riskless, with constant log return
given by r. Therefore, the one-period return on wealth from time ¢ to time ¢ + 1 is

(1) Rpi41 = ag (Rig1 — Ry) + Ry,
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where Ry 11 = exp{riti1}, Ry = exp{r;}, and the portfolio weight o is the propor-
tion of total wealth invested in the risky asset at time ¢.

(A2) The expected excess log return on the risky asset is state-dependent. There is one
state variable x;, such that

(2) EtTl,t+1 — Ty = X

The state variable follows an AR(1):

(3) Topr =+ @ (ze — p) +Mipy.

where 7, is a conditionally homoskedastic, normally distributed white noise error,
that is, n,,, ~ N (0,07).

(A3) The unexpected log return on the risky asset, denoted by w1, is also conditionally
homoskedastic and normally distributed. It is correlated with innovations in the state

variable,
(4) Var; (ugy1) = 02,
(5) Covy (Uer1,Mig1) = Oun.

(A4) The investor’s preferences are described by the recursive utility proposed by Epstein
and Zin [1989] and Weil [1989]:

- _ 1707 60/(=)
(6) U (Cy, EUsy1) = {(1 —0) C’t(1 N0y s (EtUtIH’Y) 1/ } 7

where 6 < 1 is the discount factor, v > 0 is the coefficient of relative risk aversion,
¥ > 0 is the elasticity of intertemporal substitution and the parameter 6 is defined
as 0 = (1—7),/ (L—o~"). It is easy to see that (6) reduces to the standard time-
separable, power utility function with relative risk aversion v when 1 = ~~!; in this

case § = 1 and the nonlinear recursion (6) becomes linear.

(A5) The investor is infinitely-lived.

Assumptions (A1) and (A2) on the number of risky assets and state variables are sim-
plifying assumptions, which we adopt for expositional purposes. The approach of this paper
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can be applied to a more general setting with multiple risky assets and state variables, at
the cost of greater complexity in the analytical solutions to the problem. Assumption (A3)
is also a simplification that can be relaxed in order to study the effects of conditional het-
eroskedasticity on portfolio choice. Assumption (A4) on preferences allows us to separate the
effects on optimal consumption and portfolio decisions of the investor’s attitude towards risk
from the investor’s attitude towards consumption smoothing over time. Finally, assumption
(A5) allows us to ignore the effects of a finite horizon on portfolio choice, but this assumption
too can be relaxed in future work.

I1.2 Euler Equations and the Value Function

The individual chooses consumption and portfolio policies that maximize (6) subject to the
budget constraint
(7) I/Vt-i—l = Rp,t+1 (Wt - Ct) ;

where W is total wealth at the beginning of time t and R, ;11 is the return on wealth (1).

Epstein and Zin [1989, 1991] have shown that with this form for the budget constraint,
the optimal portfolio and consumption policies must satisfy the following Euler equation for
any asset ¢:

Ct+1 A ’ —(1-90)
(8) IZEt 6 Ct Rp,tJrl Ri,t+1

Equation (8) holds regardless of how many tradable assets are available. In our simple model,

i denotes the riskless asset, the single risky asset, or the investor’s portfolio p. When i = p,
(8) reduces to:

Cor\ MY ’
(9) 1 - Et (S ( Ct ) Rp,t—i—l

Dividing (6) by W; and using the budget constraint we obtain the following expression

}1/(11/1)

for utility per unit of wealth:

c, 1-1/% c, 1-1/% R
0 vi=t0-o(g) (o) EmEERL)

D=
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where V; = Uy /W;. Epstein and Zin [1989, 1991] show that the value function per unit of
wealth can be written as a power function of (1 — ¢) and the consumption-wealth ratio:

1/(1=v)
(11) V,=(1- 5)—1/’/(1—1/1) & )
Wi

Two special cases are worth noting. First, as ¢ approaches one, the exponents in (11)
increase without limit. The value function has a finite limit, however, because the ratio
C,/W; approaches (1 —¢) (Giovannini and Weil [1989]). We consider this case in more
detail in section II1.5. Second, as ¢ approaches zero, V; approaches C;/W;. A consumer who
is extremely reluctant to substitute intertemporally consumes the annuity value of wealth
each period, and this consumer’s utility per dollar is the annuity value of the dollar.

IIT Approximate Solution Method

Our proposed solution method builds on the log-linear approximations to the Euler equation
and the intertemporal budget constraint proposed by Campbell [1993]. By combining the
approximations to these equations we can characterize the properties of «;, the optimal
allocation to the risky asset. We then guess a form for the optimal consumption and portfolio
policies, we show that policies of this form satisfy the approximate Euler equation and budget
constraint, and finally we show that the parameters of the policies can be identified from the
primitive parameters of the model.

II1.1 Log Euler Equations

The first step in our proposed solution method is to log-linearize the Euler equation (9) to
obtain

0 1 0
0= 010g6 — @EtACH_l + GEtTp7t+1 + §Vart (aACH_l — QTp7t+1> ,

where lowercase letters denote variables in logs and A is the first-difference operator. This
expression holds exactly if consumption growth and the return on wealth have a joint condi-
tional lognormal distribution. In our model the return on wealth is conditionally lognormal,
because the portfolio weight is known in advance and so the return on wealth inherits the

8



assumed lognormality of the return on the risky asset. Consumption growth, however, is
endogenous in our model and so we cannot assume at the outset that it is conditionally
lognormally distributed. In fact, our approximate solution implies that consumption growth
is not conditionally lognormal unless the elasticity of intertemporal substitution, 1, is one
or the expected return on the risky asset is constant. When these conditions do not hold we
must derive the log Euler equation using both a second-order Taylor approximation around
the conditional mean of {ry i1, Aci1} and the approximation log(1 + z) ~ z for small x.

Reordering terms we obtain the well-known equilibrium linear relationship between ex-

pected log consumption growth and the expected log return on wealth:
(12) EtAct—i-l = 1/1 lOg 6 + Up,t + ¢Etrp7t+1,

where the term v,; is a time-varying intercept proportional to the conditional variance of
log consumption growth in relation to log portfolio returns:
0

1
(13) Upt = 5 (J) Vart (ACt+1 - l/JTp7t+1) .

In a similar fashion we can loglinearize the Euler equation for a general asset, (8). If we
subtract the resulting loglinear Euler equation for the riskless asset from the loglinear Euler
equation for the risky asset we find:

1 0
(14) Etrl,t—&-l — Ty + 50-1,1,t = aO'LC’t + (1 - 19) O1,pt
where 0, .+ = Covt (141 — Esey1, 2041 — Erzeq). Under assumption (A3) the conditional
variance of the risky asset return, o1, = 0%, but we avoid making this substitution until
we use (A3) to solve the model in section III.4. Equation (14) is the starting-point for our

analysis of optimal portfolio choice.

ITII.2 Log-linear Budget Constraint

Following Campbell [1993, 1996], we also log-linearize the budget constraint (7) around the

mean consumption-wealth ratio, and we obtain:

1
(15) Awt+1 =~ T'pt+1 + (1 - ;) (Ct - wt) + k’,

9



where k =log (p) + (1 — p)log (1 — p) /p, and p = 1 —exp {E (¢; — wy)} is a log-linearization
parameter. Note that p is endogenous in that it depends on the average log consumption-
wealth ratio which is unknown until the model has been solved.

Campbell [1993] and Campbell and Koo [1997] have shown that the approximation (15) is
exact when the consumption-wealth ratio is constant over time, and becomes less accurate as
the variability of the ratio increases. In our model the consumption-wealth ratio is constant
when the elasticity of intertemporal substitution is one or the expected risky asset return
is constant; when these conditions do not hold, the consumption-wealth ratio varies and
we can only solve for it by using the approximation (15). Hence to check the accuracy of
the approximation we must compare our solution with a discrete-state numerical solution.
We undertake this exercise in Campbell, Cocco, Gomes, Maenhout, and Viceira [1998] and
discuss the results briefly in section IV.6 below.

The log-linearization (15) takes the return on the wealth portfolio as given, and does not
relate it to the returns on individual assets. We can push the approach further by using an
approximation to the log return on wealth:

1
(16) Tpt+1 = Q4 (T17t+1 - Tf) + Ty + iOét (1 — at) 01,1,

This approximation holds exactly in a continuous-time model with an infinitesimally small
trading interval, where Ito’s Lemma can be applied to equation (1). It has the effect of ruling
out bankruptcy even when the investor holds a short position with a; < 0 or a leveraged
portfolio with o > 1. Thus our portfolio solutions, like those in the continuous-time models

of Merton [1969, 1971], allow «; to vary outside the range from zero to one.’

Combining (15) and (16) we get

1 1
(17) Awppy ~ oy (T —1p) 77+ (1 — ;) (et —wy) + k+ §ozt (1—ay) o1,

which is linear in log returns and log consumption, and quadratic in the portfolio weight «;.

In the recent literature on long-horizon portfolio choice Balduzzi and Lynch [1997a, 1997b], Barberis
[1996], and Brennan, Schwartz, and Lagnado [1997] restrict short sales and borrowing, but Brandt [1998]
and Kim and Omberg [1996] do not.

10



III.3 Characterizing the Optimal Portfolio Rule

The next step in our solution method is to characterize the optimal portfolio rule by relating
the current optimal portfolio choice to future optimal portfolio choices. This will then allow
us to guess a functional form for the optimal portfolio policy and to identify its parameters.

Our strategy is to characterize the covariance terms o, .; and oy ,; that appear in the
loglinear portfolio-choice Euler equation (14). Since the risky asset return is exogenous and
the consumption-wealth ratio is stationary in our model, it is convenient to rewrite these
moments in terms of the variance of the risky asset return and its covariance with the

consumption-wealth ratio. We first note that, using the trivial equality
(18) Acir = (cep1 — Wer1) — (6 — we) + Aweyy
and the budget constraint (17), we can write 0 .; as

Olet = Covy (Tl,t+17 ACt+1)
= Cov¢ (1441, Ct41 — Wiy1) + o Vary (11,441)

= Ole—wt T Q0114
where to obtain the second equality we use the fact that Covy(xy,1,2;) = 0.
Similarly, equation (16) implies that

1
o1pt = Covy (Tl,t+17 a1 + (1 — o) rp+ 50% (1—oy) 0'1,1,t>

= 040114-

These expressions can be substituted into (14) to get

1
Eiripp1 —rp+ 50

5011t = @ (01wt +uo110) + (1 —0) qor 14,

which can be rearranged, using the fact that 6 = (1 —~) /(1 — 1/1_1), to get

(19) o = LEr o1 — 7y + %Ul,l,t ( 1 ) (’Y — 1) Olc—w,t
t — — — .
v 01,1, 1—19 v O1,1,t

11



This equation was first derived by Restoy [1992]. It has two terms, each one capturing
a different aspect of asset demand. The first term captures that part of asset demand
induced exclusively by the current risk premium, hence the adjective “myopic” often used
to describe it in the finance literature. The myopic component of asset demand is directly
proportional to the asset risk premium and inversely proportional to the individual’s relative
risk aversion. The second term is the “intertemporal hedging demand” of Merton [1969,
1971, 1973]. It reflects the strategic behavior of the investor who wishes to hedge against
future adverse changes in investment opportunities, as summarized by the consumption-
wealth ratio. Intertemporal hedging demand is zero when returns are unpredictable, so
01cwt =0, or risk aversion v = 1.7 Tt is well-known that asset demand is myopic in these
special cases, but much less is known about asset demand in the general case.

Although equation (19) gives us meaningful information about the nature of the investor’s
demand for the risky asset, it is not a complete solution of the model, because the current op-
timal portfolio allocation in (19) is a function of future portfolio and consumption decisions,
which are endogenous to the problem.

The dependence of today’s portfolio allocation on future portfolio and consumption
choices operates through the conditional covariance o1 ... To see this, note that the ap-
proximation to the intertemporal budget constraint can be used to write the log consumption-
wealth ratio as a constant plus the discounted present value of the difference between ex-
pected future log returns on wealth and consumption growth rates (Campbell [1993]):

Cey1 — W1 = By Zﬂj (Tpat1ts — Acpyiry) + S
=1 1=p
This equation follows from combining the log-linear budget constraint (15) with (18), solving
forward the resulting difference equation, and taking expectations. If we substitute the

expression for expected consumption growth (12) into this equation we obtain:

(20) crp1 — w1 = (1 —=¥) By Z P rpir1vs — B Z P Up s+ Tp (k —logo).

J=1 J=1

"Log utility is the special case in which 1) = 1 as well as v = 1. But v = 1 delivers zero intertemporal
hedging demand regardless of the value of ¢ (Giovannini and Weil [1989)]).
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Hence, 01,4+ depends on the individual’s future portfolio and consumption decisions, and
(19) falls short of a complete solution to the model.

III.4 Solving for the Optimal Policies

The final step in solving the dynamic optimization problem is to guess a functional form
for the optimal consumption and portfolio policies and to identify the parameters of these
policies using the method of undetermined coefficients. We guess that the optimal portfolio
weight on the risky asset is linear in the state variable, and that the optimal log consumption-
wealth ratio is quadratic in the state variable. Hence, we guess that:

(i) = ag + aixy,

(ii) Ct—Wt:bO+b1xt+b2x$7
where {ag, a1,bo, b1,by} are fixed parameters to be determined.

Under assumptions (A1)-(A5) we can show that guesses (i)-(ii) are indeed a solution to
the intertemporal optimization problem of the recursive-utility-maximizing investor, and we
can solve for the unknown parameters {ao, a, by, b1, b2}. Details are provided in Appendices
1 and 2; here we give a brief intuitive explanation of the solution.

The linear portfolio rule (i) has the simplest form consistent with time-variation in the
investor’s portfolio decisions. This portfolio rule implies that the expected return on the
portfolio is quadratic in the state variable x;, because an increase in z; affects the expected
portfolio return both directly by increasing the expected return on existing risky-asset hold-
ings and indirectly by changing the investor’s optimal allocation to the risky asset. Equation
(20) shows that the log consumption-wealth ratio is linearly related to the expected portfolio
return, so it is natural to guess that the log consumption-wealth ratio is quadratic in the
state variable x;.

Of course, variances and covariances of consumption growth and asset returns also affect
the optimal consumption and portfolio decisions. But the homoskedastic linear AR(1) pro-
cess for x; implies that all relevant variances and covariances are either linear or quadratic in
the current state variable, and thus second-moment effects do not change the linear-quadratic

13



form of the solution. Appendix 1 states nine lemmas that express important expectations,
variances, and covariances as linear or quadratic functions of the state variable.

We now state two propositions that enable us to solve for the unknown coefficients of the
model. The propositions are proved in Appendix 2, using the lemmas from Appendix 1.

Proposition 1. The parameters defining the linear portfolio policy (i) satisfy the following
two-equation system:

b - u b - u
o= (z) - (79) (5) % () () oo
b - u
o () (29) (57) e

Proof of Proposition 1. See Appendix 2.

The first term in each of these equations is the myopic component of asset demand in
equation (19). Therefore, the remaining terms represent intertemporal hedging demand.
They depend on the consumption coefficients b; and bs, divided by one minus the intertem-
poral elasticity of substitution (1 — 1), as well as on the scaled deviation of risk aversion
from one, (7 —1) /7, and the scaled covariance of the risky asset return with revisions in
the expected future return o, /02. There is no hedging demand if this covariance is zero,
for then the risky asset cannot be used to hedge changes in investment opportunities. We
discuss the effects of these parameters on portfolio selection in more detail in our calibration
exercise in Section IV.

Proposition 1 expresses the coefficients of the optimal portfolio policy as linear functions
of the parameters of the optimal consumption rule. Proposition 2 shows that these parame-

ters solve a recursive, non-linear equation system whose coefficients are known constants:

Proposition 2. The parameters defining the consumption policy (ii), {bg, b1, b2}, are given
by the solution to the following recursive non-linear equation system:

(21) 0= Ao+ A11bo + Aaby + Ayzb] + Aygbs + Aysb3 + Aighybo,
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(22) 0= Ago + Ao1by + Aooby + A23b§ + Aoyb1bo,
(23) 0= Aso + Az1be + Aszbgu

where {A; j;9=1,2,3,j = 1,...,6} are constants given in Appendix 2. These constants
depend on the exogenous parameters of the model and on the loglinearization param-
eter p.

Proof of Proposition 2. See Appendix 2.

The equation system given in Proposition 2 can be solved recursively, starting with
the quadratic equation (23) whose only unknown is b,. This equation has two possible
roots, which are always real when v > 1, and are real when v < 1 if 5 (¢2 —(1/ p))2 o2+
(1—7) (¢2 —(1/p)) 40— (1 — ) 4@520727 > 0. The existence of real roots is necessary (but
not sufficient) for the value function of the problem, given in Property 1 below, to be finite.
We argue in the next section that one of the two roots, the positive root of the equation
discriminant, delivers the correct solution to the model.

Once we have solved for by, the second equation in the system becomes a linear equation
in b;. Finally, given {b;, by}, the first equation of the system is also linear in by. Using the
known values of {by, b1, by} in Proposition 1, we can find {ag, a;}.

All of these calculations are conditional on a value for p, since p helps to determine
the constants A, ; in (21), (22), and (23). One can write the parameters as functions
of p, for example by(p), b1(p), and by(p), to express this dependence. But p itself de-
pends on the optimal expected log consumption-wealth ratio and hence on the parameters:
p=1—exp{E(c; —wi)} =1—exp{bo(p) + b1(p)p + ba(p)(* + o2)}. The solution of the
model is complete only when a value of p has been found to satisfy this nonlinear equation.
Unfortunately an analytical solution is available only in the case ¥ = 1, where the optimal
consumption policy is myopic and p = §. In all other cases, we resort to a numerical method.
We first set p = ¢ and then find the optimal values of {ag, a1, bo, b1, b2} given this value of p.
For these optimal values we then compute E(¢; — w;) and a new value of p, for which a new
set of optimal policies is computed. We proceed with this recursion until the absolute value
of the difference between two consecutive values of p is less than 1074
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This procedure converges extremely rapidly whenever there exists a solution for p be-
tween zero and one. For some parameter values, however, p converges to one and the implied
value function of our model is infinite. It is well known that this can occur in infinite-horizon
optimization problems; Merton [1971] and Svensson [1989], for example, derive parameter
restrictions that are required for finite value functions in continuous-time models with con-
stant expected returns. Unfortunately the nonlinearity of the equation for p prevents us
from deriving equivalent analytical restrictions in our model with time-varying expected re-
turns, but the problem tends to arise whenever the utility discount rate is too low or the
expected excess equity return is too high on average or too variable relative to the risk of
equity investment.

II1.5 Properties of the Solution

Propositions 1 and 2 identify the parameters of the optimal policies and the value function
per unit of wealth. If we pick the solution for b, given by the positive root of the discriminant
in (23), Propositions 1 and 2 also imply the following properties of the solution. Here we
merely state these properties; proofs are given in Appendix 3.

Property 1 The approximate value function per unit of wealth is given by

b0—¢10g(1—6) b1 bg 2
1_1/} +1_¢xt+1_¢xt s

and by/(1 — 1) > 0. Therefore, the value function per unit of wealth is a convex

(24) Vi = exp {

function of x, the expected log excess return on the risky asset.

Property 2 The slope of the optimal portfolio rule—the coefficient a;—is positive. Also,

lim, , a; = 0 and lim,_,g a; = +oo.

Property 1 characterizes the approximate value function per unit of wealth. Equation
(24) shows that the log value function per unit of wealth is a quadratic function of the state
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variable whose coefficients are the coefficients of the log consumption-wealth function divided
by one minus the elasticity of intertemporal substitution.®

Property 1 tells us that the value function per unit of wealth is convex in x;, so it increases
with x; when z; is large enough and decreases with z; when x; is small enough. The intuition
for this result is as follows. The investor can profit from predictable excess returns on the
risky asset, whether these are positive or negative. Property 2 implies that the investor
increases the allocation to the risky asset as its expected excess return increases. If excess
returns are expected to be sufficiently positive, the investor will profit by going long, whereas
if they are expected to be sufficiently negative the investor will profit by going short. Thus

movements in x; to extreme positive or negative values increase the investor’s welfare.

Property 2 generalizes a known comparative-statics result for an investor with power
utility facing constant expected returns in a continuous-time model. In that setting the
allocation to the risky asset is constant over time and it increases with the expected excess
return on the risky asset. In static models with more general utility functions, however, it is
possible for the allocation to the risky asset to decline with the expected excess return on the
risky asset, because the income effect of an increase in the risk premium can overcome the
substitution effect (Ingersoll [1987], Chapter 3). Property 2 shows that this does not happen
in our dynamic model with Epstein-Zin-Weil utility. The coefficient a; is always positive and
increases from zero when < is infinitely large to infinitely large values as v approaches zero.

Property 3 The solution given by Propositions 1 and 2 approaches known, exact solutions
as the parameters of utility approach the following special cases:

a) When ¢ # 1 and v — 1, equation (23) becomes linear and by /(1—1)) — 1/202(1/p—¢*) >
0. In this case, the optimal portfolio rule is myopic: ag — 1/2y and a; — 1/02. This
portfolio rule is the known, exact solution of Giovannini and Weil [1989], in which
portfolio choice is myopic even though consumption choice is not. The portfolio rule
maximizes the conditional expectation of the log return on wealth.

8This expression has a well defined limit as 1 — 1. The solutions to equations (22) and (23) imply that
b1/(1—1) and by /(1 — 1)) are functions only of p and ~, and do not depend directly on 1. Property 3 shows
that p = § when ¢ — 1. Finally, equation (21) implies that (bg — ¢ log(1l — 6))/(1 — ¢) does not depend
directly on ¢ when p = §. Thus (24) is well defined as ¢y — 1.
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b) When ¢y — 1 and vy # 1, by — 0, by — 0, p — 6, and by — log(1 — §). This consumption
rule is the known, exact solution of Giovannini and Weil [1989], in which consumption
choice is myopic—in the sense that the consumption-wealth ratio is constant—even
though the optimal portfolio rule is not.

c) When ¢ — 1 and v — 1, so that utility is logarithmic, b, — 0, by — 0, p — &,
bo — log(1 —6), ap — 1/2, and a; — 1/c2. This is the known, exact solution for log
utility in which both the optimal consumption rule and the optimal portfolio rule are
myopic.

d) When 0'727 — 0, so that expected returns are constant, both the optimal consumption
rule and the optimal portfolio rule converge to the known, exact, myopic solution. The
portfolio parameters ag — 1/2v and a; — 1/y0?2.

It is important to note that the previously known results mentioned in parts a) and b)
of Property 3 are only partial. That is, the exact portfolio rule is known for the case v = 1,
but our approximate solution method is still needed to determine the optimal consumption
rule. The exact consumption rule is known for the case ¢ = 1, but our solution method is
still needed to determine the optimal portfolio rule. In this case our solution is exact (in
continuous time) since the optimal consumption-wealth ratio is constant so our log-linear

version of the intertemporal budget constraint holds exactly.

Property 3 holds only if we choose the positive root of the discriminant in the quadratic
equation for by, (23). If instead we choose the negative root of the discriminant, the approxi-
mate solutions diverge as the preference parameters approach the known special cases. This

is our main reason for choosing the positive root of the discriminant.’

We would like to be able to show analytically that the unconditional mean of the value function, a
measure of welfare we study in section V below, is always higher when we choose the positive root of the
discriminant in (23). Unfortunately we have been unable to do this; but in our calibration exercise we have
verified that the positive root always gives the higher unconditional mean for every set of parameter values
we consider. We do have a stronger analytical result when v < 1. In this case the negative root of the
discriminant violates a necessary and sufficient condition (derived by straightforward extension of the results
of Constantinides [1992]) for the existence of the unconditional mean of the value function.
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Property 4 The optimal portfolio rule does not depend on ¢ for given p.

This property holds because only the ratios b;/(1 — ¢) and by/(1 — ?) appear in the
portfolio rule, and these ratios do not depend on v for given p. The property shows that
the main preference parameter determining portfolio choice is the coefficient of relative risk
aversion v and not the elasticity of intertemporal substitution . Conditioning on p, ¥
has no effect on portfolio choice. However, p itself is a function of ¢—recall that p =
1 —exp {E [¢; — w]}—so the optimal portfolio rule depends on v indirectly through p. Our
calibration results in section IV show that this indirect effect is small.

Property 5 The parameters a; and by, the slope of the portfolio policy and the curvature
of the consumption policy, do not depend on pu for given p.

Property 5 shows that some aspects of the optimal policy—the sensitivity of the risky
asset allocation to the state variable and the quadratic sensitivity of consumption to the
state variable—are independent of the average level of the excess return on the risky asset.
Of course, other aspects—the average allocation to the risky asset, the average consumption-
wealth ratio, and the linear sensitivity of consumption to the state variable—do depend on
the average risk premium. We discuss this dependence in greater detail in section IV.3.

IV Calibration Exercise

IV.1 Data and Estimation

An important advantage of our approach is that we can calibrate our model using real data
on asset returns. To illustrate this, we use quarterly U.S. financial data for the sample period
1947.1 - 1995.4.1% In our calibration exercise, the risky asset is the U.S. stock market, and

A similar exercise using annual U.S. data for the period 1872 - 1993 is reported in the NBER Working
Paper version of this article (Campbell and Viceira [1996]).

19



the riskfree asset is a short-term debt instrument. To measure stock returns and dividends
we use quarterly returns, dividends and prices on the CRSP value-weighted market portfolio
inclusive of the NYSE, AMEX, and NASDAQ markets. The short-term nominal interest
rate is the 3-month Treasury bill yield from the Riskfree File on the CRSP Bond tape. To
compute the real log riskfree rate, the beginning-of-quarter nominal log yield is deflated by
the end-of-quarter log rate of change in the Consumer Price Index from the Ibbotson files on
the CRSP tape. Log excess returns are computed as the end-of-quarter nominal log stock
return minus the beginning-of-quarter log yield on the riskfree asset.

The state variable is taken to be the log dividend-price ratio, measured as the log of
the total dividend on the market portfolio over the last four quarters divided by the end-of-
period stock price. Campbell and Shiller [1988a], Fama and French [1988], Hodrick [1992]
and others have found this variable to be a good predictor of stock returns. We estimate the
following restricted VAR(1) model:

41 — Ty to 01 €1,t+1
25 = + dy — py) + :
( ) ( dit1 — Pyt > ( ﬁo > ( 51 ) ( t pt) ( €2.t41 )

where (€1441,€2¢+1) ~ N (0,€2), and report the maximum likelihood estimation results in
Table I. Since (25) is equivalent to a multivariate regression model with the same explanatory
variables in all equations, ML estimation is identical to OLS regression equation by equation.
The standard errors for the slopes, intercepts and the residual variance-covariance matrix
are based on Proposition 11.2 in Hamilton [1994]; using these standard errors, which assume
that the variables in the model are stationary, the slopes and the elements.of the variance-
covariance matrix all appear to be statistically different from zero.!!

The parameters in (3), (4), and (5) that define the stochastic structure of our model
can be recovered from the VAR system (25) as follows: u = 0y + 618,/(1 — 3,), ¢ = B4,
ol = 07, 02 = Q11 and 0, = 0,12 Table I reports these implied parameters along with
standard errors computed using the delta method. All of the derived parameters except

'Note, however, that 31 is close to one. Elliott and Stock [1992] have shown that the t-ratio for ; under
the null Hy : 8; = 0 does not have a standard asymptotic normal distribution when the log dividend-price
ratio follows a unit-root or near-unit-root process, and Q2 # 0. We do not pursue this issue further here,
and proceed to calculate standard errors under the assumption that the estimated system is stationary, but
we note that standard errors computed under this assumption should be treated with some caution.
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0727 are significantly different from zero at the 5 percent confidence level. The unconditional
expected log excess return p is estimated at 5 percent per year (1.25 percent per quarter),

while the log real riskfree rate r; is a meager .28 percent per year.!?

IV.2 Solution of the Model

Using the parameter estimates in Table I, we compute the individual’s optimal portfolio
allocation and consumption-wealth ratio for a range of values of relative risk aversion and
elasticity of intertemporal substitution. We set ¢, the time discount parameter under time-
additive utility, to .94 in annual terms. This is equivalent to a 6.2 percent annual log time
discount rate.

We consider relative risk aversion coefficients v = {.75, 1, 1.50, 2, 4, 10, 20, 40}, and
elasticity of intertemporal substitution coefficients ¢ = {1/.75, 1, 1/1.50, 1/2, 1/4, 1/10,
1/20, 1/40}. The literature on the equity premium puzzle has shown that high levels of
risk aversion are needed to reconcile aggregate consumption data with asset market data in
the standard power-utility framework; here we are able to compare the portfolio allocations
and consumption rules implied by low and high risk aversion coefficients. We consider low
elasticities of intertemporal substitution, both because we want to include the power-utility
cases in which the elasticity of intertemporal substitution is the reciprocal of risk aversion,
and because a low elasticity of intertemporal substitution seems to be required to explain the

insensitivity of consumption growth to real interest rates in postwar U.S. data (Hall [1988],
Campbell and Mankiw [1989)]).

Tables II, III, and IV and Figures I and II report the results of this exercise. To make
it easier to interpret our results, we normalize the parameters defining the optimal portfolio
and consumption policies (i) and (ii), so that the intercepts of the optimal policy functions
are the optimal allocation to stocks and the optimal consumption-wealth ratio when the
expected simple excess return, E; [Ry ,11] — Ry, is zero. At this point in the state space the

12These parameter estimates differ slightly from those reported in the NBER Working Paper version of
this article. The reason is that there, because of a computational error, we used the dividend-price ratio
instead of its log when estimating (25).

21



risky asset is a “fair gamble” offering no risk premium; thus a myopic risk-averse investor
would allocate no wealth to it, and all the demand for the risky asset is intertemporal hedging
demand. The expected simple excess return is zero when the expected log excess return x;
is equal to —a2 /2. Therefore, the parameters reported in the tables are ag, a1, bj, bt and by

m )
(26) o = af + ay (xt + %)
and

0.2 0_2 2
(27) Ct—wt=bs+b’{<xt+§)+b2<xt+7“) ,

where af = ag — a1 (62/2), b = by — by (62 /2) + by (01 /4), b = by — byo?, and a; and by are

not starred because they coincide with the original parameters.

The main diagonal of each panel in the tables corresponds to standard power-utility
preferences, since the elasticity of intertemporal substitution is the reciprocal of risk aver-
sion along the main diagonal. The numbers reported in the tables summarize the optimal
decisions of a recursive-utility individual who observes the true process for returns. Since
we do not observe the true process but must estimate it, we have also computed—but we
do not report here to save space—the standard errors for these parameters, using the delta
method.!® These standard errors show that the intercepts of the optimal policies are esti-
mated with less precision than the parameters determining the slope and curvature of the
optimal policy.

IV.3 The Optimal Portfolio Rule

Tables IT and IIT and Figure I summarize the optimal portfolio decision. Panel A in Table
IT reports af, the optimal allocation to stocks when the expected gross excess return is zero,
while Panel B in the same table reports a;, the slope of the optimal portfolio policy. Panel A
in Table III reports the average total demand for stocks as a fraction of wealth, while Panel

13The delta method requires the computation of derivatives of the parameters of interest (for example,
a1 ) with respect to {6, 01, By, 81, 2}. Since no analytical formulae are available, we use two-sided numerical
derivatives based on a proportional perturbation parameter equal to 10~#. The standard errors are reported
in the NBER Working Paper version of this article.
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B reports the share of this average total demand that is attributable to the average hedging
demand for stocks.

Figure I, which is divided into four panels, illustrates the portfolio rule ;. Figure Ia fixes
Y at 1/0.75 and plots o for a wide range of v values; Figure Ib repeats this exercise fixing
Y at 1/4. Figures Ic and Id, on the other hand, fix 7 at 0.75 and 4, respectively, and plot
oy for a wide range of 1 values. In all these figures we consider values of x; in the interval
(b — 204, u+ 20,), and the horizontal axis is the log of the expected gross excess return,
ie., log E;[R1411/Rs] = + 02 /2. The right vertical line intersects the horizontal axis at
the log of the unconditional mean gross excess return, log E[Ry,11/Rf] = p+ 02/2 + 02 /2.

The most striking lesson from the tables, and from Figure I, is that relative risk aversion
is far more important than the elasticity of intertemporal substitution in determining the
optimal portfolio allocation to stocks. The variation in parameters across rows of the tables,
as vy changes, is far greater than the variation across columns, as ¢ changes. Similarly, the
oy lines in Figures Ic and Id are all close together, whereas those in Figures Ia and Ib vary
widely in both slope and intercept. This result can be understood by recalling Property 4
of our solution, i.e., that a; depends on % only through the dependence of p on ¥. Our
calibration results show that this indirect effect through p is very small.

Panel A in Table II shows that the intercept of o4, af, is positive when v > 1. It is
zero when v = 1, as we already know from the analysis of the special case with unit relative
risk aversion, and negative when v < 1. These results hold regardless of the value of 1. To
interpret this behavior, recall that aj is the optimal allocation to stocks when the expected
excess gross return is zero. Since the myopic demand for stocks is zero at this level of the
expected excess gross return, af, is completely determined by hedging demand. Thus at the
point in the state space where the risky asset has a zero expected excess return, the sign of
hedging demand is positive for investors with v > 1.

Panel B in Table II shows that the coefficient a;, the slope of the o; function, is positive
for all levels of v and ¢ as implied by Property 2 of our solution. Like the intercept ag, the
slope a; varies substantially across v for a given level of ¢, but changes very little across ¥
for a given level of 7. As 7 increases, a; rapidly approaches zero, indicating that the optimal
portfolio rule is very responsive to changes in expected excess returns when the individual is
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close to risk neutral but is almost flat when the individual is highly risk averse. This finding
is also implied by Property 2 of our solution.!4

Panel B in Table II also shows that whenever v > 1, intertemporal hedging demand
increases the slope of the portfolio rule; equivalently, hedging demand itself has a positive
slope. To see this, note that when v = 1, hedging demand is zero and the slope coefficient
of 188.8 is entirely attributable to the myopic component of asset demand. For higher
values of «, the myopic demand shrinks in proportion to «; thus it is 94.4 for v = 2, 47.2
for v = 4, and so forth. The slope coefficients reported in Panel B in Table II shrink
more slowly than this, implying a positive slope contribution from hedging demand. The
analytical foundation of this result is that from Proposition 1 the slope of hedging demand is
—(bo/ (1 =) ((v — 1) /7)(0yu/02)2¢, which is positive when v > 1 under our assumption of
negative o,,. This implies that conservative long-horizon investors who are free to rebalance
every period are actually more aggressive market timers than conservative short-horizon

investors.!®

The results in Table II can be explained in intuitive terms as follows. We have estimated
a return-generating process which has a negative sign for o,,, the covariance between unex-
pected stock returns and revisions in expected future stock returns. This implies that stocks
tend to have high returns when their expected future returns fall. Since the investor is nor-
mally long in stocks, a decline in expected future stock returns is normally a deterioration
in the investment opportunity set. There are offsetting considerations that determine an
investor’s attitudes towards assets that pay off when the investment opportunity set deteri-
orates. On the one hand an investor with low risk aversion (y < 1) wants to hold assets that
deliver wealth when wealth is most productive, that is, when investment opportunities are
good. This investor has a negative hedging demand. On the other hand an investor with
high risk aversion (y > 1) wants to hold assets that deliver wealth in unfavorable states of the
world, that is, when investment opportunities are poor. This investor has a positive hedging

14The standard errors not reported here show that the slope coefficient a1 is much more precisely estimated
than the intercept of the optimal portfolio rule. One reason for this greater precision is that, as we showed
in Property 5, the slope of the portfolio rule is not sensitive to the mean excess stock return p whereas the

intercept does depend on .
5Barberis [1998] finds that conservative buy-and-hold investors who know the parameters of the stock

return process are about equally aggressive market timers whether they have a short or a long horizon.
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demand. Interestingly, the hedging demand is not monotonic in risk aversion because an
extremely risk-averse investor limits her exposure to the risky asset in all states of the world;
thus the magnitude of hedging demand first rises and then falls with the coefficient of risk
aversion.

Although the investor is normally long in stocks, if the expected excess return becomes
significantly negative, a decline in expected future stock returns can represent an improve-
ment in the investment opportunity set because it creates a profitable opportunity to short
stocks. At this point in the state space the sign of hedging demand for stocks reverses. This
explains why hedging demand has both a positive intercept and a positive slope, allowing a
sign reversal of hedging demand for sufficiently negative ;.19

The average level of excess simple stock returns, p+ 02 /2, plays an important role in this
argument. We have estimated 1+ o2 /2 to be positive and quite large; this leads the investor
normally to maintain a long position in stocks for which a decrease in the expected stock
return represents a deterioration in investment opportunities. If u + 02 /2 were negative,
however, the investor would normally have a short position in stocks for which a decrease in
the expected stock return represents an improvement in investment opportunities. In this
case the normal sign of hedging demand would be negative for an investor with v > 1. The
slope of hedging demand is unaffected by the average level of excess returns, however, as
shown in Property 5, so in this case a sign reversal of the normal hedging demand occurs for
sufficiently positive z;.

This intuitive discussion suggests that we should be able to derive analytical results about
the signs of the coefficients af; and b} in our model. Indeed, it is straightforward to show that
when p + 02 /2 =0, af, = bf = 0. In this case the model is symmetrical; positive deviations
of z; from its mean have exactly the same effect (in absolute value) as negative deviations,
and both myopic and hedging demand for the risky asset are zero when z, is at its mean.
Unfortunately we have been unable to derive comparable analytical results about the signs
of a} and b} when p+ 02 /2 # 0. However in numerical explorations we have found that with
v >1and o,, <0, af and b}/(1 — 1) always have the same sign as yu + 02 /2 whenever the
value function is finite, consistent with our intuitive discussion of hedging demand.”

16Kim and Omberg [1996] give a clear account of this effect (Figure 4 and pp. 153-154).
17Kim and Omberg [1996] obtain more general analytical results for their simpler model with utility defined
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Panel A in Table III reports the mean optimal allocation to stocks as a percentage of total
wealth. The mean allocation is positive at all levels of v and ¥. On average, a recursive-
utility individual with low or moderate levels of risk aversion will short the riskless asset
in order to hold more than 100 percent of her wealth in the risky asset. Large levels of
relative risk aversion are needed to keep mean stock demand below 100 percent; this is a
manifestation of the equity premium puzzle in our model with exogenous asset returns and
endogenous portfolios.

Panel B in Table IIT shows that average hedging demand is a very important part of
total stock demand for investors whose relative risk aversion coefficients are not close to one.
Average hedging demand is calculated using (19), by setting z; = p and subtracting from
the total risky-asset allocation the total allocation when v = 1 divided by the level of relative
risk aversion:

At hedging (:u; e 1/}) = Oy (:u; s 1/}) — Ot myopic (,u; e ¢)
1
= a (u57,%) — e (5 1,0) .

Average hedging demand is negative, and often large, for investors with risk aversion co-
efficients of 0.75; for the illustrated risk aversion coefficients above one it is positive and
accounts for at least 20 percent of stock demand and often above 50 percent. Thus intertem-
poral hedging motives can easily double the equity demand of risk-averse investors.This
makes it harder to explain the equity premium puzzle with moderate levels of risk aversion,
a point emphasized by Campbell [1996]. Brandt [1998] obtains similar results for the special
case of power utility with risk aversion equal to 5, when he considers horizons of 20 years or
more.

IV.4 Optimal Consumption Behavior

Table IV and Figure II summarize the optimal consumption policy. Panel A in Table IV
reports the exponentiated mean of the optimal log consumption-wealth ratio. Figure II
is similar to Figure I, but it plots C;/W; = exp {¢; — w;} instead of a;. Both table and

over terminal wealth.
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figure reveal an important difference between the optimal consumption rule and the optimal
portfolio rule: The optimal consumption-wealth ratio is very sensitive to both the level of the
elasticity of intertemporal substitution and the level of risk aversion, while we have already
noted that the optimal portfolio rule moves noticeably only with the level of risk aversion.
The pattern of variation across the panel has interesting features. At low levels of risk
aversion v, the optimal consumption-wealth ratio decreases as the elasticity of substitution
1 rises (a movement along a row from right to left). At high levels of risk aversion, on
the other hand, the optimal consumption-wealth ratio increases with . Similarly, at low
levels of the elasticity of substitution —specifically, ¢y < 1—the optimal ratio rises with
risk aversion v, while at high levels of v, it declines with v. The optimal ratio is independent
of v when 1) = 1, as we already know from Property 3 of the solution.

This pattern of variation is also illustrated in Figures ITa through IId, where the vertical
sorting of the C; /W, curves is reversed as we move from ¢ = 1/0.75 in Figure Ila to ) = 1/4
in Figure IIb, and from v = 0.75 in Figure Ilc to v = 4 in Figure IId. Figure II also
shows that the sensitivity of the optimal log consumption-wealth ratio to the state variable
is modest for most parameter values; the curves for the optimal consumption policies tend
to be rather flat. Brandt [1998] reports a similar result in a finite-horizon model for the
case of power utility with risk aversion of 5. Equation (20) explains this: It shows that the
consumption-wealth ratio is determined only by long-run considerations. The terms that
appear on the right-hand side of the equation are expected discounted values of all future

expected returns and variances, not current expected returns and variances.

To interpret the patterns in Panel A of Table IV, consider first the right-hand column of
the panel. This gives the exponentiated mean optimal log consumption-wealth ratio for an
individual who is extremely reluctant to substitute consumption intertemporally (¢ = 1/40,
close to zero). Such an individual wishes to maintain a constant expected consumption
growth rate regardless of current investment opportunities. She can do this by consuming
the long-run average return on her portfolio, with a precautionary-savings adjustment for
risk. But in our model both the risk and the average return are endogenous. If the investor is
highly risk-averse, as she is at the bottom of the column (y = 40), then she holds almost all
her wealth in the riskless asset and earns a low return with little risk; if she is close to risk-
neutral, as she is at the top of the column (y = 0.75), she borrows at the riskless interest rate
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to earn a high but risky leveraged return. This explains why the mean consumption-wealth
ratio is so much higher at the top of the column than at the bottom.

To clarify this interpretation, Panel B in Table IV reports the unconditional mean log
portfolio return, E[r,;11].*® The mean log returns in the right-hand column are close to the
optimal consumption-wealth ratios given in the right-hand column of the upper panel (Panel
A). They are particularly close at high levels of risk aversion, shown at the bottom of the
tables; at the top of the panels the two variables diverge because the mean log return reaches
a maximum when the coefficient of relative risk aversion v = 1, and starts to fall when risk
aversion declines from this level, whereas the optimal consumption-wealth ratio keeps on
rising as 7y falls below one. The investor with unit risk aversion maximizes the conditional
expectation of the log portfolio return; hence this investor must also have the highest un-
conditional expected log portfolio return. The increase in the average consumption-wealth
ratio as y falls below one is caused by the precautionary savings effect, which turns negative
when 1) and v are on the same side of unity as shown in equation (13).

Now consider what happens as the individual becomes more willing to substitute in-
tertemporally, that is, as ¢ increases and we move to the left in Panel A of the table.
Equation (20) helps us understand this. If we hold fixed the variance terms in (20), the
derivative of ¢, — w; with respect to v is —[p/(1 — p)[(Ei[(1 — p)/p] 3721 p/rpirj + 10g ),
which is negative if the long-run expected portfolio return exceeds the rate of time preference
and positive otherwise. Ignoring precautionary savings effects, an individual who is willing
to substitute intertemporally will have higher saving and lower current consumption than an
individual who is unwilling to substitute intertemporally if the time-preference-adjusted rate
of return on saving is positive, but will have lower saving and higher current consumption
if the adjusted return on saving is negative. Panel A in Table IV illustrates this pattern.
Investors with low risk aversion v at the top of the table choose portfolios with high average

18 We can compute the long-term or unconditional expected log return on wealth by taking unconditional

expectations in Lemma 4 of Appendix A, i.e., by calculating E[E¢(rp++1)], which gives:

Elrpe41] = 77+po+piEx:+paEaj
= rp+po+piptp2 (024 p?)

where pg, p1, and ps are functions of ag and a; defined in Lemma 4. We can rewrite pg, p1, and po as
functions of the normalized parameters af and a; by noticing that af = ag — a1 ((rﬁ / 2).
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returns, so a higher elasticity of intertemporal substitution ¢ corresponds to a lower average
consumption-wealth ratio. Highly risk-averse investors at the bottom of the table choose
safe portfolios with low average returns, so for these investors a higher 1 corresponds to a
higher average consumption-wealth ratio.

Our discussion so far has concentrated on the average level of consumption in relation to
wealth. We now give some intuition about the sensitivity of the optimal ratio to the state
variable x;. Although we have noted that the slope of the optimal consumption policy is
always small in absolute value relative to the intercept, Figure II shows that around the
mean of the state space it is negative when ¢ > 1, and positive when 1) < 1. Moreover,
it increases in absolute value as v decreases. The intertemporal substitution effect and the
portfolio composition effect explain this pattern. As x; increases in the neighborhood of its
positive mean, so does the expected return on wealth, causing income and substitution effects
on consumption. When ¢ > 1 the substitution effect dominates and the investor will cut
consumption to exploit favorable investment opportunities. When v < 1 the income effect
dominates and the investor will increase consumption because a given quantity of wealth can
sustain a greater flow of consumption. The effect of risk aversion appears because the state
variable z; increases only the expected return on the risky asset, not the expected return on
the riskless asset. An investor with a low risk aversion coefficient is more heavily invested in
the risky asset and thus her expected portfolio return is more sensitive to changes in ;.

Finally, we consider the implications of the consumption rule for the volatility of con-
sumption relative to past expectations and relative to wealth. Panel A in Table V reports
the unconditional standard deviation of consumption innovations for each set of preferences
we have considered, and Panel B reports the unconditional standard deviation of innovations
in the log consumption-wealth ratio.

Panel A in Table V shows that investors with low risk aversion have extremely volatile
consumption growth, for their consumption inherits the volatility of their portfolios. In-
vestors with unit elasticity of substitution in consumption have constant consumption-wealth
ratios and so their consumption volatility equals their portfolio volatility. Investors with low
elasticity of intertemporal substitution have somewhat less volatile consumption, because
they react to mean-reversion in stock returns by cutting their consumption-wealth ratios
when the stock market rises. A 1 percent innovation in wealth causes these investors to
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increase consumption by less than 1 percent; they know that a 1 percent increase in con-
sumption could not be sustained, even with 1 percent greater wealth, because the increase in
wealth is accompanied by a decrease in expected portfolio returns. Investors with high elas-
ticity of intertemporal substitution respond to the decrease in expected returns by cutting
saving, so their consumption is more volatile than their portfolio returns. Similar results are
reported by Campbell [1996] for a model with an exogenous portfolio return process.

Panel B in Table V shows that investors with elasticities of intertemporal substitution
different from one have volatile consumption-wealth ratios, because they do not consume
a fixed fraction of their wealth each period, but a varying fraction that changes with the
expected excess return on the risky asset. The volatility of the consumption-wealth ratio
is increasing in the distance of the elasticity of intertemporal substitution from one, and
is decreasing in risk aversion since less risk-averse investors have riskier portfolios whose

expected returns are more sensitive to changes in investment opportunities.

IV.5 Portfolio Allocation and Consumption Over Time

Our results can also be summarized by plotting the optimal equity allocations and consumption-
wealth ratios over time. Figure III does this for preference parameters {¢p = 1/4,v = 4},
corresponding to power utility with moderate risk aversion, and {¢) = 1/4,~v = 20}, corre-
sponding to a higher level of risk aversion. The upper plot of each figure shows the optimal
equity allocations, while the lower plot shows the optimal consumption-wealth ratios. The
horizontal lines in the equity-allocation plots represent 0 percent and 100 percent holdings.

The figures show that stock holdings are highly volatile while the optimal ratio of con-
sumption to wealth is more stable, but spikes up in periods where expected returns and
optimal stock holdings are unusually high. The investor with lower risk aversion holds on
average a much larger proportion of her wealth in stocks, and her consumption-wealth ratio
is also larger on average and more volatile. But both investors are keen stock-market in-
vestors. In our model investors do not face restrictions on short sales, so we allow the optimal
allocation to stocks to be either larger than 100 percent or negative. Figure III shows that
in the U.S. postwar period both investors are long in stocks almost always, and the less risk
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averse investor usually wants to short the riskless asset and invest more than 100 percent
of her wealth in the market, except in periods of unusually low dividend yields such as the
early 1970’s and the mid-1990’s.

Barberis [1998] has obtained similar results for a Bayesian investor who maximizes power
utility defined over terminal wealth and uses the log dividend-price ratio as a state variable;
with a 10-year investment horizon and access to historical data over the period 1927-1993,
Barberis’ investor, who is not allowed to short assets, is mostly 100 percent invested in stocks.
Brennan, Schwartz, and Lagnado [1997] have studied a similar problem with power utility
of terminal wealth, three state variables, three assets, and frequent portfolio rebalancing.
They also do not allow short sales, and their optimal strategy for the period 1972-1992 often
switches between 100 percent cash and 100 percent stocks. Their optimal strategy is more
volatile than Barberis’ or ours because they allow for a larger number of state variables.
Brennan, Schwartz, and Lagnado also include long-term bonds in their analysis, but bonds
do not play a major role in the optimal portfolio.

IV.6 The Accuracy of the Solution

The analytical solutions we present in this paper are exact only in the limit where time
is continuous, and for parameter values that imply a constant consumption-wealth ratio
(¥ = 1 or constant expected returns). For other parameter values our solutions are only
approximate. One way to assess their accuracy is to compare them with solutions obtained

using standard numerical methods.

In Campbell, Cocco, Gomes, Maenhout, and Viceira [1998], we have solved numerically
for optimal policy functions in the calibrated model of this paper. The numerical solution
discretizes the state space and approximates the distribution for the innovations in the ran-
dom variables using Gaussian quadrature with 9 quadrature points. The numerical method
assumes that the portfolio allocation rule is a p’th order polynomial in the state variable—in
practice a third-order polynomial is adequate—and uses a variant of the Newton-Raphson
algorithm to optimize over the coefficients of this polynomial.

The numerical solutions we obtain are very similar to the approximate analytical solu-
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tions, except at the upper extreme of the state space where both the numerical consumption
and portfolio allocation rules flatten out. Figure 4 illustrates this in the four cases we obtain
when we combine ¢ = {1/.75,1/4} and v = {4,20}. The approximate analytical solution
and the numerical solution are particularly close between the vertical lines in the plot that
delimit the interval (u — 20, 1+ 20,), but they do tend to diverge at the right side of the
plot where the state variable x; is more than two standard deviations above its mean. The
divergence is more serious when v = 4 than when v = 20, because the investor with v =4
holds a riskier portfolio with a more volatile expected return; the effect of this outweighs the
greater utility curvature for the investor with v = 20. For the same reason the divergence of
the approximate from the numerical solution would be smaller in a model with a more stable
expected return on the risky asset. Full details are provided in Campbell, Cocco, Gomes,
Maenhout and Viceira [1998].

V  The Welfare Costs of Suboptimal Portfolio Choice

We have shown that a long-term investor who optimally responds to the estimated pre-
dictability of stock returns will both time the stock market and use stocks to hedge against
deteriorations in the investment opportunity set. However we have not yet shown that op-
timal timing and hedging produce large welfare gains. If the welfare gains are small, they
might easily be outweighed by small costs of formulating and executing the optimal policy.

To address this issue, we use our approximate analytical method to solve the intertem-
poral optimization problem of an investor who follows an arbitrary portfolio rule but adjusts
her consumption optimally. We then compute the investor’s value function per unit of wealth
under the suboptimal portfolio rule and compare the unconditional expectation of this value
function to the unconditional expectation of the value function in the unrestricted prob-
lem.! Throughout we assume that the investor knows the stochastic process driving the
return on the risky asset; that is, we ignore the parameter uncertainty addressed by Kandel
and Stambaugh [1996] and Barberis [1998].

9The implied value functions are exponentials of quadratic or linear functions of the state variable. The
results in Constantinides [1992] allow us to obtain explicit formulae for their unconditional expectations.
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We consider three restricted portfolio rules. The first rule ignores the timing implied
by the optimal portfolio policy and sets the equity allocation each period to the average
allocation under the optimal rule. This is a fixed portfolio rule that allows for partial hedging
in the spirit of the investment strategy advocated by Siegel [1994]. Siegel argues that long-
run investors should not try to time the stock market, but should buy and hold large equity
positions because these positions involve little risk at long horizons. Siegel’s estimates of
long-run stock market risk are low because of the mean-reversion in stock returns that we
have captured with our VAR system. Thus one can interpret Siegel’s strategy as a hedging
strategy without market timing. The second portfolio rule is the myopic rule that times the
market but ignores hedging considerations. This rule would be optimal if the covariance o,
were zero. The third rule sets the equity allocation each period to the average allocation
under the myopic rule, ignoring both timing and hedging considerations.

Table VI describes the optimal consumption rules implied by the restricted portfolio
rules. For comparison it also includes in its first row the optimal consumption rule (27)
under the optimal portfolio rule (26). The parameters of these rules of course depend on the
exogenous parameters of the model, but to save space we do not give further details here.

The top left panel of Table VII reports the unconditional mean of the value function per
unit of wealth that is implied by the optimal, unrestricted consumption and portfolio rules
in the calibrated example discussed in the previous section. The other three panels report
the percentage change in the value function when portfolio choice is restricted to one of the
suboptimal rules described above.

The table shows that suboptimal portfolio choice can cause large losses in utility. Failing
to hedge intertemporally is harmless when risk aversion v = 1, since in this case the optimal
portfolio is myopic, but it can be a serious error for investors with v > 1. The losses from
failing to hedge increase at first as risk aversion increases above one, but eventually diminish
as extremely risk-averse investors have only very small equity positions and thus have little
to hedge. Failing to time the market causes large losses for all investors except those who are
extremely risk-averse but extremely willing to substitute consumption intertemporally. For
all parameter values we consider, the failure to time the market causes larger utility losses
than the failure to hedge intertemporally. These results confirm, for a variety of investors
with different levels of risk aversion and elasticity of intertemporal substitution, the findings
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of Balduzzi and Lynch [1997Db] for finite-horizon investors with isoelastic preferences defined
over wealth and relative risk aversion coefficients of 2, 6, and 10.2 The results are also
compatible with the findings of Kandel and Stambaugh [1996] and Barberis [1998] that
Bayesian investors experience large gains in certainty-equivalent return when they optimally
respond to evidence of predictability in stock returns.

V1 Conclusion

One of the major objectives of modern financial economics has been to put investment
advice on a scientific basis. This task has been accomplished for investors who have short
horizons or constant investment opportunities. Unfortunately most investors have long hori-
zons, and there is considerable evidence that they face time-varying expected returns on
risky assets. Until very recently financial economists have not even attempted to give such
investors precise quantitative advice about their portfolio strategies.

Recent work on long-horizon portfolio choice has generally ignored the consumption de-
cision and has considered portfolio choice for investors who consume nothing until a fixed

terminal date.?!

Our objective has been to analyze a model in which investors optimize
over both consumption and portfolio allocation. Because the intertemporal consumption
and portfolio choice problem is highly intractable when expected returns are time varying,
we have resorted to an analytical approximation. We have replaced the Euler equations and
budget constraint of the exact problem with approximate equations that are much easier to

solve, and we have explored in detail the analytical solution of the approximate problem.

We have used Epstein-Zin-Weil recursive preferences to separate the influence of risk aver-
sion and the elasticity of intertemporal substitution on portfolio choice and consumption.
We have shown, for example, that portfolio choice depends on the elasticity of intertempo-

20Balduzzi and Lynch find that welfare losses increase with the horizon of the investor. Since we consider
an infinite horizon, this helps to explain why we obtain somewhat larger utility costs than they do for similar
levels of risk aversion. Balduzzi and Lynch also find that welfare costs remain substantial in the presence of
fixed and proportional transaction costs.

21Very recent exceptions to this statement include Brandt [1998] and some cases analyzed in Balduzzi and
Lynch [1997a,b].
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ral substitution only indirectly through the effect of this elasticity on the average level of
consumption relative to wealth.

We have used our model to assess the quantitative importance of intertemporal hedging
demand for risky assets by long-lived investors. After calibrating the model to postwar
quarterly U.S. stock market data, we find that intertemporal hedging motives can easily
double the average total demand for stocks by investors whose coefficients of relative risk
aversion exceed one. We also find that suboptimal myopic portfolio rules imply large welfare
losses for such investors. These results support the conclusion of other recent papers such
as Barberis [1998], Balduzzi and Lynch [1997a,1997b], Brandt [1998], Brennan, Schwartz,
and Lagnado [1997], and Kim and Omberg [1996] that static models of portfolio choice
can be seriously misleading. Intertemporal portfolio choice should not remain an abstruse
theoretical topic, but should be integrated into empirical research and investment practice.

An important caveat is that our analysis is partial equilibrium in nature. We solve the
microeconomic problem of a given investor facing exogenous asset returns, but we do not
show how these asset returns could be consistent with general equilibrium. One possibility is
that the representative investor has different preferences from those assumed here, perhaps
the habit-formation preferences of Campbell and Cochrane [1998] that can generate shifts in
risk aversion and hence changing risk premia with a constant riskless interest rate. In this
setting the model has only limited applicability, since it describes the behavior of investors
whose risk aversion is atypically constant over time. Alternatively, if all investors have the
preferences assumed here, their portfolio shifts could be supported in general equilibrium
by shifting asset supplies. Supplies of stock would have to fall with the risk premium to
accommodate investors’ desire to reduce their stockholdings. But such shifts in supplies are
unlikely to be consistent with macroeconomic data on aggregate portfolio shares.

Another caveat has to do with approximation error. Our approximate solution is exact
when the elasticity of intertemporal substitution is one and the time interval between con-
sumption and portfolio decisions is infinitesimally small. In a companion paper, Campbell,
Cocco, Gomes, Maenhout, and Viceira [1998], we have checked the accuracy of the analytical
approximate solution in other cases by comparing it with a discrete-state numerical solution
in our calibrated example. We have found that our solution is generally a good approxima-
tion to the true solution, but the approximation error does increase when the state variable
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is more than two standard deviations above its mean. We have also found that the numerical
solution algorithm converges much more rapidly and reliably when we are able to provide
starting values from the approximate solution.

The approach of this paper can be applied to many related problems. For simplicity we
have considered only a single risky asset and a single state variable, but it is straightforward
to consider multiple risky assets and state variables. We can explore horizon and rebalancing
effects, in the manner of Barberis [1998] and Brandt [1998], by assuming that the investor has
a finite rather than infinite horizon and restricting the frequency at which she can rebalance
her portfolio. We can allow the riskless interest rate to vary over time, and can consider
investor choices among indexed or nominal bonds of different maturities (Campbell and
Viceira [1997]). We can allow for time-variation in the volatility of risky asset returns, and
even for the presence of exogenous labor income in the investor’s budget constraint (Viceira
[1997]). We believe that in all these cases, there is much understanding to be gained by
taking an analytical approach to the problem.

VII Appendix 1: Some Useful Lemmas

In this appendix we state as lemmas and prove nine useful results. We use some of them to
prove, in Appendix 2, the main propositions of the paper.

Lemma 1. The conditional expectation of future values of the state variable is a linear
function of its current value, while the conditional expectation of future values of the
squared state variable is a quadratic function of the current state variable:

B = p+ ¢ (zp — p) + ¢j_177t+1 ;

1— ¢2(j—1)

ety =4 (1= )+ o 2 (1= ) ok af

+2 002 4 2020 (@ — )y 2007,
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Proof of Lemma 1. By simple forward recursion of x; and z? in (3) we have

j—1
Tovj — p=¢" (T — p) + Z G Nerji
1=0
and

j—1 j—1
(28)  (weys— ) = (m =)’ + ) i 20> " (@i — 1) My -
=0 =0

The results stated in the lemma follow from the expressions above, after taking condi-
tional expectations at time (¢ + 1), E;;1, and the martingale assumption (A2), which implies
Bt = 0, Evangg = 0, and E 41 [$t+l—1—l77t+l] =0, Vvl >10

Lemma 2. The innovation in next period’s squared state variable is linear in the current
state variable:

x?H - Etmirl = (77?+1 - 0727) + (2u (1 — @) + 2¢1y) Mt

Proof of Lemma 2. The proof for this lemma is similar to that for Lemma 1. From
(28), find 27, by setting j = 1:

aly = 1* (1= ) + 200 (1 — @) 2y + ¢*a? + 0y + 20 (2 — p1) + 20 sy -

Lemma 2 then follows by applying the conditional expectations operator E; to this expression,
under the martingale assumption (A2).0J

Lemma 3. The unexpected return on the risky asset and the conditional variance of the
risky asset are given by

T4l — Beriern = wegr

2
01,1t = 0y -

Proof of Lemma 3. This result follows trivially from (A2) and (A3). It is stated here
as a Lemma for completeness.[]
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Lemma 4. The expected portfolio return next period is quadratic in the current state vari-
able, and the unexpected portfolio return is linear in the current state variable:

Eirpit1 =15 +po + pras + p2xf )

and
Tpit1 — Eerpir1 = (a0 + a1¢) uggy
where
2
O-U
pozao(l—ao)?,
on
P1 :a0+a1(1—2a0)? ;
=a aQG—%‘
b2 = an 175

Proof of Lemma 4. From (16) and our guess (i) on the optimal portfolio rule, we
have that

2

Gu
Fu Tpt+1 = Oy E: [Tl,t+1 - Tf] + Ty + 7@/,5 (1 — at)
2

O-U
= (ap+aze) ze + 1y + > ((ao +army) — (ap + alxt)z) ,

where the last line follows from (2). Reordering terms we get a quadratic expression in x;
whose coefficients are those given in the statement of the proposition.

The expression for 7,1 — E¢ 7441 also follows from (16) and guess (i), as well as (A1)
—constant r; — and (A2)—(2),

Tpit1 — BeTper1 = o (11001 —7p) — Ee [Tl,t+1 - Tf])

(29) = (ap+ a1z¢) upyq -

O

Lemma 5. Expected optimal consumption growth over the next period is quadratic in the
current state variable, and unexpected consumption growth is linear in the current
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state variable:

EAci1 = Erp e + By [cr1 — wiga] — ) (et —wy) + k

2
= Cp + C1T¢ + CoZy

Aciy1 — EtAciyr = (ag + ars) ugr + b1my g +ba (2u (1 — @) + 2¢) 0y
+bo (77?+1 - 031) g

where

2
o=y + a0 (1= a0) 2+ b+ (1—%)+bl(u(1—q§))+ba(ﬂ2(1—¢)2+03,) ,

o2 1
c1=ag+a (1 —2ap) =+ by (¢—;>+52(2/~L¢(1—¢)) ;

2
o2 1
CQ:al—a%7u+b2 (QSZ—;) .

Proof of Lemma 5. From (18) and (15), we can write

1
(30) ACt+1 = Tp,t+1 + (Ct+1 — wt—l—l) — ; (Ct — wt) + k.

Therefore,

1
Bt Acir = Eerpe + Ee (Cg1 — wip1) — ; (e —wy) +k

= po+ P12+ poxi + 1y

1 1 1
+bg (1 — —) + by (Et Tip1 — —xt> + by (Et x%+1 - _x?> +k,
p p P
ag

o2 o2 2
= ap(1l—ag) 7“ + (ao + a17“ - a0a10i> Ty + ag (1 — a17“> xf

+r + bo (1—%>+b1 {u(l—(b)—i—(gﬁ—%)xt]

+b, [u2(1—¢>2+02+2u¢<1—¢)xt+(aﬁz—%) x} +k,
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where the second equality follows from Lemma 4 and our guess (ii) on the optimal consump-
tion policy, and the last equality follows from (3) and Lemmas 1 and 2. Re-ordering terms
we get the expression for E; Acy, ;1 in the lemma as well as {cy, c1, o}

The expression for unexpected consumption growth follows from (30), the expression for
the unexpected portfolio return derived in Lemma 4, and from noting that our guess (ii) on
the optimal log consumption-wealth ratio implies that

Cop1 — W1 — By (Cey1 — wig1) = b1 (B0 — BeTey1) + bo (CB?H — Ex ﬁ?ﬂ)

(31) = biygy + 02 [(0y — 0p) + 2Cu (L= ¢) + 2020, ]
where the second line follows from Lemma 2.[]
Lemma 6. The time-varying intercept in the Euler equation for portfolio returns (13) is a
quadratic function of the state variable:
Upt = Vo + 1Ty + /UQ'I? )

where

vo = a2 {(1 -1 %aﬂ 2 Kﬁ) %aﬂ 2 Kﬁ) (02 + 242 (1 - 0)%) 0

ey (1= 1) 7] = o (1= )21 = @)z -t | (57 ) 201 =013

-1
n =8 [ (523) 0 (1= 9) 03] + 0ma [(1 =) (0= 1) 2] = b (1 =) 2607
—arby [(1 =) o] — arba [(1 —7) 20 (1 — @) 0] + brb2 KH) 2@503}] ,
n=at [ =) =1 50|+ (F3) 2602 — auta 1 =) 2607,

Proof of Lemma 6. From (13), (15) and (18), we have

176
e = 3 (@) Vary (Acey1 — ¥rpii)
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176
T2 (E) Et [((Acii1 — Et Acey1) — ¥ (rpig1 — Eo TPJH)]Z
176
T2 (@) B [(1 = 9) (rpat1 = Berpgn) + (o1 — wisn) — Ee (o1 — wig)]

If we substitute in the bracketed expression above (29) and (31) for (7,11 — E¢ 7p4+1) and
(ct41 — wip1) — E¢ (G401 — wyy1) and compute E; under assumptions (A2) and (A3), we find
that v, is a quadratic function of z;, with the coefficients given in the statement of the
lemma. []

Lemma 7. The parameters defining the optimal consumption rule (ii) satisfy the following
three-equation system:
o
2
1
i (1= 2) 400 a1 9) 0 (1 (1= 0+,

vo=k—1¢logd+ (1 —¢)ry+ (1 —v)ae(1—ap)

2

vl:ao(l—l/J)+(1—1/1)a1(1—2a0)%+bl <¢—%>+bg(2u¢(l—q§)),

2
1)2:(11(1—1/1)—(1—1/1)(1%%"—()2 (gbz—%)

Proof of Lemma 7. This follows from the log-linearized Euler equation for the opti-

mal portfolio given in (12), and Lemmas 4, 5 and 6. From (12) and Lemmas 4 and 6,
EtAct+1 = 17/1 lOg 6 + Up,t + 1/1Et’r'p’t+1
o

(32) = 1/110g6+1/17“f+1)0+¢a0(1—a0)?

0'2 0'2
+ (Ul + (ao + a1?“ - aoalai>> T+ (Uz + Yay (1 — a1?“>) x?,

which is a quadratic function of the state variable. But from Lemma 5 we have that E;Ac;; 1

2
u

is also quadratic in x;:
(33) EtACH—l =g+ c1x + CQ.T? s

where cg, c1, and ¢y are given in Lemma 5. Equating coefficients on the right hand side of
(32) and (33), the lemma follows immediately.[]
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Lemma 8 The covariance between unexpected stock returns and changes in expected port-
folio returns is linear in the state variable:

Covy (Tl,tﬂ - Etﬁ,tﬂa (1 - ?/1) (Et+1 - Et) Z Pij,tHﬂ')

j=1

2) Opu+ (1 =) (21721 p(f)¢20nu> Ty,

=(1-v) ((pl + 2pap) 1 _pp¢ - 22’92/~L1 f(i¢

where {p;,p>} are given in Lemma 4.

Proof of Lemma 8. Lemma 4 implies

(Bt —E) Y Prppsn = ZP] Eei1 — Eo) 2oy 4 p2 Zﬂ’ B — E) a7,
=1

7j=1

- pz
= Pl ijczﬁ” t ”2 ij( H— U 1’) + Paniia Zp”fb =
j=1

7j=1
+2potyy .y (20 — ) ¢ Z PO+ pana2p67t Y P09
j=1 Jj=1

P P9 P
{pll_qu P2 (4 u)l_p¢2 pzul_qu} Net1

P 2 P 2
+p2——— — P50, ,
pzl_p¢27lt+1 p21—p¢2 n

where the second equality follows from Lemma 2 and the third one follows after computing

the infinite summations in the second one and reordering terms.

The result stated in the lemma follows immediately from assumptions (A2) and (A3)
about the distribution of (ut+1, 7, +1), the expression above and the properties of the covari-
ance operator.[]

Lemma 9. The covariance between unexpected stock returns and changes in the expected
value of the intercept in the Euler equation (13) is linear in the state variable:

x
Covy (7“1 41 — i1, Et+1 - Et E P]Up,t+j>

42



P po po
=((n+2 — 20p—— ) O+ | 20— ) @
((U1 Vo ft) - Ug,ul — p¢2> oy ( 1)21 — p¢2(rn ) Ty

where {vg, vy, v2} are given in Lemma 6.

Proof of Lemma 9. Lemma 6 implies

(Etp1 — Ey) ijvp,t+j = ZP] (Es1 — E) 245 + 02 ZP] (B — Ey) I?ﬂ- )

j=1 j=1 j=1
which is identical to the expression given in the proof of Lemma 8, except that we have v,
and vy instead of p; and p,. Therefore, we must have that:

o

(Err1 — E) ijvp,t+j = |:Ull _pp¢

Jj=1

pe P
+ 20y (T — 1) ——= + 29—
2 (4 N)l_p¢2 2M1_p¢]77t+1

P 2 P 2
Fvg—— — Vg——— 07,
21_p¢277t+1 21—,0(/52 n

from which the lemma follows, under the distributional assumptions (A2) and (A3).0

VIII Appendix 2: Proofs of Propositions

Proof of Proposition 1.

From (A2), E; 71441 — rp = 2 and from (A3), 011 = o2. Also, from guess (ii),

Ole—wt = Covi(r1es1,Cop1 — Wei1)
Cov, [Tl,t+1 —Eir1441, 01 (41 — BEeg1) + bo (CB?H — E i?ﬂ)}
= Covy [Ut+1, b1my4q + b2 (Ut2+1 - 0'727) + b2 (20 (1 — @) + 2¢24) 77t+1]
= biog + 0220 (1 — @) + 20z oy

where the second line follows from substituting guess (ii) for ¢;y1 —w; 1, the third line follows
from (A2) and Lemmas 2 and 3, and the last line follows from (A3) and the assumption of
joint normality of u;,; and 7.
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Using these results we can re-write (19) as

1 x; 1 I1—v op
-t 2 T T b 2u (1 — @)+ 2
,}/0_%+27 7(@/)—1)0%{1_'_ 2[”( ¢)+ ¢mt]}v

which is linear in z;. But our guess (i) on the optimal portfolio policy is that «; is linear in

(34) a;

the state variable,
af = ag + a1xy .

Grouping terms in (34) we obtain ag and a; as stated in Proposition 1.0J

Proof of Proposition 2.

The proof for this proposition follows from Lemmas 6 and 7 and Proposition 1. Lemma
6 defines a non-linear equation system for {vg, v1, v}, {ao, a1} and {by, by, bo}:

Vo = Vna(ZJ + ‘/126% + V13b§ + Visagby + Visagbs + Vighy by

vy = Vabi + Vagagay + Vazagbs + Vagarby + Vasarby + Vagbibs

vy = Vaiai + Vagbs + Vizarby
where the coefficients V;; are functions of the primitive parameters of the model (both those
defining the preference structure and those defining the stochastic structure of the model)

and are immediately identifiable from the statement of the system in Lemma 6. For example,
Vii=(1-7) (¥ —1)c2/2, and so on.

Similarly, Lemma 7 defines a second system for {wvg, v1,v2}, {ag, a1} and {by, by, bs}:

vg = DBijg+ Biibg + Bi2b1 + Bigbs + Bigag + Blsaﬁ
v = DBasjag + Baby + Bagby + Basa; + Basapay
vy = DBsja; + Bsaby + B33a% )

where the coefficients B;; are functions of the primitive parameters of the model. For exam-
ple, Bip =k — ¢ logé+ (1 — ) rs, and so on.

Finally, Proposition 1 defines another system for {ag, a;} and {bg, b1, bs}:

ap = A+ Anbi + Agabs
a; = A+ Asibs,
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where, again the coefficients A;; are also functions of the primitive parameters of the model

and are immediately identifiable from the statement of the system in the proposition. For

example, Ajg = 1/27, and so on.

By equating the right-hand sides of the first and second system we obtain another sys-

tem whose unknowns are {ag, a;} and {bg, by, bs}. But the third system defines {ag,a;} as

linear combinations of {b;,by}. Substituting this system into the one obtained by combin-

ing the first and second systems, we obtain the equation system for {bg, b1, b2} given in the

proposition. The coefficients A;; relate to the coefficients A;;, B;; and V;; as follows:

0

—Bio + (Vi1 — Bis) Afy — BiaAio + (—Bu1) b

+[2 (Vi1 — Bis) AwoA1r — Bia + ViaAyo — BiaAni] by + [(Vn — Bis) A}, + Vi + ‘/14A11] b}
+[2 (Vi1 — Bis) AwoA12 — Biz + Vis Ao — BiaApp] by + [(Vn — Bis) A, + Vis + ‘/15A12] b3
+[2 (Vi1 — Bis) AnnArz + VigArg + Vis Arr + Vigl biby,

—By1 A1 + (Vaz — Bas) A1gAz0 — BaaAgo + [— B Ay — Bay + (Vag — Bas) A11 Ao + VagAgol by
+ [=Ba1 A1z — Baz + (Vaz — Bas) (Ao Aar + A1aAzg) + VazAig + Vas Azg — BagAni] by

+ [Var + (Vag — Bas) A1z Agr + Vag A + Vas A | b

+[(Vaa — Bas) A1 Aoy + Vaz Aqy + Vag Aoy + Vg b1,

(Va1 — Bss) A3y — Bs1 Az + [2 (Va1 — Bsg) Agg Az — Bsy Aoy — Bsy + Vaz Al by

+ [(‘/51 — Byg) A + Viy + ‘/3,31421] bs.

IX Appendix 3: Proofs of Properties

Proof of Property 1.

The approximate value function per unit of wealth obtains by direct substitution of guess

(ii) into (11). We now use equation (23) to characterize by. This equation is:

O - A30 + A31b2 + Aggbg .
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Substituting A;;’s for their values we get:

_ W= [ =7) 200 1
59 I e G |
|20 =0 oh +7 (ohon — )] |
(W —1)y03 0

This equation has two roots, that we denote {bs,bo2}. A sufficient (but not necessary)
condition for these roots to be real is that

AgaAz0 <0,
ie.,

(1—7)¢" [o5, + 7 (o805 — o3
Y20k

which is always true when v > 1, since (1 —7) <0

(36) oaos —on, = oa0. (1 — Corr (u, 77)2) >0,

2
n nu CY)

and all other terms in the expression for AzsAsy are positive. Similarly, when v < 1 we have
AssA39 > 0, so the roots are real if

(37) Agl — 4A32A30 > 0.

To analyze the sign of the roots, rewrite equation (35) as

_ (¥ —1)*
(38)0 = 4(1—n)¢* [ + v (0202 O'%u)]
(W —1) o .\ (¥ — 1) o, (¢2 - %) -
¢ [0, +y(otor —o2)]  2(1—-9)¢" [0, +7 (020} —02,)] ’

O :K30+K31b2 +b§ .
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From standard theory on quadratic equations, the product of the roots is given by /~\30, which
is negative when v > 1 and positive when v < 1:

<0 ify>1
ba1 - bag = Asg
>0 ify<1

Therefore, when v > 1, the roots are real and have opposite sign and, when + < 1, the roots
have the same sign—provided they are real.

Similarly, from standard theory on quadratic equations,
ba1 +bag = — Az,

which is always positive if {¢) < 1,7 < 1,¢0,, <0} or {¢p > 1,7 > 1, ¢, > 0}, and always
negative if {¢p > 1,7 < 1,¢0,, < 0} or {» < 1,y > 1,¢0,, > 0}, since (¢* — p~') < 0,
because 0 < p < 1, |¢| < 1 and, from (36), the term in brackets in the denominator is
positive.

Therefore, when v < 1 and ¢o,, < 0, both roots are positive if ¢ < 1 and negative if
Y > 1, so that by/(1 — ) > 0. When v < 1 and ¢o,, > 0, the same result still obtains,
provided the condition for real roots (37) holds —this condition implies yo2(¢? — p=1)? >

—(1 —)2¢0,.(¢* — p~1), which is sufficient to obtain the result for this case.

When 7 > 1, the roots of the equation alternate in sign. If ¢o,, > 0, we can write the
expression for the roots of equation (35) as

—(A+B)+£ A+ B2 +C
-D ?

by = (6~ 1)

where A, B, C, D are positive constants—provided that v > 1 and ¢o,, > 0—=so choosing
the positive root of the discriminant delivers by < 0 if ¢ > 1 and by > 0 if ¢» < 1, and
bs/(1 — 1) > 0. The opposite obtains if we choose the negative root. If ¢o,, < 0, we can
write the expression for the roots of the equation as

(-A+B)x+/(-A+B)2+C

622(7/1—1) -D )
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and the same result obtains.[]

Proof of Property 2.

To prove Property 2 we need to consider two cases, the case in which ¢o,, < 0 and the
case in which ¢o,, > 0.

Case ¢o,, <0

From the last part of the proof of Property 1, we have that by/(1) — 1) < 0 when we select
the value of by associated with the positive root of the discriminant of equation (23).

Plugging this result into the second equation of Proposition 1 we obtain immediately
that a; > 0 when v > 1, and ¢o,, < 0, since all the terms in the equation are positive.
Also, when v = 1, the second term in the equation is zero, so a; = 1/02 > 0. When v < 1
the first term is positive but the second is negative, so we need to prove whether the sum of
both terms is positive. Solving for the positive root of the discriminant in (35) and plugging
the result in the second equation in Proposition 1, we find:

1620202 — g0t (6~ 1) + VA

(39) = 4yg? o? [ + 7y (0 o2 — o%u)} ’

where

2
A= |:27¢0-7Iu0 <¢ - _>:| + 167( )¢ nu 7] <¢ - _> - 167 (1 - ’7) ¢40'3]u0'30'727
Since the denominator is always positive, the sign of the slope depends on the sign of the

numerator. A straightforward analysis of the numerator shows that a couple of sufficient
conditions for it to be positive are

Jn@ > =90
p

and



But if the first sufficient condition is violated, the second one is immediately verified, so
a; > 0.

Case ¢o,, >0

From the last part of the proof of Property 1, we have that by/(1 — %) > 0 when v < 1
—provided that the condition for real roots (37) in (35) holds. Plugging this result into
the second equation of Proposition 1 we obtain immediately that a; > 0 since v < 1 and
¢, > 0. Therefore, the slope of the optimal portfolio policy is always positive no matter
what root we select for the discriminant of equation (23).

When 7 > 1, solving for the negative root of the discriminant in (35) and plugging the
result in the second equation of Proposition 1, we find again (39), which is always positive
when v > 1. If we solve for the positive root of the discriminant in (35) and we plug
the result into the second equation of Proposition 1, we find an expression similar to (39),
except that the second term is subtracted. A sufficient condition for this expression to be
positive is ¢ Corr(n, 1, urs1) > ¢ Corr(n,, 1, ur1)?, which is always true because sign(¢o,,) =
sign(¢ Corr (0,41, ue1)) and | Corr(n,,q, ue1)| < 1.0

The limiting behavior of a;

Regardless of the sign of the covariance and ¢, a; — 400 as as v — 0 and a; — 0 as
7 — +4o00. To prove the first result, note that b, — (¢ — 1)/2¢0,,, as v — 0. Substituting
this result into the the equation for a; in Proposition 1 and taking limits as v — 0 we find :

. 1 .1 1—xy
lma;, = —(lim—— ——
¥—0 0-’121, v—0 y y

1 .. 1
= — lim —

Oy 1207
= +OO

Similarly, from (39) we have that the numerator of a; is O(7), while the denominator is
O(~?). Hence, taking limits as v — oo we have that a; — 0.0J

Proof of Property 3.

49



Part a

When v = 1, Lemma 6 in Appendix 1 implies that v9 = v; = vo = 0 so the intercept
term v, in the Euler Equation (12) is zero. We also see this by noticing that v = 1 implies
0 = 0. Substituting v = 1 in Proposition 1 we obtain the same myopic portfolio rule as with
log utility. It is straightforward to see that this rule maximizes the conditional expectation
of the log portfolio return. However, the consumption-wealth ratio is no longer constant
unless ¢y = 1, as we can see from Lemma 7 in Appendix 1. Therefore, unit relative risk
aversion implies a myopic optimal portfolio policy and a non-myopic optimal consumption
policy. Giovannini and Weil (1989) emphasize this result.[]

Part b

When ¢ — 1, the equation system in Proposition 2 delivers b; = by = 0 and
p
by = —— (k —log o).
0=7_ P ( 0g 6)

After substituting for the value of k, this result simplifies to

(40) bo =log (1 —p).

Moreover, we know from standard arguments that p = 6. Therefore, it is optimal for the
individual to consume each period a fixed fraction of her wealth. Following Giovannini and
Weil (1989), we call this optimally constant propensity to consume out of wealth a myopic
consumption policy.

However, the agent’s optimal portfolio policy is not myopic. This is because, from equa-
tion (41) in the proof of Property 3 below, we have that by/ (1 — ) and b,/ (1 — 1) are
non-zero constants independent of v for given p. Therefore, when ¢y = 1 the terms in
{b1,b2} in the system defining the optimal portfolio policy in Proposition 1 do not vanish,
and a non-myopic portfolio policy obtains. Giovannini and Weil (1989) also emphasize this
result.

Part c

The values for by, b; and by obtain from the proof for Part b. Substituting for v = 1 into
Proposition 1, we obtain ag = 1/2 and a; = 1/02.0J
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Part d

With constant expected returns, o,, = 0. From Proposition 1 we obtain the same
portfolio policy as in the log utility case, except that v # 1: ap = 1/2y and a; = 1/y02.
Also, since z; is deterministic, (31) implies that ¢; — w; is constant. This is the well-known
result for the optimal portfolio rule when returns are i.i.d.[J

Proof of Property 4.

A straightforward analysis of the solutions to equations (22) and (23) in Proposition 2
shows that we can write b; and by as

(41) by = W—-1f(7.p) ,
by = ('Q/J_l)fQ('Y,P),

where f; (7, p) and f; (7, p) are functions that do not depend on 1. After substitution in the
equation system in Proposition 1, we find that the parameters defining the optimal portfolio
rule, {ag, a1} do not depend on ) for given p. However, p itself is a function of ¢—recall that
p=1—exp{F [¢; — w]}—so0 the optimal portfolio rule depends on ¢ indirectly through p.0]

Proof of Property 5.

To prove this result, note that equation (23) in Proposition 2, that determines by, is found
by equating the right hand side of the third equation in Lemmas 6 and 7, and substituting
out a; using the second equation in Proposition 1. None of these equations depend on p.[]
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TABLE I

Estimates of the Stochastic Process
for Returns (1947.1 - 1995.4)

(A) Restricted VAR(1):

0.173 0.047

Ti,t+1 — Tf o (0066) (0020) _ €1,t+1

( dis1 — Pest > =1 Zoa6 | T| o957 |t €2.441
(0.073) (0.022)

5.206E —3 —4.290E —3
(0.540E — 3) (0.522E — 3) P2 (0028
—4.200E —3 6.397E —3 0.910
(0.522E —3)  (0.653E — 3)

Q:

(B) Derived model:

Tle+l —Tf = Tt + Uyl
Ti41 = 1.250F —2 + 0.957 (.Tf, - /J) + Me+1
(0.005) (0.022)
5296FE —3 —0.203F —3
o2 oun \ _ | (0.540E —3) (0.090E — 3)
Tun 0,27 | -0203E—-3 0.014E-3

(0.090E —3) (0.012E — 3)

ry=.071E -2 o02%/02 =3.215E —2 corr(n,u) = —0.737




TABLE I1

Optimal Portfolio Policy

R.R.A. E.IS.
(A) Exponentiated intercept: a} x 100

1/.75  1.00 1/1.5 1/2 1/4 1/10 1/20 1/40
0.75 -38.55 -29.38 -23.35 -21.02 -18.15 -16.68 -16.23 -16.01
1.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00
1.50 27.10 23.50 20.50 19.17 1750 16.58 16.29 16.15
2.00 33.77 30.67 27.89 26.62 24.84 2393 23.62 23.47
4.00 29.94  29.81 29.67 29.60 29.50 29.44 29.42 2941
10.0 16.00 17.19 1852 19.23 20.36 21.18 21.44 21.57
20.0 875 971 1079 11.38 1240 13.05 13.27 13.38
40.0 457 516 583 620 684 725 741 748

(B) Slope: a1

1/75  1.00 1/15 1/2  1/4 1/10  1/20 1/40
0.75 22247 225.14 227.33 228.30 229.62 230.36 230.60 230.72
1.00 188.81 188.81 188.81 188.81 188.81 188.81 188.81 188.81
1.50  145.45 144.35 143.33 142.85 142.20 141.83 141.71 141.65
2.00 11845 117.49 116.57 116.13 115.48 115.14 115.03 114.97
4.00 68.09 68.05 68.00 67.98 6795 67.93 67.92 67.92
10.0 29.92 30.31 30.72 3094 31.27 31.50 31.58 31.61
20.0 1547 1578 16.11 16.29 16.58 16.75 16.81 16.84
40.0 787 806 826 837 855 866 870  8.72




Mean Optimal Percentage Allocation to Stocks and

TABLE III

Percentage Mean Hedging Demand Over Mean Total Demand

R.R.A.

E.LS.

0.75
1.00
1.50
2.00
4.00
10.0
20.0
40.0

0.75
1.00
1.50
2.00
4.00
10.0
20.0
40.0

(A) Mean optimal percentage allocation to stocks:

1/.75

298.37
285.95
247.37
213.16
133.06
61.32
32.18
16.49

(B) Fraction due to hedging demand (percentage):

1/.75

-27.78
0.00
22.93
32.93
46.27
53.36
35.57
56.64

as = [ay + a1(p + 02 /2)] x 100

1.00

311.59
285.95
242.11
208.60
132.86
63.10
33.60
17.36

1/1.5

320.92
285.95
237.57
204.44
132.65
65.05
35.20
18.35

1/2

324.73
285.95
235.51
202.49
132.55
66.09
36.05
18.88

1/4

329.60
285.95
232.86
199.73
132.40
67.72
37.50
19.79

1/10

332.19
285.95
231.37
198.31
132.31
68.89
38.42
20.36

[@t.neaging (57, 9) /e (us v, )] x 100

1.00

-22.36
0.00
21.26
31.46
46.19
54.68
97.45
38.83

1/1.5

-18.80
0.00
19.76
30.06
46.11
56.04
59.38
61.04

1/2

-17.41
0.00
19.05
29.39
46.07
56.73
60.34
62.14

1/4

-15.67
0.00
18.13
28.42
46.01
d7.77
61.87
63.88

1/10

-14.77
0.00
17.61
27.90
45.97
58.49
62.78
64.89

1/20

333.01
285.95
230.90
197.83
132.28
69.26
38.73
20.59

1/20

-14.49
0.00
17.44
27.73
45.96
58.71
63.09
65.28

1/40

333.41
285.95
230.67
197.59
132.26
69.45
38.89
20.69

1/40

-14.35
0.00
17.36
27.64
45.95
58.83
63.24
65.45




Optimal Consumption-Wealth Ratio and

TABLE IV

Long-Term Expected Log Return on Wealth

R.R.A. E.LS.
(A) Consumption-Wealth ratios:
Ci/ Wi = exp{E[ct — w¢]} X 100

1/75 100 1/1.5 1/2 1/4 1/10 1/20 1/40
0.75 0.58 1.53 2.46 2.92 3.62 4.04 4.18 4.25
1.00 0.78 1.53 2.29 2.66 3.22 3.55 3.66 3.72
1.50 1.03 1.53 2.04 2.30 2.67 2.90 2.97 3.01
2.00 1.19 1.53 1.88 2.05 2.31 2.47 2.52 2.54
4.00 1.52 1.53 1.55 1.56 1.57 1.58 1.58 1.58
10.0 1.79 1.53 1.28 1.15 0.94 0.82 0.78 0.76
20.0 1.90 1.53 1.17 0.98 0.70 0.52 0.46 0.44
40.0 1.96 1.53 1.11 090 057 037 030 0.27

(B) Long-Term expected log return on wealth:

E[rp,i41] X 100

1/75 1.00 1/15 1/2 1/4 1/10 1/20 1/40
0.75 3.79 37 374 373 372 371 371 371
1.00 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
1.50 3.72 370 3.69 368 3.67 3.67 366 3.66
2.00 3.48 346 343 342 340 340 339  3.39
4.00 2.57 2.57 2.56 2.56 2.56 2.56 2.56 2.56
10.0 1.37 1.40 1.43 1.44 1.46 1.48 1.49 1.49
20.0 0.78 0.81 083 0.8 087 089 0.89 0.89
40.0 0.45 0.46 0.48 0.49 0.50 0.51 0.52 0.52




Volatility of Consumption Growth and

TABLE V

Volatility of the Log Consumption-Wealth Ratio

R.R.A. E.L.S.
(A) Volatility of consumption growth:
g (Act+1 — Et [Act+1]) x 100

1/.75  1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 3712  31.17 2741 26.12 2471 24.13 23.97 23.90
1.00 33.44 2747 2349 22.08 20.55 19.91 19.74 19.66
1.50 2743 2232 1863 17.28 15.83 15.26 15.11 15.05
2.00 23.07 18.84 1562 1441 13.12 1265 12.54 1249
4.00 13.93 11.63 9.69 893 816 795 792 792
10.0 6.31 5.42 4.61 429 399 397 4.00 4.02
20.0 3.29 2.87 2.47 2.31 2.17 2.19 2.21 2.22
40.0 1.68 1.48 1.28 1.20 1.14 1.15 1.17 1.18

(B) Volatility of the consumption-wealth ratio:

g (Ct+1 — Wt41 — Ey [Ct+1 — wt+1]) x 100

1/.75  1.00 1/1.5 1/2 1/4 1/10 1/20 1/40
0.75 8.97 0.00 6.72 9.49 13.12 15.02 15.61 15.90
1.00 7.77 0.00 6.07 8.65 12.03 13.86 14.43 14.71
1.50 6.11 0.00 5.13 7.38 10.47 12.15 12.69 12.95
2.00 5.04 0.00 4.45 6.48 930 1090 11.41 11.67
4.00 2.94 0.00 2.92 438 655 785 828 849
10.0 1.30 0.00 1.44 222 346 427 455  4.69
20.0 0.67 0.00 0.78 1.22 1.94 241 2.58  2.66
40.0 0.34 0.00 0.41 0.64 1.03 1.28 1.38  1.42




TABLE VI

Optimal Consumption Rules Implied
by Restricted Portfolio Rules

Portfolio Rule Optimal Consumption Rule
Given Portfolio Rule

Timing = ay +ay(e +02/2) ¢ —wp = b+ Ui (xp +02)2) + bo(ws + 02 /2)
Hedging
No-Timing oy = af +ay(p+02/2) ¢, —wy = bo™ + o™ (2 + 02 /2)
M M T + (Tg 2 70 70 Uz
Timing g = t*yT/ ¢ —wy = bt 4 0 @y + 02 /2) + 05 (@, + 02 /2)
No-Hedgin )
e _ ptoi/?

No-Timing oy Cp — Wy = bgh’nt + b?h’"t(xt +02/2)

2
You




TABLE VII

Percentage Mean Value Function When the Optimal Portfolio
Rule is Unrestricted, and Percentage Loss in the Value

Function Under Alternative, Restricted Portfolio Rules

Hedging

No-
Hedging

Timing No-Timing
R.R.A. E.LS. E.LS.

1/.7%5  1.00 1/1.5 1/2 1/4 1/10 1/20 1/40 1/.775 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 594.54 14.83 8.76 7.38 6.07 5.54 5.38 5.31 -92.69 -75.28 -61.12 -55.32 -48.03 -44.25 -43.10 -42.54
1.00 18.59 9.35 6.53 5.77 4.97 4.62 4.52 4.47 -83.38 -68.70 -57.17 -52.46 -46.34 -43.20 -42.22 -41.74
1.50 6.52 5.08 4.29 4.01 3.68 3.53 3.48 3.46 -67.35 -58.56 -51.45 -48.33 -44.22 -41.98 -41.28 -40.94
2.00 3.83 3.45 3.19 3.08 2.94 2.87 2.85 2.84 -55.89 -51.13 -47.25 -45.43 -42.90 -41.52 -41.07 -40.85
4.00 1.66 1.65 1.66 1.66 1.66 1.66 1.66 1.66 -32.77 -34.19 -36.83 -38.24 -40.84 -42.89 -43.64 -44.04
10.0 0.98 0.94 0.89 0.87 0.81 0.77 0.76 0.75 -14.47 -17.30 -22.94 -27.05 -37.39 -48.59 -53.86 -56.93
20.0 0.81 0.75 0.68 0.63 0.54 0.47 0.44 0.42 -747 -9.51 -14.12 -18.10 -29.95 -46.43 -55.64 -61.98
40.0 0.74 0.67 0.58 0.52 0.41 0.32 0.28 026 -3.80 -5.01 -7.97 -10.78 -20.31 -36.55 -47.47 -55.64

1/.75  1.00 1/1.5 1/2 1/4 1/10 1/20 1/40 1/.775 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.7  -2837 -9.09 -437 -320 -212 -1.70 -1.58 -1.53 -92.46 -74.43 -59.48 -53.27 -45.37 -41.32 -40.07 -39.46
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -82.84 -67.59 -56.59 -50.68 -44.33 -41.07 -40.06 -39.57
1.50  -13.67 -840 -5.63 -464 -3.57 -3.07 -293 -286 -68.08 -59.35 -52.18 -49.01 -44.80 -42.49 -41.76 -41.40
200 -1999 -15.27 -12.16 -10.v8 -9.02 -817 -7.90 -7.76 -58.00 -53.43 -49.66 -47.87 -45.37 -44.00 -43.55 -43.33
4.00 -19.04 -19.27 -20.44 -20.89 -21.60 -22.07 -22.24 -22.32 -36.67 -38.15 -40.71 -42.04 -44.38 -46.08 -46.70 -47.03
10.0  -10.43 -12.40 -16.19 -18.56 -23.72 -28.24 -30.16 -31.22 -17.45 -20.23 -25.12 -28.31 -35.27 -41.58 -44.30 -45.82
20.0 -5.77r -7.27 -10.33 -12.52 -18.11 -24.49 -27.88 -2990 -9.31 -11.29 -15.10 -17.89 -25.05 -33.41 -37.83 -40.51
40.0 -3.03 -394 -588 -7.37 -11.70 -18.01 -21.86 -24.56 -4.81 -599 -836 -10.24 -15.71 -23.78 -28.78 -32.30




Notes to the Tables

Table 1:Table 1 reports ML estimates of the stochastic process driving ex-
pected and unexpected returns in the model. These estimates are based on quar-
terly returns, dividends and prices from CRSP for the period 1947.1 - 1995.4.
Stock market data is for the CRSP value-weighted market portfolio inclusive of
the NYSE, AMEX and NASDAQ markets, and the short-term nominal interest
rate is the 3-month Treasury bill yield from the Riskfree File on the CRSP Bond
tape. Panel A reports ML point estimates and standard errors (in parentheses)
of a restricted VAR(1) model (see equation [24] in text) for excess log returns
and the log dividend-price ratio. Panel B reports estimates for the parameters
defining the stochastic structure of the model. These estimates and their stan-
dard errors (in parentheses) are derived from the estimates in Panel A. Standard
errors are obtained using the delta method.

Table 2: Panel A reports the optimal percentage allocation per quarter
to stocks when the expected gross excess return is zero for different levels of
relative risk aversion and elasticities of intertemporal substitution. Panel B
reports the quarterly change - in percentage points - in the optimal allocation
to stocks when the expected log excess return increases by one percent per
quarter. These numbers are all based on the parameter estimates for the return
process reported in Table 2 (Sample period 1947:1-1995:4). The values in the
main diagonal correspond to the power utility case.

Table 3: Panel A reports the mean optimal percentage allocation per quar-
ter to stocks, for different levels of relative risk aversion and elasticities of in-
tertemporal substitution. Panel B reports the percentage mean hedging de-
mand over mean total demand, i.e., the fraction of the mean allocation due to
hedging demand. Mean hedging demand is calculated as oy pedging(1t;7, %) =
o (v, ) — au(p; 1,4) /. These numbers are all based on the parameter esti-
mates for the return process reported in Table 2 (Sample period 1947:1-1995:4).
The values in the main diagonal correspond to the power utility case.

Table 4: Panel A reports percentage exponentiated mean optimal log consumption-

wealth ratios per quarter, i.e., 100 times the exponential of E[c; — wy] = bF +
bt (pt02 /2)+bo(02+ 2+ po2 +ol /4), for different levels of relative risk aversion
and elasticities of intertemporal substitution. Panel B reports the percentage
unconditional mean of the quarterly log return on wealth. These numbers are
all based on the parameter estimates for the return process reported in Table
2 (Sample period 1947:1-1995:4). The values in the main diagonal corre-
spond to the power utility case.

Table 5: Panel A reports percentage unconditional standard deviation of
quarterly log consumption innovations for different levels of relative risk aver-
sion and elasticities of intertemporal substitution, while Panel B reports the



percentage unconditional standard deviation of innovations in the quarterly log
consumption-wealth ratio. These numbers are all based on the parameter esti-
mates for the return process reported in Table 2 (Sample period 1947:1-1995:4).
The values in the main diagonal correspond to the power utility case.

Table 6: The second column in Table 6 describes the consumption rule fol-
lowed by an investor who adjusts consumption optimally given the portfolio rule
described in the first column of the table. The first row describes the optimal
consumption rule implied by the unconstrained optimal portfolio rule. This rule
is state-dependent and includes a hedging component. Therefore, the first row
of the table describes the solution to the intertemporal optimization problem
we solve in section 3. The second row describes the optimal consumption rule
followed by an investor who follows a suboptimal portfolio rule consisting in
allocating to stocks each period a fixed fraction of her savings that equals the
average allocation to stocks implied by the optimal portfolio rule. Therefore,
this investor ignores timing in her portfolio decisions, though she allows for (im-
perfect) hedging. The third row of the table describes the optimal consumption
rule followed by an investor who follows a myopic portfolio rule. This subopti-
mal portfolio rule ignores hedging, but it is time-dependent. Finally, the fourth
row of the table describes the optimal portfolio rule followed by an investor
that ignores both hedging and timing and invests in stocks each period a fixed
fraction of her savings that equals the average myopic allocation to stocks.

Table 7: The panel on the upper, left corner of the table reports the uncon-
ditional mean of the value function under the optimal consumption and portfolio
rules. The panel on the upper, right corner reports the percentage loss in the
value function when the portfolio rule is fixed at the mean value of the optimal
portfolio rule and consumption adjusts optimally. The panel on the lower, left
corner reports the percentage loss in the value function when the portfolio rule
is myopic (see equation [21] in text) and consumption adjusts optimally. The
panel on the lower, right corner reports the percentage loss in the value function
when the portfolio rule is fixed at the mean value of the myopic rule and con-
sumption adjusts optimally. These numbers are based on the parameter values
for the return process presented in Table 1. These values are estimates for the
period 1947:1-1995:4. The values in the main diagonal correspond to the
power utility case.
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Figure 3: % = 0.25 and v = 4.00, 20.00
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