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Abstract

This paper examines the optimal consumption and portfolio choice problem of long-horizon investors

who have access to a riskless asset with constant return and a risky asset ("stocks") with constant

expected return and time varying precision–the reciprocal of volatility. Markets are incomplete,

and investors have recursive preferences defined over intermediate consumption. The paper obtains

a solution to this problem which is exact for investors with unit elasticity of intertemporal substitu-

tion of consumption, and approximate otherwise. The optimal portfolio demand for stocks includes

an intertemporal hedging component that is negative when investors have coefficients of relative risk

aversion larger than one, and the instantaneous correlation between volatility and stock returns is

negative, as typically estimated from stock return data. Our estimates of the joint process for stock

returns and precision (or volatility) using US data confirm this finding. But we also find that stock

return volatility does not appear to be variable and persistent enough to generate large intertempo-

ral hedging demands.

JEL classification: G12.



There is strong empirical evidence that the conditional variance of asset returns,

particularly stock market returns, is not constant over time. Bollerslev, Chou and

Kroner (1992), Campbell, Lo and MacKinlay (1997, Chapter 12), Campbell, Lettau,

Malkiel and Xu (2001) and others review the main findings of the ample econometric

research on stock return volatility: Stock return volatility is serially correlated, and

shocks to volatility are negatively correlated with unexpected stock returns. Changes

in volatility are persistent (French, Schwert and Stambaugh 1987, Campbell and

Hentschel 1992). Large negative stock returns tend to be associated with increases in

volatility that persist over long periods of time. Stock return volatility appears to be

correlated across markets over the world (Engle, Ito and Lin 1990, Ang and Bekaert

2002).

While there is an abundant literature exploring the pricing of assets when volatility

is time varying, there is not much research exploring optimal dynamic portfolio choice

with volatility risk. This situation is unfortunate, because Samuelson (1969) and

Merton (1969, 1971, 1973) have shown that time variation in investment opportunities

imply optimal portfolio strategies for multi-period investors that can be different from

those of single-period, or myopic, investors. Multi-period investors value assets not

only for their short-term risk-return characteristics, but also for their ability to hedge

consumption against adverse shifts in future investment opportunities. Thus these

investors have an extra demand for risky assets that reflects intertemporal hedging.

Intertemporal hedging is not only conceptually interesting; it is also empirically

relevant. Recent research summarized in Campbell and Viceira (2002) has found that

intertemporal hedging is quantitatively important in light of the observed predictable

variation in both interest rates and equity premia in the US (Balduzzi and Lynch 1997,
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Barberis 2000, Brandt 1999, Brennan, Schwartz and Lagnado 1996, 1997, Campbell

and Viceira 1999, 2001, Campbell, Chan and Viceira 2003).

This paper explores systematically optimal portfolio choice with volatility risk

in a continuous-time setting. We consider the optimal consumption and investment

problem of investors with Duffie and Epstein (1992) recursive utility over consump-

tion. Investors have two assets available for investment, a riskless asset with constant

return and a risky asset (“stocks”) with constant expected return and time-varying

return volatility.2 (In an extension of the model, we allow the expected excess return

on stocks to be an affine function of volatility.)

For mathematical convenience, we work with precision, the reciprocal of volatility,

and assume that it follows a mean-reverting, square-root process which is instanta-

neously correlated with stock returns.3 This implies a process for volatility that

inherits the properties of the process for precision and captures the main stylized

empirical facts about stock market volatility. In particular, we allow for imperfect

instantaneous correlation between volatility and stock returns in the model, and work

in an incomplete markets setting.

Under these assumptions, we derive analytic expressions for the optimal con-

sumption and portfolio policies which are exact when investors have unit elasticity

of intertemporal substitution of consumption, and approximate otherwise. We use

this model to empirically evaluate the importance of volatility risk for intertemporal

hedging in the US stock market, using estimates of the process for stock returns and

volatility based on monthly returns from 1926 to 2000, and annual returns from 1871

to 2000.
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Our solution contributes to recent research that has expanded significantly the set

of known exact analytical solutions to continuous-time intertemporal portfolio choice

problems with time-varying investment opportunities. This research has provided

solutions in settings where markets are incomplete, but constraining utility to be

defined over terminal wealth (Kim and Omberg 1996, Wachter 2002); and in settings

where investors have utility over intermediate consumption, but constraining markets

to be complete (Brennan and Xia 2001, Wachter 2002, Schroder and Skiadas 1999,

and Fisher and Gilles 1999). This paper provides an exact solution for the case of

utility defined over intermediate consumption which does not require assuming that

markets are complete.

This exact solution requires though that investors have unit elasticity of intertem-

poral substitution of consumption. This assumption is difficult to justify on empirical

grounds, because the existing estimates of this elasticity from aggregate and disag-

gregate data are well below one (Hall 1988, Campbell and Mankiw 1989, Campbell

1999, Vissin-Jorgensen 2002). However, our calibration exercise suggests that this as-

sumption is not particularly constraining if one is interested only in dynamic portfolio

choice. This exercise shows that optimal portfolio allocations are very similar across

a wide range of values for the elasticity of intertemporal substitution of consumption.

Working in discrete time, Campbell and Viceira (1999, 2001, 2002) and Campbell,

Chan and Viceira (2003) also reach similar conclusions in their analysis of optimal

consumption and portfolio choice with time variation in expected returns and interest

rates.4

In two papers closely related to ours, Liu (2002) examines the optimal allocation to

stocks when stock return volatility is stochastic.5 Both papers provide exact analytical
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solutions in an incomplete markets setting for investors with power utility defined

over terminal wealth, and specifications of stochastic volatility which are slightly

different from the ones in this paper. Liu (2002) considers the Heston (1993) and Stein

and Stein (1991) models of stochastic volatility, in which volatility follows a mean-

reverting process and stock returns are a linear function of volatility. These models

imply a Sharpe ratio of stocks that is increasing in the square root of volatility, and

a ratio between expected stock excess returns and stock return volatility–the mean-

variance allocation to stocks–that is constant. Our model where we assume that

expected stock returns are an affine function of volatility have similar implications

for the Sharpe ratio and the mean-variance allocation to stocks in the special case

where we constrain the intercept of the affine function to be zero. Liu (2002) also

considers a model that includes both interest rate risk and volatility risk. A calibration

of this model to US data arrives at conclusions similar to ours regarding the relatively

modest size of intertemporal hedging demands generated by volatility risk. Finally,

Liu (2002) considers a general class of stochastic volatility models that nests our basic

specification with constant expected returns.

The paper is organized as follows. Section 2 states the dynamic optimization

problem, Section 3 presents an exact solution to the problem in the case with unit

elasticity of intertemporal substitution. Section 3 also presents some comparative

statics results. Section 4 explains the continuous-time approximate solution method

that allows us to solve the problem when the elasticity of intertemporal substitution

differs from unity, and states the solution implied by the method. Section 5 explores

the solution to the problem when expected excess returns are an affine function of

volatility. Section 6 calibrates the model to monthly U.S. stock market data and

explores the empirical implications of stochastic volatility for portfolio choice. Section
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7 discusses some alternative approximate solution and issues related to the accuracy

of the approximate analytical solution. Finally, Section 8 concludes.

1 The Intertemporal Consumption and Portfolio

Choice Problem

1.1 Investment opportunity set

We assume that wealth consists of only tradable assets. Moreover, to keep the analysis

simple, we assume in this paper that there are only two tradable assets. One of the

assets is riskless, with instantaneous return

dBt

Bt
= rdt.

The second asset is risky, with instantaneous total return dynamics given by

dSt
St

= µdt+

r
1

yt
dWs, (1)

where St is the value of a fund fully invested in the asset that reinvests all dividends,

and yt is the instantaneous precision of the risky asset return process–and 1/yt is

the instantaneous variance.

Equation (1) implies that the expected excess return on the risky asset over the

riskless asset (µ − r) is constant over time–we relax this assumption in Section 5.

However, the conditional precision of the risky asset return varies stochastically over

time, and this induces time variation in investment opportunities. We assume the
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following dynamics for instantaneous precision:

dyt = κ(θ − yt)dt+ σ
√
ytdWy. (2)

Precision follows a mean-reverting, square-root process with reversion parameter κ >

0, with E[yt] = θ and Var(yt) = σ2θ/2κ (Cox, Ingersoll, and Ross, 1985). In order to

satisfy standard integrability conditions, we assume that 2κθ > σ2.

The stochastic process for precision implies a mean-reverting process for the in-

stantaneous volatility vt ≡ 1/yt. Applying Ito’s Lemma to (2) we find that propor-
tional changes in volatility follow a mean-reverting, square-root process:

dvt
vt
= κv (θv − vt) dt− σ

√
vtdWy, (3)

where θv = (θ − σ2/κ)−1 and κv = κ(θ − σ2/κ) ≡ κ/θv. It is convenient to note here

that the unconditional mean of instantaneous volatility is approximately equal to:

E[vt] ≈ 1
θ
+
1

2

σ2

θ2κ
=
1

θ
+
Var (yt)

θ3
. (4)

This follows from taking expectations of a second-order Taylor expansion of vt ≡ 1/yt
around θ. Since we have assumed that the expected return on the risky asset is

constant, equation (4) is also the unconditional variance of the risky asset return.6

We also assume throughout the paper that the shocks to precision are correlated

with the instantaneous return on the risky asset, with dWydWS = ρdt. This in turn

implies that proportional changes in volatility are correlated with stock returns, with

instantaneous correlation given by

Corrt

µ
dvt
vt

,
dSt
St

¶
= −Corrt

µ
dyt,

dSt
St

¶
= −ρdt.
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This model for stock returns and precision or volatility can capture the main

stylized empirical facts about stock return volatility, in particular its mean-reversion

and negative correlation with stock returns. It also implies that proportional changes

in volatility are more pronounced in times of high volatility than in times of low

volatility.

Another important implication of this model of changing risk is that the ratio

of the expected excess return on the risky asset to its variance is a linear function

of the state variable. This model assumption greatly facilitates solving the dynamic

optimization problem that we present below. It is important however, to remark

that the Sharpe ratio of the risky asset in this model is not a linear function of the

state variable, but a square-root function. Thus this model is not mathematically

equivalent to a model where volatility is constant and the expected excess return

on the risky asset changes stochastically in a mean-reverting fashion, as in Kim and

Omberg (1996) or Campbell and Viceira (1999).

1.2 Investor preferences and dynamic optimization problem

Investor’s preferences are described by a recursive utility function, a generalization

of the standard, time-separable power utility model that separates relative risk aver-

sion from the elasticity of intertemporal substitution of consumption. Epstein and

Zin (1989, 1991) derive a parameterization of recursive utility in a discrete-time set-

ting, while Duffie and Epstein (1992a, 1992b) and Fisher and Gilles (1999) offer a

continuous-time analogue. We adopt the Duffie and Epstein (1992b) parameteriza-
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tion:

J = Et

∙Z ∞

t
f (Cs, Js) ds

¸
, (5)

where f(Cs, Js) is a normalized aggregator of current consumption and continuation

utility that takes the form

f (C, J) =
β

1− 1
ψ

(1− γ)J

⎡⎣Ã C

((1− γ)J)
1

1−γ

!1− 1
ψ

− 1
⎤⎦ , (6)

β > 0 is the rate of time preference, γ > 0 is the coefficient of relative risk aversion

and ψ > 0 is the elasticity of intertemporal substitution. Power utility obtains from

(6) by setting ψ = 1/γ.

The normalized aggregator f(Cs, Js) takes the following form when ψ → 1:

f (C, J) = β (1− γ) J

∙
log (C)− 1

1− γ
log ((1− γ)J)

¸
. (7)

The investor maximizes (5) subject to the intertemporal budget constraint

dXt = [πt(µ− r)Xt + rXt − Ct]dt+ πtXt

r
1

yt
dWs, (8)

where Xt represents the investor’s wealth, πt is the fraction of wealth invested in the

risky asset and Ct represents the investor’s instantaneous consumption.

2 An Exact Solution with Unit Elasticity of In-

tertemporal Substitution of Consumption

Building on the work of Merton (1969, 1971, 1973), Giovannini and Weil (1989),

Campbell and Viceira (1999, 2001), and Campbell, Chan, and Viceira (2003), we
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show in this section that it is possible to find an exact solution to the intertemporal

optimization problem (5)-(8) when investors have unit elasticity of intertemporal

substitution of consumption. In Section 4 we present an approximate analytic solution

for the general case in which ψ is not restricted to one.

The optimization problem given by (5)-(8) has one state variable, the precision

of the risky asset return or, equivalently, the volatility of the risky asset return.

Therefore, the value function of the problem (J) depends on financial wealth (Xt)

and this state variable.

The Bellman equation for this problem is

0 = sup
π,C

½
f (Cs, Js) + [πt(µ− r)Xt + rXt − Ct]JX +

1

2
π2X2

t JXX
1

yt
+ κ(θ − yt)Jy

+
1

2
σ2Jyyyt + ρσπtXtJXy

¾
, (9)

where f (C, J) is given in (7) and subscripts on J denote partial derivatives.

The first-order conditions for this equation are

Ct = β (1− γ)
J

JX
, (10)

πt = − JX
Xt JXX

(µ− r) yt − JXy

XtJXX
ρσyt. (11)

Equation (10) shows the optimal consumption rule. It results from the envelope

condition, fC = JX , from which the optimal consumption rule obtains once the value

function is known.

Equation (11) shows the optimal portfolio share in the risky asset. Note, however,

that equations (10) and (11) do not represent a complete solution to the model until

we solve for J(Xt, yt). Proposition 1 states the complete solution to this problem:
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Proposition 1 When ψ = 1, there is an exact analytical solution to problem (5)-(8)

with value function given by

J (Xt, yt) = exp {Ayt +B} X
1−γ
t

1− γ
. (12)

This value function implies the following optimal consumption and portfolio rules:

Ct

Xt
= β, (13)

and

πt =
1

γ
(µ− r) yt +

µ
1− 1

γ

¶
(−ρ)σAyt, (14)

where A ≡ A/(1 − γ) > 0, and A and B are given by the solution to the system of

equations (26)-(27).

Proof. Appendix A examines the value function and its coefficients. The

optimal policies follow immediately from direct substitution of the value function

(12) and its derivatives into the first order conditions (10) and (11).¥

Proposition 1 shows that for investors with unit elasticity of intertemporal substi-

tution, the optimal log consumption-wealth ratio is invariant to changes in volatility

and it is equal to their rate of time preference. For these investors, the income and

substitution effects on consumption produced by a change in the investment oppor-

tunity set exactly cancel out, and it is optimal for them to consume a fixed fraction

of her wealth each period. For this reason this consumption policy is usually termed

“myopic.”

Equation (14) shows the optimal portfolio rule. This rule has two components.

The first component is myopic (or mean-variance) portfolio demand. The second
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component is Merton’s intertemporal hedging demand. Both components are linear

functions of precision, which implies that their ratio is independent of the current

level of precision or volatility. This is the result of returns being instantaneously

correlated with proportional changes in volatility rather than with absolute changes

in volatility.

Inspection of equation (14) shows that intertemporal hedging demand is always

zero–and myopic demand optimal–in three cases: when investment opportunities

are constant (σ = 0); when they are time-varying, but investors cannot use the risky

asset to hedge changes in investment opportunities (ρ = 0); and when investors have

unit coefficients of relative risk aversion (γ = 1). In those cases multiperiod investors

behave as if they were facing a series of identical one-period problems (Merton 1969,

1971, 1973, Giovannini andWeil 1989). This is why the first component of the optimal

portfolio rule is usually termed “myopic demand.”

In all other cases, intertemporal hedging demand is not necessarily zero. It de-

pends on all the parameters that characterize investor preferences and the investment

opportunity set. In particular, its sign is a function of the sign of the correlation be-

tween unexpected returns and changes in volatility (−ρ) and the sign of (1 − 1/γ).
When this correlation is negative (−ρ < 0), intertemporal hedging demand is nega-

tive for investors with γ > 1, and positive for investors with γ < 1. Investors who

are more risk averse than logarithmic investors have a negative hedging demand for

the risky asset because it tends to do worse when there is an increase in risk. On

the other hand, investors who are more aggressive than logarithmic investors have a

positive intertemporal hedging demand for the risky asset; they are willing to trade

off worse performance when volatility is high for extra performance when volatility is
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low.

We have noted that intertemporal hedging demand is zero when ρ = 0. It is

also zero when investors are infinitely risk averse. This follows from the fact that

limγ→∞A = 0. For these investors, the optimal overall allocation to the risky asset

is zero, since the myopic component of portfolio demand is also zero when γ →∞.

Finally, it is worth noting here that we can use the explicit solution for the optimal

policies given in Proposition 1 to examine the effect on intertemporal hedging demand

of changes in the parameters that determine the process for precision, particularly σ,

κ and ρ. We perform these comparative statics exercises in Section 6.

3 An Approximate Solution for the General Case

We now address the general case, where the investor’s elasticity of intertemporal

substitution of consumption can take any value. The general case is interesting for

two reasons. First, it is empirically relevant, since estimates of ψ available from both

aggregate data and disaggregate data on individual investors suggest that ψ is below

one (Hall 1988, Campbell and Mankiw 1989, Campbell 1999, Vissin-Jorgensen 2002).

Second, it nests as a special case the time-additive power utility case standard in the

literature. Since γ = 1/ψ with power utility, the ψ = 1 case does not nest power utility

unless we restrict ourselves to the special case of log utility–where γ = 1/ψ = 1.

Unfortunately, there is no exact analytical solution to the model in the general

case. However, we show in this section that we can still find an approximate analytical

solution to the problem. This solution provides strong economic intuition about the
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nature of optimal portfolio choice with time-varying risk, and converges to an exact

solution in those special cases such a solution is known. We argue in Section 6.3 that,

for all other cases, it is reasonably accurate.

3.1 Bellman equation and approximation

When ψ is not restricted to one, the Bellman equation for the problem is still given

by equation (9). The first order condition for portfolio choice is still given by (11),

but the first order condition for consumption resulting from the envelope condition

fC = JX is different, because the aggregator takes a different form, given in (6). The

first order condition for consumption is now given by:

Ct = J−ψX [(1− γ)J ]
1−γψ
1−γ βψ. (15)

After plugging (11) and (15) into the Bellman equation (9), guessing that J(Xt, yt) =

I(yt)X
1−γ
t /(1− γ), and making the transformation I = H− 1−γ

1−ψ , we obtain the follow-

ing non-homogeneous ordinary differential equation (ODE):

0 = −βψH−1 + ψβ +
(1− ψ) (µ− r)2

2γ
yt − ρσ(µ− r) (1− γ)

γ

Hy

H
yt

+r (1− ψ) +
ρ2σ2(1− γ)2

2γ (1− ψ)

µ
Hy

H

¶2
yt − Hy

H
κ(θ − yt)

+
σ2

2

µ
1− γ

1− ψ
+ 1

¶µ
Hy

H

¶2
yt − σ2

2

Hyy

H
yt. (16)

Unfortunately, equation (16) is a non-linear ODE in H whose analytical solution

is unknown except in three special cases. The first two cases are well-known from

Merton’s (1969, 1971, 1973) work, and correspond to log utility (γ = ψ ≡ 1) and

constant investment opportunities (κ, σ = 0).
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The third case corresponds to power utility and perfect instantaneous correlation

of the state variable with the risky asset return–so that markets are complete.7 This

case has also been explored by Wachter (2002) and Liu (2002). Unfortunately, the

assumption of perfect correlation between changes in volatility and asset returns is

not empirically plausible. For example, in Section 6 we estimate that for the US

market this correlation is large, but still far from perfect. This suggests that we

should consider the general case.

In the general case, it is still possible to find an approximate analytic solution

to the nonlinear ODE (16), based on a log-linear expansion of the consumption-

wealth ratio around its unconditional mean. Campbell (1993), Campbell and Viceira

(1999, 2001), and Campbell, Chan, and Viceira (2003) have used an identical ap-

proximation to solve for optimal intertemporal portfolio and consumption problems.

However, while they work in discrete-time and use the approximation to linearize the

log budget constraint, we work here in continuous-time and use it to linearize the

Bellman equation. We can view this approach as a particular class of the perturba-

tion methods of approximation described in Judd (1998), where the approximation

takes place around a particular point in the state space–the unconditional mean of

the log consumption-wealth ratio.

We start by noting that the envelope condition (15) implies

βψH−1 = exp {ct − xt} ,

where ct−xt = log (Ct/Xt). Therefore, using a first-order Taylor expansion of exp{ct−
xt} around E[ct − xt] ≡ (c− x) we can write

βψH−1 ≈ h0 + h1 (ct − xt) , (17)
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where h1 = exp {c− x}, and h0 = h1(1− log h1).

Substituting (17) for βψH−1 in the first term of (16), it is easy to see that the

resulting ODE has a solution of the form H = exp{A1yt+B1}. This solution implies
a value function of the form

J (Xt, yt) = exp

½
−
µ
1− γ

1− ψ

¶
(A1yt +B1)

¾
X1−γ

t

1− γ
, (18)

where A1 and B1 solve a system of two equations given in Appendix A.

3.2 Optimal policies

We now state the approximate solution in the following proposition:

Proposition 2 When ψ 6= 1, there is an approximate analytical solution to problem
(5)-(8) with value function given by (18). The optimal consumption and portfolio

rules implied by this value function are

Ct

Xt
= βψ exp {−A1yt −B1} , (19)

and

πt =
1

γ
(µ− r) yt +

µ
1− 1

γ

¶
(−ρ)σA1yt, (20)

where A1 ≡ −A1/(1−ψ) > 0, and A1 and B1 are given by the solution to the system

of equations (32)-(33). A1 does not depend on ψ except through the loglinearization

coefficient h1, and it reduces to A in Proposition 1 when h1 = β.

Proof. See Appendix A. ¥
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The approximate solution depends on the loglinearization coefficient h1, which is

itself endogenous. However, Proposition 2 shows that we can still derive a number of

properties of the solution without solving explicitly for h1, using the fact that it lies

between zero and one. We now comment on some of these properties, and leave for

Section 6 the description of a simple procedure to compute numerical values for h1

and the optimal policies.

Proposition 2 shows that the optimal log consumption-wealth ratio is an affine

function of instantaneous precision. Since A1/(1 − ψ) < 0, the consumption-wealth

ratio is a decreasing monotonic function of volatility for investors whose intertemporal

elasticity of consumption ψ is smaller than one, while it is an increasing function of

volatility for investors whose elasticity is larger than one.

This property reflects the comparative importance of intertemporal income and

substitution effects of volatility on consumption. To understand this, consider the

effect on consumption of an unexpected increase in volatility. This increase implies a

deterioration in investment opportunities, because returns on the risky asset are now

more volatile, while its expected return is the same.

A deterioration in investment opportunities creates a positive intertemporal sub-

stitution effect on consumption–because the investment opportunities available are

not as good as they are at other times–but also a negative income effect–because

increased uncertainty increases the marginal utility of consumption. For investors

with ψ < 1, the income effect dominates the substitution effect and they reduce their

current consumption relative to wealth. For investors with ψ > 1, the substitution

effect dominates, and they increase their current consumption relative to wealth.
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Proposition 2 also characterizes optimal portfolio demand in the general case. This

proposition implies that optimal portfolio demand in the ψ 6= 1 case is qualitatively
analogous to optimal portfolio demand in the ψ = 1 case. This follows immediately

from direct comparison of equations (20) and (14). These equations are identical,

except for the positive coefficients A1 and A. Section 6 shows that, for empirically
plausible characterizations of the process for precision, these coefficients are very

close, which implies that the effect of ψ on optimal portfolio choice is quantitatively

small. Campbell and Viceira (1999, 2001) and Campbell, Chan and Viceira (2003)

show a similar result in models with time variation in risk premia and interest rates.

Finally, we want to note that an important feature of the approximate solution

is that it delivers the exact expression for the optimal policies in the special cases of

log utility (γ = ψ ≡ 1), unit elasticity of intertemporal substitution, and constant
investment opportunities (κ, σ = 0 and vt ≡ v). Appendix A shows this convergence

result.

4 Consumption and Portfolio Choice When Ex-

pected Excess Returns Covary with Volatility

The analysis of optimal consumption and portfolio choice with time-varying risk in

Sections 3 and 4 assumes that expected excess returns are constant. A natural exten-

sion of this analysis is to replace the assumption of constant expected excess returns

with one that allows expected excess returns to vary with volatility:

Et

∙
dSt
St
− rdt

¸
= (α1 + α2vt) dt =

¡
α1 + α2y

−1
t

¢
dt. (21)
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When α2 > 0, equation (21) implies increases in risk are rewarded with increases in

expected excess returns. This model also nests the model in Section 2, which obtains

when α2 = 0, and α1 = µ− r.

To derive the optimal policies under this new assumption we follow the same

method as in Section 4. We describe here solution, and leave for Appendix B a

detailed analysis of its derivation. The approximate solution implies a value function

of the form

J (Xt, yt) = exp

½
−
µ
1− γ

1− ψ

¶
(A1yt +A2 log yt +B2)

¾
X1−γ

t

1− γ
,

whereA1 andA2 solve two independent quadratic equations andB2 solves an equation

which is linear, given A1 and A2.

Proposition 3 shows the optimal consumption and portfolio rules implied by this

value function:

Proposition 3 The optimal consumption and portfolio rules when Et[(dSt/St) −
rdt] = (α1 + α2vt)dt = (α1 + α2/yt)dt are

Ct

Xt
= βψ exp {−A1yt −A2 log yt −B2} , (22)

and

πt =
1

γ
(α1yt + α2) +

µ
1− 1

γ

¶
(−ρ)σ (A1yt +A2) , (23)

where A1 ≡ −A1/(1−ψ) > 0, and A2 ≡ −A2/(1−ψ) < 0. A1 and A2 do not depend
on ψ, except through the loglinearization constant h1. Moreover, A1 is mathematically
identical to A1 in Proposition 2, with α1 = µ − r. Thus it does not depend on α2,

except through h1. A2 does not depend on α1.
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Proof. See appendix B. ¥

Proposition 3 shows that the myopic component and the intertemporal hedging

component of portfolio demand are both affine functions of precision–not simply

proportional to precision, as in the case with constant expected returns. Thus total

portfolio demand is itself an affine function of precision. The slope of total portfolio

demand is mathematically identical to the optimal portfolio rule in the case with

constant expected returns–with α1 replacing µ− r. It captures essentially the effect

on portfolio choice of changes in volatility that are not rewarded by corresponding

changes in expected excess returns.

The intercept of the optimal portfolio rule captures the additional effects caused

by the fact that now a unit shift in volatility changes stock expected excess returns

by α2 units. It is interesting to note that the magnitude of the intercept depends on

α2, but its sign is independent of the sign of α2. To gain some intuition on why the

sign of α2 is irrelevant for intertemporal hedging, consider myopic portfolio demand

when α1 = 0. In that case, the myopic portfolio is long in stocks when α2 > 0,

and short when α2 < 0, and it has a Sharpe ratio equal to |α2|√vt. Thus negative
shocks to volatility always drive the Sharpe ratio on the myopic portfolio downwards

regardless of their impact on expected excess returns; they represent a worsening in

investment opportunities. Equation (23) with α1 = 0 shows that whether this leads

to a positive or a negative intertemporal hedging demand for stocks depends on the

sign of the instantaneous correlation between returns and shocks to volatility (−ρ)
and (1 − 1/γ). In particular, when −ρ < 0 and so return is low when volatility is

high, an investor with γ > 1 will have a positive intertemporal hedging demand for

the risky asset, because it tends to pay when investment opportunities worsen and
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the marginal utility of consumption is high.

5 Optimal Consumption and Portfolio Choice with

Stochastic Volatility: The U.S. Experience

5.1 Parameter values

This section examines the implications for optimal portfolio choice and consumption

of the patterns in volatility observed in the U.S. stock market. Table 1 reports pa-

rameter estimates of the process (1)-(2) and their standard errors. We estimate the

model using the Spectral Generalized Method of Moments (SGMM) of Chacko and

Viceira (2003), Jiang and Knight (2002) and Singleton (2000).8 Standard errors are

bootstrapped, and parameter estimates are annualized to facilitate their interpreta-

tion.

We provide two sets of parameter estimates. The first set is based on monthly

excess stock returns on the CRSP value-weighted portfolio over the T-bill rate from

January 1926 through December 2000. The second set is based on annual excess

equity returns on the Standard and Poor Composite Stock Price Index over the prime

commercial paper rate from 1871 through 2000. This is an updated version of Shiller’s

(1989) dataset. In both datasets, stock returns are inclusive of dividends. In our

calibration exercises we set the riskless rate at 1.5% per year.

The estimates of both the unconditional mean of excess returns and precision

have low standard errors in both samples. However, the estimates of the rest of the
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parameters–particularly the reversion parameter–are less precise. These estimates

imply a mean excess return around 8% per year in both samples and, using the

approximate expression of the unconditional variance of stock returns given in (4), an

unconditional standard deviation of returns of almost 20% per year in the monthly

sample, and about 25% per year in the annual sample. The instantaneous correlation

between shocks to volatility and stock returns (−ρ) is negative and relatively large–
about −53% in the monthly sample and about −37% in the annual sample.

The estimate of the reversion parameter κ in the precision equation implies a

half-life of a shock to precision of about 2 years in the monthly sample. The rate of

mean reversion is slower in the annual sample, where the estimate of the half-life of a

shock to precision is about 16 years. French, Schwert and Stambaugh (1987), Schwert

(1989), and Campbell and Hentschel (1990) have also found a relatively slow speed of

adjustment of shocks to stock volatility in low frequency data. This slow reversion to

the mean in low frequency data contrasts with the fast speed of adjustment detected

in high frequency data by Andersen, Benzoni and Lund (1998).

These results suggest that there might be high frequency and low frequency (or

long-memory) components in stock market volatility (Chacko and Viceira, 2003). By

construction, the single component model (1)-(2) cannot capture these components

simultaneously. On the other hand, it is very difficult to find analytical solutions

for a model with multiple components in volatility. We hope that by focusing on

estimates of the single component model derived from low frequency data, we can

capture the persistence and variability characteristics of the volatility process that

are most relevant to long-term investors. Accordingly, in our calibration exercise we

focus on the monthly and annual estimates of the single component model.
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5.2 Calibration results

The optimal portfolio choice and consumption rules given in equations (19) and (20)

depend on the loglinearization coefficient h1, which is itself endogenous. To evaluate

these expressions numerically we use a simple recursive procedure. We take an initial

value of h1, solve for the corresponding optimal consumption-wealth ratio (19), and

use this consumption-wealth ratio to calculate a new value for h1. We repeat this

procedure until convergence. In practice, convergence is extremely fast.

Table 2 explores the implications for portfolio choice of the monthly estimates,

while Table 3 explores the implications of the annual estimates. We consider investors

with coefficients of relative risk aversion (γ) in the interval [0.75, 40], elasticities

of intertemporal substitution (ψ) in the interval [1/0.75, 1/40], and a rate of time

preference (β) equal to 6% annually.9

Panel A of each table reports mean optimal percentage allocations to stocks. It

shows that the mean optimal portfolio allocation to stocks varies widely across in-

vestors with different coefficients of relative risk aversion but similar elasticity of

intertemporal substitution of consumption. By contrast, there is very little varia-

tion in the mean optimal portfolio allocations of investors with different elasticities

of intertemporal substitution of consumption but similar coefficient of relative risk

aversion. Campbell and Viceira (1999, 2001) and Campbell, Chan, and Viceira (2003)

find similar results in models with time-varying expected returns and interest rates.

Panel B evaluates the empirical importance of intertemporal hedging demands

resulting from volatility risk. It reports the percentage ratio of hedging portfolio

demand over myopic portfolio demand. Equations (14) and (20) show that this ratio
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is independent of the level of precision or volatility. Consistent with the results in

Propositions 1 and 2, the estimated negative instantaneous correlation of volatility

with stock returns implies a positive intertemporal hedging demand for investors with

γ < 1, and a negative demand for investors with γ > 1.

More importantly, Panel B shows that our estimates of volatility risk imply in-

tertemporal hedging demands that are typically small. By contrast, Brandt (1999),

Campbell and Viceira (1999, 2001, 2002), Campbell, Chan and Viceira (2003), and

others have shown that the time variation in risk premia or in interest rates estimated

from U.S. data imply large intertemporal hedging demands for investors with similar

preferences.

There are, however, striking differences across both samples. The monthly esti-

mates generate very small intertemporal hedging demands: Even for highly risk averse

investors (γ = 40), hedging demand reduces myopic demand by less than 4%. By

contrast, the annual estimates generate much larger intertemporal hedging demands:

Hedging demand reduces myopic demand by 4.7% for investors with γ = 1.5, and by

almost 16% for investors with γ = 40.

Figures 1 through 4 report the results of comparative statics exercises that evaluate

the sensitivity of intertemporal hedging demand to changes in the persistence, mean

and variance of precision, and in its correlation with stock returns. These are the

main dimensions along which the monthly estimates differ from the annual estimates.

These figures plot the ratio of hedging demand to myopic demand for investors with

ψ = 1/2 and γ = {2, 4, 20} as we consider changes in the parameters of interest,
and keep the rest of the parameters at the values implied by the monthly estimates.

It is possible to show analytically that qualitatively similar results hold for general
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parameter values in the case ψ = 1.10

First, we examine in Figure 1 the effect on intertemporal hedging of changes in

the persistence of shocks to precision (κ), holding the first and second unconditional

moments of stock returns and precision constant at the values implied by the monthly

estimates.11 We consider values κ implying half-lives of a shock to precision between 6

months and 30 years. Figure 1 shows that a compensated increase in persistence leads

to an increase in the size of intertemporal hedging demand. However, this increase

is small. Similar results, not shown here to save space, obtain when we consider

compensated changes in σ.

Interestingly, Figure 1 shows that the absolute magnitude of intertemporal hedging

demand does not increase monotonically with compensated increases in persistence.

The case ψ = 1 provides some intuition for this result. When ψ = 1, the inflexion

point is κ = β. Thus a compensated increase in persistence increases the size of

intertemporal hedging demand only when the rate at which investors discount future

utility of consumption is smaller than the rate at which shocks to precision die out.

Second, we consider the effect of correlation. Figure 2 repeats the experiment

of Figure 1, except that it considers changes in the correlation coefficient ρ. The

effect of changes in correlation is somewhat larger than the effect of compensated

changes in persistence, especially when we consider correlations close to perfect, but

it is still modest. Figure 2 also shows that intertemporal hedging demand increases

monotonically with compensated increases in persistence.

Third, we explore the effect on intertemporal hedging demand of changes in the

unconditional variance of precision, while keeping its mean constant. Since Var(y) =
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σ2θ/2κ, we can implement this exercise by considering uncompensated changes in

σ or κ. We report results based on varying σ and note that varying κ instead of σ

produces similar results. We determine a reasonable range of variation for σ using the

fact that the unconditional variance of stock returns also changes with σ (see equation

[4]); we consider values of σ implying stock return volatilities between 18% and 30%.

Figure 3 reports the result of this experiment, with the stock return volatility implied

by σ on the horizontal axis.

Figure 3 shows that intertemporal hedging demand is highly responsive to changes

in the variance of precision, especially when investors are highly risk averse. How-

ever, this could be the result of changes in the unconditional variance of stock returns

rather than the result of changes in the unconditional variance of precision, since both

moments increase with σ. To isolate one effect from the other, Figure 4 evaluates

the effect on intertemporal hedging demand of changes in the unconditional vari-

ance of stock returns that leave the unconditional variance of precision constant.12

Figure 4 shows that this effect is relatively small. Thus this analysis suggests that

intertemporal hedging demand is comparatively more responsive to changes in the

unconditional variance of the state variable than to changes in the persistence of

shocks to this variable, its mean, or its correlation with stock returns.

Table 4 explores the implications for consumption and savings of time varia-

tion in volatility. Panel A in the table reports the exponentiated optimal mean

log consumption-wealth ratio and Panel B reports the long-term expected return on

wealth. The numbers in the table are based on the monthly sample. Panel A shows

that optimal consumption depends on both γ and ψ. It is a positive monotonic func-

tion of γ when ψ > 1, while it is a negative monotonic function of γ when ψ < 1. It
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is independent of γ and equal to the rate of time preference β (6%) when ψ = 1–as

shown in Section 3.

These patterns are identical to those found by Campbell and Viceira (1999) in the

context of a model with time-varying expected returns. We simply summarize here

their explanation for those patterns. Consider first the right-hand column of Panel A.

It reports the exponentiated mean optimal consumption-wealth ratio of investors who

are extremely reluctant to substitute consumption intertemporally (ψ is very close to

zero) but differ in their aversion to risk. These investors wish to maintain a constant

expected consumption growth rate, regardless of current investment opportunities.

They can do this by consuming the long-run average return on their portfolio, with

a precautionary-savings adjustment for risk. If the investor is highly risk averse, as

she is in the bottom of the column, then she chooses a portfolio which is almost

fully invested in the riskless asset and earns a low return with little risk. If she is

highly risk tolerant, she chooses a levered portfolio with a high expected return and

risk. This explains why the mean log consumption-wealth ratio is higher at the top

of the column than at the bottom. Precautionary savings explain why the mean log

consumption-wealth ratio is very close to the long-term expected return on wealth at

the bottom of the column, and is lower at the top.

Now consider what happens as investors become more willing to substitute con-

sumption intertemporally; that is, as ψ increases and we move to the left in Panel

A. Ignoring precautionary savings effects, an investor who is willing to substitute in-

tertemporally will have higher saving and lower consumption than an individual who

is reluctant to substitute intertemporally, if the time-preference adjusted rate of re-

turn on saving is positive, but will have lower saving and higher current consumption
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if it is negative. Panel A illustrates this pattern. Investors with low risk aversion γ

at the top of the panel choose portfolios with high expected returns, so a higher ψ

corresponds to a lower average consumption wealth ratio; investors at the bottom of

the table choose portfolios with low expected returns, so for these investors a higher

ψ corresponds to a higher consumption-wealth ratio.

Finally, Table 5 investigates the effect on optimal portfolio choice when expected

returns change with volatility, using the model of Section 5. This model assumes that

Et

∙
dSt
St
− rdt

¸
= α1 + α2vt. (24)

Table 5 explores how the allocations of Table 2 change as α2 moves away from zero,

holding the unconditional mean and variance of stock returns constant. To hold the

unconditional mean excess return at the same value as in the in the benchmark case

α2 = 0, for each value of α2 we set α1 = µ − r − α2 E[vt], where E[vt] is given in

(4). To hold the unconditional variance of stock returns constant, we recompute θ for

each value of α2. Since we do not have an analytical expression for the variance of

stock returns when expected returns are time varying, we use Monte Carlo simulation

to determine the value of θ that leaves the variance unchanged as we move α2 away

from zero.13

We consider values of α2 equal to {-2.00, -0.75, -0.25, 0.00, 0.25, 0.75, 2.00}.14

Each row of Table 5 reports allocations corresponding to this set of values of α2,

given a particular value of γ. All entries in the table assume ψ = 1/2. Panel A

reports mean optimal allocations to stocks based on equation (23) in Proposition 3.

Panel B reports the percentage value of the intercept of the intertemporal hedging

component, and Panel C reports the percentage value of the slope of the intertemporal

hedging demand times θ, the unconditional mean of precision. Of course, the mean
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intertemporal hedging demands obtain by adding the numbers in Panel B and C.

Panel A shows that changes in α2 have a large impact on mean optimal portfolio

demands. However, this effect operates mainly through the myopic component of

portfolio demand: Panel B and C show that the intercept and the slope (times the

mean of precision) of intertemporal hedging demands are too small in absolute value to

have any significant impact on total portfolio demand when using parameter estimates

based on the monthly dataset.

The negative sign of the instantaneous correlation between volatility and stock

returns implies that the intercept is negative for γ < 1 and positive for γ > 1, while

the slope is positive for γ < 1 and negative for γ > 1. We have noted in Section 5 that

the slope captures intertemporal hedging effects of unrewarded changes in volatility,

while the intercept captures intertemporal hedging effects of rewarded changes in

volatility–it is zero when expected excess returns are constant, and it increases as

α2 becomes larger in absolute value. Table 5 shows that the effect of the slope is

relatively more important than the effect of the intercept, at least for values of α2

close to zero.

5.3 The Accuracy of the Approximate Solution

The portfolio allocations and consumption-wealth ratios shown in Section 6 are based

on an analytical solution for the optimal rules that is exact only in the case of ψ = 1.

In all other cases this solution is approximate, based on an expansion of the optimal

log consumption-wealth ratio around its unconditional mean. Campbell (1993) and

Campbell and Viceira (2002) note that this solution method is accurate provided that
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the log consumption-wealth ratio is not too variable around its unconditional mean.

Table 6 reports annualized, percentage values of the unconditional standard devia-

tion of the optimal log consumption-wealth ratio, |A1|
p
Var(yt) = |A1|σ

p
θ/2κ. The

log consumption-wealth ratio exhibits low volatility in most cases, both in absolute

terms and relative to its mean. The exception are investors with very low elastici-

ties of intertemporal substitution of consumption and low coefficients of relative risk

aversion. These results suggest that this solution is likely to be accurate for values

of ψ far from one, in line with the results of Campbell (1993), Campbell and Koo

(1997) and Campbell, Cocco, Gomes, Maenhout, and Viceira (2002) for models with

time variation in interest rates and expected excess returns.

6 Conclusion

We have explored in this paper dynamic optimal consumption and portfolio choice

when asset return volatility is time-varying. We have considered a model where long-

horizon investors with Duffie-Epstein (1992) recursive preferences over intermediate

consumption have two assets available for investment, a riskless bond and a risky

asset (“stocks”). Stock return precision–the reciprocal of volatility–follows a mean-

reverting process which is instantaneously correlated with stock returns.

We have shown that this model has an analytical solution which is exact when

investors have unit elasticity of intertemporal substitution of consumption–but not

necessarily unit coefficient of relative risk aversion–, and approximate in all other

cases. Optimal portfolio demand for stocks is a linear combination of two components:
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a myopic (or mean-variance) component, and an intertemporal hedging component,

both of which change linearly with precision. We have used this solution to analyt-

ically characterize intertemporal hedging demand in the presence of volatility risk,

and to assess its quantitative importance. To this end, we have conducted a compre-

hensive calibration exercise based on estimates of the joint process for stock market

returns and volatility using monthly U.S. stock market returns from 1926 to 2000,

and annual returns from 1871 to 2000.

Our estimates of the instantaneous correlation of precision with stock returns

are large and positive, implying a large negative correlation of volatility with stock

returns. Shocks to precision exhibit low persistence and variance, especially in the

monthly sample. These estimates generate small, negative intertemporal hedging

demands for investors with coefficients of relative risk aversion larger than one. By

contrast, Brandt (1999), Campbell and Viceira (1999, 2001, 2002), Campbell, Chan

and Viceira (2003) and others have shown that the estimated time variation in risk

premia or in real interest rates in the U.S. results in much lager intertemporal hedging

demands for investors with similar preferences. A comprehensive comparative statics

exercise suggests that the unconditional variance of precision has to be much larger

to generate intertemporal hedging demands of comparable size.

An important caveat of our empirical analysis is that we have counterfactually

assumed that investors observe volatility (or precision), and that they take as true

parameters our empirical estimates of the joint process for returns and volatility.

In practice, however, investors do not observe volatility, and they do not know the

parameters of the process for volatility or even the process itself. They must infer

all of that from observed returns, and they must account for this uncertainty when
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they make their portfolio decisions. The large standard errors of some of our point

estimates, and the significant differences in the estimates from the monthly sample

and the annual sample, suggest that these may be important issues. Barberis (2000),

Brennan (1998), Xia (2001), and others have shown that parameter uncertainty and

learning can have a large effect on optimal long-term investment strategies. Inte-

grating all of these effects into a one single empirically implementable framework is

beyond the scope of this paper, and a challenging task for future research.

We have also considered a model where expected stock excess returns are an

affine function of volatility. In this case, optimal portfolio demand and its hedging

component are both affine functions of precision. A possible extension of this model

could allow for both expected stock returns and risk to vary over time as a function

of a vector of state variables. Intertemporal hedging demand would then depend on

the resulting process for the Sharpe ratio of stocks, and how it correlates with the

vector of state variables. However, Campbell (1987), Harvey (1989, 1991), Glosten,

Jagannathan, and Runkle (1993), Ait-Sahalia and Brandt (2001) and others have

modelled time-varying returns and volatility jointly, and found that the effects of

state variables on expected returns are stronger than their effects on volatility. This

suggests that the negative hedging demand associated with volatility risk will be

modest even in a framework that combines time-varying volatility with time-varying

expected returns.
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Figure Legends

Figure 1: Effect on optimal portfolio demand of compensated changes in

the persistence of shocks to precision. This figure plots the ratio of intertemporal

hedging demand to myopic demand for investors with ψ = 1/2 and γ = {2, 4, 20} as
we consider changes in κ that leave the first and second unconditional moments of

stock returns and precision constant at the values implied by the monthly estimates

shown in Table 1. This figure considers values of κ implying half-lives of a shock to

precision between 6 months and 30 years. The vertical line intersects the horizontal

axis at the value implied by the monthly estimate of κ.

Figure 2: Effect on optimal portfolio demand of compensated changes in

the instantaneous correlation of shocks to volatility and stock returns (−ρ).
This figure plots the ratio of intertemporal hedging demand to myopic demand for

investors with ψ = 1/2 and γ = {2, 4, 20} as we consider changes in the instantaneous
correlation between shocks to volatility and stock returns, while holding the rest of

the parameters constant at their monthly estimates shown in Table 1. The vertical

line intersects the horizontal axis at the value implied by the monthly estimate of −ρ.

Figure 3: Effect on optimal portfolio demand of changes in the variance

of precision. This figure plots the ratio of intertemporal hedging demand to myopic

demand for investors with ψ = 1/2 and γ = {2, 4, 20} as we consider changes in the
unconditional variance of precision, while keeping its mean constant. Since E[yt] = θ

and Var(yt) = σ2θ/2κ, we implement this exercise by changing σ and holding the rest

of the parameters constant at their monthly estimates shown in Table 1. We consider

values of σ implying stock return volatilities between 18% and 30%. To facilitate

interpretation, the horizontal axis plots stock return volatility instead of σ or Var(yt).
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The vertical line intersects the horizontal axis at the value implied by the monthly

estimate of the unconditional standard deviation of stock returns.

Figure 4: Effect on optimal portfolio demand of changes in the uncon-

ditional variance of stock returns, holding the unconditional variance of

precision constant. This figure plots the ratio of intertemporal hedging demand to

myopic demand for investors with ψ = 1/2 and γ = {2, 4, 20} as we consider changes
in the unconditional variance of stock returns, holding the unconditional variance of

precision constant. Since Var(dSt/St) ≈ 1/θ + Var(yt)/θ3 and Var(yt) = σ2θ/2κ, we

implement the change in Var(dSt/St) by varying θ, and we hold Var(yt) constant

by varying σ appropriately. We hold the rest of the parameters constant at their

monthly estimates shown in Table 1. We consider values of θ implying stock return

volatilities between 18% and 30%. The vertical line intersects the horizontal axis at

the value implied by the monthly estimate of the unconditional standard deviation

of stock returns.
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Appendices

A Derivation of Optimal Policies Under Constant

Expected Returns

A.1 Proof of Proposition 1

Substituting the first-order conditions into (9) and rearranging gives the Bellman

equation:

0 = f (C (J) , J)− JXC (J)− 1
2

(JX)
2

JXX
(µ− r)2 yt − JXJXy

JXX
ρσ (µ− r) yt

+JXXtr − 1
2

(JXy)
2

JXX
ρ2σ2yt + Jyκ(θ − yt) +

1

2
Jyyσ

2yt, (25)

where C(J) denotes the expression for consumption resulting from (10).Substitution

of (12) into the Bellman equation (25) yields an ordinary differential equation (ODE).

This equation leads to two equations for A and B:

aA2 + bA+ c = 0, (26)

(1− γ) (β log β + r − β)− βB + κθA = 0, (27)

where

a =
σ2

2γ (1− γ)

£
γ
¡
1− ρ2

¢
+ ρ2

¤
, (28)

b =
ρσ(µ− r)

γ
− β + κ

1− γ
, (29)

c =
(µ− r)2

2γ
. (30)
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Equation (26) is quadratic in A, and equation (27) is linear in B given A. For

general parameter values, the equation for A has two roots. These roots are real if

the discriminant of the equation, ∆ = b2 − 4ac, is non-negative. When γ > 1, it is

immediate to see by simple inspection that ∆ is always non-negative. When γ < 1,

∆ is positive provided that

∆ =

µ
β + κ

1− γ

¶
− 2ρσ(µ− r)

γ
− σ2(µ− r)2

γ (β + κ)
> 0. (31)

This expression results from simple algebraic manipulation of the expression for ∆.

To determine the sign of the roots of (26), we note that the product of the roots

of the equation is equal to

c

a
=

(1− γ) (µ− r)2

σ2 [γ (1− ρ2) + ρ2]
.

Since [γ (1− ρ2) + ρ2] > 0 for all γ, c/a is always negative when γ > 1, and positive

when γ < 1. Therefore, the roots of the equation have opposite signs when γ > 1,

and they have the same sign when γ < 1.

We show now that only one of the two possible solutions for A has a limit as γ → 1

that equals the well-known solution in the special case of log utility (γ = ψ = 1),

for which A = B = 0, and the value function is simply log(Xt) (Merton, 1969, 1971,

1973). The limit of A as γ → 1 is given by

lim
γ→1

A =
(β + κ)∓

q
(β + κ)2

σ2
,

where the negative sign holds when γ > 1, and the positive sign holds when γ < 1.

For general parameter values, this expression is zero only if we pick the positive root

of the discriminant ∆ when γ > 1, and the negative root when γ < 1. Note that

A = 0 and γ = 1 implies immediately that B = 0.
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A.2 Proof of Proposition 2

The value function follows immediately from (16) and (17). Substitution of (17)

for βψH−1 in the first term of (16) results in an ODE whose solution has the form

H = exp{A1yt +B1}, where

a1A
2
1 + b1A1 + c1 = 0, (32)

h0 − h1 [B1 − ψ log β]− ψβ − r(1− ψ) + κθA1 = 0, (33)

and

a1 =
σ2

2γ

µ
1− γ

1− ψ

¶£
γ
¡
1− ρ2

¢
+ ρ2

¤
, (34)

b1 = (h1 + κ)− (1− γ)ρσ(µ− r)

γ
, (35)

c1 =
(1− ψ)(µ− r)2

2γ
. (36)

The analysis of the quadratic equation (32) for A1 is parallel to the analysis of

the quadratic equation (26) for A in the ψ = 1 case, so that we simply state here

the properties of A1 derived from this analysis. First, A1/(1 − ψ) is independent

of ψ given h1. Second, comparison of equations (34)-(36) with equations (28)-(30)

shows that −A1/(1 − ψ) and A/(1 − γ) are non-negative identical functions of h1

and β, respectively. Thus A1 reduces to A when h1 = β. Third, when γ > 1, the

discriminant of equation (32) is always positive and the roots of the equation are real

and have opposite sign; when γ < 1, the discriminant can have either sign but, if it is

positive, the roots of the equation are real and have the same sign. However, only the

positive square root of the discriminant ensures in both cases that the approximate

solution approaches the exact solution when ψ = 1.
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Finally, the optimal policies follow from (18) and the first order conditions (11)

and (15).

A.3 Convergence of approximate solution to exact solution

in special cases

An important feature of this approximate solution is that it delivers the exact solution

in those cases where this solution is known: log utility, unit elasticity of intertemporal

substitution, and constant investment opportunities.

For convenience, we note here that the solution to the quadratic equation (32) for

A1 is

A1 =

(1−γ)ρσ(µ−r)
γ

− (h1 + κ) +

r³
(h1 + κ)− (1−γ)ρσ(µ−r)

γ

´2
− σ2(µ−r)2(1−γ)[γ(1−ρ2)+ρ2]

γ2

σ2

γ

³
1−γ
1−ψ
´
[γ (1− ρ2) + ρ2]

.

(37)

In the case of log utility (γ = ψ ≡ 1), we find by direct substitution of ψ = 1 into
(37) that A1 = 0. Further substitution of ψ = 1 into equation (33) for B1 shows that

B1 = 0 when h1 = β. This implies that Ct/Xt = β, which is in turn consistent with

h1 ≡ exp {E[log(Ct/Xt)]} = β. Now, using (37) it is straightforward to check that

lim
γ→1

1− γ

(1− ψ) γ
A1 = lim

γ→1

µ
1− 1

γ

¶
A1 = 0, (38)

so that πt = (µ − r)yt.This is the exact solution to the problem with log utility

reported in Merton (1969).

When ψ = 1 but γ 6= 1, we have that Ct/Xt = β and h1 = β using the same
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arguments as in the log utility case. However, the limit (38) is not necessarily zero

and the hedging component of πt does not vanish. That is, the optimal consumption

rule is myopic, while the optimal portfolio rule is not. This is the case discussed in

section 3. Note that, when γ = 1 but ψ 6= 1, the result is reversed: The hedging

component of πt vanishes and πt = (µ − r)yt, but consumption relative to wealth is

not constant.

Finally, when investment opportunities are constant, implying κ, σ = 0 and vt ≡ v,

both policies are myopic. Substitution of these parameter values into the expressions

for a1, b1 and c1 in (34)-(36), shows that equation (32) reduces to a linear equation

for A1 with solution

A1 = −(µ− r)2 (1− ψ)

2γh1
. (39)

so that A1 = (µ − r)2/2γh1. Note, however, that σ = 0 implies that the optimal

portfolio rule is myopic, even though A1 is not necessarily zero: πt = (µ− r)/γv.

Further substitution of κ, σ = 0 and vt ≡ v into equation (32) shows that

B1 =
h1 (1− log h1) + ψ log β − ψβ − r (1− ψ)

h1
. (40)

Substitution of the solutions for A1 and B1 given in (39) and (40) into equation

(19) gives

ct − xt =
−h1 (1− log h1) + ψβ + r (1− ψ)

h1
+
(µ− r)2 (1− ψ)

2γh1

1

v
. (41)

Since ct − xt is constant and equal to log h1, we can solve equation (41) for h1. We

find that

h1 =
Ct

Xt
= ψβ +

1

2
(1− ψ)

(µ− r)2

γv
+ (1− ψ) r.
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This is a generalized version of the exact solution given in Merton (1969) for the

power utility case (ψ = 1/γ) when investment opportunities are constant.

B Derivation of Optimal Policies Under Time-Varying

Expected Returns

We start by guessing the same functional forms for J(Xt, yt) and I(yt) as in the model

with constant expected return of Section 4. The Bellman equation for this problem

then simplifies to an ODE in H(yt) given by:

0 = −βψH−1 + ψβ +
(1− ψ)

2γ

µ
2α1α2 + α21yt +

α21
yt

¶
− ρσ (1− γ)

γ
(α1yt + α2)

Hy

H
yt

+r (1− ψ) +
ρ2σ2(1− γ)2

2γ (1− ψ)

µ
Hy

H

¶2
yt − Hy

H
κ(θ − yt) +

σ2

2

µ
1− γ

1− ψ
+ 1

¶µ
Hy

H

¶2
yt

−σ
2
y

2

Hyy

Ht
yt.

We now guess that H = exp{A1yt +A2 log yt +B} and make the substitution

βψH−1 ≈ h0 + h1(ct − xt),

− log yt ≈ log θv +
1

θv
(v − θv) = log κ− log

¡
κθ − σ2

¢− 1 + κθ − σ2

κ

1

yt
.

After collecting terms in 1/yt, yt, and 1 we obtain two quadratic equations for A1

and A2, and a linear equation for B given A1 and A2. The quadratic equations are:

0 =
(1− ψ)α22

2γ
−
∙
θ (h1 + κ)−

µ
h1
κ
+
1

2

¶
σ2 +

(1− γ)ρσα2
γ

¸
A2 + a2A

2
2, (42)

0 =
(1− ψ)α21

2γ
+

∙
(h1 + κ)− (1− γ)ρσα1

γ

¸
A1 + a1A

2
1, (43)
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where a2 = a1 and a1 is given in (34). The optimal policies obtain immediately from

substitution of the value function into the first order conditions (10) and (11).

Coefficient A2 obtains as the solution to the quadratic equation (42). Note that

A2 does not depend on α1. This equation has two roots. However, only the root

associated with the negative root of the discriminant ensures that A2 = 0 when α2 =

0–i.e., it ensures the mutual consistency between the solution given in Proposition 2

and this solution. When γ > 1, the roots of the equation are real and have opposite

signs. The root associated with the negative root of the discriminant implies that

A2/(1 − ψ) > 0. When γ < 1, the roots may be real or complex conjugate. The

condition that ensures that the discriminant of the equation is nonnegative, so that

the roots are real, also implies that A2/(1− ψ) > 0.

Coefficient A1 obtains as the solution to the quadratic equation (43). Simple

inspection of this equation and equation (32) shows that they are identical except

that α1 replaces (µ − r) in (43). Hence the analysis of A1 presented in Section 4 is

also valid here, and we have that A2/(1 − ψ) < 0, and A1 = 0 when α1 = 0. Note

that A1 does not depend on α2.

40



References

Aït-Sahalia, Y., and M. Brandt, 2001, “Variable Selection for Portfolio Choice”,

Journal of Finance, 56, 1297—1351.

Andersen, T., L. Benzoni, and J. Lund, 2002, “An Empirical Investigation of Continuous-

Time Equity Return Models,” Journal of Finance, 57, 1239—1284.

Ang, A., and G. Bekaert, 2002, “International Asset Allocation with Regime Shifts,”

Review of Financial Studies, 15, 1137—1187.

Balduzzi, P., and A. Lynch, 1997, “Transaction Costs and Predictability: Some

Utility Cost Calculations,” Journal of Financial Economics, 52, 47—78.

Barberis, N. C., 2000, “Investing for the Long Run When Returns Are Predictable,”

Journal of Finance, 55, 225—264.

Bollerslev, T., R. Y. Chou, and K. Kroner, 1992, “ARCH Modeling in Finance,”

Journal of Econometrics, 52, 5—59.

Brandt, M., 1999, “Estimating Portfolio and Consumption Choice: A Conditional

Euler Equations Approach,” Journal of Finance, 54, 1609—1645.

Brennan, M. J., 1998, “The Role of Learning in Dynamic Portfolio Decisions,” Eu-

ropean Finance Review, 1, 295—306.

Brennan, M. J., E. S. Schwartz, and R. Lagnado, 1996, “The Use of Treasury Bill

Futures in Strategic Asset Allocation Programs,” Finance Working Paper 7-

96, Anderson Graduate School of Management, University of California-Los

Angeles.

41



Brennan, M. J., E. S. Schwartz, and R. Lagnado, 1997, “Strategic Asset Allocation,”

Journal of Economic Dynamics and Control, 21, 1377—1403.

Campbell, J. Y., 1987, “Stock Returns and the Term Structure,” Journal of Finan-

cial Economics, 18, 373—399.

Campbell, J. Y., 1993, “Intertemporal Asset Pricing without Consumption Data,”

American Economic Review, 83, 487—512.

Campbell, J. Y., J. Cocco, F. Gomes, P. J. Maenhout, and L. M. Viceira, 2001,

“Stock Market Mean Reversion and the Optimal Equity Allocation of a Long-

Lived Investor,” European Finance Review, 5, 269—292.

Campbell, J. Y. and L. Hentschel, 1992, “No News is Good News. An Asym-

metric Model of Changing Volatility in Stock Returns,” Journal of Financial

Economics 31, 281—318.

Campbell, J. Y., and H. K. Koo, 1997, “A Comparison of Numerical and Analytical

Approximate Solutions to an Intertemporal Consumption Choice Problem,”

Journal of Economic Dynamics and Control, 21, 273—95.

Campbell, J. Y., M. Lettau, B. G. Malkiel, and Y. Xu, 2001, “Have Individual

Stocks BecomeMore Volatile? An Empirical Exploration of Idiosyncratic Risk,”

Journal of Finance, 56, 1—44.

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay, 1997, The Econometrics of Fi-

nancial Markets, Princeton University Press, Princeton, NJ.

Campbell, J. Y., and N. G. Mankiw, 1989, “Consumption, Income, and Interest

Rates: Reinterpreting the Time-Series Evidence,” in O. J. Blanchard and S.

42



Fischer (eds.), NBER Macroeconomics Annual 1989, MIT Press, Cambridge,

MA.

Campbell, J. Y., and L. M. Viceira, 1999, “Consumption and Portfolio Decisions

When Expected Returns Are Time Varying,” Quarterly Journal of Economics,

114, 433—495.

Campbell, J. Y., and L. M. Viceira, 2001, “Who Should Buy Long-Term Bonds?”

American Economic Review, 91, 99—127.

Campbell, J. Y., and L. M. Viceira, 2002, Strategic Asset Allocation: Portfolio

Choice for Long-Tem Investors, Oxford University Press, Oxford, U.K.

Campbell, J. Y., Y. L. Chan, and L. M. Viceira, 2003, “A Multivariate Model of

Strategic Asset Allocation,” Journal of Financial Economics, 67, 41—80.

Chacko, G., and L. M. Viceira, 2003, “Spectral GMM Estimation of Continuous-

Time Processes,” Journal of Econometrics, 116, 259—292.

Cox, J. C., and C. Huang, 1989, “Optimal Consumption and Portfolio Policies when

Asset Prices Follow a Diffusion Process,” Journal of Economic Theory, 49, 33—

83.

Cox, J. C., J. E. Ingersoll, and S. Ross, 1985, “A Theory of the Term Structure of

Interest Rates,” Econometrica, 53, 385—408.

Engle, R. F., T. Ito, and W. Lin, 1990, “Meteor Showers or Heat Waves? Het-

eroskedastic Intra-Daily Volatility in the Foreign Exchange Market,” Econo-

metrica, 58, 525—542.

43



Epstein, L., and S. Zin, 1989, “Substitution, Risk Aversion, and the Temporal Be-

havior of Consumption and Asset Returns: A Theoretical Framework,” Econo-

metrica, 57, 937—69.

Epstein, L. and S. Zin, 1991, “Substitution, Risk Aversion, and the Temporal Behav-

ior of Consumption and Asset Returns: An Empirical Investigation,” Journal

of Political Economy, 99, 263—286.

Fisher, M., and C. Gilles, 1999, “Consumption and Asset Prices with Homothetic

Recursive Preferences,” Working Paper 99-17, Federal Reserve Bank of Atlanta.

French, K. R., G. W. Schwert, and R. F. Stambaugh, “Expected Stock Returns and

Volatility,” Journal of Financial Economics, 19, 3—29.

Giovannini, A., and P. Weil, 1989, “Risk Aversion and Intertemporal Substitution

in the Capital Asset Pricing Model,” Working Paper 2824, NBER.

Glosten, L. R., R. Jagannathan, and D. Runkle, 1993, “On the Relation Between the

Expected Value and the Volatility of the Nominal Excess Return on Stocks,”

Journal of Finance, 48, 1779—1801.

Hall, R. E., 1988, “Intertemporal Substitution in Consumption,” Journal of Political

Economy, 96, 339—357.

Harvey, C., 1991, “The World Price of Covariance Risk,” Journal of Finance, 46,

111—157.

Heston, S. L., 1993, “A Closed-Form Solution for Options with Stochastic Volatility

with Applications to Bond and Currency Options,” Review of Financial Studies,

6, 327—43.

44



Jiang, G., and J. Knight, 2002, “Estimation of Continuous Time Stochastic Processes

via the Empirical Characteristic Function,” Journal of Business and Economic

Statistics, 20, 187—213.

Judd, K. L., 1998, Numerical Methods in Economics, MIT Press, Cambridge, MA.

Kim, T. S., and E. Omberg, 1996, “Dynamic Nonmyopic Portfolio Behavior,” Review

of Financial Studies, 9, 141—161.

Liu, J., 2002, “Portfolio Selection in Stochastic Environments,” Working Paper,

University of California-Los Angeles.

Lynch, A. W., and P. Balduzzi, 2000, “Predictability and Transaction Costs: The

Impact on Rebalancing Rules and Behavior,” Journal of Finance, 55, 2285-2309.

Merton, R. C., 1969, “Lifetime Portfolio Selection Under Uncertainty: The Contin-

uous Time Case,” Review of Economics and Statistics, 51, 247—257.

Merton, R. C., 1971, “Optimum Consumption and Portfolio Rules in a Continuous-

Time Model,” Journal of Economic Theory, 3, 373—413.

Merton, R. C., 1973, “An Intertemporal Capital Asset Pricing Model,” Economet-

rica, 41, 867—87.

Merton, R. C., 1990, Continuous Time Finance, Basil Blackwell, Cambridge, MA.

Samuelson, P. A., 1969, “Lifetime Portfolio Selection by Dynamic Stochastic Pro-

gramming,” Review of Economics and Statistics, 51, 239—246.

Schroder, M, and C. Skiadas, 1999, “Optimal Consumption and Portfolio Selection

with Stochastic Differential Utility,” Journal of Economic Theory, 89, 68—126.

45



Schwert, G. W., 1989, “Why Does Stock Market Volatility Change Over Time?”

Journal of Finance, 44, 1115—1153.

Shiller, R. J., 1989, Market Volatility, MIT Press, Cambridge, MA.

Singleton, K. J., 2001, “Estimation of Affine Asset Pricing Models Using the Em-

pirical Characteristic Function,” Journal of Econometrics, 102, 111—141.

Stein, E. M. and J. C. Stein, 1991, “Stock Price Distributions with Stochastic Volatil-

ity: An Analytic Approach,” Review of Financial Studies, 4, 727—52.

Viceira, L. M., 2001, “Optimal Portfolio Choice for Long-Horizon Investors with

Nontradable Labor Income,” Journal of Finance, 56, 433—470.

Vissin-Jorgensen, A., 2002, “Limited Asset Market Participation and the Elasticity

of Intertemporal Substitution,” Journal of Political Economy, 110, 825—853.

Wachter, J., 2002, “Portfolio and Consumption Decisions Under Mean-Reverting

Returns: An Exact Solution for Complete Markets,” Journal of Financial and

Quantitative Analysis, 37, 63—91.

Xia, Y., 2001, “Learning About Predictability: The Effects of Parameter Uncertainty

on Dynamic Asset Allocation,” Journal of Finance, 56, 205—246.

46



Notes

1 Chacko: Harvard University, Graduate School of Business Administration, Boston MA

02163. Tel 617-495-6884, email gchacko@hbs.edu. Viceira: Harvard University, Graduate

School of Business Administration, Boston MA 02163, and NBER. Tel 617-495-6331, email

lviceira@hbs.edu. We want to thank John Campbell, Pascal Maenhout, Robert Merton,

Rachel Pownall, Enrique Sentana, Raman Uppal, seminar participants at HBS, CEMFI, the

NBER, and especially an anonymous referee and the editor (John Heaton) for helpful com-

ments and suggestions. This paper is a revised version of Working Paper 7377 of the National

Bureau of Economic Research.

2The term “volatility” is somewhat vague, and it is used in the literature sometimes as

meaning “variance” and sometimes as meaning “standard deviation.” Throughout this paper,

though, when we use the term “volatility,” we mean “variance.”

3Portfolio problems require very often working with precision rather than with volatility

itself. One example is the mean-variance allocation to risky assets, which is linear in precision.

4Their analytical solutions are also exact for investors with unit elasticity of intertemporal

substitution of consumption, up to a discrete-time approximation to the log return on wealth.

5Lynch and Balduzzi (2000) have also addressed tangentially the implications of time-

varying volatility for portfolio choice in their study of optimal portfolio rebalancing with

stock return predictability and transaction costs. They find that allowing for return het-

eroskedasticity can have important effects on the optimal portfolio rebalancing behavior of

long-horizon investors.

6We have performed a Monte Carlo experiment to corroborate this assertion and the

quality of the approximation (4). Using the monthly parameter estimates of this process

shown in Table 1, we have generated 10,000 time series of the process (1)-(2), each 30 years

in length, with a time step dt = 0.01 (or about 3 days). This experiment shows that the

unconditional variance of stock returns is indeed given by the unconditional mean of volatility,

and that the approximation (4) is fairly precise–in our experiment, it underestimates the true

variance by 0.27%.

47



7With |ρ| = 1, equation (16) becomes a non-homogeneous version of the Gauss’ hyper-

geometric ODE, which has a closed-form solution in terms of the confluent hypergeometric

function (see Polyanin and Zaitsev 1995, p.143). Unfortunately this solution has a rather

abstruse mathematical form, from which it is very dificult to obtain any useful economic

insights.

8SGMM is essentially GMM estimation based on the complex moments generated by the

characteristic function of the process. Unlike other methods such as the Efficient Method

of Moments (EMM), SGMM does not require discretization of the parameter space, and it

is simple to apply in practice. SGMM estimates are less efficient than EMM estimates, but

Chacko and Viceira (2003) note that SGMM estimates and EMM estimates of stochastic

volatility models are otherwise very similar. Note that direct estimation via maximum like-

lihood (Lo, 1988) is not feasible here, because the likelihood function of this process is not

known analytically. Full details of the estimation are readily available from the authors upon

request.

9For the annual estimates, the loglinearization parameter h1 converges to zero for investors

with γ = 1/ψ = 0.75 and β = 6% . We use instead γ = 1/ψ = 0.8 and β = 6%, for which the

procedure converges.

10We omit these results from the paper to save space. However, they are readily available

from the authors upon request.

11We achieve this by varying σ appropriately as we change the persistence parameter

κ. Note that Var(yt) = σ2θ/2κ and Var(dSt/St) ≈ 1/θ + Var(yt)/θ
3. Thus setting σ2 =

2κVar(yt)/θ leaves these moments unchanged as we vary κ. Furthermore, the unconditional

mean of precision (θ) and stock returns (µ) do not change with either κ or σ.

12From equation (4), we can change the unconditional variance of stock returns by changing

θ. To keep Var(y) = σ2θ/2κ constant, we also need to change σ or κ as θ changes. We choose

to vary σ. Varying κ instead of σ does not change the conclusions.

13For each run we have generated 10,000 time series of the process, each 30 years in length,

with a time step dt = 0.01 (or about 3 days).
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14This choice is based on the fact that an estimation of the model with time-varying ex-

pected excess returns gives a point estimate of 0.75 for α2, with a standard error of 0.41.
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Model:

Parameter estimates (s.e.):

1926.01 - 2000.12 1871 - 2000

.0811 .0848
(.0235) (.0369)

.3374 .0438
(.3025) (.0443)

27.9345 25.2109
(1.7961) (12.5738)

.6503 1.1703
(.4802) (.6892)

.5241 .3688
(.2274) (.3665)

TABLE 1

Estimates of the Stochastic Process for Returns 
and Volatility

Note to Table 1: Table 1 reports estimates of the stochastic process
driving stock returns and volatility using Spectral GMM. The
monthly estimates are based on excess stock returns on the CRSP
value-weighted portfolio over the T-bill rate from January 1926
through December 2000. The annual estimates are based on excess
equity returns on the Standard and Poor Composite Stock Price
Index over the prime commercial paper rate from 1871 through
2000. The annual dataset is an updated version of Shiller's (1989)
long run data, publicly available at his website
[http://www.econ.yale.edu/ shiller/]. Standard errors are
bootstrapped, and parameter estimates are annualized to facilitate
their interpretation.  
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R.R.A. E.I.S.

1/0.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 305.92 305.66 305.42 305.32 305.17 305.09 305.07 305.05
1.00 226.55 226.55 226.55 226.55 226.55 226.55 226.55 226.55
1.50 149.30 149.32 149.34 149.35 149.37 149.38 149.38 149.38
2.00 111.38 111.37 111.37 111.37 111.37 111.37 111.37 111.37
4.00 55.26 55.24 55.21 55.20 55.18 55.16 55.16 55.16
10.0 22.01 21.99 21.97 21.96 21.94 21.93 21.93 21.93
20.0 10.99 10.98 10.97 10.96 10.95 10.94 10.94 10.94
40.0 5.49 5.48 5.48 5.47 5.47 5.47 5.47 5.46

1/0.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 1.28 1.19 1.11 1.08 1.03 1.00 0.99 0.99
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 -1.15 -1.13 -1.12 -1.11 -1.10 -1.10 -1.09 -1.09
2.00 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68
4.00 -2.43 -2.47 -2.52 -2.54 -2.58 -2.60 -2.61 -2.61
10.0 -2.86 -2.94 -3.02 -3.07 -3.14 -3.18 -3.20 -3.21
20.0 -3.00 -3.09 -3.19 -3.25 -3.33 -3.38 -3.40 -3.41
40.0 -3.06 -3.17 -3.28 -3.33 -3.42 -3.48 -3.50 -3.51

Note to Table 2: Panel A reports mean optimal percentage allocations to stocks for different
coefficients of relative risk aversion and elasticities of intertemporal subsitution of consumption.
Panel B reports the percentage ratio of intertemporal hedging portfolio demand over myopic portfolio
demand, which is independent of the level of precision or volatility. These numbers are based on the
monthly parameter estimates of the joint process for return and volatility reported in Table 1. 

TABLE 2
Mean Optimal Percentage Allocation to Stocks

and Percentage Hedging Demand Over Myopic Demand
(Sample: 1926.01 - 2000.12)

(A) Mean optimal allocation to stocks (%):

(B) Ratio of hedging demand over myopic demand (%):

[ ( )] ( ) 100t tE yπ π θ= ×



R.R.A. E.I.S.

1/0.80 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.80 289.13 281.23 277.71 276.64 275.43 274.85 274.68 274.60
1.00 213.79 213.79 213.79 213.79 213.79 213.79 213.79 213.79
1.50 135.34 135.42 135.54 135.60 135.69 135.74 135.76 135.77
2.00 99.54 99.42 99.25 99.16 99.01 98.91 98.88 98.86
4.00 48.54 48.31 47.97 47.78 47.45 47.24 47.16 47.11
10.0 19.16 19.03 18.82 18.71 18.51 18.38 18.34 18.31
20.0 9.54 9.47 9.35 9.29 9.18 9.11 9.08 9.07
40.0 4.76 4.72 4.66 4.63 4.57 4.54 4.52 4.51

1/0.80 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.80 8.19 5.24 3.92 3.52 3.06 2.85 2.79 2.76
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 -5.04 -4.98 -4.90 -4.86 -4.80 -4.76 -4.74 -4.74
2.00 -6.88 -6.99 -7.15 -7.24 -7.37 -7.47 -7.50 -7.51
4.00 -9.19 -9.61 -10.25 -10.60 -11.22 -11.62 -11.77 -11.85
10.0 -10.38 -11.00 -11.95 -12.49 -13.40 -14.01 -14.23 -14.35
20.0 -10.76 -11.44 -12.49 -13.09 -14.10 -14.77 -15.02 -15.14
40.0 -10.94 -11.66 -12.76 -13.38 -14.44 -15.14 -15.40 -15.53

TABLE 3
Mean Optimal Percentage Allocation to Stocks

and Percentage Hedging Demand Over Myopic Demand

Note to Table 3: See note to Table 2.

(Sample: 1871 - 2000)

(A) Mean optimal allocation to stocks (%):

(B) Ratio of hedging demand over myopic demand (%):

[ ( )] ( ) 100t tE yπ π θ= ×



R.R.A. E.I.S.

1/0.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 3.30 6.00 8.68 10.01 12.01 13.21 13.61 13.81
1.00 4.44 6.00 7.56 8.34 9.51 10.22 10.45 10.57
1.50 5.51 6.00 6.49 6.74 7.11 7.33 7.41 7.45
2.00 6.02 6.00 5.98 5.97 5.95 5.94 5.93 5.93
4.00 6.77 6.00 5.23 4.84 4.25 3.90 3.79 3.73
10.0 7.21 6.00 4.79 4.18 3.27 2.72 2.54 2.45
20.0 7.36 6.00 4.64 3.96 2.95 2.33 2.13 2.03
40.0 7.43 6.00 4.57 3.86 2.78 2.14 1.93 1.82

1/0.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 26.31 26.29 26.27 26.26 26.25 26.24 26.24 26.24
1.00 19.87 19.87 19.87 19.87 19.87 19.87 19.87 19.87
1.50 13.61 13.61 13.61 13.61 13.61 13.61 13.61 13.61
2.00 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53
4.00 5.98 5.98 5.98 5.98 5.97 5.97 5.97 5.97
10.0 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28
20.0 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39
40.0 1.95 1.94 1.94 1.94 1.94 1.94 1.94 1.94

Note to Table 4: Panel A reports percentage exponentiated mean optimal log consumption-wealth
ratios for different coefficients of relative risk aversion and elasticities of intertemporal substitution of
consumption. Panel B reports the percentage unconditional mean of the log return on wealth. These
numbers are based on the monthly parameter estimates of the joint process for return and volatility
reported in Table 1.

(A) Consumption-Wealth ratio (%):

(B) Long-Term expected return on wealth (%):

TABLE 4
Optimal Consumption-Wealth Ratio and
Long-Term Expected Return on Wealth

(Sample: 1926.01 - 2000.12)

/ exp{ [ ]} 100t t t tC X E c x−= ×

( ( )( ) ) 100r rπ θ µ − + ×



R.R.A.

-2.00 -0.75 -0.25 0.00 0.25 0.75 2.00

0.75 322.33 311.56 306.80 305.32 303.83 300.85 294.03
1.00 236.25 229.64 227.11 226.55 225.99 224.87 222.06
1.50 153.22 150.32 149.36 149.35 149.36 149.37 149.34
2.00 113.20 111.69 111.24 111.37 111.52 111.82 112.57
4.00 55.30 55.04 55.02 55.20 55.38 55.75 56.77
10.0 21.81 21.83 21.87 21.96 22.06 22.26 22.83
20.0 10.86 10.88 10.91 10.96 11.01 11.12 11.44
40.0 5.42 5.43 5.45 5.47 5.50 5.56 5.72

-2.00 -0.75 -0.25 0.00 0.25 0.75 2.00

0.75 -2.03 -0.35 -0.04 0.00 -0.04 -0.36 -2.08
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 1.24 0.19 0.02 0.00 0.02 0.20 1.31
2.00 1.44 0.22 0.02 0.00 0.03 0.23 1.56
4.00 1.13 0.17 0.02 0.00 0.02 0.18 1.26
10.0 0.55 0.08 0.01 0.00 0.01 0.09 0.63
20.0 0.29 0.04 0.00 0.00 0.01 0.05 0.34
40.0 0.15 0.02 0.00 0.00 0.00 0.02 0.18

-2.00 -0.75 -0.25 0.00 0.25 0.75 2.00

0.75 9.36 5.72 4.02 3.25 2.55 1.39 0.02
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 -5.52 -2.96 -2.07 -1.68 -1.32 -0.73 -0.01
2.00 -6.37 -3.36 -2.34 -1.90 -1.50 -0.84 -0.02
4.00 -4.89 -2.54 -1.77 -1.44 -1.14 -0.64 -0.01
10.0 -2.36 -1.22 -0.85 -0.70 -0.55 -0.31 -0.01
20.0 -1.25 -0.65 -0.45 -0.37 -0.29 -0.16 0.00
40.0 -0.64 -0.33 -0.23 -0.19 -0.15 -0.08 0.00

TABLE 5
Mean Optimal Percentage Allocation to Stocks

When Expected Stock Excess Returns Are an Affine

(Sample: 1926.01 - 2000.12)

(A) Mean optimal allocation to stocks (%):

(B) Intercept of hedging demand (%):

Function of Volatility

(C) Slope of hedging demand times θ (%):

1 2[ / ]t t t tE dS S rdt vα α− = +

2α



Note to Table 5: Panel A reports mean optimal allocations to stocks based on equation
(23) in Proposition 3, for different values of the coefficient of relative risk aversion and the
slope of the expected return function. The elasticity of intertemporal substitution of
consumption is set to 0.50 throughout the table. Panel B reports the percentage value of the
intercept of the intertemporal hedging component, and Panel C reports the percentage
value of the slope of the intertemporal hedging demand times θ, the unconditional mean of
precision. Mean intertemporal hedging demands obtain by adding the numbers in Panel B
and C. These numbers are based on the monthly parameter estimates of the joint process
for return and volatility reported in Table 1, except that we vary the unconditional mean of
precision and the intercept of the expected return function as we vary the slope as to hold
the unconditional mean and variance of stock returns constant throughout the table. The
benchmark values for the mean and variance are those implied by monthly estimates of the
model with constant expected returns shown in Table 1.



R.R.A. E.I.S.

1/0.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 1.70 0.00 1.48 2.14 3.07 3.59 3.76 3.84
1.00 1.20 0.00 1.11 1.63 2.39 2.82 2.96 3.03
1.50 0.76 0.00 0.74 1.11 1.64 1.96 2.07 2.12
2.00 0.56 0.00 0.56 0.84 1.25 1.51 1.59 1.63
4.00 0.27 0.00 0.28 0.42 0.64 0.78 0.82 0.85
10.0 0.11 0.00 0.11 0.17 0.26 0.32 0.34 0.35
20.0 0.05 0.00 0.06 0.09 0.13 0.16 0.17 0.17
40.0 0.03 0.00 0.03 0.04 0.07 0.08 0.08 0.09

Note to Table 6: This table reports annualized, percentage values of the unconditional standard
deviation of the optimal log consumption-wealth ratio for different coefficients of relative risk
aversion and elasticities of intertemporal substitution of consumption. These numbers are based on the
monthly parameter estimates of the joint process for return and volatility reported in Table 1. 

TABLE 6
Unconditional Standard Deviation of the

Optimal Log Consumption-Wealth Ratio (%)
(Sample: 1926.01 - 2000.12)

2 2
1 / 2 100A σ θ κ ×












