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Appendix A. Asset Return Decomposition

A log-linearization of the return on an asset around the unconditional mean of its dividend-price ratio—where dividend is a
proxy for cash flow—implies the following decomposition of realized returns:

Tsi+1 — Ee [rs 1] = (Begr — Er) ZPﬁAdtHH — (Egy1 — Ey) szrt+l+j- (1)
j=0 j=1

where 7, ; denotes the natural log of the gross total return on the asset and Ad;1 the change in its log dividend (or cash flow).
The constant ps = 1/ (1 + exp (d — p)) is a log-linearization parameter, where d — p denotes the unconditional mean of the log
dividend-price ratio.

Equation shows that the unexpected log return on an asset reflects changes in either its expected future cash flows or in
its expected future returns (or discount rates). Following standard terminology in this literature, we will refer to the former as
cash flow shocks or cash flow news, and to the latter as discount rate shocks or discount rate news, and write more succinctly

Tsi41 — B [Tsi41] = Norsi+1 — NDR,s,t41- (2)

We can further decompose Npp s++1 into news about excess log returns—or risk premia—, and news about the return on
the reference asset used to compute excess returns:

NpRr,st+1 = NRR.s,t+1 + NRP,s,t+1, (3)

with

o0
Nersi+1 = (Erp1 — Ey) E PATF 4147 | s
Jj=1

o0
Nepsit1 = (Epr — Ey) E Prars it
i=1

where o7 44145 = Ts,t4145 — Tf,t+1+; denotes log excess returns with respect to the log return on the benchmark asset 77 ;414 ;.
In our empirical analysis we follow standard practice and use cash (i.e., a short-term nominal bond like a T-bill in the US) as
the reference asset, and measure returns in real terms. For example, rs 41 = y1'; — me11, where y7', denotes the yield on a
one-period nominal bond at ¢, which is also its nominal return at ¢t + 1, and 7,11 denotes log inflation.

The preceding expressions assume the asset is a perpetual claim on cash flows such as equities. In our empirical analysis we
also consider nominal bonds with fixed maturities and whose cash flows (i.e., coupons) are fixed in nominal terms and thus vary
inversely with the price level in real terms. Section A.1 below shows that for a $1-coupon nominal bond with maturity n,

Tn,t+1 — E, [Tn,t+1] = NCF,n,t+1 - NRR,n,t+1 - NRP,n,t+1a (4)
with
n—1
_ — J
Nermnit1 = —Ninveoni+1 = — (B — Ey) E PrTit145 |
j=1
n—1

— j
Nigni+1 = (Erpr —Ey) E PRTF 4145 |
=1
_n—l

— j
Nrpntt1 = (B — Ey) E PyTTn—j 4145 |
j=1

and py = 1/ (1 + exp (—pm)-

The news components defined above are not directly observable, but we can infer them from a return generating model. We
follow Campbell (1991) and assume that the asset return generating process follows a first-order vector autoregressive (VAR)
model:

Zt+1 =a-+ Ait + Uiy, (5)



where z; 11 is a state vector that includes the excess log return on the assets under consideration, variables that predict excess
returns, and variables that capture the dynamics of inflation and the short-term interest rate. The vector of innovations us4; is
uncorrelated over time with conditional variance-covariance matrix V; [uz41]. Given a specification for Z;; 1, it is straightforward
to derive the components of the return decomposition as a function of the vector us4; of innovations to z;;; and the parameters
of the VAR(1).

A.1 Excess Bond Returns Decomposition (3 News Components)

Define the log one-period nominal return on a nominal n-period coupon bond as

Ti,tﬂ =log (1 + Ri,tﬂ) log (Pp—1,441 + C) —log (P )

=Pn—1,041 — Pn,t +1og (1 +exp (¢ — pp—1,41))
~k + pppn—1,441 + (1 — pp) ¢ — P s, (6)

where p, = ] and k = —log (py) — (1 — pp) log (i - 1). Solving forward and imposing the terminal condition that

1
1+exp(c—p
Pn—jt+jli=n = 0, we get that

g .
Pnt = (k+ (1 —pp) Z oy | — Z T t4+145Pb-
Plugging this expression in to the unexpected bond return from Eq. @, we get that

(Et1 — Ey) [ T t+1] = (Etr1 — Ey) [popn—1,041] — (1 — Et) [pn ]

= (Etr1 — E¢) [popn—1,¢41)
n—1

— (Ety1 — Ey) Zri—j,t—i-l—i-jpg . (7)
j=1

We can write rf;ytﬂ =aTp 41 + r?Hl, where xr), ;11 is the excess log 1-period return on a nominal n-period coupon bond

and rf} t+1 is the realized nominal return of the 1-period nominal bond, which is the same as the yield of the 1-period nominal

bond y -
Decomposmg the surprise bond return in Eq. (7)) gives
n—1 ) n—1 )
(Eerr — Ey) |2rn, 0 + Tf?,tﬂ] = — (Bey1 —Eo) | > pharn—jirres | — Bepr —Eo) | D oirf iy
j=1 J=1

The LHS can be simplified by noting that

(Etr1 — Er) {Tf t+1} = (Bip1 — Eo) [y1] = 0.

To simplify the RHS, we simply note that the realized nominal return of the 1-period nominal bond is the realized real return
of the 1-period nominal bond plus realized inflation: rf} tr1 = Tft+1 + Tegr. The second term on the RHS is then

n—1 n—1 n—1
(Etv1 — Ey) Z oo i1 | = Eepr —Ey) Z puriritg | + (B —Ey) Z PoTes14g | - (8)
j=1 j=1 j=1

Putting together the simplified LHS and RHS, we have the following 3 news component decomposition for unexpected excess
bond returns:

(Ety1 — Ey) (27 t41] = NeFmt+1 — NrRRnt+1 — NRP 141



where

n—1
_ — J
Nerpi+1 = —Ninepni+1 = — (Eip1 — Ey) Z PpTe145 |
=1
_n—l

Nrgnir1 = (Eepr —Ee) | D phrseriss| > and
j=1

n—1

Nrpnit1 = (Eipr — Ey) Zpgxrn—j,tﬂﬂ . (9)
=1

To extract the news components from the VAR, consider the vector of state variables

- N N
Ziy1 = [$Ts,t+1,$7“n,t+1’ dt+1 = Pt+1, Tt+1, Y1,t+15 Y10,6+1 — ?Jl,t+1] . (10)

The main VAR equation is ;11 = a + AZ; + usy1, which leads to E; [z,1;] = AZ; and (B — Ey) [Zeys] = AT ugy. It s
then straightforward to see how the decomposition can be written in VAR notation:

(Eig1 — Ey) [rp,i41]) =€2'u441,

n—1
_ / JAJ
Ncrni+1 = —e4 E P A7 | wgq,
=1
n—1 n—1
/ j j—1 / j j
NRRnt+1 =€5 E pr A’ u —ed E A | ugg1, and
i=1 i=1

Nepni+1 =Ncrni+1 — Nrrnt+1 — (B — Ey) [2r, 041] -

We get Ngrr n.t+1 by using Eq. to express real rate news in terms of nominal rate news and inflation news. Finally, we back
out Nrp . t4+1 as the residual.

A.2 Excess Stock Returns Decomposition (3 News Components)

We start with Campbell-Shiller decomposition which decompose the news on real stock return into news on growth of log real
dividend and news on log real interest rate

(Ety1 —Ey) [rsi41] = Norsi+1 — NpRros,e41,

where
o
Nepsir = (Bepr —E) [ Y plAdigy; | and
=0
i o0
Npr,st+1 = (Eep1 — Et) Zpirs,tﬂﬂ‘ : (11)
=1

We can relate the 2 news component decomposition to the 3 news component decomposition as follows. Note that the excess
return could be written as @7, 14145 = Ts 14145 — Tf,i+1+5, We have

oo
Npr,si+1 = (Eir1 — Ey) E PArs i1+
i=1

= (Et41 — Ey) Zpgws,tﬂﬂ‘ + (Ers1 — Et) Zpgrf,t+1+j = (Et1r —Ey) [rye4144] -
j=1 j=0



Combining this with the decomposition we have

(Etp1 —Ey) [2rsi+1] + (Eip1 — Ei) [7f41) =Nersi+1 — NDR,s,t+1

:NCF,s,t+1 - (Et+1 - Et) Zpngs,t+1+j - (Et+1 - ]Et) Zﬂgrf,wlﬂ + (EtJrl - Et) [7
Jj=1 j=0
Thus we have
(Eip1 — Ey) [#rs441] = Ners,t+1 — NRR,s,t+1 — NrPs,t41
where

NCF,s,t+1 = (Et+1 - Et) ZPgAdtJrHj s
j=0

Nrrsis1 = Bepr —By) | D plrpiciss|  and
j=0

Nrpsit1 = (Erpr — Ey) Zpgxrs,t+1+j . (12)
j=1

With the same vector of state variables z;,1 as in Eq. , we write the decomposition in VAR notation:

(Eir1 — Ey) [2rs 141] =€1'uy4q,

Nersi+1 = (Eir1 — E) [2rs i41] + NrR,s,t41 + NrPs,t41,

oo o0
/ i Ad—1 / N
NgR,s,t+1 =€5 E pLA7 Ui —e4 E p2A | ugyq, and
j=1 =0

oo
) o
Nrpsi+1 =€l E PLAY | uiga.
Jj=1

Similar to the case with bonds, we get Nrg n.++1 by using an infinite-sum version of Eq. to express real rate news in terms
of nominal rate news and inflation news. Note that the first term in Npp 541 starts from j = 1 instead of j = 0 because
(Eiv1 — Ey) [y{vt] = 0. Finally, we back out Ncps++1 as the residual.



Appendix B. Derivation of Results in Section 3.2

We want to derive the general formula for k period portfolio return variance, where the portfolio is constructed by holding equal
weight on N identical markets. The starting point is from our stylized symmetrical model of asset returns of Section 3

Tit+1 = M1+ BSi + Ui 1 (13)
Sit41 = M2 + PSip + Usi 41

and we could also write the VAR residual in terms of news terms u; 111 = NcoFit+1 — Npr.it+1 and g ¢41 = %NDRMH, where

A= 1fi¢. The log portfolio return over k period horizon (from ¢ to ¢ + k) is

1 1
7}(7/,?+k = T(()k) + O‘;(Tt(i)k - T(()k)l) + §O‘t(k)20't(k)2 - iat(k)zt(k)at(k) (14)

and the variance of £ period portfolio return is
k 1 k 1 k k
Vilrel = Vel + (0= )] (15)

where rflzlk — > risyr is the k period log return of market i.

The term of interest in the expression is the cross-country covariance. Let’s now derive the general expression for the
covariance term. Note that the 1 period return at ¢t + [ could be written as

Tit+l = M1+ BSitqpi—1 + Ui 4

= p1 + B(DSi tti—2 + Usipyi—1) + Ui 141

-1
=1+ B0 s 4B Z O™ Mg i+ Wi (16)
m=1

and

-1 -1

Cilritrrsrjeri] = Ci[B Z ¢mflusz‘,t+l—m + Ui, B Z ¢m71usj,t+l—m + w41
m=1 m=1

-1 B -1

=G5 Y " 'Nogiwriom + Nerisrt = NoRg+, N > " 'Nprjiriom + Norjist — Norjit] (17)

m=1 m=1

We make the assumption that (for VI > 1,4 # j)

CiNeriatt, Norji] = 06kor

Ci[NcFit+1, Nor ji+1]l = 06 DR

— xrc
Ci[NDR,i,t+1, NDR,j.t+1]) = OhR.DR

Thus we have

B2 (1—(¢M)")

_ xc xc xrc
Celrit1,mje41) = [p -2 +1opr,pr + 0CFcr — 2087, DR (18)
For the cross-period & cross-country covariance, we have
-1 l+p—1
2 : -1 } : -1
Cy [Ti,t+l, Tj,t—&-l—',—p} = C} [ﬂ ol Usi t+1—m T Ui t+1, B o Usjt+l+p—m T uj,t—&-l—',—p}
m=1 m=1

IThe formula for portfolio return below is derived in the appendix of Campbell and Viceira (2002) “Strategic Asset Allocation: Portfolio Choice for
Long-Term Investors”



= Cfui 1 + Busipri—1 + Bdugitri—o + -+ B ugiry1, BOP M ugjirr + BdPUsj 411 + BOP M ugj o+ + BETP 2 ug 141]
= B Cylwi g1, s prt] + B2 Cultisi pri—1, Usjeri—1] + BEOPT2C s ps1-2, Usjari—2) + -+ BEOPT2ED O lugs 41, s i1

_ ﬁ(bp_l 62¢p 1- (¢2)l_1 zc

T(UgRDR —0brpRr) T 2 — 42 ODR,DR (19)

with p > 1. Using the results above, we could get the k period cross-country return covariance

k—1 k-1
(k k)
Ci [ zt)-i-k’ g(t+k th Tz A+ T, t+l + QZZCt Tz REARRREN t+l+p]
=1 p=1
k—1 k-1
((b?)l 1) B(bp ! Tc xc 52¢p1_(¢2)l—1 zC
Z(A21_¢Q+1]JDRDR+UCFCF 2067, DR +2Z ——(0¢%pr — 9DR.DR) + CR ODR,DR
1=1 1=1 p=1

—(6H)*
62 (k - 1 2 ) zc e xc
([)\2 1_ d%f +klopr pr + koCFcr — 2k0F DR

k—1
/8 — xc re /82 ¢2 l—ld) (Zsk 1
+2lz_;<)\(1_¢)(1—¢k l)(UcF,DR—CJ'DR7DR)+F 1(_;2 (1 = ) DRDR)

17¢2 xrc xc xrc
= ([/\gl_gbg +klobr pr + kol R — 2kJCF,DR)

B AN we B¢ ("' -D(ep—¢*") 1-(¢*)!
+2 (/\(l_d))(k—l_¢1_¢)(UCF,DR_O'DR,DR)"")\2(1_¢2)(1_¢)(k_1+ - 1_¢2 ) DRDR)

B k=1 ol-¢t Y L
1_¢)( L 1- 6 ) — )JCF,DR

= ko—g‘C]{CF + 2k <)\(

i 0 (1= D@ - ¢ Y 1 () g e
+(A2 e R en-g ot g B Y L A Tl )
(20)

We further simplify the coefficient on 0% pp as

g2 (k= 55 g (=D 1@ 8 1— gt

XTite o ga-gt Y -0 B I Vi L s B
(- B k-1 (@I DG-¢*Y)  1- (g B k-1 1-gt
‘k(v - e ea-alw T wi-e  k-o) Da-alw  Ywi-e)

3 (1* 1-(¢2F , ¢ (k=1 (T -De-¢"hH 1-(¢)F ))72 B k-1 1f¢>’“‘1)+1}

Ni-oi+a ' ki-aite Ca-9 k T k-9 m-e0+9)) Ha-a' & Cki-9

_ BN\ (1=0 _1-(¢»* 6 (k=1 (@F1-D(@—¢th) 1@\ (k=1 1—¢klN? BV
’“{(A(l—@) <1+¢ k<1+¢><1+¢>+2<1+¢>< P wHi-9) k<1—¢><1+¢>) (5 ¢k(1—¢>)>+(x<1—¢>)

-k A(lﬁf ¢>)2 (Li B k<11+7¢(>(ﬁ)i ) +2(1f¢> <k;1 0 ;é)% - k(lli(g?lk:as)) B (171 B ¢1k(1¢:>1)2> " ((A(lﬂ—@)
If we define a(k; 5,6, \) = 1 — (ﬁ) ( e ) then equation (11) could be written as
O, ) = oFcr + [alk: 8,6, + 506 5,6, 0] 0850 — 2000k 8,6, \oEr o (21)
where
o016, = (577 ¢))2 (1 e k<11+_¢()¢i)—t 52 (S o i) - k(ll_—(gi)lths)) (- ¢1k(—1¢_k;)1)2>

(22)



we could show that limg_,oob(k; 8,0, ) = 0.
Finally we have the asymptotic result

Cilri o i) 8 & 26% 28
li %, Jttkl _ _zc 2 —1)a%e _ 1) g% 23
1Moo . ocrcort (A(l — ) )UCF,DR+()\2(1 — 57 + NI-)(1-0) Ml—-9) +1)opror (23)
Now we derive the range of the coefficients for variance-covariance terms in Eq (12), note that A = 7 fi 3
8 1—pp 1 1
1= —1>--1>0
AL - o) p (1-9) p
and
8? 28%¢ 28

+1

(1= T RA-)(1-9) Ml-9)
(B N\ 28
‘<A<1¢>) g

(B8 Y
‘(A(l—as) 1)

1—po )2
= —1
(p—paﬁ

we know that p and ¢ are close to but smaller than 1, and if we assume that p >

2
we have (;:—W - 1) < 1. Thus we could

1
PRy pé

have
e 28
M(1=-¢?)  N1-¢*)(1-9¢) Ml-9)

0 +1<1

under the assumption.

Numerical Calibration:

We try to use the formula to explain the positive gap between the portfolio variance of the benchmark case and the case in which
integration is purely driven by increased DR news correlation. In our benchmark case, we set 0¢% o = 0¢% pr = 0hr pr = 0;
therefore

. ) 1
limig oo \/ VeSSl /k = limiss yoo Nvt[r;';gk]/k (24)

. And for the integrated case purely driven by increased DR news correlation, we have

- (k) i Lo 1 B2 23°¢ 28 ve
limie—-too \/Vilrp,pnl /b = 1m0 \/Nvt[rivt*k]/k T TR A g T broR
(25)
and we have 52 2526 28
+ — +1=0.0175 26
Y- T RA-A1-9 Ni-9) 20
therefore explains the positive gap between the two variance plot in our 2 country symmetrical experiment.
The coefficient of the term o3y px in Eq (11) standardized by &k
(2 k= 5 5 (- 1o —¢*1) 1 () g 1— gkt
- = +2 (k—1+ — )—2 (k—1—¢p——)+k
kE\A2 1-¢2 A2(1—¢?)(1—9) 1-¢ 1—¢? A1 —-9) 1-¢
(27)

is a function of investment horizon k, and the coefficient annualized by k should converge to the value in Eq (15). The coefficient
as a function of k is plotted in Figure 3.



In the next step, we calibrate the variance under the two cases (integration purely driven by increased cross country CF-CF/
DR-DR correlation). Under the limit case where k — 400 we have

B 268%¢ 28 .
()\2(1 — ¢?) + X2(1— ¢)? - 21— 9) +1)of pr = 0.000010

where 05, pr = PR prRODRODR and cross country DR correlation p7z pr = 0.25. Similarly we get

o6F.cr = PeF,crocrocr = 0.0012

where p¢p o = 0.335. In the calibration, we see that when integration purely driven by increased cross country CF-CF
correlation, the impact on portfolio variance is permanent. When the integration is purely driven by increased cross country

DR-DR correlation, the impact on portfolio variance 1s temporary, and dies out at long horizons. This matches with our intuition
2

perfectly, and we see from the calibration that (/\2(1 o+ /\z(f ‘Z)) A(féaﬁ) +1)05r pr K 0EF.CF-

Lemma: Assuming
(1) 0.5 < p<land0.5< ¢ <1 (trivially satisfied for time preference factor p and persistence of state variable ¢).

2¢°+3¢p+1
(2) p> Frisir2

We can conclude that the coefficient + [a(k; B, ¢, A)? + b(k; 8, ¢, A)] is positive and decreasing in k (these are sufficient but not
necessary conditions). The impact of covariance term 0%’ pr on per-period portfolio variance decreases as investment horizon
k increases.

Proof: f(k) = g [a(k; B, 6, ) +b(k; B, ¢, )]

2k
g2 =50 8% (6" =1)(o=0Y) _ 1=(s?)F 8 1—gt !
¥ e P lemmena B o1t 0 i) T I (B 1 m oS ) HE

=

93
B 2 1—(6%)* 2 1 1) (p—gh T 1—(p2)F—1 1 1_gk—1
= (%1—&(1 — w2 e (U b+ it - R ) — xRS + 1)

= Const + % ( 52 a- ¢ )(zé;-f ) 4+ 2/\2(1 ?;(f(l—aﬁ) —1+¢2+(¢’“’1—1)(4(>1 ¢(Z D) (14¢)— 144D N 2/\(1ﬁ_¢) 11:({):)
- ot (-E T son e ot 1)
= Const + k A (1 ‘5)) (ﬁ ¢*(2¢ (+1ﬁ¢)12)(12¢2 3¢—1 | 2)
where P . ;
Const = — +2 9 1

N1-¢> " N1-¢*)(1-9¢) A1-9)
B0 9) + 282 — 28A(1 - ) + A2(1— 6*)(1 - ¢)
(1= ¢?)(1—¢)
_(B-21-9¢))
A2 (1= ¢)?
Note that p and ¢ are close to but smaller than 1, and g = %. We want to find sufficient conditions so that f(k) is
decreasing in k. Since f(k) = g(k)h(k) and f'(k) = g/(k)h(k) + g(k)R'(k), f'(k) < 0 <= g(k)h'(k) < —g'(k)h(k). Since
g(k) > 0, it will be sufficient if we could show that ¢'(k) <0, h/(k) < 0 and h(k) > 0.
"
We first show that g(k) = L& 1295 decrease in k for ¢ € (0,1). Take the first order derivative we get ¢ (k) = £ Lo, U=k Ind)=1

>0

= EX0—9)? ¢ A(1-¢)2
To show ¢'(k) < 0, we need to show that m(¢) = ¢*(1 — k Ing) — 1 < 0 for ¢ € (0,1) and Vk. This could be easily proved since

m/(¢) = —k?¢*~Lin(¢) > 0 for ¢ € (0,1) and m(1) = 0. Thus g(k) is positive and decrease in k. Then we want to know the
k 2 2

property of h(k) = g‘i’ (2¢ gi;)lz)(f_ﬁ)*w*l + 2. We also notice given that 2¢? + ¢ — 1 > 0 (which hold as long as ¢ > 0.5), h(k)

is decreasing in k. Thus it would be sufficient to prove the lemma if we know h(k) > 0 for Vk. Since h(k) is decreasing in k, we

only need klim h(k) = ﬁw +2=—1p M + 2 > 0 to hold. This is equivalent to p > 20743041 Upder this
—00

A (1+9)2(1—¢) p(1=¢) (1+9¢) $2+39+2
condition, we know both g(k) and h(k) are positive and decreasing, therefore f(k) = g(k)h(k) is positive and decreasing in k.



Appendix C. Symmetrical Model for Asset Returns

We introduce a two-state-variable symmetrical model for stocks, which includes excess stock return and dividend price ratio as
state variables. In particular, the dynamics of the variables are given by:

g1 = 1+ B(de — pe) + Usr 41 (28)
diy1 — Pey1 = p2 + ¢(dy — pi) + Udp,e41 (29)

swe (=
We denote u; = [Ugrt, Uap,) and assume the VAR shocks are covariance stationary E(u;) = 0, E(uus) = 0 (t 2 %) The

superscript wc stands for within-country, and we use xc to represent cross-country in later part of the paper.

C.1 Connect VAR shocks to structural shocks

We decompose stock excess returns into two structural shocks: cash flow news and discount rate news. In the symmetrical model
(VAR) with two state variables, there’s actually a one-to-one mapping from the structural shocks to VAR shocks. Recall from
the decomposition

Negii1 = (Brr = E) | Y phrpieg | = (B = E) | D0 (Ul — Terney) | =0
Jj=0 j=0

This is because the short nominal rate and inflation are assume to be zero in our symmetrical model.
o0
_ j psB
Nrpiy1 = (B — Ey) Zﬂixm,tﬂﬂ' = ————Ugp i+1
=0 1- ps(l5

Therefore we have the discount rate news

psf
NpRr.t+1 = NrR,t+1 + NrpPt+1 = mudp,tﬂ
- Ms

and the cash flow news is calculated from the identity

B
Nerit1 = (Bir1 — B [2r5041] + NDRjt41 = Uar 41 + 1 fsp g it
S
To summarize, we have
NcFi+1 _ 1 lfsplj(b Ugr t41 (30)
NpRty1 0 1fspf¢ Udp,t+1

which connects the VAR shocks to structural shocks. Or in matrix notation ;41 = Pus41, where €441 is the structural shock,
uzy1 the VAR shocks and P the transformation matrix.

C.2 From single country to a world with N identical countries

To further explore the benefit of international diversification, we design an experiment in a world with N clones (N-replica world
composed of N identical countries, and we use the US data to get empirical results). To explain the experiment in detail, we first
introduce some notations. Let 3¢ = Var(us41) be the within country VAR covariance matrix, and 3*¢ = Cov(u; 441, uj¢41) (1 #
j) is defined as the cross-country VAR covariance matrix (between country ¢ and j). Since all covariance matrix X could be
decomposed into volatility component G = diag(X)'/? and correlation component (I' = diag(X)~'/?Sdiag(X)~'/?), we have the
following decomposition for within-country and cross-country VAR covariance matrix

$UC = GylYeG, (31)
27 = GyE Gy (32)

By using this notation we have implicitly assumed all countries are identical, i.e. ;"¢ = X¥¢ and XjF = X705 (i # j,1 #m),
which also implies Gx,; = Gy ;, I'®; =I'¢9, IS5, =159,
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Then the covariance matrix for the global VAR shock in the N-replica economy is

Swe  yxe . yxe

yze  ywe . ywc
Eglo = - . .

yze  ywe . ywe

with X*¢ as diagonal blocks and ¥*¢ as off diagonal blocks . Later we use X, international portfolio allocation analysis.

C.3 Connect the VAR covariance matrix to structural covariance matrix in a world with N
identical countries

Let Q"¢ = Var(e¢41) be the within country structural covariance matrix, and Q*¢ = Cov(e; 141,€j,¢41) (¢ # j) is defined as the
cross-country structural covariance matrix (between country ¢ and j). Analogous to the decomposition above, we have

0% = Gal'EGh, (33)
Qe = Gal'y°Gy (34)
From the relation ;41 = Pus41, we can take cross-country covariance Cov(e; 141,€541) = PCov(u; 441, uj41)P" and get an
identity Q%¢ = PX*°P’. Of course, Q¥¢ = PX¥°P’ also holds.
The identity could be rewritten as
Gal'y Gy, = PGsTEGL P! (35)
Applying the vec operator to both sides and using the trick that vec(ABC) = (C' ® A) - vec(B) (see Hamilton 1994 Proposition
10.4) we have
(Ga ® Gq) -vee (TE) = ((PGx) ® (PGy)) - vee (T') (36)
Now we’ve got a mapping from cross-country structural shock correlation matrix to cross-country VAR shock correlation matrix.
If (PGxs) ® (DGy)) is nonsingular, we could rewrite the relationship as

vee (TE) = ((PGx) ® (PGx)) ™" (Ga ® Ga) - vec (TE) (37)
And similarly, we have
(Ga ® Gq) -vee (T'G°) = (PGx) ® (PGy)) - vec (I's°) (38)
We could also analogously define the covariance matrix for the global structural shock
Qwe  Qzc ... Q¢
Qzc Qwe ... (e
leo = - . .
Qze Qzre ... Qe

And equations (33) and (34) give us the connection between Qg, and 3.

C.4 Tllustrative example using the symmetrical model

From the analysis above, we know there’s a connection between the global structural shocks and global VAR shocks. And
we could design some experiments using this connection to study the effect of international integration on portfolio allocation.
Empirically, we follow the steps below:

1. Estimate a single country symmetrical model using the US historical data. From this we could get a estimate for the
covariance matrix "¢ (or equivalently Gy, and I'{®). P matrix could also be calculated from the reduced form VAR coefficients.

2. Using the identity Q"¢ = PX"°P’, we have an estimate of Q"°(or equivalently G and I'°).

3. Manually set values for the cross-country structural shock correlation matrix I'g°. From equation (?) we will be able to
get the implied cross-country VAR shock correlation matrix I'§".

4. Construct the implied global VAR covariance matrix ¥,,, based on our input I'gY in step 3. Given ¥g,, we could study
the implications of international integration on global portfolio allocation.

Specifically, we assign 3 set of values tol'y’ in step 3 above, each corresponds a scenario below :

1st Scenario: 'Y =0

11



This is a benchmark case without international integration, where all cross-country structural shocks are uncorrelated.
Ty 0

0 0
where 1'% ; denote the cross-country CF news correlation.
This is a case with international integration, and the integration is purely driven by increased CF news correlation:

. 0 0
3rd Scenario: I'§’ = { 0 e }
Q,22

where 1'%, denote the cross-country DR news correlation.
This is a case with international integration, and the integration is purely driven by increased DR news correlation.

2nd Scenario: I'i¢ =

C.5 Implied Correlation Structure of VAR in Section 3.3

First Scenario | Second Scenario | Third Scenario
Corr Ugr,s Udp Ugr,s Udp Ugr,s Udp
Ugr,s 0 0 0.070 0 0.070  -0.087
Udp 0 0 0 0 -0.087 0.109

C.6 From 2 state variables (symmetrical model) to 6 state variables (general model)

It’s very easy to incorporate the symmetrical model in a more general framework. Recall that our general model for a single
country is a VAR with 6 state variables
Ziy1 = a+ Az + Ui

where Zp 11 = [#7 441, BT t415 de1 — Peg1s Ted 15 Y115 Y0401 — Yigg1)- Out symmetrical model is a special case of the general
model with

M1
0
az | 2
0
0
00 B 00O
00 0 0 0 O
|00 ¢ 0 00
A7000000
00 0O0O 0 O
0000 0O
and
uzr,t+1
0
Uy = udp(’)tH
0
0
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Appendix D. Data Description

We consider a number of time series from 7 major OECD countries, which accounts for 62% of total world market shares by
end of 2014.The full sample period is 1986:01 to 2016:12, yielding 372 monthly observations. We split the full sample to two
sub-periods, with the sub-period 1 from 1986:01 to 1999:12 and the sub-period 2 from 2000:01 to 2016:12. Returns are in U.S.
dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.

D.1 Currency-hedged Return

Before further explaining our data in details, we first introduce the concept of currency hedged excess return. Consider a home
investor from US buying assets in a foreign country (for example in Japan), we are interested in his excess returns from this
investment denominated in home currency. We use a superscript * to denote a foreign variable. S; denotes the spot foreign
exchange rate, and an increase in S; means home currency is weakening relative to foreign currency. To conduct this trade, the
investor at time ¢ has to exchange 1 US dollar into S% Japanese yen and invest in Japanese capital market, then converts the
money back to USD at time ¢ + 1 when the investment is liquidated. Thus the (unhedged) 1-period return in Japanese market
(measured in dollars) is
Stt1

1+ Rypnpr1 = (1 + RTIPN,tJrl)T
t

where Rjpy . is return in Japanese asset denominated in Japanese yen (local return).
However, due to the uncertainty in future exchange rate Siy1, the investor will want to lock down the future exchange rate
using a currency forward at forward rate F;. So the currency hedged return of a US investor investing in Japan is defined as

* Ft
1+ R}}PN,tJrl =1+ R.]PN,t+1)§t

Recall from the covered interest rate parity (CIP), we also have

. o Fy
1 +iys1r = (1+ ZJPN,tJr1)§
t

where iy g 41 is the nominal interest rate for the US, while ¢ ;px 41 is the nominal interest rate for Japan. The intuition for this
equation is that the investor should not have arbitrage opportunities, or alternatively, should be indifferent to invest locally or
abroad if the currency risk of investing in foreign country is hedged. This equation holds pretty well unless there’s counter-party
risk or barriers to financial integration (transaction costs, taxes, capital controls, et cetera).

Combining the two equations above, we know that the excess currency hedged return of a US investor investing in Japan is

I+ R?PN,t+1 1+ Ripnin

: —
1 +iusit L+ %pn it

or in log terms
h ok *
TJPNt+1 —TFUSt+1 = TjPNt+1 — T JPNt+1
where rf 541 = In(1 +iysq1) and 7¢ 7pN 41 = In(1 + 45 py 1) are the risk free rates in US and Japan. Thus, we have

shown that the excess currency-hedged return of US investors investing in Japan is the same as the excess return of Japanese
investors investing in home country (local excess return).

D.2 Main Variables

Now we introduce our main variables briefly.

Returns, Dividend Yield and Inflation

The international portfolio we consider are constructed from country level index in equity and bonds. The country level
stock returns are measured as dollar returns on MSCI net total return indices, which reinvest dividends after the deduction of
withholding taxes. We use Merill Lynch total return indices (7yr-10yr) to get bond returns. The dividend yield is measured as
the log of MSCI dividend yield (MSDY), which is calculated using the trailing 12-month cash earnings per share figure. All the
data on stock and bond returns as well as dividend yields are from Datastream. Table 2.A reports sample correlations of monthly
bond and stock returns for the period January 1986 to December 2016. Returns are in U.S. Dollar currency-hedged terms in
excess of the three-month U.S. Treasury bill rate. Table 2.B and 2.C further look at the correlations in the two sub-samples we
are studying.
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For the inflation, we get data from both Datastream and Global Financial Data (GFD). We first get annualized inflation
rates from Datastream. But for France and UK, the data does not go back far enough because data comes from newer HICP
that started in 1990’s; thus, we compute inflation manually using CPI for France and RPI for UK from GSD.

Foreign Exchange Rates

We get spot currency levels and one-month forward currency levels from Datastream. The currency levels are all in terms of 1
US dollar except for British Pound (GBP), so we invert GBP to get correct reference frame. The (unhedged) currency returns
are calculated as In( ngl) for spot currency levels for 1 USD, and the currency-hedged returns are calculated as In Sf for forward
and spot currency levels for 1 USD. Note that French and German data switch to Euros at the beginning of 1999.

Short Term and Long Term Nominal Interest Rate

We use 1 month T-bill rate for US short term nominal interest rate, and for other countries we use different rates on short term
financial instruments including 1 month Euribor rates, bank loan rates or overnight money market interest rates. The data are
from GFD and central bank websites. Long term nominal interest rate are represented using 10 year yields. The US series is
from CRSP Fixed Term Indices and other countries from GFD.

D.3 Data Source

] Variable \ Source Description \ Download Information
Equity Index Datastream MSCI net returns in USD using MSNR (net MSAUSTL, MSCNDAL, MSFRNCL,
dividends reinvested); sheet also contains MSGERML, MSJPANL, MSUTDKL, MSUSAML
MSCI price indices in USD using MSPI (no with fields MSNR, MSPI, or MSRI
dividends reinvested) and MSCI return
indices in USD using MSRI (gross dividends
reinvested); get returns with simple division
of levels; can also get local returns as
opposed to USD returns. Take simple USD
returns from MSNR and takes LN of gross
returns.
Dividend Datastream Dividend yields; take LN MSAUSTL, MSCNDAL, MSFRNCL,
yields MSGERML, MSJPANL, MSUTDKL, MSUSAML
with field MSDY
Bond Index Datastream Merrill Lynch total return indices; get Datastream tickers: MLAD1T3, MLAD3TS5,
simple returns with simple division of levels; MLAD5T7, MLAD710, MLCD1T3, MLCD3T5,
numbers are already in USD. We take only MLCD5T7, MLCD710, MLFF1T3, MLFF3T5,
7y-10y sector TR and takes LN of gross MLFF5T7, MLFF710, MLDM1T3, MLDM3T5,
returns MLDM5T7, MLDM710, MLJP1T3, MLJP3T5,
MLJP5T7, MLJP710, MLUK1T3, MLUK3TS5,
MLUK5T7, MLUK710, MLUS1T3, MLUS3T5,
MLUS5T7, MLUS710
Inflation Datastream Get annualized inflation rates from Datastream tickers: AUCPANNL, BDCPANNL,
and Global Datastream and take monthly differences to CNCPANNL, FRCPANNL, JPCPANNL,
Financial account for seasonality; for France and UK, UKCPANNL, USCPANNL;
Data(GFD) data does not go back far enough because GFD tickers: CPAUSM, CPCANM, CPFRAM
data comes from newer HICP that started (this is French CPI), CPHFRAM (this is French
in 1990’s; thus, use GFD to get older CPI HICP), CPDEUM, CPJPNM, CPGBRM (this is
for France and RPI for UK and manually UK RPI), CPHGBRM (this is UK HICP),
compute inflation. We take LN of 1 + CPUSAM
monthly difference.
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FX Data Datastream Currency returns calculated as Get spot currency levels with BBAUDSP,
(spot and LN(SPOT(t+1)/SPOT(t)) for SPOT BBCADSP, BBFRFSP, BBDEMSP, BBJPYSP,
forward currency levels for 1 USD; hedged currency BBGBPSP, BBEURSP - these are all in terms of
currency level) returns calculated as LN(FWD(t) /SPOT(t)) | 1 USD except for GBP, so need to invert GBP to
for FWD and SPOT currency levels for 1 get correct reference frame; get 1m forward
USD; note that French and German data currency levels with BBAUD1F, BBCADIF,
switch to Euros at the beginning of 1999 BBFRF1F, BBDEM1F, BBJPY1F, BBGBPI1F,
BBEURIF - these are all in terms of 1 USD
except for GBP, so need to invert GBP to get
correct reference frame
Short Term GFD and Short nominal rates; Australia: target FF Australia: GFD (from Global Currency Hedging
Interest Rate websites rates; Canada: bank rates, which are paper) until 200605, then from http:
discount rates or +25bp over target FF //wuw.rba.gov.au/statistics/cash-rate.html;
rates; France/Germany: 1 month Euribor Canada: http://www.bankofcanada.ca/rates/
rates; Japan: basic discount rates/basic loan interest-rates/canadian-interest-rates/;
rates; UK: bank rates, which are discount France: GFD (from Global Currency Hedging
rates; US: 12*RF where RF is the 1 month paper) until 200412, then from
T-bill rate; take LN of (14+SR) as defined http://wuw.global-rates.com/
above and divides by 12 to get monthly interest-rates/euribor/2010.aspx; Germany:
figure GFD (from Global Currency Hedging paper) until
200412, then from http://www.global-rates.
com/interest-rates/euribor/2010.aspx; Japan:
http://wuw.boj.or.jp/en/statistics/boj/
other/discount/index.htm/; UK:
http://wuw.bankofengland.co.uk/mfsd/iadb/
Repo.asp?Travel=NIxRPx; US: from Ken French’s
website
Long Term GFD and Long nominal rates; essentially CMT at 5y For non-US, use GFD and the following symbols:
Interest Rate CRSP and 10y points; takes LN of 1 + LR using IGAUSSD, IGCANBSD, IGFRASD, IGDEUSD,
the 10y point and divides by 12 to get IGJPN5D, IGGBR5D; IGAUS10D, IGCAN10D,
monthly figure IGFRA10D, IGDEU10D, IGJPN10D, IGGBR10D
for US, use CRSP Fixed Term Indices (Daily
Series of Yield to Maturity) and the data for 2014
comes from, taking the yield at the end of each
month
http://wuw.treasury.gov/resource-center/
data-chart-center/interest-rates/Pages/
TextView.aspx?data=yieldYear&year=2014
Market World Bank Market capitalization of each country "Market capitalization of listed companies ]
Capitalization (current US$)" on world bank website
http://data.worldbank.org/indicator/CM.MKT.
LCAP.CD/countries
Credit GFD and Investmet grade corporate bond index of For Corporate Bonds: Australia use GFD
Spread Datastream | each country in excess of the government series "INAUSW" before 2005, use series

bond index. For US, we use Moody’s
Baa-Aaa as credit spread.
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"Non-financial corporate BBB-rated bonds —
Yield — 7 year target tenor" from Reserve
Bank of Australia starting from 200501.
Canada use GFD series "INCANLTW" until
2006, then switch to "S&P CANADA IG
CORP BOND IDX" (from datastream)
starting from 200605. France use GFD series
"INFRAM". Germany use GFD series
"INDEUD". Japan use GFD series
"INJPNW". UK use GFD series "INGBRW".
Government bonds are from GFD with the
following symbols: IGAUS5D, IGAUS10D,
IGFRA3D, IGDEU5D, IGJPN5D,
IGGBR10D.

For US, we use Moody’s Baa-Aaa as credit
spread.



http://www.rba.gov.au/statistics/cash-rate.html
http://www.rba.gov.au/statistics/cash-rate.html
http://www.bankofcanada.ca/rates/interest-rates/canadian-interest-rates/
http://www.bankofcanada.ca/rates/interest-rates/canadian-interest-rates/
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.boj.or.jp/en/statistics/boj/other/discount/index.htm/
http://www.boj.or.jp/en/statistics/boj/other/discount/index.htm/
http://www.bankofengland.co.uk/mfsd/iadb/Repo.asp?Travel=NIxRPx
http://www.bankofengland.co.uk/mfsd/iadb/Repo.asp?Travel=NIxRPx
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD/countries
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD/countries

Real GDP

GFD

Real GDP in domestic currency

From GFD, tickers as follows: GDPCCAN
(Canada Real GDP in 2007 Dollars)
GDPCDEU (Germany Real GDP in 2010
Euros) GDPCAUS (Australia Real GDP in
2007-2008 Dollars), GDPCGBR (Great
Britain Real GDP in 2008 Pounds),
GDPCFRA (France Real GDP in 2010
Euros), GDPCJPN (Japan Real GDP in 2010
Yen), GDPCUSA (United States Real GDP in
2009 Dollars)

Real
Industrial
Production

GFD

Industrial Production Index in each
country

From GFD, tickers as follows: NDAUTM,
NDCANM, NDDEUM, NDFRAM,
NDGBRM, NDJPNM, USINDPROM

Real
Consumption

GFD

Private Final Consumption Expenditure
in each country. We adjusted for
inflation to get real variables (if the
original variable is nominal).

From GFD, tickers as follows:
GDPPCRAUSQ, GDPPCCANQ,
GDPPCFRAQ, GDPPCDEUQ,
GDPPCRJPNQ, GDPPCGBRQ,

GDPPCUSAQ

Real
Corporate
Earnings

Datastream

Corporate profit, income or surplus
aggretate to country level. We adjust for
inflation to get real variables.

From Datastream, tickers as follows:
USPROFTSB, AUPROFTSB, CNPROFTSB,
BDPROFTSB, JPNETPRFB, UKPROFTSB,

FRNFCGOSB

Real
Dividend

Datastream

Use country level dividend yield and
stock price index and multiply to get
level of dividend (D; = B x P;). And
then real by nominal dividend growth
adjusted for inflation.

We use MSCI price index (MSPI) and
dividend yield (MSDY). Tickers are as follows:
MSAUSTL, MSCNDAL, MSFRNCL,
MSGERML, MSJPANL, MSUTDKL, MSUSAML
with fields MSPI and MSDY.
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D.4 Correlation Summary Statistics

Table D.4 - Correlations (Jan. 1986 - Dec. 2016)
Bonds Stocks
AUS CAN FRA GER JPN UKI USA | AUS CAN FRA GER JPN UKI USA
AUS | 1.00
CAN | 055 1.00
FRA | 046 0.52 1.00
Bonds | GER | 0.49 0.58 0.86 1.00
JPN | 022 033 030 039 1.00
UKI | 0.53 044 057 059 0.27 1.00
USA | 055 071 060 064 031 039 1.00
AUS | 0.21 -0.04 -0.06 -0.11 -0.11 0.13 -0.16 | 1.00
CAN | 0.07 0.10 -0.07 -0.11 -0.04 0.03 -0.09 | 0.63 1.00
FRA | -0.03 -0.02 0.09 -0.02 0.02 0.03 -0.14| 057 063 1.00
Stocks | GER | -0.03 -0.05 -0.04 -0.10 -0.05 -0.05 -0.19 | 0.56 0.60 0.84 1.00
JPN | -0.10 0.00 -0.03 -0.08 0.00 -0.02 -0.16 | 044 0.46 051 046 1.00
UKI | 0.12 0.07r 003 -003 0.01 0.15 -0.06| 066 0.68 0.73 0.68 045 1.00
USA | 0.04 0.08 -0.02 -0.11 0.00 0.03 -0.05| 063 078 071 069 049 079 1.00
Table 2.B - Correlations (Jan. 1986 - Dec. 1999)
Bonds Stocks
AUS CAN FRA GER JPN UKI USA | AUS CAN FRA GER JPN UKI USA
AUS | 1.00
CAN | 044 1.00
FRA | 031 0.39 1.00
Bonds | GER | 0.31 046 0.78 1.00
JPN | 0.18 0.34 030 043 1.00
UKI | 0.44 029 045 046 024 1.00
USA | 040 0.64 048 0.51 031 0.17 1.00
AUS | 044 0.01 0.01 -0.01 -0.12 0.29 -0.10 | 1.00
CAN | 039 030 008 0.06 0.04 021 008 | 064 1.00
FRA | 0.18 0.12 040 031 0.09 022 0.08 | 048 0.55 1.00
Stocks | GER | 0.25 0.13 0.24 023 -0.02 0.12 006 | 051 054 0.76 1.00
JPN | 0.08 0.17 0.13 0.12 0.14 0.15 0.00 | 0.34 0.39 0.42 0.32 1.00
UKI | 0.37 019 020 0.17 004 033 0.09 | 064 066 062 0.58 037 1.00
USA | 035 034 0.19 0.12 005 022 024 | 058 0.78 059 055 036 0.74 1.00
Table 2.C - Correlations (Jan. 2000 - Dec. 2016)
Bonds Stocks
AUS CAN FRA GER JPN UKI USA | AUS CAN FRA GER JPN UKI USA
AUS | 1.00
CAN | 0.73  1.00
FRA | 066 0.70 1.00
Bonds | GER | 0.71 0.73 0.94 1.00
JPN | 035 033 036 039 1.00
UKI | 0.72 0.76 0.78 0.84 037 1.00
USA | 0.74 083 072 0.76 036 0.76 1.00
AUS | -0.21 -0.12 -0.17 -0.24 -0.08 -0.22 -0.24 | 1.00
CAN | -0.29 -0.13 -0.21 -0.26 -0.17 -0.22 -0.24 | 0.66 1.00
FRA | -0.31 -0.20 -0.25 -0.34 -0.13 -0.27 -0.36 | 0.71 0.72 1.00
Stocks | GER | -0.34 -0.24 -0.29 -0.36 -0.12 -0.28 -0.38 | 0.66 0.65 0.92 1.00
JPN | -0.34 -0.24 -0.20 -0.28 -0.31 -0.31 -033| 061 0.55 062 059 1.00
UKI | -0.22 -0.09 -0.16 -0.24 -0.06 -0.15 -0.22 | 0.71 0.72 0.86 0.79 0.56 1.00
USA | -0.30 -0.21 -0.23 -0.30 -0.11 -0.25 -0.30 | 0.73 0.78 0.83 0.81 062 0.84 1.00
This table reports sample correlations of monthly bond and stock returns for the whole sample (January 1986 to December
2016), early sample (January 1986 to December 1999) and late sample (January 2000 to December 2016). Returns are in U.S.

Dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.
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Appendix E. VAR Model Estimation

Table E1. Pooled VAR(1) Model Estimates

Panel A
Model estimates | Coefficients on lagged variables
(1) (2) 3) (4) () (6) Rsq
(1) log stock excess returns 0.081 0.110 0.012 0.002 -0.776 1.305 0.015
(2.249)  (1.151) (2.187) (0.005)  (-0.737) (0.632)
(2) log bond excess returns | -0.050 0.059 0.003 -0.227 0.458 2.232 | 0.042
(-4.786)  (1.939) (1.766)  (-1.800)  (1.433) (3.432)
(3) log dividend yield -0.078 -0.141 0.978 0.142 -0.281 -3.879 | 0.963
(-2.057) (-1.390) (161.895) (0.328)  (-0.254)  (-1.776)
(4) log inflation 0.004 -0.008 0.000 0.164 0.267 -0.014 | 0.085
(2.580) (-1.674)  (0.035) (6.606) (5.809) (-0.145)
(5) log short rate 0.000 -0.002 0.000 0.004 1.003 0.068 0.981
(1.282) (-4.188)  (-1.280)  (2.217) (237.262) (7.051)
(6) log yield spread 0.000 0.001 0.000 -0.002 -0.011 0.910 0.863
(1.952)  (1.070)  (-0.289)  (-0.841)  (-2.004)  (74.947)
Panel B

Within-country Residual Correlation Matrix (1986.01-2016.12)
averaged over 7 countries
average annualized volatility*100 in diagonal

(1) (2) (3) (4) (5) (6)
(1) log stock excess returns  17.702  0.062 -0.897 0.024 -0.018 -0.031
(2) log bond excess returns  0.062  5.829 -0.055 -0.076 -0.183 -0.461
(3) log dividend yield -0.897 -0.055 19.684 0.025 0.033 0.023
(4) log inflation 0.024 -0.076 0.025 1.115 0.065 0.013
(5) log short rate -0.018 -0.183 0.033 0.055 0.102 -0.711
(6) log yield spread -0.031 -0.461 0.023 0.013 -0.711 0.119

Cross-country Residual Correlation Matrix (1986.01-2016.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) 3) (4) (5) (6)
(1) log stock excess returns  0.610 -0.050 -0.571 0.006 0.003 0.030
(2) log bond excess returns ~ 0.000  0.458  0.002 -0.072 -0.051 -0.288
(3) log dividend yield -0.546 0.044 0.531 0.017 0.010 -0.039
(4) log inflation 0.013 -0.036 0.014 0.186 0.032 0.001
(5) log short rate 0.007 -0.045 0.009 0.049 0.128 -0.062
(6) log yield spread -0.010 -0.257 0.000 0.015 -0.087 0.259
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Panel C

Within-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries
diagonal terms are annualized average volatility*100

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.213  0.293  -0.926 -0.026 -0.088 -0.109
(2) log bond excess returns  0.293  6.743  -0.290 -0.071 -0.209 -0.400
(3) log dividend yield -0.926 -0.290 20.863 0.058 0.083  0.115
(4) log inflation -0.026 -0.071 0.058  1.058 0.041  0.021
(5) log short rate -0.088 -0.209 0.083 0.041 0.136 -0.721
(6) log yield spread -0.109 -0.400 0.115 0.021 -0.721  0.153

Cross-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) 3) (4) () (6)

(1) log stock excess returns  0.538  0.080 -0.527 -0.060 -0.047 -0.012

(2) log bond excess returns  0.183  0.370  -0.177 -0.060 -0.072 -0.213

(3) log dividend yield -0.508 -0.084 0.509 0.069 0.045 0.015

(4) log inflation -0.016 -0.020 0.027 0.093 0.006  0.009

(5) log short rate -0.035 -0.054 0.030 0.034 0.097 -0.032

(6) log yield spread -0.074 -0.196 0.078 0.033 -0.050  0.188
Panel D

Within-country Residual Correlation Matrix (2000.01-2016.12)
averaged over 7 countries
diagonal terms are annualized average volatility*100

(1) (2) 3) (4) (5) (6)

(1) log stock excess returns  16.244 -0.239 -0.871 0.071  0.129  0.095
(2) log bond excess returns  -0.239  4.863  0.247 -0.086 -0.125 -0.643
(3) log dividend yield -0.871  0.247 18.416 -0.008 -0.080 -0.120
(4) log inflation 0.071 -0.086 -0.008 1.135 0.091 0.017
(5) log short rate 0.129 -0.125 -0.080 0.091 0.083 -0.625
(6) log yield spread 0.095 -0.643 -0.120 0.017 -0.625 0.074

Cross-country Residual Correlation Matrix (2000.01-2016.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns  0.700 -0.220 -0.633 0.068 0.110  0.083
(2) log bond excess returns  -0.225 0.605 0.216 -0.101 -0.008 -0.442
(3) log dividend yield -0.600 0.198 0.573 -0.030 -0.061 -0.104
(4) log inflation 0.046 -0.070 -0.006 0.249 0.057 0.014
(5) log short rate 0.115 -0.035 -0.040 0.107 0.271 -0.171
(6) log yield spread 0.100 -0.439 -0.140 0.004 -0.206 0.486
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Table E2. VAR(1) Model Estimates [Australia]

Panel A. Model estimates

Coefficients on lagged variables

1 (2 (3) (4) () (6) Rsq
(1) log stock excess returns | 0.080 0.024 -0.273 0.023 0.118 -0.774 0.714 | 0.018
(1.081)  (0.566) (-1.540)  (1.049) (0.105)  (-0.553)  (0.298)
(2) log bond excess returns 0.027 -0.041 0.110 0.009 -0.389 0.698 2.597 0.047
(1.322)  (-2.144) (1.889) (1.433) (-0.862) (1.643) (2.586)
(3) log dividend yield -0.164  -0.051 0.291 0.950 1.044 -0.158 -4.370 | 0.923
(-2.058) (-0.948) (1.486) (40.451) (0.774)  (-0.103) (-1.519)
(4) log inflation -0.001 0.001 -0.003 0.000 0.737 0.117 0.001 | 0.709
(-0.558)  (0.751) (-0.974) (-0.598) (10.216) (2.553) (0.021)
(5) log short rate 0.000 0.000 0.002 0.000 0.044 0.985 0.179 0.956
(0.305)  (0.605)  (0.880)  (0.474)  (2.262) (44.080) (3.591)
(6) log yield spread -0.001 0.000 -0.003 0.000 -0.043 0.004 0.786 | 0.702
(-0.797)  (0.255) (-1.821) (-1.052) (-2.238) (0.180) (15.170)
Panel B. Residual correlation matrix
nm @ © (4) (5) (6)
(1) log stock excess returns 17.152 0.210 -0.918 0.001 -0.041 -0.032
(2) log bond excess returns 0.210 6.349 -0.177 -0.058 -0.061 -0.288
(3) log dividend yield -0.918 -0.177 18.997 0.004 0.027 0.040
(4) log inflation 0.001 -0.058 0.004 0.437 0.091 -0.068
(5) log short rate -0.041 -0.061 0.027 0.091 0.215 -0.933
(6) log yield spread -0.032 -0.288 0.040 -0.068 -0.933 0.229
Table E3. VAR(1) Model Estimates [Canada]
Panel A. Model estimates
Coefficients on lagged variables
R ®) @ ) © | R
(1) log stock excess returns | 0.033 0.116 0.155 0.008 0.509 -0.983 1.908 | 0.029
(0.843)  (1.915) (1.238)  (0.757)  (0.787)  (-0.902)  (0.755)
(2) log bond excess returns 0.007 -0.078 0.044 0.002 -0.065 0.429 2.555 0.057
(0.654) (-2.810)  (0.652)  (0.741)  (-0.194)  (0.969)  (2.210)
(3) log dividend yield -0.076 -0.128 -0.217 0.978 -0.518 -0.450 -5.245 | 0.970
(-1.529) (-2.016 ) (-1.648) (73.081) (-0.655) (-0.378)  (-1.867)
(4) log inflation 0.000 0.008 -0.008 0.000 0.109 0.247 -0.129 0.077
(0.110)  (1.726) (-0.774) (-0.228) (1.632)  (2.717)  (-0.675)
(5) log short rate 0.000 0.000 -0.004 0.000 0.000 1.000 0.029 0.989
(-1.635)  (-0.172) (-3.001) (-1.499)  (-0.025) (136.467) (1.451)
(6) log yield spread 0.000 0.001 0.002 0.000 0.000 -0.006 0.952 | 0.929
(1.156)  (2.073)  (2.259)  (0.893)  (-0.014)  (-0.849)  (49.350)
Panel B. Residual correlation matrix
L © (3) (4) (5) (6)
(1) log stock excess returns 15.048 0.119 -0.911 0.090 -0.016 -0.041
(2) log bond excess returns 0.119 5.837 -0.113 0.009 -0.309 -0.367
(3) log dividend yield -0.911 -0.113 16.963 -0.045 0.035 0.036
(4) log inflation 0.090 0.009 -0.045 1.170 0.027 -0.014
(5) log short rate -0.016 -0.309 0.035 0.027 0.095 -0.724
(6) log yield spread -0.041 -0.367 0.036 -0.014 -0.724 0.099
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Table E4. VAR(1) Model Estimates [France]

Panel A. Model estimates

Coefficients on lagged variables
SO ©)) 3) (4) (5) (6) Rsq

(1) log stock excess returns 0.024  0.100 0.467 0.007 1.062 -0.310 3.542 | 0.034
(0.559) (1.440)  (2.129)  (0.625)  (1.009) (-0.170)  (0.753)

(2) log bond excess returns 0.027  -0.030 0.079 0.008 -0.650 0.568 2.187 | 0.063
(2.457) (-2.003)  (1.338)  (2.601) (-2.693) (1.290)  (1.976)

(3) log dividend yield -0.100  -0.081 -0.581 0.968 -0.688 -0.781 -6.171 | 0.937
(-1.893) (-1.118) (-2.523) (66.628) (-0.575)  (-0.414) (-1.222)

(4) log inflation 0.000  0.005 -0.002 0.000 -0.028 0.264 0.192 | 0.053
(0.087) (2.072) (-0.187) (-0.124) (-0.502) (3.149)  (0.973)

(5) log short rate -0.001  0.000 -0.003 0.000 -0.002 1.009 0.054 | 0.993
(-3.076)  (-0.381) (-3.523) (-2.961) (-0.406) (144.631)  (1.756)

(6) log yield spread 0.000  0.000 0.002 0.000 0.008 -0.018 0.927 | 0.922
(1.282) (1.786)  (1.701)  (0.866)  (1.586) (-2.023) (28.193)

Panel B. Residual correlation matrix

H @ 3) (4) () (6)

(1) log stock excess returns 19.104 0.090 -0.858 -0.029 -0.011 -0.072
(2) log bond excess returns 0.090 5.076 -0.022 -0.146 -0.150 -0.500
(3) log dividend yield -0.858 -0.022 21.924 0.127 -0.015 0.060
(4) log inflation -0.029 -0.146 0.127 0.912 0.095 0.033
(5) log short rate -0.011 -0.150 -0.015 0.095 0.080 -0.747
(6) log yield spread -0.072 -0.500 0.060 0.033 -0.747 0.097

Table E5. VAR(1) Model Estimates [Germany]

Panel A. Model estimates

Coefficients on lagged variables
SO ) 3) (4) (5) (6) Rsq

(1) log stock excess returns 0.085  0.097 0.020 0.022 -0.548 -2.237 3.821 | 0.024
(1.544) (1.503)  (0.082)  (1.497) (-0.579) (-1.380)  (0.802)

(2) log bond excess returns 0.007  -0.040 0.055 0.001 -0.350 -0.185 1.017 | 0.052
(0.662) (-3.110)  (1.014)  (0.445) (-1.559)  (-0.484)  (1.077)

(3) log dividend yield -0.170  -0.112 -0.069 0.951 0.328 1.066 -7.180 | 0.924
(-2.900) (-1.675) (-0.269) (59.279)  (0.321)  (0.647) (-1.494)

(4) log inflation 0.003  0.005 -0.010 0.000 -0.125 0.236 -0.416 | 0.051
(1.202)  (1.912) (-0.968)  (0.620) (-2.217)  (2.026) (-1.874)

(5) log short rate 0.000  0.000 -0.003 0.000 0.002 1.003 0.028 | 0.993
(-1.749)  (1.028) (-4.439) (-1.613)  (0.603) (272.038)  (1.903)

(6) log yield spread 0.000 0.000 0.002 0.000 0.002 -0.004 0.969 | 0.939
(1.423) (1.877)  (2.609)  (1.277)  (0.735) (-0.657)  (58.023)

Panel B. Residual correlation matrix

CORN©) 3) (4) () (6)
(1) log stock excess returns 21.496 -0.095 -0.875 0.085 0.083 -0.034
(2) log bond excess returns -0.095 4.789 0.081 -0.127 -0.310 -0.529
(3) log dividend yield -0.875 0.081 23.371 -0.046 -0.042 0.017
(4) log inflation 0.085 -0.127 -0.046 1.140 0.033 0.096
(5) log short rate 0.083 -0.310 -0.042 0.033 0.054 -0.581
(6) log yield spread -0.034 -0.529 0.017 0.096 -0.581 0.069
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Table E6. VAR(1) Model Estimates [Japan]

Panel A. Model estimates

Coefficients on lagged variables

SV 3) (4) (5) (6) Rsq
(1) log stock excess returns 0.048  0.119 0.211 0.011 -0.535 -0.291 4.355 | 0.022
(1.128) (1.795)  (0.885)  (1.077) (-0.815) (-0.095)  (0.646)
(2) log bond excess returns 0.035 -0.034 0.136 0.009 -0.018 0.888 7.955 | 0.095
(3.207) (-2.619) (2.095) (3.311) (-0.112)  (1.172)  (4.093)
(3) log dividend yield -0.096  -0.128 -0.225 0.975 0.631 -2.666  -13.637 | 0.981
(-1.609) (-1.592) (-0.783) (65.865)  (0.846)  (-0.722)  (-1.537)
(4) log inflation 0.000 0.002 0.001 0.000 0.181 0.374 -0.138 | 0.051
(-0.083) (0.383)  (0.034) (-0.098)  (4.731) (1.692) (-0.279)
(5) log short rate 0.000  0.000 -0.001 0.000 0.002 0.984 -0.003 | 0.992
(-2.430) (-0.166) (-2.350)  (-2.439)  (1.027) (121.339) (-0.253)
(6) log yield spread 0.000 0.000 -0.001 0.000 -0.002 0.004 0.924 | 0.930
(-2.229)  (2.376) (-0.921) (-2.424) (-1.194)  (0.421) (41.469)
Panel B. Residual correlation matrix
O N ) (6)
(1) log stock excess returns 19.861 0.002 -0.860 0.041 -0.043 0.001
(2) log bond excess returns 0.002 4.927 -0.015 0.016 -0.187 -0.742
(3) log dividend yield -0.860 -0.015 22.954 0.004 0.066 0.005
(4) log inflation 0.041 0.016 0.004 1.475 0.032 -0.016
(5) log short rate -0.043 -0.187 0.066 0.032 0.038 -0.407
(6) log yield spread 0.001 -0.742 0.005 -0.016 -0.407 0.059
Table E7. VAR(1) Model Estimates [United Kingdom]|
Panel A. Model estimates
Coefficients on lagged variables
SO ) 3) (4) () (6) Rsq
(1) log stock excess returns 0.093 0.029 0.248 0.026 0.031 -0.930 0.189 0.034
(1.833)  (0.518) (2.419) (1.917) (0.048)  (-0.627)  (0.059)
(2) log bond excess returns | 0.023 -0.069 -0.010 0.006 0.034 -0.006 1.086 | 0.031
(1.249)  (-1.452) (-0.128) (1.273)  (0.119)  (-0.010)  (0.843)
(3) log dividend yield -0.083 -0.025 -0.264 0.975 -0.147 0.287 -1.345 0.952
(-1.487) (-0.413) (-2.374) (63.898) (-0.220) (0.183) (-0.404)
(4) log inflation 0.003 0.004 -0.012 0.000 0.133 0.243 0.013 | 0.070
(0.584) (0.976) (-0.891) (0.336)  (2.046) (2.197) (0.051)
(5) log short rate -0.001 0.000 -0.002 0.000 0.005 1.010 0.042 | 0.995
(-2.122)  (0.928) (-3.303) (-2.033) (1.492) (135.818) (2.432)
(6) log yield spread 0.001 0.000 0.001 0.000 -0.006 -0.017 0.942 0.954
(1.949)  (0.069) (1.735)  (1.683) (-1.190) (-2.033)  (48.304)
Panel B. Residual correlation matrix
Hm @ B @ G (6)
(1) log stock excess returns 15.385 0.153 -0.907 -0.011 -0.053 -0.099
(2) log bond excess returns 0.153 7.345 -0.144 -0.102 -0.304 -0.424
(3) log dividend yield -0.907 -0.144 17.152 0.066 0.058 0.091
(4) log inflation -0.011 -0.102 0.066 1.412 0.117 0.033
(5) log short rate -0.053 -0.304 0.058 0.117 0.075 -0.578
(6) log yield spread -0.099 -0.424 0.091 0.033 -0.578 0.096
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Table E8. VAR(1) Model Estimates [United States]

Panel A. Model estimates

Coefficients on lagged variables
SV 3) (4) (5) (6) Rsq

(1) log stock excess returns | 0.111 0.062 0.030 0.023 0.212 -3.259 -6.290 | 0.024
(2.633) (0.876)  (0.219) (2.505) (0.290)  (-1.799) (-1.693)

(2) log bond excess returns | -0.015 -0.079 0.034 -0.003 -0.831 1.422 3.670 | 0.075
(-0.979) (-3.138) (0.584)  (-0.854) (-2.323) (2.263)  (2.760)

(3) log dividend yield -0.092 -0.044 -0.001 0.979 0.369 1.421 4.942 0.981
(-2.117)  (-0.643) (-0.006) (101.402) (0.556)  (0.749)  (1.350)

(4) log inflation 0.002 0.009 -0.012 0.000 0.448 0.158 -0.052 0.263
(0.593)  (1.635) (-1.394)  (0.346) (5.998)  (1.506)  (-0.246)

(5) log short rate -0.001 0.001 0.000 0.000 0.006 1.029 0.154 | 0.964
(-3.505)  (0.742) (-0.321)  (-2.639)  (1.063) (99.190)  (5.568)

(6) log yield spread 0.001 0.000 0.000 0.000 0.003 -0.050 0.803 0.777
(3.487)  (0.412) (-0.092)  (2.650)  (0.342) (-3.578) (25.018)

Panel B. Residual correlation matrix

n @ G W 6 ®
(1) log stock excess returns 15.127  -0.034 -0.959 -0.024 0.031 -0.024
(2) log bond excess returns -0.034 6.147 0.015 -0.133 0.013 -0.452
(3) log dividend yield -0.959 0.015 15.323 0.038 0.005 0.002
(4) log inflation -0.024 -0.133 0.038 0.971 -0.025 0.076
(5) log short rate 0.031 0.013 0.005 -0.025 0.133 -0.883
(6) log yield spread -0.024 -0.452 0.002 0.076 -0.883 0.160
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Appendix F. Fisher Transformation and Correlation Contribution

F.1 Fisher Transformation

We use Fisher transformation to test the hypothesis that cross-country correlations of the news components of excess stock
returns are different between 1986-1999 subperiod and the 2000-2016 subperiod. Define z = $1In (%f:) If (X,Y) is bivariate

normal, and if (X;,Y;) used to form r are independent, then z ~ N (% In <}f—2) , ﬁ), where N is the sample size. For two
samples of data, the early subperiod (1) and the late subperiod (2), define z; = £ In (%f—:i) and z; = £ In (}f—f;) The difference

isz1 —20~N (% In (%) —3In (}fzz) , N11—3 + N21_3). p-values can then be obtained in the normal way.

F.2 Correlation Contribution

For stocks, we can decompose the excess return news ©s;41 = (Ey1 — Ey) [2rs41] = Nori+1 — Nrri+1 — Nrpi+1- For bonds
we can decompose its excess return news as 2741 = (E1 — Ey) [2r0,041] = Nepn,41 — NrRRnt+1 — NRPnt+1. (an increase in
Ncrppn+1 for bonds is interpreted as negative inflation news).

The reported “Component Contributions” in Figure 4 look at how much of the average covariance in excess returns is

being explained by covariances of news components. E.g., in Table 4, the stocks cash flow/stocks real rate across coun-
Cov(N¢r,i,NRrR,j)

Cov(x3;,255)
Cov(2;,%s;) = Cov(Ner; — Nrri — Nrpi, Ncrj — Nrr,j — Nrp,j) can be broken into 9 covariances of news components.
Therefore, the 9 terms in the “Component Contributions” table always sum up to 1.

tries component contribution is calculated as W—l)/zzz Zj Zi For a given (i,j) pair, the denominator
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Appendix G. Semidefinite Programming Method

We do a constrained minimization problem to estimate the covariance matrices which satisfy two constraints: A). volatility
matrix and within-country correlation are the same across two sample period. B). covariance matrix is positive semi-definite.
First we decompose a covariance matrix into volatility matrix and correlation matrix

o1 - 0 1 pim o - 0
X=DI'D = : : :

0 e Om plm “ee 1 O .. Om

Where the o; and p;; (2,7 = 1,...,m) are the coefficients to be estimated. Suppose fl\l and f]; are the sample covariance matrices
for early period and late period (known), then we need to estimate two covariance matrix 31 = D11 Dy and Yo = D' Dy
with the constraint D; = Dy = D and T'¥ihin = [¥ithin . We use the minimum distance estimation, and this is a well defined
constrained optimization problem

min {|| §3\1 -1 l2 4+l f}; - ||2}
31,32

— min {|| $1— DIyD ||s + || S5 — DIyD ||2}
D', T’

st. T30 (i=1,2)

within _ pwithin
FQ - Fl

where || . |2 represents the norm in L? space (|| A — B 2= >ig(ai — bi;)?), the notation I' 3= 0 means the matrix I is positive

semi-definite, and """ denotes the within-country correlation. To solve the Semidefinite programming (SDP) problem, we
use the MATLAB package CVX by Stephen Boyd. http://cvxr.com/cvx/doc/sdp.html
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Appendix H. VAR Model with Stochastic Volatility

Estimating VAR with Stochastic Volatility

We follow the methodology in Campbell, Giglio, Polk and Turley (CGPT 2017) in estimating VAR with stochastic volatility.
Our VAR includes 8 state variables: stock excess returns, bond excess returns, dividend yield, inflation, short rate, yield spread,
credit spread and EVAR. This adds two additional variables to our baseline VAR (credit spread and EVAR). The credit spread
is constructed following the methodology in Kang and Pflueger (2013). It’s constructed as the log yields of investment grade
corporate bond index subtracted by log yields of nominal government bondﬂ For U.S. credit spread, we use Moody’s Baa log
yield minus Aaa log yield. Figure 1 plots the country level credit spread in our sample. As argued in CGPT 2017, shocks to
credit spread to some degree reflect news about aggregate default probabilities, which in turn should reflect news about the
market’s future cash flows and volatility.

We use daily MSCI price index (MSPI) denominated in USD to constructed monthly realized variance (RVAR). The daily
return is constructed by taking the daily difference of the price index r¢11 = In( Pgl ). The monthly realized variance is the sum
of daily squared return. In estimation of the VAR, we use a two stage method (as in CGPT 2017). In the first stage, we construct
period t + 1 expected market variance (EV AR;) based on information available at period ¢ (i.e. all state variables at period
t: a¢). Following CGPT, we fit the regression using weighted Least Squares (WLS). Specifically, we weight each observation
(RV AR, 1, 2¢) by previous period’s realized variance RV AR;'. And we use a shrinkage factor as indicated in CGPT to ensure
the ratio of weights across observations is not too extreme. In the second stage, we estimate a VAR with the first stage fitted
value EVAR as a state variable. The second stage VAR is also estimated using WLS except that now the weight becomes
EV AR;'. We continue to apply the shrinkage factor in the second stage estimation. The results of the first stage regressions
and second stage VAR estimations for 7 countries are reported in Tables H.1 to H.7.

Simulating Symmetrical Model with Stochastic Volatility

To understand the impact of stochastic volatility on portfolio risk, we add volatility shock into our stylized symmetrical model
of asset returns of Section 3 and simulate the symmetrical model with stochastic volatility. The new model has the following
data generating process

Tip1 = M + B8 + OpUr 41

St41 = s + OS¢ + OplUs 141
Ot4+1 — (1 — ’(/)) + 1/)015 + Ug’t+1

The only difference from our previous symmetrical model is that here we added add a volatility, which follows a AR(1) process
with persistence . Now the innovations to other variables (s; and r; ) become heteroskedastic. In the simulation, we assume a
symmetrical model for 7 countries, and the shocks to the 7 country VAR follow a multivariate normal process. In the simulation,
we set ¢ = 0.9857 and 8 = 0.0123, which are estimated from US data. For the volatility persistence, we compared two values in
simulation: ¥ = 0.9 and ¢ = 0.99.

As a robustness check, we first reproduced the results in Figure 3 Panel A by simulating the 7 country symmetrical model
of 2 state variables (excess stock return, dividend price ratio) over a horizon of 800 periods. We simulate 20000 paths. Then
we simulate our symmetrical model with stochastic volatility specified above. We set the within-country correlation of volatility
news and excess stock return news corr(vq.;, 4, ;) to be -0.625 and the within-country correlation of volatility news and dividend
yield news corr(ve s, ur ;) to be 0.595. The numbers come from our VAR estimation results in Appendix Table H7.

We focus on two exercises in the simulation. In the first exercise, the volatility news are not correlated across countries (i.e.
corr(Ve.i, Ve,j) = 0 for Vi # j). Compare this with the symmetrical model of 2 state variables, we could see the impact of stochastic
volatility on portfolio risk. In the second exercise, we make volatility news correlated across countries ( corr(vey i, vs,;) = 0.3 for
Vi # j) and everything else the same as in the first exercise. This exercise studies how volatility integration impacts portfolio
risk. In both exercises, we tried two specifications for the volatility persistence ( ¥ = 0.9 and ¥ = 0.99). We see that when
volatility is more persistent, the impact on portfolio risk is greater.

Figure H.4 plots the annualized global portfolio risk generated by the model as a function of investment horizon for dierent
degrees of persistence in volatility (0.90 in Panel A and 0.99 in Panel B) and dierent cross-country correlations (zero on left plots
and positive on right plots)ﬂ

2We selected government bonds with appropriate maturity so that the duration of it roughly match the duration of corporate bond indexes.

3Since there is no analytical expression {/V; [rgft>+k}/k, we evaluate it through simulation.
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The left column of each panel in Figure H.4 shows the impact on portfolio risk of adding stochastic volatility to a model with
constant volatility in a scenario in which volatility shocks are uncorrelated across countries. The three solid lines in the plots
correspond to the scenarios we have considered for the model with constant volatility of Section 3. These are the lines shown
on Panel A of Figure 3. This column shows that stochastic volatility increases portfolio risk at all horizons, especially at short
horizons. The increase in market risk is more pronounced as volatility becomes more persistent.

The right column of each panel in Figure H.4 shows the impact of correlated stochastic volatility shocks. The three solid lines
in the plots correspond to the case with stochastic volatility with uncorrelated volatility shocks—i.e., the dashed lines on the left
column. These plots show that correlated volatility further increases portfolio risk, especially at long horizons. However, this
increase is significant only when volatility shocks are highly persistent and correlated cash flow news is the source of correlated
returns across countries. In that case, correlated volatility shocks amplify the effect of cash flow news correlation on portfolio
risk at long horizons.

These results suggest that stochastic volatility shocks increase portfolio risk at all horizons when they are highly persistent.
However, allowing for correlated volatility shocks has only a small added impact on portfolio risk, except if returns are also
correlated across countries, and the source of this correlation is correlated cash flow news. This scenario is not empirically
plausible, because the main source of correlation in returns is correlated discount rate news, not correlated cash flow news.
Therefore, these results suggest that while stochastic volatility increases portfolio risk at all horizons, this risk doesn’t necessarily
increase more during periods in which risk becomes more correlated across markets, as in the two episodes documented in Figure
8.These results suggest that stochastic volatility shocks increase portfolio risk at all horizons when they are highly persistent.
However, allowing for correlated volatility shocks has only a small added impact on portfolio risk, except if returns are also
correlated across countries, and the source of this correlation is correlated cash flow news. This scenario is not empirically
plausible, because the main source of correlation in returns is correlated discount rate news, not correlated cash flow news.
Therefore, these results suggest that while stochastic volatility increases portfolio risk at all horizons, this risk doesn’t necessarily
increase more during periods in which risk becomes more correlated across markets, as in the two episodes documented in Figure
10. In light of this last consideration, the empirical analysis in our paper assumes away time variation in volatility. That is, we
present results based on a homoskedastic VAR model.
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Figure H.1: International credit spreads. This figure shows the monthly credit spreads for Australia, Canada, France,
Germany, Japan, the UK, and the US. It’s constructed as the log yields of investment grade corporate bond index subtracted
by log yields of duration matched nominal government bond. For U.S. credit spread, we use Moody’s Baa log yield minus Aaa

log yield.
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Figure H.2: International realized variance (RVAR) and expected variance (EVAR). This figure shows the monthly
realized variance (RVAR) and expected variance (EVAR) for Australia, Canada, France, Germany, Japan, the UK, and the US.
The monthly realized variance is constructed from daily MSCI price index (MSPI) denominated in USD.
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Figure H.3: Cross country correlation of heteroscedastic VAR news (stocks). This figure plots the three year 3-year
moving average of average cross-country correlations of shocks to stock excess returns, cash flow news, real rate news, and
risk premium news, both including the October 1987 observation and excluding it. The news components are extracted from
heteroscedastic VAR.
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Figure H.4: Impact of stochastic volatility news on equity portfolio risk This figure plots the equity portfolio risk \/Vt[rz(fg_‘_k]/k
as a function of investment horizon k. As there’s no analytical expression, we evaluate it by simulating our symmetrical model with stochastic
volatility. The left column of each panel plots the portfolio risk in a homoskedastic symmetrical model (solid line) and in a heteroskedastic
version of the symmetrical model with stochastic volatility news uncorrelated across countries (dashed line). In each version of the model,
we compare the term structure of portfolio risk across 3 scenarios (as described in Figure 3). The right column of each panel plots the
portfolio risk in a heteroskedastic version of the symmetrical model of Section 3 with stochastic volatility news uncorrelated across countries
(solid line) and with volatility news correlated across countries (dashed line). In this version of the model, volatility follows a AR(1) process
with persistence parameter . Panel A is simulated with volatility persistence ¢ = 0.9 and Panel B is simulated with ¢ = 0.99.
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Table H1. Estimates of VAR(1) Model with Stochastic Volatility (Australia)
Panel A: Forecasting Monthly Realized Variance (RVAR)
Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation short rate yield spread credit spread RVAR  Rsq
-0.036 -0.016 0.043 -0.010 0.015 0.662 -0.074 0.244 0.407 0.242
-1.232 -2.167 1.732 -1.273 0.155 1.217 -0.203 1.717 2.447
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) (3) (4) () (6) (7) (8) | Rsq
(1) log stock excess returns 0.106  -0.017 -0.159 0.028 0.048 -1.443  -0.209 -0.219 -0.612 0.027
(0.714) (-0.242) (-1.059)  (0.709)  (0.044) (-0.485) (-0.086) (-0.272) (-0.629)
(2) log bond excess returns 0.034 -0.025 0.092 0.011 -0.279 0.461 2.747 -0.078 0.345 0.053
(0.938) (-0.829) (1.600)  (1.120) (-0.630)  (0.581) (2.634) (-0.336 ) (0.938)
(3) log dividend yield -0.174  -0.002 0.158 0.948 1.439 0.019 -3.339 0.056 0.660 0.923
(-1.102) (-0.031)  (0.950) (22.667) (1.136)  (0.006) (-1.156) (0.064)  (0.539)
(4) log inflation -0.004  0.000 -0.001 -0.001 0.729 0.172 0.002 0.023 -0.023 | 0.710
(-1.884) (-0.038) (-0.434) (-1.800)  (9.289)  (2.843) (0.038) (1.990) (-0.855)
(5) log short rate 0.001  0.000 0.002 0.000 0.049 0.961 0.164 -0.010 0.001 0.956
(0.954)  (0.383)  (1.033)  (0.989) (2.498) (34.186) (3.151) (-1.295) (0.152)
(6) log yield spread -0.002 0.000 -0.004 -0.001 -0.049 0.035 0.801 0.012 -0.007 0.705
(-1.280) (-0.189) (-1.845) (-1.383) (-2.513)  (1.144) (15.210) (1.422)  (-0.693)
(7) log credit spread 0.021 0.001 -0.017 0.005 -0.060 -0.385 -0.385 0.798 0.263 0.913
(2.892)  (0.154) (-1.579)  (2.592) (-0.657) (-2.767) (-2.129) (15.158)  (2.256)
(8) EVAR -0.026  0.000 0.000 -0.007 0.002 0.547  0.068 0.178 0.483 0.443
(-2.133)  (0.043) (-0.012) (-2.177) (0.038)  (2.246)  (0.486)  (2.468)  (2.825)
Panel C1: Residual correlation matrix (scaled)
OIS 3) (4) () (6) (7) (®)
(1) log stock excess returns 17.078 0.217 -0.917 0.006 -0.051  -0.024 -0.135 -0.558
(2) log bond excess returns 0.217 6.329 -0.184 -0.056 -0.060 -0.290 0.260 0.120
(3) log dividend yield -0.917 -0.184 18.941 0.001 0.035 0.035 0.124 0.492
(4) log inflation 0.006 -0.056 0.001 0.436 0.099 -0.078 0.002 -0.090
(5) log short rate -0.051 -0.060 0.035 0.099 0.213 -0.932 -0.113 0.104
(6) log yield spread -0.024 -0.290 0.035 -0.078 -0.932 0.228 0.013 -0.146
(7) log credit spread -0.135 0.260 0.124 0.002 -0.113 0.013 1.128 0.443
(8) EVAR -0.558 0.120 0.492 -0.090 0.104 -0.146 0.443 1.306
Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) () (6 (7) (®)
(1) log stock excess returns 21.500 0.217 -0.922 0.028 -0.048  -0.029 -0.155 -0.578
(2) log bond excess returns 0.217 7.599 -0.172 -0.056 -0.049 -0.302 0.285 0.080
(3) log dividend yield -0.922 -0.172 23.812 -0.025 0.028 0.039 0.151 0.518
(4) log inflation 0.028 -0.056 -0.025 0.519 0.102  -0.080 -0.044 -0.161
(5) log short rate -0.048 -0.049 0.028 0.102 0.252 -0.932 -0.097 0.080
(6) log yield spread -0.029 -0.302 0.039 -0.080 -0.932 0.271 -0.008 -0.108
(7) log credit spread -0.155 0.285 0.151 -0.044 -0.097  -0.008 1.441 0.477
(8) EVAR -0.578 0.080 0.518 -0.161 0.080 -0.108 0.477 1.916
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Table H2. Estimates of VAR(1) Model with Stochastic Volatility (Canada)
Panel A: Forecasting Monthly Realized Variance (RVAR)
Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation  short rate yield spread credit spread RVAR  Rsq
-0.003 -0.010 -0.011 -0.001 -0.037 -0.065 -0.158 -0.020 0.656  0.418
-1.089 -1.162 -0.797 -1.678 -0.764 -0.456 -0.644 -0.443 4.796
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) (3) (4) (3) (6) (7) (8) | Rsq
(1) log stock excess returns 0.033  0.066 0.153 0.008 0.408 -1.537 1.107 0.344 -0.540 | 0.032
(0.925) (1.045)  (1.237)  (0.770)  (0.647) (-1.301)  (0.425) (0.639)  (-0.715)
(2) log bond excess returns 0.006  -0.087 0.073 0.002 0.050 0.683 3.032 -0.287 0.079 0.061
(0.614) (-3.544)  (1.269)  (0.549)  (0.155)  (1.462) (2.716) (-1.254)  (0.233)
(3) log dividend yield -0.079  -0.085 -0.217 0.976 -0.392 0.249 -4.224 -0.834 0.326 0.970
(-1.689) (-1.210) (-1.614) (76.533) (-0.520)  (0.197) (-1.523) (-1.378)  (0.387)
(4) log inflation 0.001 0.007 -0.006 0.000 0.086 0.235 -0.169 -0.017 -0.026 | 0.080
(0.349)  (1.409) (-0.632) (-0.112)  (1.352)  (2.573) (-0.911) (-0.392) (-0.437)
(5) log short rate 0.000  0.000 -0.003 0.000 -0.001 1.002 0.029 -0.007 -0.002 | 0.990
(-1.857) (-0.388) (-3.089) (-1.900) (-0.228) (139.333) (1.628) (-1.630) (-0.597)
(6) log yield spread 0.000 0.001 0.002 0.000 0.000 -0.012 0.945 0.012 0.001 0.931
(1.136)  (2.681)  (1.678)  (1.356) (0.048)  (-1.625) (53.560) (2.807)  (0.336)
(7) log credit spread -0.001  -0.009 0.011 0.000 0.022 0.075 0.051 0.915 0.002 0.885
(-1.171)  (-3.739)  (2.509) (-1.588)  (1.132)  (1.959) (0.636) (49.452)  (0.032)
(8) EVAR -0.003 0.000 -0.003 -0.001 -0.007 -0.071 -0.191 -0.018 0.656 0.406
(-1.576)  (0.066) (-0.277) (-2.178) (-0.208) (-0.734) (-1.126) (-0.542 )  (4.880)
Panel C1: Residual correlation matrix (scaled)
SO ) (3) (4) () (6) (7) (8)
(1) log stock excess returns 15.022 0.124 -0.911 0.088 -0.016 -0.045 -0.158 -0.510
(2) log bond excess returns 0.124 5.823 -0.119 0.009 -0.319  -0.362 0.396 -0.056
(3) log dividend yield -0.911 -0.119 16.927 -0.045 0.030 0.047 0.135 0.396
(4) log inflation 0.088 0.009 -0.045 1.168 0.022 -0.008 -0.066 -0.172
(5) log short rate -0.016 -0.319 0.030 0.022 0.094 -0.719 -0.120 -0.138
(6) log yield spread -0.045 -0.362 0.047 -0.008 -0.719 0.097 -0.246 0.129
(7) log credit spread -0.158 0.396 0.135 -0.066 -0.120  -0.246 0.490 0.074
(8) EVAR -0.510 -0.056 0.396 -0.172 -0.138 0.129 0.074 1.247
Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) () (6) (7) (8)
(1) log stock excess returns 17.015 0.115 -0.908 0.118 0.013  -0.064 -0.144 -0.481
(2) log bond excess returns 0.115 6.559 -0.112 -0.015 -0.302  -0.392 0.454 -0.059
(3) log dividend yield -0.908 -0.112 19.209 -0.073 0.011 0.061 0.123 0.347
(4) log inflation 0.118 -0.015 -0.073 1.301 0.056 -0.019 -0.107 -0.212
(5) log short rate 0.013 -0.302 0.011 0.056 0.102 -0.711 -0.129 -0.182
(6) log yield spread -0.064 -0.392 0.061 -0.019 -0.711 0.108 -0.273 0.170
(7) log credit spread -0.144 0.454 0.123 -0.107 -0.129  -0.273 0.596 0.014
(8) EVAR -0.481 -0.059 0.347 -0.212 -0.182 0.170 0.014 1.699
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Table H3. Estimates of VAR(1) Model with Stochastic Volatility (France)
Panel A: Forecasting Monthly Realized Variance (RVAR)
Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation  short rate yield spread credit spread RVAR  Rsq
0.006 -0.016 0.003 0.001 -0.048 -0.043 0.123 -0.023 0.558 0.376
1.911 -3.481 0.178 1.434 -0.631 -0.280 0.271 -0.380 5.624
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) 3) (4) () (6) (7) (8) | Rsq
(1) log stock excess returns 0.032 0.050 0.477 0.009 0.721 -0.238 2.166 0.289 -0.759 | 0.037
(0.642)  (0.656) (2.026)  (0.726)  (0.696) (-0.134) (0.380)  (0.338)  (-0.698)
(2) log bond excess returns 0.022  -0.025 0.076 0.007 -0.584 0.580 1.386 0.171 0.179 | 0.067
(1.708)  (-1.341)  (1.220)  (2.199) (-2.424)  (1.259) (0.808)  (0.634)  (0.533)
(3) log dividend yield -0.104 -0.020 -0.568 0.967 -0.109 -0.940 -2.378 -0.775 1.003 0.937
(-1.797)  (-0.251) (-2.282) (65.397) (-0.095)  (-0.505) (-0.387) (-0.825)  (0.768)
(4) log inflation 0.002 0.004 0.003 0.000 -0.033 0.224 0.332 -0.048 -0.044 | 0.062
(0.992) (1.394) (0.274)  (0.552) (-0.564) (2.590) (1.364) (-1.182) (-0.905)
(5) log short rate 0.000 0.000 -0.001 0.000 -0.005 0.997 0.178 -0.030 -0.010 | 0.994
(1.949) (-1.245) (-1.499)  (0.761) (-1.445) (189.147) (3.686)  (-4.641) (-2.354)
(6) log yield spread -0.001 0.001 0.000 0.000 0.010 -0.005 0.810 0.029 0.009 0.930
(-2.696) (2.013) (-0.034) (-2.095) (2.408)  (-0.646) (15.245) (4.072)  (1.575)
(7) log credit spread 0.003 -0.001 -0.017 0.001 0.029 -0.094 -0.151 0.947 0.026 0.907
(1.792) (-0.253) (-2.065) (1.415) (0.890)  (-1.759) (-0.624) (26.491)  (0.590)
(8) EVAR 0.005 -0.001 -0.008 0.001 -0.009 -0.048 0.045 -0.019 0.569 0.349
(2.351) (-0.276 ) (-0.602)  (1.679) (-0.179) (-0.462)  (0.153)  (-0.463)  (5.550)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) log stock excess returns 19.079 0.093 -0.858 -0.033 -0.017  -0.074 -0.079 -0.612
(2) log bond excess returns 0.093 5.065 -0.025 -0.140 -0.138  -0.545 0.046 0.044
(3) log dividend yield -0.858 -0.025 21.879 0.132 -0.017 0.064 0.094 0.532
(4) log inflation -0.033 -0.140 0.132 0.908 0.069 0.060 0.022 -0.013
(5) log short rate -0.017 -0.138 -0.017 0.069 0.073  -0.715 -0.294 -0.033
(6) log yield spread -0.074 -0.545 0.064 0.060 -0.715 0.092 0.252 -0.007
(7) log credit spread -0.079 0.046 0.094 0.022 -0.294 0.252 0.630 0.128
(8) EVAR -0.612 0.044 0.532 -0.013 -0.033 -0.007 0.128 1.124
Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) log stock excess returns 22.277 0.049 -0.870 -0.027 -0.001 -0.056 -0.086 -0.579
(2) log bond excess returns 0.049 5.879 0.009 -0.165 -0.130  -0.555 -0.021 0.022
(3) log dividend yield -0.870 0.009 25.504 0.114 -0.024 0.044 0.095 0.505
(4) log inflation -0.027 -0.165 0.114 1.037 0.092 0.054 0.033 -0.007
(5) log short rate -0.001 -0.130 -0.024 0.092 0.083 -0.713 -0.295 -0.065
(6) log yield spread -0.056 -0.555 0.044 0.054 -0.713 0.106 0.286 0.024
(7) log credit spread -0.086 -0.021 0.095 0.033 -0.295 0.286 0.732 0.177
(8) EVAR -0.579 0.022 0.505 -0.007 -0.065 0.024 0.177 1.479
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Table H4. Estimates of VAR(1) Model with Stochastic Volatility (Germany)
Panel A: Forecasting Monthly Realized Variance (RVAR)
Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation  short rate yield spread credit spread RVAR  Rsq
-0.009 -0.019 -0.006 -0.002 0.036 0.666 0.214 0.179 0.456  0.388
-1.389 -3.680 -0.394 -1.461 0.448 2.106 0.565 2.244 7.912
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) 3) (4) () (6) (7) (8) Rsq
(1) log stock excess returns 0.280 0.092 0.157 0.059 -0.750 -12.280  -4.784 -2.532 0.830 0.050
(3.435)  (1.240) (0.656)  (3.110) (-0.832) (-3.440) (-1.051) (-3.153) (0.502)
(2) log bond excess returns -0.014  -0.042 0.064 -0.003 -0.274 0.751  2.029 0.225 -0.010 | 0.057
(-0.824) (-2.398)  (1.068) (-0.724) (-1.230)  (0.888 ) (1.930)  (1.142) (-0.026 )
(3) log dividend yield -0.287 -0.094 -0.166 0.930 0.547 7.074  -1.003 1.518 -0.364 0.925
(-3.341) (-1.099 ) (-0.647) (46.235) (0.583)  (1.878 ) (-0.213) (1.773)  (-0.197)
(4) log inflation 0.004 0.000 -0.007 0.001 -0.141 0.336  -0.449 0.030 -0.171 0.068
(0.845) (0.058) (-0.696)  (0.545) (-2.331) (1.826) (-1.960)  (0.688) (-2.523)
(5) log short rate 0.001 0.000 -0.003 0.000 0.000 0.966  -0.005 -0.009 -0.006 | 0.994
(2.483) (-0.655) (-4.340) (1.933) (0.101) (93.908 ) (-0.424) (-3.389) (-1.524)
(6) log yield spread -0.001 0.001 0.001 0.000 0.003 0.029 0.996 0.007 0.007 0.942
(-1.920)  (2.953)  (L.737) (-1.506) (0.943) (2.212) (59.915) (2.394)  (1.367)
(7) log credit spread 0.007 -0.007 -0.015 0.001 -0.045 -0.422  -0.613 0.884 0.044 0.929
(1.940) (-2.527) (-1.356)  (1.371) (-1.165) (-2.288) (-3.082) (19.430)  (0.729)
(8) EVAR -0.012 -0.002 -0.008 -0.003 0.005 0.806 0.178 0.200 0.426 0.421
(-3.017  (-0.651 (-0.738  (-3.186 0.108 4109 0.741 4.112 5.813
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) log stock excess returns 21.207 -0.083 -0.875 0.080 0.035 0.001 -0.287 -0.686
(2) log bond excess returns -0.083 4.775 0.073 -0.119 -0.298  -0.569 0.384 0.113
(3) log dividend yield -0.875 0.073 23.262 -0.041 -0.010  -0.006 0.255 0.601
(4) log inflation 0.080 -0.119 -0.041 1.130 -0.001 0.124 -0.079 -0.081
(5) log short rate 0.035 -0.298 -0.010 -0.001 0.051  -0.547 -0.132 -0.049
(6) log yield spread 0.001 -0.569 -0.006 0.124 -0.547  0.067 -0.253 -0.040
(7) log credit spread -0.287 0.384 0.255 -0.079 -0.132  -0.253 0.881 0.472
(8) EVAR -0.686 0.113 0.601 -0.081 -0.049  -0.040 0.472 1.043
Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) () (6) (7) (8)
(1) log stock excess returns 26.729 -0.124 -0.891 0.068 0.096 -0.016 -0.320 -0.653
(2) log bond excess returns -0.124 5.851 0.113 -0.125 -0.314  -0.550 0.388 0.112
(3) log dividend yield -0.891 0.113 29.213 -0.029 -0.075  0.014 0.280 0.580
(4) log inflation 0.068 -0.125 -0.029 1.339 0.009  0.118 -0.076 -0.090
(5) log short rate 0.096 -0.314 -0.075 0.009 0.063  -0.555 -0.153 -0.096
(6) log yield spread -0.016 -0.550 0.014 0.118 -0.555 0.081 -0.241 -0.002
(7) log credit spread -0.320 0.388 0.280 -0.076 -0.153  -0.241 1.106 0.496
(8) EVAR -0.653 0.112 0.580 -0.090 -0.096  -0.002 0.496 1.377
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Table H5. Estimates of VAR(1) Model with Stochastic Volatility (Japan)

Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation short rate yield spread credit spread RVAR  Rsq
0.011 -0.018 -0.028 0.002 0.058 0.260 0.746 -0.170 0.325 0.183
2.328 -3.316 -0.809 1.523 0.894 1.412 0.881 -2.926 5.167
Panel B: VAR Estimates
Second Stage Coeflicients on lagged variables
Intercept (1) 2) (3) (4) (5) (6) (M) (8) Rsq
(1) log stock excess returns 0.046 0.129 0.149 0.012 -0.572 0.434 5.300 0.603 0.040 0.024
(0.765) (L.717)  (0.695)  (0.965) (-0.899)  (0.136)  (0.725)  (0.673)  (0.019)
(2) log bond excess returns 0.038 -0.035 0.141 0.010 -0.045 0.752 7.478 -0.113 0.009 0.095
(2.354) (-1.713)  (2.229)  (2.707) (-0.291)  (0.980)  (3.369)  (-0.552)  (0.018)
(3) log dividend yield -0.071 -0.216 -0.278 0.976 1.013 -1.855  -14.450 -0.492 -3.145 0.981
(-1.019) (-2.180) (-1.022) (65.218)  (1.427)  (-0.435) (-1.605) (-0.494) (-1.112)
(4) log inflation 0.004  -0.003 0.001 0.001 0.178 0.449 0.245 -0.059 -0.224 0.062
(1.141) (-0.539) (0.081)  (0.891) (3.638)  (2.043) (0.490) (-1.009) (-1.491)
(5) log short rate 0.000 0.000 -0.001 0.000 0.002 0.984 -0.006 0.000 0.001 0.992
(-1.765) (-0.127) (-2.335) (-1.945) (0.780) (116.578) (-0.533) (0.323)  (0.158)
(6) log yield spread 0.000 0.000 -0.001 0.000 -0.002 0.007 0.929 0.002 -0.002 0.930
(-1.547) (1.342) (-1.088) (-1.877) (-0.897)  (0.688) (34.118) (0.635) (-0.326)
(7) log credit spread 0.008 -0.004 -0.026 0.002 0.018 0.027 0.836 0.847 -0.020 0.776
(3.019) (-1.741) (-2.682)  (2.794) (0.824)  (0.244) (2.537) (23.371) (-0.317)
(8) EVAR 0.008 -0.001 -0.001 0.001 0.016 0.255 0.140 -0.149 0.286 0.254
(3.565 )  (-0.273) (-0.074)  (L.718) (0.707)  (2.472) (0.490)  (-5.290)  (3.617)

Panel C1: Residual correlation matrix (scaled)

(1) (2) 3) (4) () (6) (7) (8)
(1) log stock excess returns 19.846 0.003 -0.863 0.042 -0.044 -0.002 -0.047 -0.690
(2) log bond excess returns 0.003 4.927 -0.015 0.015 -0.186  -0.742 0.265 -0.232
(3) log dividend yield -0.863 -0.015 22.935 -0.004 0.068 0.005 0.024 0.617
(4) log inflation 0.042 0.015 -0.004 1.466 0.035 -0.017 -0.031 0.119
(5) log short rate -0.044 -0.186 0.068 0.035 0.038  -0.408 -0.099 0.037
(6) log yield spread -0.002 -0.742 0.005 -0.017 -0.408 0.059 -0.183 0.180
(7) log credit spread -0.047 0.265 0.024  -0.031 -0.099  -0.183 0.765 -0.111
(8) EVAR -0.690 -0.232 0.617 0.119 0.037 0.180 -0.111 0.765

Panel C2: Residual correlation matrix (unscaled)

(1) (2) (3) (4) (5) (6) (7) (®)
(1) log stock excess returns 26.162 0.035 -0.871 0.032 -0.057  -0.028 -0.026 -0.690
(2) log bond excess returns 0.035 6.326 -0.051 0.022 -0.178  -0.739 0.264 -0.217
(3) log dividend yield -0.871 -0.051 30.721 -0.013 0.081 0.032 0.009 0.610
(4) log inflation 0.032 0.022 -0.013 1.882 0.040 -0.038 -0.014 0.121
(5) log short rate -0.057 -0.178 0.081 0.040 0.051 -0.426 -0.096 0.022
(6) log yield spread -0.028 -0.739 0.032 -0.038 -0.426 0.077 -0.185 0.165
(7) log credit spread -0.026 0.264 0.009  -0.014 -0.096  -0.185 0.995 -0.084
(8) EVAR -0.690 -0.217 0.610 0.121 0.022 0.165 -0.084 1.073
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Table H6. Estimates of VAR(1) Model with Stochastic Volatility (United Kingdom)
Panel A: Forecasting Monthly Realized Variance (RVAR)
Intercept log stock log bond log dividend log log log log
excess returns — excess returns yield inflation  short rate yield spread credit spread RVAR  Rsq
-0.001 -0.016 0.011 0.000 0.059 -0.045 -0.231 0.149 0.362  0.305
-0.139 -2.045 1.470 -0.323 1.687 -0.229 -0.644 3.643 2.862
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) (3) (4) () (6) (7) (8) Rsq
(1) log stock excess returns 0.139  -0.011 0.227 0.037  -0.298 -1.661  -0.936 -0.595 0.138 0.042
(2.588) (-0.151)  (2.039)  (2.608) (-0.491)  (-1.051) (-0.278) (-1.106)  (0.079 )
(2) log bond excess returns 0.023 0.038 -0.037 0.007 -0.085 0.202 2.167 -0.782 3.033 0.081
(1.141) (0.826) (-0.474)  (1.410) (-0.280) (0.280) (1.540) (-2711) (2.832)
(3) log dividend yield -0.100 0.003 -0.209 0.971 0.138 0.422  -0.911 0.394 -0.631 0.952
(-1.728 ) (0.043) (-1.746) (62.577)  (0.226) (0.254) (-0.258) (0.636) (-0.316)
(4) log inflation 0.007  -0.005 -0.001 0.001 0.113 0.147  -0.244 0.057 -0.289 0.088
(1.661) (-0.798) (-0.063) (1.171) (2.228)  (1.374) (-0.995) (1.379) (-2.137)
(5) log short rate 0.000  -0.001 -0.002 0.000 0.004 1.000 0.021 0.002 -0.029 0.996
(-0.625) (-1.787) (-2.490) (-0.903)  (1.343) (161.178) (1.325) (0.829)  (-3.537)
(6) log yield spread 0.000 0.000 0.001 0.000 -0.003 -0.009 0.954 0.006 0.005 0.956
(-0.027) (0.872)  (1.352)  (0.017) (-0.703)  (-1.188) (51.926) (2.017)  (0.467)
(7) log credit spread 0.002 -0.005 -0.002 0.000 -0.015 0.055 0.053 0.853 0.305 0.916
(0.619) (-1.106) (-0.263)  (0.558) (-0.474)  (0.781) (0.279) (17.814)  (1.889)
(8) EVAR -0.002 0.000 -0.005 -0.001 0.007 0.009 -0.181 0.132 0.405 0.509
(0.770)  (-0.069) (-1.031) (-1.189) (0.410)  (0.098) (-1.015) (4.809)  (3.341)
Panel C1: Residual correlation matrix (scaled)
(1) (2) 3) (4) () (6) (7) (8)
(1) log stock excess returns 15.321 0.163 -0.909 -0.022 -0.087  -0.080 -0.069 -0.572
(2) log bond excess returns 0.163 7.155 -0.150 -0.071 -0.269  -0.458 0.300 0.091
(3) log dividend yield -0.909 -0.150 17.178 0.071 0.072 0.088 0.075 0.515
(4) log inflation -0.022 -0.071 0.071 1.398 0.073 0.057 -0.083 0.041
(5) log short rate -0.087 -0.269 0.072 0.073 0.071 -0.562 -0.076 -0.045
(6) log yield spread -0.080 -0.458 0.088 0.057 -0.562 0.094 -0.396 -0.173
(7) log credit spread -0.069 0.300 0.075 -0.083 -0.076  -0.396 0.927 0.536
(8) EVAR -0.572 0.091 0.515 0.041 -0.045  -0.173 0.536 0.823
Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) log stock excess returns 18.215 0.088 -0.904 -0.018 -0.058  -0.086 -0.076 -0.539
(2) log bond excess returns 0.088 8.436 -0.092 -0.032 -0.260  -0.432 0.212 0.058
(3) log dividend yield -0.904 -0.092 20.521 0.087 0.050 0.106 0.059 0.457
(4) log inflation -0.018 -0.032 0.087 1.669 0.085 0.054 -0.138 -0.010
(5) log short rate -0.058 -0.260 0.050 0.085 0.081 -0.557 -0.087 -0.055
(6) log yield spread -0.086 -0.432 0.106 0.054 -0.557 0.109 -0.382 -0.135
(7) log credit spread -0.076 0.212 0.059 -0.138 -0.087  -0.382 1.168 0.555
(8) EVAR -0.539 0.058 0.457 -0.010 -0.055  -0.135 0.555 1.138
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Table H7. Estimates of VAR(1) Model with Stochastic Volatility (United States)

Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns  excess returns yield inflation  short rate yield spread credit spread RVAR  Rsq
-0.016 -0.020 -0.005 -0.003 -0.052 0.600 1.069 0.352 0.344 0.240
-2.485 -3.661 -0.280 -2.843 -1.051 1.683 1.455 2.895 1.955
Panel B: VAR Estimates
Second Stage Coefficients on lagged variables
Intercept (1) (2) 3) (4) (5) (6) (7) (8) | Rsq
(1) log stock excess returns 0.077  -0.110 0.037 0.016 -0.716 -1.537  -2.546 0.701 -3.295 | 0.054
(1.288) (-1.299 )  (0.288) (1.305) (-1.108) (-0.650) (-0.597 )  (0.507)  (-1.620)
(2) log bond excess returns -0.005  -0.063 0.046 -0.001 -0.615 1.052 2.936 -0.259 0.314 | 0.074
(-0.193) (-1.871)  (0.790)  (-0.200) (-2.002)  (1.099) (1.730)  (-0.440)  (0.357)
(3) log dividend yield -0.044 0.071 -0.023 0.988 0.951 -0.585 1.743 -1.179 2.065 0.981
(-0.711)  (0.824) (-0.177) (80.168)  (1.468) (-0.240) (0.399)  (-0.788)  (0.966)
(4) log inflation -0.008 -0.008 -0.014 -0.002 0.384 0.508 0.511 0.278 -0.418 | 0.291
(-1.594) (-1.260) (-1.771)  (-1.582)  (6.756)  (2.759) (1.648)  (2.263)  (-2.002)
(5) log short rate -0.002  -0.002 0.000 0.000 -0.001 1.074 0.227 0.030 -0.069 | 0.968
(-4.119) (-2.735) (0.131) (-3.672) (-0.103) (59.545) (6.074) (2.611) (-3.592)
(6) log yield spread 0.002 0.003 -0.001 0.000 0.008 -0.095 0.731 -0.030 0.072 0.793
(3.443)  (3.209) (-0.659)  (3.180)  (1.092) (-3.813) (15.620) (-1.835) (2.643)
(7) log credit spread 0.005 0.000 0.003 0.001 -0.012 -0.169 -0.325 0.829 0.191 0.943
(2.476) (-0.124)  (1.491)  (2.159) (-0.821) (-2.224) (-2.542) (14.742) (1.964)
(8) EVAR -0.014 0.005 0.001 -0.003 -0.004 0.481 0.793 0.262 0.507 0.488
(-2.708) (0.930) (0.103) (-2.803) (-0.134)  (2.385) (2.151) (2.270 )  (2.331)

Panel C1: Residual correlation matrix (scaled)

(1) (2) 3) (4) (5) (6) (7) (8)
(1) log stock excess returns 14.892 -0.035 -0.964 -0.053 -0.023 0.025 -0.159 -0.664
(2) log bond excess returns -0.035 6.150 0.014 -0.133 0.018  -0.473 0.089 0.003
(3) log dividend yield -0.964 0.014 15.242 0.065 0.043  -0.031 0.152 0.637
(4) log inflation -0.053 -0.133 0.065 0.952 -0.089 0.135 -0.296 -0.169
(5) log short rate -0.023 0.018 0.043 -0.089 0.127  -0.874 0.068 0.050
(6) log yield spread 0.025 -0.473 -0.031 0.135 -0.874 0.154 -0.102 -0.032
(7) log credit spread -0.159 0.089 0.152 -0.296 0.068  -0.102 0.298 0.463
(8) EVAR -0.664 0.003 0.637 -0.169 0.050  -0.032 0.463 0.805

Panel C2: Residual correlation matrix (unscaled)

(1) (2) (3) (4) G) (6 (7) (8)
(1) log stock excess returns 18.864 -0.026 -0.967 -0.032 -0.007 0.009 -0.153 -0.625
(2) log bond excess returns -0.026 7.668 0.002 -0.220 0.095  -0.527 0.157 0.052
(3) log dividend yield -0.967 0.002 19.352 0.049 0.020  -0.008 0.144 0.595
(4) log inflation -0.032 -0.220 0.049 1.236 -0.144 0.217 -0.420 -0.283
(5) log short rate -0.007 0.095 0.020 -0.144 0.157  -0.880 0.138 0.090
(6) log yield spread 0.009 -0.527 -0.008 0.217 -0.880 0.196 -0.180 -0.085
(7) log credit spread -0.153 0.157 0.144 -0.420 0.138  -0.180 0.438 0.570
(8) EVAR -0.625 0.052 0.595 -0.283 0.090  -0.085 0.570 1.153
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Appendix I: Complementary Results of the Paper

Complementary Results of Table 3

Table I1. Return Correlation Decomposition (Bonds vs. Stocks Within Countries and Across Countries)

The left panel (right panel) of this table decomposes the sources of global bond v.s. stock return correlations within countries
(across countries). Correlations among individual return components (i.e., cash-flow, real-rate, and risk premium news) within
countries are shown in the table. Estimates are reported for each subperiod as well as the difference between the two subperiods.
Tests for significant correlation differences between subperiods are based on bootstrap and Fisher r-to-z methods for calculating
p-values.

Bonds vs. Stocks Within Countries Bonds vs. Stocks Across Countries

CF(s) RR(s) RP(s) CF(s) RR(s) RP(s)

Subperiod 1 CF (b) 0.10 -0.13 -0.46 CF (b) 0.00 -0.01 -0.2
RR (b) -0.94  0.98 0.21 RR (b) -0.36  0.36 -0.03

RP (b) 0.66  -0.65 0.46 RP (b) 028  -0.28 0.20

Subperiod 2 CF (b) -0.27 0.24 -0.50 CF (b) -0.28 0.27 -0.38
RR (b) -0.91  0.98 0.17 RR (b) -0.61  0.63 -0.09

RP (b) 0.84 -0.86 0.42 RP (b) 0.57 -0.57 0.23

Difference CF (b) -0.37 0.37 -0.04 CF (b) -028 0.28 -0.12
RR (b) 0.03  0.00 0.04 RR (b) 026  0.26 -0.06

RP (b) 0.18 -0.21 -0.04 RP (b) 0.29 -0.29 0.03

CF(s) RR(s) RP(s) CF(s) RR(s) RP(s)

p-values CF (b) 0.00 0.00 0.33 CF (b)  0.00 0.00 0.05
(bootstrap) ~ RR (b) 0.01  0.37 0.36 RR (b) 000  0.00 0.34
RP (b) 0.00  0.00 0.37 RP (b) 0.00  0.00 0.46

p-values CF (b) 0.00  0.00 0.33 CF (b) 0.0  0.00 0.11
(Fisher 1-toz) RR (b) 0.05  0.41 0.35 RR (b) 0.00  0.00 0.29
RP (b) 0.00 0.00 0.32 RP (b) 0.00 0.00 0.39
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Complementary Results of Table 6

Table I2. Optimal Global Equity Portfolio Allocations and Expected Utility (value weighted myopic portfolio)

Panel A reports optimal global equity portfolio allocations by “JV” investor and “CCV” investor. The CCV investor has Epstein-Zin preference and the expected value function defined as

1/(1—
E[W] = Vl{% =(1- 5)7!/}/(171/)) (%’t) /¢ w). The JV investor’s utility is power utility defined on terminal wealth Et[l%ﬁf WL:;]‘ The myopic demand is the allocation of those two investors

at investment horizon 1. An investor’s allocation is the sum of myopic demand and hedging demand. We report the JV hedging demand for an investor at horizon of 20 years (240 months). We
compare across 3 scenarios: optimal allocation in early sample, late sample and late sample with hypothetical covariance matrix that controls for within-country correlation. To make it comparable,
we fix the monthly implied excess returns across these 3 scenarios. We set implied excess returns for value weight portfolio such that investor hold the myopic demand equal to market cap weight.
“Total” allocation is the sum of the allocations to each country. Panel B reports the expected utility by “JV” investor (with RRAvy = 5) and “CCV” investor (with EIS ¢y — 1 and RRA~y = 5),
assuming they allocate optimally to the 7 countries investment space as reported in Panel A. We also report investor’s expected utility by constraining the investment space to USA only. We
assume investor has initial wealth of one dollar and look at investment horizons K of 5 years (60 months), 10 years (120 months), 15 years (180 months) and 20 years (240 months). We report
the certainty equivalent for the JV investor (with RRA~ = 5). The results are obtained by Monte Carlo simulation using 2,000 VAR paths sampled using the method of antithetic variates. The

certainty equivalent of wealth is computed by evaluating the mean utility realized across the simulated paths and computing, Wep = v~ ! (E[u(Wt+K)])

Panel A: Optimal Global Equity Portfolio Allocations Panel B: Expected Utility
Country | Myopic JV hedging CCV hedging JV Wee CCV E[V4]
demand demand at 20 yr demand K=60 K=120 K=180 K=240
AUS 1.51% 13.62% 6.61%
CAN 2.83% 12.50% 8.02% 7 countries | 3.31  158.81  259.44 30296.59 0.1021
Early Sample FRA 5.22% -7.25% -3.94%
GER 5.07% 22.15% 13.59%
JPN 16.09% 18.62% 12.04% USA only 1.85 4.01 5.33 22.91 0.0099
UKI 10.38% 0.25% 0.66%
USA 58.88% 52.20% 33.67%
Total 100.00% 112.09% 70.64%
AUS 23.09% 25.04% 18.53%
CAN 10.04% 34.31% 20.77%
FRA 12.06% 27.13% 19.72% 7 countries | 4.13  104.61 750.64 1917218.32 0.1693
Late Sample GER -39.79% -20.41% -16.56%
JPN 5.17% 22.73% 12.34%
UKI 50.51% 4.61% 3.61% USA only 1.83 3.98 4.91 27.45 0.0135
USA 62.40% 72.43% 47.62%
Total 123.47% 165.85% 106.03%
AUS -9.05% 6.92% 4.02%
CAN 25.97% 2.42% 2.90%
Late Sample FRA -2.32% 17.46% 9.26% 7 countries | 11.74 316.62 3005.15 690898.73 0.217
(Hypothetical GER -18.95% 22.21% 10.86%
Covariance JPN -1.51% 12.20% 7.09%
Matrix) UKI 19.72% 3.45% 1.80% USA only 1.85 4.01 5.33 22.91 0.010
USA 82.91% 50.24% 35.50%
Total 96.77% 114.89% 71.43%




Complementary Results of Figurel

Figure I.1: Stock-bond correlations across and within countries

This figure plots average stock-bond correlations across countries and within countries. Monthly averages are computed using pairwise
return correlations within and across seven different countries over 3-year rolling windows (Australia, Canada, France, Germany, Japan,
United Kingdom, and United States). Returns are in U.S. Dollar currency-hedged terms in excess of the three-month U.S. Treasury bill
rate. The sample is from Jan 1986 to Dec 2016.
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Complementary Results of Figure 3

Annualized Portfolio Risk and Optimal Allocation to Risky Assets as a Function of Investment Horizon (2
symmetric countries)

The figure plots annualized portfolio risk 1/Vt(r;]f2+k)/k (panel A) and optimal allocation to risky assets (panel B) as a function of investment horizon
k (months) for an asset space of 2 symmetrical countries, which complements to Figure 3 in the main paper (7 symmetric countries). We compare
the term structure of portfolio risk and optimal allocation for 3 scenarios: (1) Baseline case with zero cross-country return news correlations, both for
CF news and DR news. (2) CF news integration case, where cross-country return correlations come from positive cross-country CF news correlations;
cross-country correlations of DR news are zero. (3) DR integration case, where cross-country return correlations come from positive cross-country
DR news correlation; cross-country correlations of CF news are zero. To make Scenarios 2 and 3 comparable, we set the cross-country correlation of
one-period returns at the same value (0.07). Panel A plots portfolio risk in each scenario for a portfolio of seven symmetric countries. Panel B plots
optimal allocation to risky assets (for a portfolio of seven countries) as a function of time remaining to terminal date. The total optimal allocation is
the sum of two parts: myopic allocation (equals the intercept at 7 = 1) and hedging allocation. The investor has horizon of K = 360 (30 years) and
rebalance his allocation each period. The x-axis 7 is the time remaining to the terminal date. We compare the term structure of optimal allocation
to risky assets across the same 3 scenarios described above. We set the expected excess returns so that in the benchmark case, the myopic investor
(t = 1) allocate 1/N to each risky asset (50% for N = 2) and zero to cash. The expected excess returns are kept the same across the three cases to
make them comparable.

Panel A: Annualized Portfolio Risk Panel B: Optimal Allocation to Risky Assets
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Complementary Results of Figure 4

Relative Contribution of Covariances of Return Components to Overall Return Covariance

Contributions of news components to unexpected bond v.s. stock return correlations within countries (Panel A) and bond v.s. stock return

correlations across countries (Panel B) are broken down in the columns. In Panel A (bond v.s. stock return correlations within countries),

Cov(Ny,cr,i:Ns,CF,i)
Cov(zb;,xs;)

the cash flow component contribution is calculated as % > , the real rate component contribution is calculated as

Cov(Ny,rp,i:Ns,RP,i)
Cov(xzb;,rs;)

1 Z Cov(Np,rR,i:Ns,RR,i)
N i Cov(xzb;,rs;)

is calculated as

, the risk premium component contribution is calculated as % > , and the cross components
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i

The component contributions in the panel B is calculated similarly (but with pairwise average across countries). Note that by definition,
values in the component contributions sum up to 1.
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Complementary Results of Figure 9

Value Weighted Portfolio Risk as a Function of Investment Horizon (Equities and Bonds)

The figure compares the early sample (1986.01-1999.12) and late sample (2000.01-2016.12) value weighted portfolio risk across investment
horizons for equities (Panel A) and bonds (Panel B). For each panel, we plot the annualized conditional standard deviation of portfolio
excess returns, annualized average conditional volatility (across N countries) of excess returns , and pairwise average conditional correlation
of cross-country excess returns. Portfolios are value-weighted.
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