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Appendix A. Asset Return Decomposition

A log-linearization of the return on an asset around the unconditional mean of its dividend-price ratio�where dividend is a
proxy for cash �ow�implies the following decomposition of realized returns:

rs,t+1 − Et [rs,t+1] = (Et+1 − Et)
∞∑
j=0

ρjs∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjsrt+1+j . (1)

where rs,t denotes the natural log of the gross total return on the asset and ∆dt+1 the change in its log dividend (or cash �ow).
The constant ρs ≡ 1/

(
1 + exp

(
d− p

))
is a log-linearization parameter, where d− p denotes the unconditional mean of the log

dividend-price ratio.
Equation (1) shows that the unexpected log return on an asset re�ects changes in either its expected future cash �ows or in

its expected future returns (or discount rates). Following standard terminology in this literature, we will refer to the former as
cash �ow shocks or cash �ow news, and to the latter as discount rate shocks or discount rate news, and write more succinctly

rs,t+1 − Et [rs,t+1] ≡ NCF,s,t+1 −NDR,s,t+1. (2)

We can further decompose NDR,s,t+1 into news about excess log returns�or risk premia�, and news about the return on
the reference asset used to compute excess returns:

NDR,s,t+1 = NRR,s,t+1 +NRP,s,t+1, (3)

with

NRR,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsrf,t+1+j

 ,
NRP,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsxrs,t+1+j

 ,
where xrs,t+1+j = rs,t+1+j − rf,t+1+j denotes log excess returns with respect to the log return on the benchmark asset rf,t+1+j .
In our empirical analysis we follow standard practice and use cash (i.e., a short-term nominal bond like a T-bill in the US) as
the reference asset, and measure returns in real terms. For example, rf,t+1 = yN1,t − πt+1, where y

N
1,t denotes the yield on a

one-period nominal bond at t, which is also its nominal return at t+ 1, and πt+1 denotes log in�ation.
The preceding expressions assume the asset is a perpetual claim on cash �ows such as equities. In our empirical analysis we

also consider nominal bonds with �xed maturities and whose cash �ows (i.e., coupons) are �xed in nominal terms and thus vary
inversely with the price level in real terms. Section A.1 below shows that for a $1-coupon nominal bond with maturity n,

rn,t+1 − Et [rn,t+1] = NCF,n,t+1 −NRR,n,t+1 −NRP,n,t+1, (4)

with

NCF,n,t+1 = −NINFL,n,t+1 ≡− (Et+1 − Et)

n−1∑
j=1

ρjbπt+1+j

 ,
NRR,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbrf,t+1+j

 ,
NRP,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbxrn−j,t+1+j

 ,
and ρb = 1/ (1 + exp (−p̄n)).

The news components de�ned above are not directly observable, but we can infer them from a return generating model. We
follow Campbell (1991) and assume that the asset return generating process follows a �rst-order vector autoregressive (VAR)
model:

z̃t+1 = a + Az̃t + ut+1, (5)
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where z̃t+1 is a state vector that includes the excess log return on the assets under consideration, variables that predict excess
returns, and variables that capture the dynamics of in�ation and the short-term interest rate. The vector of innovations ut+1 is
uncorrelated over time with conditional variance-covariance matrix Vt [ut+1]. Given a speci�cation for z̃t+1, it is straightforward
to derive the components of the return decomposition as a function of the vector ut+1 of innovations to z̃t+1 and the parameters
of the VAR(1).

A.1 Excess Bond Returns Decomposition (3 News Components)

De�ne the log one-period nominal return on a nominal n-period coupon bond as

r$
n,t+1 = log

(
1 +R$

n,t+1

)
= log (Pn−1,t+1 + C)− log (Pn,t)

=pn−1,t+1 − pn,t + log (1 + exp (c− pn−1,t+1))

≈k + ρbpn−1,t+1 + (1− ρb) c− pn,t, (6)

where ρb = 1

1+exp(c−p)
and k = − log (ρb) − (1− ρb) log

(
1
ρb
− 1
)
. Solving forward and imposing the terminal condition that

pn−j,t+j |j=n = 0, we get that

pn,t = (k + (1− ρb) c)

n−1∑
j=0

ρjb

− n−1∑
j=0

r$
n−j,t+1+jρ

j
b.

Plugging this expression in to the unexpected bond return from Eq. (6), we get that

(Et+1 − Et)
[
r$
n,t+1

]
= (Et+1 − Et) [ρbpn−1,t+1]− (Et+1 − Et) [pn,t]

= (Et+1 − Et) [ρbpn−1,t+1]

=− (Et+1 − Et)

n−1∑
j=1

r$
n−j,t+1+jρ

j
b

 . (7)

We can write r$
n,t+1 = xrn,t+1 + r$

f,t+1, where xrn,t+1 is the excess log 1-period return on a nominal n-period coupon bond

and r$
f,t+1 is the realized nominal return of the 1-period nominal bond, which is the same as the yield of the 1-period nominal

bond yN1,t.
Decomposing the surprise bond return in Eq. (7) gives

(Et+1 − Et)
[
xrn,t+1 + r$

f,t+1

]
=− (Et+1 − Et)

n−1∑
j=1

ρjbxrn−j,t+1+j

− (Et+1 − Et)

n−1∑
j=1

ρjbr
$
f,t+1+j

 .
The LHS can be simpli�ed by noting that

(Et+1 − Et)
[
r$
f,t+1

]
= (Et+1 − Et)

[
yN1,t
]

= 0.

To simplify the RHS, we simply note that the realized nominal return of the 1-period nominal bond is the realized real return
of the 1-period nominal bond plus realized in�ation: r$

f,t+1 = rf,t+1 + πt+1. The second term on the RHS is then

(Et+1 − Et)

n−1∑
j=1

ρjbr
$
f,t+1+j

 = (Et+1 − Et)

n−1∑
j=1

ρjbrf,t+1+j

+ (Et+1 − Et)

n−1∑
j=1

ρjbπt+1+j

 . (8)

Putting together the simpli�ed LHS and RHS, we have the following 3 news component decomposition for unexpected excess
bond returns:

(Et+1 − Et) [xrn,t+1] = NCF,n,t+1 −NRR,n,t+1 −NRP,n,t+1
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where

NCF,n,t+1 = −NINFL,n,t+1 ≡− (Et+1 − Et)

n−1∑
j=1

ρjbπt+1+j

 ,
NRR,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbrf,t+1+j

 , and
NRP,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbxrn−j,t+1+j

 . (9)

To extract the news components from the VAR, consider the vector of state variables

z̃t+1 =
[
xrs,t+1, xrn,t+1, dt+1 − pt+1, πt+1, y1,t+1, y

N
10,t+1 − yN1,t+1

]
. (10)

The main VAR equation is z̃t+1 = a + Az̃t + ut+1, which leads to Et [z̃t+j ] = Aj z̃t and (Et+1 − Et) [z̃t+j ] = Aj−1ut+1. It is
then straightforward to see how the decomposition can be written in VAR notation:

(Et+1 − Et) [xrn,t+1] =e2′ut+1,

NCF,n,t+1 =− e4′

n−1∑
j=1

ρjbA
j

ut+1,

NRR,n,t+1 =e5′

n−1∑
j=1

ρjbA
j−1

ut+1 − e4′

n−1∑
j=1

ρjbA
j

ut+1, and

NRP,n,t+1 =NCF,n,t+1 −NRR,n,t+1 − (Et+1 − Et) [xrn,t+1] .

We get NRR,n,t+1 by using Eq. (8) to express real rate news in terms of nominal rate news and in�ation news. Finally, we back
out NRP,n,t+1 as the residual.

A.2 Excess Stock Returns Decomposition (3 News Components)

We start with Campbell-Shiller decomposition which decompose the news on real stock return into news on growth of log real
dividend and news on log real interest rate

(Et+1 − Et) [rs,t+1] = NCF,s,t+1 −NDR,s,t+1,

where

NCF,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjs∆dt+1+j

 and

NDR,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsrs,t+1+j

 . (11)

We can relate the 2 news component decomposition to the 3 news component decomposition as follows. Note that the excess
return could be written as xrs,t+1+j = rs,t+1+j − rf,t+1+j , we have

NDR,s,t+1 = (Et+1 − Et)

 ∞∑
j=1

ρjsrs,t+1+j


= (Et+1 − Et)

 ∞∑
j=1

ρjsxrs,t+1+j

+ (Et+1 − Et)

 ∞∑
j=0

ρjsrf,t+1+j

− (Et+1 − Et) [rf,t+1+j ] .
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Combining this with the decomposition we have

(Et+1 − Et) [xrs,t+1] + (Et+1 − Et) [rf,t+1] =NCF,s,t+1 −NDR,s,t+1

=NCF,s,t+1 − (Et+1 − Et)

 ∞∑
j=1

ρjsxrs,t+1+j

− (Et+1 − Et)

 ∞∑
j=0

ρjsrf,t+1+j

+ (Et+1 − Et) [rf,t+1+j ]

Thus we have
(Et+1 − Et) [xrs,t+1] = NCF,s,t+1 −NRR,s,t+1 −NRP,s,t+1

where

NCF,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjs∆dt+1+j

 ,
NRR,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsrf,t+1+j

 , and
NRP,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsxrs,t+1+j

 . (12)

With the same vector of state variables zt+1 as in Eq. (10), we write the decomposition in VAR notation:

(Et+1 − Et) [xrs,t+1] =e1′ut+1,

NCF,s,t+1 = (Et+1 − Et) [xrs,t+1] +NRR,s,t+1 +NRP,s,t+1,

NRR,s,t+1 =e5′

 ∞∑
j=1

ρjsA
j−1

ut+1 − e4′

 ∞∑
j=0

ρjsA
j

ut+1, and

NRP,s,t+1 =e1′

 ∞∑
j=1

ρjsA
j

ut+1.

Similar to the case with bonds, we get NRR,n,t+1 by using an in�nite-sum version of Eq. (8) to express real rate news in terms
of nominal rate news and in�ation news. Note that the �rst term in NRR,s,t+1 starts from j = 1 instead of j = 0 because
(Et+1 − Et)

[
yN1,t
]

= 0. Finally, we back out NCF,s,t+1 as the residual.
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Appendix B. Derivation of Results in Section 3.2

We want to derive the general formula for k period portfolio return variance, where the portfolio is constructed by holding equal
weight on N identical markets. The starting point is from our stylized symmetrical model of asset returns of Section 3{

ri,t+1 = µ1 + βsi,t + ui,t+1

si,t+1 = µ2 + φsi,t + usi,t+1

(13)

and we could also write the VAR residual in terms of news terms ui,t+1 = NCF,i,t+1−NDR,i,t+1 and usi,t+1 = 1
λNDR,i,t+1, where

λ = ρβ
1−ρφ . The log portfolio return over k period horizon (from t to t+ k) is 1

r
(k)
p,t+k = r

(k)
0 + α′t(r

(k)
t+k − r

(k)
0 l) +

1

2
αt(k)2σt(k)2 − 1

2
αt(k)Σt(k)αt(k) (14)

and the variance of k period portfolio return is

Vt[r
(k)
p,t+k] =

1

N
Vt[r

(k)
i,t+k] + (1− 1

N
)Ct[r

(k)
i,t+k, r

(k)
j,t+k] (15)

where r
(k)
i,t+k =

∑k
l=1 ri,t+l is the k period log return of market i.

The term of interest in the expression is the cross-country covariance. Let's now derive the general expression for the
covariance term. Note that the 1 period return at t+ l could be written as

ri,t+l = µ1 + βsi,t+l−1 + ui,t+l

= µ1 + β(φsi,t+l−2 + usi,t+l−1) + ui,t+l

· · ·

= µ1 + βφl−1si,t + β

l−1∑
m=1

φm−1usi,t+l−m + ui,t+l (16)

and

Ct[ri,t+l, rj,t+l] = Ct[β

l−1∑
m=1

φm−1usi,t+l−m + ui,t+l, β

l−1∑
m=1

φm−1usj,t+l−m + uj,t+l]

= Ct[
β

λ

l−1∑
m=1

φm−1NDR,i,t+l−m +NCF,i,t+l −NDR,i,t+l,
β

λ

l−1∑
m=1

φm−1NDR,j,t+l−m +NCF,j,t+l −NDR,j,t+l] (17)

We make the assumption that (for ∀l > 1, i 6= j)

Ct[NCF,i,t+l, NCF,j,t+l] ≡ σxcCF,CF

Ct[NCF,i,t+l, NDR,j,t+l] ≡ σxcCF,DR

Ct[NDR,i,t+l, NDR,j,t+l] ≡ σxcDR,DR
Thus we have

Ct[ri,t+l, rj,t+l] = [
β2

λ2

(1− (φ2)l−1)

1− φ2
+ 1]σxcDR,DR + σxcCF,CF − 2σxcCF,DR (18)

For the cross-period & cross-country covariance, we have

Ct[ri,t+l, rj,t+l+p] = Ct[β

l−1∑
m=1

φm−1usi,t+l−m + ui,t+l, β

l+p−1∑
m=1

φm−1usj,t+l+p−m + uj,t+l+p]

1The formula for portfolio return below is derived in the appendix of Campbell and Viceira (2002) �Strategic Asset Allocation: Portfolio Choice for
Long-Term Investors�
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= Ct[ui,t+l + βusi,t+l−1 + βφusi,t+l−2 + · · ·+ βφl−2usi,t+1, βφ
p−1usj,t+l + βφpusj,t+l−1 + βφp+1usj,t+l−2 + · · ·+ βφl+p−2usj,t+1]

= βφp−1Ct[ui,t+l, usj,t+l] + β2φpCt[usi,t+l−1, usj,t+l−1] + β2φp+2Ct[usi,t+l−2, usj,t+l−2] + · · ·+ β2φp+2(l−2)Ct[usi,t+1, usj,t+1]

=
βφp−1

λ
(σxcCF,DR − σxcDR,DR) +

β2φp

λ2

1− (φ2)l−1

1− φ2
σxcDR,DR (19)

with p > 1. Using the results above, we could get the k period cross-country return covariance

Ct[r
(k)
i,t+k, r

(k)
j,t+k] =

k∑
l=1

Ct[ri,t+l, rj,t+l] + 2

k−1∑
l=1

k−l∑
p=1

Ct[ri,t+l, rj,t+l+p]

=

k∑
l=1

(
[
β2

λ2

(1− (φ2)l−1)

1− φ2
+ 1]σxcDR,DR + σxcCF,CF − 2σxcCF,DR

)
+2

k−1∑
l=1

k−l∑
p=1

(
βφp−1

λ
(σxcCF,DR − σxcDR,DR) +

β2φp

λ2

1− (φ2)l−1

1− φ2
σxcDR,DR

)

=

[
β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ k]σxcDR,DR + kσxcCF,CF − 2kσxcCF,DR


+2

k−1∑
l=1

(
β

λ(1− φ)
(1− φk−l)(σxcCF,DR − σxcDR,DR) +

β2

λ2

1− (φ2)l−1

1− φ2

φ(1− φk−l)
1− φ

σxcDR,DR

)

=

[
β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ k]σxcDR,DR + kσxcCF,CF − 2kσxcCF,DR


+2

(
β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
)(σxcCF,DR − σxcDR,DR) +

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)σxcDR,DR

)
= kσxcCF,CF + 2k

(
β

λ(1− φ)
(
k − 1

k
− φ

k

1− φk−1

1− φ
)− 1

)
σxcCF,DR

+

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k

σxcDR,DR

(20)
We further simplify the coe�cient on σxcDR,DR as

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k

= k

β2

λ2

(1− 1−(φ2)k

k(1−φ2) )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
− 1− (φ2)k−1

k(1− φ2)
)− 2

β

λ(1− φ)
(
k − 1

k
− φ1− φk−1

k(1− φ)
) + 1


= k

{
β2

λ2(1− φ)(1 + φ)

(
1−

1− (φ2)k

k(1− φ)(1 + φ)
+ 2

φ

(1− φ)
(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)
)

)
− 2

β

λ(1− φ)
(
k − 1

k
− φ

1− φk−1

k(1− φ)
) + 1

}
= k

{(
β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

+

(
β

λ(1− φ)

)2 (k − 1

k
− φ

1− φk−1

k(1− φ)

)2

− 2
β

λ(1− φ)
(
k − 1

k
− φ

1− φk−1

k(1− φ)
) + 1

}

= k

{(
β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

+

((
β

λ(1− φ)

)(
k − 1

k
− φ

1− φk−1

k(1− φ)

)
− 1

)2
}

If we de�ne a(k;β, φ, λ) ≡ 1−
(

β
λ(1−φ)

)(
k−1
k − φ

1−φk−1

k(1−φ)

)
then equation (11) could be written as

1

k
Ct[r

(k)
i,t+k, r

(k)
j,t+k] = σxcCF,CF +

[
a(k;β, φ, λ)2 + b(k;β, φ, λ)

]
σxcDR,DR − 2a(k;β, φ, λ)σxcCF,DR (21)

where

b(k;β, φ, λ) ≡
(

β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

(22)
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we could show that limk→+∞b(k;β, φ, λ) = 0.
Finally we have the asymptotic result

limk→+∞
Ct[r

(k)
i,t+k, r

(k)
j,t+k]

k
= σxcCF,CF + 2(

β

λ(1− φ)
−1)σxcCF,DR+ (

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1)σxcDR,DR (23)

Now we derive the range of the coe�cients for variance-covariance terms in Eq (12), note that λ = ρβ
1−ρφ

β

λ(1− φ)
− 1 =

1− ρφ
ρ

1

(1− φ)
− 1 >

1

ρ
− 1 > 0

and
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1

=

(
β

λ(1− φ)

)2

− 2β

λ(1− φ)
+ 1

=

(
β

λ(1− φ)
− 1

)2

=

(
1− ρφ
ρ− ρφ

− 1

)2

we know that ρ and φ are close to but smaller than 1, and if we assume that ρ > 1
2−φ , we have

(
1−ρφ
ρ−ρφ − 1

)2

< 1. Thus we could

have

0 <
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1 < 1

under the assumption.

Numerical Calibration:

We try to use the formula to explain the positive gap between the portfolio variance of the benchmark case and the case in which
integration is purely driven by increased DR news correlation. In our benchmark case, we set σxcCF,CF = σxcCF,DR = σxcDR,DR = 0,
therefore

limk→+∞

√
Vt[r

(k)
p,t+k]/k = limk→+∞

√
1

N
Vt[r

(k)
i,t+k]/k (24)

. And for the integrated case purely driven by increased DR news correlation, we have

limk→+∞

√
Vt[r

(k)
p,t+k]/k = limk→+∞

√
1

N
Vt[r

(k)
i,t+k]/k + (1− 1

N
)(

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1)σxcDR,DR

(25)
and we have

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1 = 0.0175 (26)

therefore explains the positive gap between the two variance plot in our 2 country symmetrical experiment.
The coe�cient of the term σxcDR,DR in Eq (11) standardized by k

1

k

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k


(27)

is a function of investment horizon k, and the coe�cient annualized by k should converge to the value in Eq (15). The coe�cient
as a function of k is plotted in Figure 3.
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In the next step, we calibrate the variance under the two cases (integration purely driven by increased cross country CF-CF/
DR-DR correlation). Under the limit case where k → +∞ we have

(
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ)2
− 2β

λ(1− φ)
+ 1)σxcDR,DR = 0.000010

where σxcDR,DR = ρxcDR,DRσDRσDR and cross country DR correlation ρxcDR,DR = 0.25. Similarly we get

σxcCF,CF = ρxcCF,CFσCFσCF = 0.0012

where ρxcCF,CF = 0.335. In the calibration, we see that when integration purely driven by increased cross country CF-CF
correlation, the impact on portfolio variance is permanent. When the integration is purely driven by increased cross country
DR-DR correlation, the impact on portfolio variance is temporary, and dies out at long horizons. This matches with our intuition

perfectly, and we see from the calibration that ( β2

λ2(1−φ2) + 2β2φ
λ2(1−φ)2 −

2β
λ(1−φ) + 1)σxcDR,DR � σxcCF,CF .

Lemma: Assuming
(1) 0.5 < ρ < 1 and 0.5 < φ < 1 (trivially satis�ed for time preference factor ρ and persistence of state variable φ).

(2) ρ > 2φ2+3φ+1
φ2+3φ+2

We can conclude that the coe�cient 1
k

[
a(k;β, φ, λ)2 + b(k;β, φ, λ)

]
is positive and decreasing in k (these are su�cient but not

necessary conditions). The impact of covariance term σxcDR,DR on per-period portfolio variance decreases as investment horizon
k increases.

Proof: f(k) ≡ 1
k

[
a(k;β, φ, λ)2 + b(k;β, φ, λ)

]
= 1

k

(
β2

λ2

(k− 1−(φ2)k

1−φ2
)

1−φ2 + 2 β2φ
λ2(1−φ2)(1−φ) (k − 1 + (φk−1−1)(φ−φk−1)

1−φ − 1−(φ2)k−1

1−φ2 )− 2 β
λ(1−φ) (k − 1− φ 1−φk−1

1−φ ) + k

)
=
(
β2

λ2
1

1−φ2 (1− 1−(φ2)k

k(1−φ2) ) + 2 β2φ
λ2(1−φ2)(1−φ) (1− 1

k + (φk−1−1)(φ−φk−1)
k(1−φ) − 1−(φ2)k−1

k(1−φ2) )− 2 β
λ(1−φ) (1− 1

k −
φ
k

1−φk−1

1−φ ) + 1
)

= Const+ 1
k

(
−β

2

λ2

(1−φk)(1+φk)
(1−φ2)2 + 2 β2φ

λ2(1−φ2)(1−φ)
−1+φ2+(φk−1−1)(φ−φk−1)(1+φ)−1+φ2(k−1)

(1−φ2) + 2 β
λ(1−φ)

1−φk
1−φ

)
= Const+ 1

k

(
−β

2

λ2

(1−φk)(1+φk)
(1−φ2)2 + 2 β2φ

λ2(1−φ)
(2+φ−φk+1)(φk−1)

(1−φ2)2 + 2 β
λ(1−φ)

1−φk
1−φ

)
= Const+ 1

k
β
λ

1−φk
(1−φ)2

(
β
λ
φk(2φ2+φ−1)−2φ2−3φ−1

(1+φ)2(1−φ) + 2
)

where

Const =
β2

λ2

1

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
− 2

β

λ(1− φ)
+ 1

=
β2(1− φ) + 2β2φ− 2βλ(1− φ2) + λ2(1− φ2)(1− φ)

λ2(1− φ2)(1− φ)

=
(β − λ(1− φ))

2

λ2(1− φ)2
> 0

Note that ρ and φ are close to but smaller than 1, and β
λ = 1−ρφ

ρ . We want to �nd su�cient conditions so that f(k) is

decreasing in k. Since f(k) = g(k)h(k) and f ′(k) = g′(k)h(k) + g(k)h′(k), f ′(k) < 0 ⇐⇒ g(k)h′(k) < −g′(k)h(k). Since
g(k) > 0, it will be su�cient if we could show that g′(k) < 0, h′(k) < 0 and h(k) > 0.

We �rst show that g(k) ≡ 1
k
β
λ

1−φk
(1−φ)2 decrease in k for φ ∈ (0, 1). Take the �rst order derivative we get g′(k) = β

λ
1

(1−φ)2
φk(1−k lnφ)−1

k2 .

To show g′(k) < 0, we need to show that m(φ) = φk(1− k lnφ)− 1 < 0 for φ ∈ (0, 1) and ∀k. This could be easily proved since
m′(φ) = −k2φk−1ln(φ) > 0 for φ ∈ (0, 1) and m(1) = 0. Thus g(k) is positive and decrease in k. Then we want to know the

property of h(k) = β
λ
φk(2φ2+φ−1)−2φ2−3φ−1

(1+φ)2(1−φ) + 2. We also notice given that 2φ2 + φ− 1 > 0 (which hold as long as φ > 0.5), h(k)

is decreasing in k. Thus it would be su�cient to prove the lemma if we know h(k) > 0 for ∀k. Since h(k) is decreasing in k, we

only need lim
k→∞

h(k) = −βλ
2φ2+3φ+1

(1+φ)2(1−φ) + 2 = − 1−ρφ
ρ(1−φ)

2φ2+3φ+1
(1+φ)2 + 2 > 0 to hold. This is equivalent to ρ > 2φ2+3φ+1

φ2+3φ+2 . Under this

condition, we know both g(k) and h(k) are positive and decreasing, therefore f(k) = g(k)h(k) is positive and decreasing in k.
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Appendix C. Symmetrical Model for Asset Returns

We introduce a two-state-variable symmetrical model for stocks, which includes excess stock return and dividend price ratio as
state variables. In particular, the dynamics of the variables are given by:

xrs,t+1 = µ1 + β(dt − pt) + uxr,t+1 (28)

dt+1 − pt+1 = µ2 + φ(dt − pt) + udp,t+1 (29)

We denote ut = [uxr,t, udp,t]
′ and assume the VAR shocks are covariance stationary E(ut) = 0, E(utus) =

{
Σwc (t = s)

0 (t 6= s)
.The

superscript wc stands for within-country, and we use xc to represent cross-country in later part of the paper.

C.1 Connect VAR shocks to structural shocks

We decompose stock excess returns into two structural shocks: cash �ow news and discount rate news. In the symmetrical model
(VAR) with two state variables, there's actually a one-to-one mapping from the structural shocks to VAR shocks. Recall from
the decomposition

NRR,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsrf,t+1+j

 = (Et+1 − Et)

 ∞∑
j=0

ρjs
(
yN1,t+j − πt+1+j

) = 0

This is because the short nominal rate and in�ation are assume to be zero in our symmetrical model.

NRP,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsxrs,t+1+j

 =
ρsβ

1− ρsφ
udp,t+1

Therefore we have the discount rate news

NDR,t+1 = NRR,t+1 +NRP,t+1 =
ρsβ

1− ρsφ
udp,t+1

and the cash �ow news is calculated from the identity

NCF,t+1 = (Et+1 − Et) [xrs,t+1] +NDR,t+1 = uxr,t+1 +
ρsβ

1− ρsφ
udp,t+1

To summarize, we have [
NCF,t+1

NDR,t+1

]
=

[
1 ρsβ

1−ρsφ
0 ρsβ

1−ρsφ

] [
uxr,t+1

udp,t+1

]
(30)

which connects the VAR shocks to structural shocks. Or in matrix notation εt+1 = Put+1, where εt+1 is the structural shock,
ut+1 the VAR shocks and P the transformation matrix.

C.2 From single country to a world with N identical countries

To further explore the bene�t of international diversi�cation, we design an experiment in a world with N clones (N-replica world
composed of N identical countries, and we use the US data to get empirical results). To explain the experiment in detail, we �rst
introduce some notations. Let Σwc ≡ V ar(ut+1) be the within country VAR covariance matrix, and Σxc ≡ Cov(ui,t+1, uj,t+1) (i 6=
j) is de�ned as the cross-country VAR covariance matrix (between country i and j). Since all covariance matrix Σ could be
decomposed into volatility component G ≡ diag(Σ)1/2 and correlation component (Γ ≡ diag(Σ)−1/2Σdiag(Σ)−1/2), we have the
following decomposition for within-country and cross-country VAR covariance matrix

Σwc ≡ GΣΓwcΣ G′Σ (31)

Σxc ≡ GΣΓxcΣ G
′
Σ (32)

By using this notation we have implicitly assumed all countries are identical, i.e. Σwci = Σwcj and Σxcij = Σxclm (i 6= j, l 6= m),
which also implies GΣ,i = GΣ,j , ΓwcΣ,i = ΓwcΣ,j , ΓxcΣ,ij = ΓxcΣ,lm.
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Then the covariance matrix for the global VAR shock in the N-replica economy is

Σglo =


Σwc Σxc · · · Σxc

Σxc Σwc · · · Σxc

...
... · · ·

...
Σxc Σxc · · · Σwc


with Σwc as diagonal blocks and Σxc as o� diagonal blocks . Later we use Σglo international portfolio allocation analysis.

C.3 Connect the VAR covariance matrix to structural covariance matrix in a world with N
identical countries

Let Ωwc ≡ V ar(εt+1) be the within country structural covariance matrix, and Ωxc ≡ Cov(εi,t+1, εj,t+1) (i 6= j) is de�ned as the
cross-country structural covariance matrix (between country i and j). Analogous to the decomposition above, we have

Ωxc ≡ GΩΓxcΩ G
′
Ω (33)

Ωwc ≡ GΩΓwcΩ G′Ω (34)

From the relation εt+1 = Put+1, we can take cross-country covariance Cov(εi,t+1, εj,t+1) = PCov(ui,t+1, uj,t+1)P ′ and get an
identity Ωxc = PΣxcP ′. Of course, Ωwc = PΣwcP ′ also holds.

The identity could be rewritten as
GΩΓxcΩ G

′
Ω = PGΣΓxcΣ G

′
ΣP
′ (35)

Applying the vec operator to both sides and using the trick that vec(ABC) = (C ′ �A) · vec(B) (see Hamilton 1994 Proposition
10.4) we have

(GΩ �GΩ) · vec (ΓxcΩ ) = ((PGΣ)� (PGΣ)) · vec (ΓxcΣ ) (36)

Now we've got a mapping from cross-country structural shock correlation matrix to cross-country VAR shock correlation matrix.
If ((PGΣ)� (DGΣ)) is nonsingular, we could rewrite the relationship as

vec (ΓxcΣ ) = ((PGΣ)� (PGΣ))
−1

(GΩ �GΩ) · vec (ΓxcΩ ) (37)

And similarly, we have

(GΩ �GΩ) · vec (ΓwcΩ ) = ((PGΣ)� (PGΣ)) · vec (ΓwcΣ ) (38)

We could also analogously de�ne the covariance matrix for the global structural shock

Ωglo =


Ωwc Ωxc · · · Ωxc

Ωxc Ωwc · · · Ωxc

...
... · · ·

...
Ωxc Ωxc · · · Ωwc


And equations (33) and (34) give us the connection between Ωglo and Σglo.

C.4 Illustrative example using the symmetrical model

From the analysis above, we know there's a connection between the global structural shocks and global VAR shocks. And
we could design some experiments using this connection to study the e�ect of international integration on portfolio allocation.
Empirically, we follow the steps below:

1. Estimate a single country symmetrical model using the US historical data. From this we could get a estimate for the
covariance matrix Σwc (or equivalently GΣ and ΓwcΣ ). P matrix could also be calculated from the reduced form VAR coe�cients.

2. Using the identity Ωwc = PΣwcP ′, we have an estimate of Ωwc(or equivalently GΩ and ΓwcΩ ).
3. Manually set values for the cross-country structural shock correlation matrix ΓxcΩ . From equation (?) we will be able to

get the implied cross-country VAR shock correlation matrix ΓxcΣ .
4. Construct the implied global VAR covariance matrix Σglo, based on our input ΓxcΩ in step 3. Given Σglo, we could study

the implications of international integration on global portfolio allocation.
Speci�cally, we assign 3 set of values toΓxcΩ in step 3 above, each corresponds a scenario below :
1st Scenario: ΓxcΩ = 0

11



This is a benchmark case without international integration, where all cross-country structural shocks are uncorrelated.

2nd Scenario: ΓxcΩ =

[
ΓxcΩ,11 0

0 0

]
where ΓxcΩ,11 denote the cross-country CF news correlation.
This is a case with international integration, and the integration is purely driven by increased CF news correlation:

3rd Scenario: ΓxcΩ =

[
0 0
0 ΓxcΩ,22

]
where ΓxcΩ,22 denote the cross-country DR news correlation.
This is a case with international integration, and the integration is purely driven by increased DR news correlation.

C.5 Implied Correlation Structure of VAR in Section 3.3

First Scenario Second Scenario Third Scenario
Corr uxr,s udp uxr,s udp uxr,s udp
uxr,s 0 0 0.070 0 0.070 -0.087
udp 0 0 0 0 -0.087 0.109

C.6 From 2 state variables (symmetrical model) to 6 state variables (general model)

It's very easy to incorporate the symmetrical model in a more general framework. Recall that our general model for a single
country is a VAR with 6 state variables

z̃t+1 = a+ Az̃t + ut+1

where z̃t+1 = [xrs,t+1, xrn,t+1, dt+1 − pt+1, πt+1, y
N
1,t+1, y

N
10,t+1 − yN1,t+1]. Out symmetrical model is a special case of the general

model with

a =


µ1

0
µ2

0
0
0



A =


0 0 β 0 0 0
0 0 0 0 0 0
0 0 φ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

ut+1 =


uxr,t+1

0
udp,t+1

0
0
0
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Appendix D. Data Description

We consider a number of time series from 7 major OECD countries, which accounts for 62% of total world market shares by
end of 2014.The full sample period is 1986:01 to 2016:12, yielding 372 monthly observations. We split the full sample to two
sub-periods, with the sub-period 1 from 1986:01 to 1999:12 and the sub-period 2 from 2000:01 to 2016:12. Returns are in U.S.
dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.

D.1 Currency-hedged Return

Before further explaining our data in details, we �rst introduce the concept of currency hedged excess return. Consider a home
investor from US buying assets in a foreign country (for example in Japan), we are interested in his excess returns from this
investment denominated in home currency. We use a superscript ∗ to denote a foreign variable. St denotes the spot foreign
exchange rate, and an increase in St means home currency is weakening relative to foreign currency. To conduct this trade, the
investor at time t has to exchange 1 US dollar into 1

St
Japanese yen and invest in Japanese capital market, then converts the

money back to USD at time t+ 1 when the investment is liquidated. Thus the (unhedged) 1-period return in Japanese market
(measured in dollars) is

1 +RJPN,t+1 ≡ (1 +R∗JPN,t+1)
St+1

St

where R∗JPN,t+1 is return in Japanese asset denominated in Japanese yen (local return).
However, due to the uncertainty in future exchange rate St+1, the investor will want to lock down the future exchange rate

using a currency forward at forward rate Ft. So the currency hedged return of a US investor investing in Japan is de�ned as

1 +RhJPN,t+1 ≡ (1 +R∗JPN,t+1)
Ft
St

Recall from the covered interest rate parity (CIP), we also have

1 + iUS,t+1 = (1 + i∗JPN,t+1)
Ft
St

where iUS,t+1 is the nominal interest rate for the US, while iJPN,t+1 is the nominal interest rate for Japan. The intuition for this
equation is that the investor should not have arbitrage opportunities, or alternatively, should be indi�erent to invest locally or
abroad if the currency risk of investing in foreign country is hedged. This equation holds pretty well unless there's counter-party
risk or barriers to �nancial integration (transaction costs, taxes, capital controls, et cetera).

Combining the two equations above, we know that the excess currency hedged return of a US investor investing in Japan is

1 +RhJPN,t+1

1 + iUS,t+1
=

1 +R∗JPN,t+1

1 + i∗JPN,t+1

or in log terms
rhJPN,t+1 − rf,US,t+1 = r∗JPN,t+1 − r∗f,JPN,t+1

where rf,US,t+1 = ln(1 + iUS,t+1) and rf,JPN,t+1 = ln(1 + i∗JPN,t+1) are the risk free rates in US and Japan. Thus, we have
shown that the excess currency-hedged return of US investors investing in Japan is the same as the excess return of Japanese
investors investing in home country (local excess return).

D.2 Main Variables

Now we introduce our main variables brie�y.

Returns, Dividend Yield and In�ation

The international portfolio we consider are constructed from country level index in equity and bonds. The country level
stock returns are measured as dollar returns on MSCI net total return indices, which reinvest dividends after the deduction of
withholding taxes. We use Merill Lynch total return indices (7yr-10yr) to get bond returns. The dividend yield is measured as
the log of MSCI dividend yield (MSDY), which is calculated using the trailing 12-month cash earnings per share �gure. All the
data on stock and bond returns as well as dividend yields are from Datastream. Table 2.A reports sample correlations of monthly
bond and stock returns for the period January 1986 to December 2016. Returns are in U.S. Dollar currency-hedged terms in
excess of the three-month U.S. Treasury bill rate. Table 2.B and 2.C further look at the correlations in the two sub-samples we
are studying.
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For the in�ation, we get data from both Datastream and Global Financial Data (GFD). We �rst get annualized in�ation
rates from Datastream. But for France and UK, the data does not go back far enough because data comes from newer HICP
that started in 1990's; thus, we compute in�ation manually using CPI for France and RPI for UK from GSD.

Foreign Exchange Rates

We get spot currency levels and one-month forward currency levels from Datastream. The currency levels are all in terms of 1
US dollar except for British Pound (GBP), so we invert GBP to get correct reference frame. The (unhedged) currency returns

are calculated as ln(St+1

St
) for spot currency levels for 1 USD, and the currency-hedged returns are calculated as ln Ft

St
for forward

and spot currency levels for 1 USD. Note that French and German data switch to Euros at the beginning of 1999.

Short Term and Long Term Nominal Interest Rate

We use 1 month T-bill rate for US short term nominal interest rate, and for other countries we use di�erent rates on short term
�nancial instruments including 1 month Euribor rates, bank loan rates or overnight money market interest rates. The data are
from GFD and central bank websites. Long term nominal interest rate are represented using 10 year yields. The US series is
from CRSP Fixed Term Indices and other countries from GFD.

D.3 Data Source

Variable Source Description Download Information

Equity Index Datastream MSCI net returns in USD using MSNR (net

dividends reinvested); sheet also contains

MSCI price indices in USD using MSPI (no

dividends reinvested) and MSCI return

indices in USD using MSRI (gross dividends

reinvested); get returns with simple division

of levels; can also get local returns as

opposed to USD returns. Take simple USD

returns from MSNR and takes LN of gross

returns.

MSAUSTL, MSCNDAL, MSFRNCL,

MSGERML, MSJPANL, MSUTDKL, MSUSAML

with �elds MSNR, MSPI, or MSRI

Dividend

yields

Datastream Dividend yields; take LN MSAUSTL, MSCNDAL, MSFRNCL,

MSGERML, MSJPANL, MSUTDKL, MSUSAML

with �eld MSDY

Bond Index Datastream Merrill Lynch total return indices; get

simple returns with simple division of levels;

numbers are already in USD. We take only

7y-10y sector TR and takes LN of gross

returns

Datastream tickers: MLAD1T3, MLAD3T5,

MLAD5T7, MLAD710, MLCD1T3, MLCD3T5,

MLCD5T7, MLCD710, MLFF1T3, MLFF3T5,

MLFF5T7, MLFF710, MLDM1T3, MLDM3T5,

MLDM5T7, MLDM710, MLJP1T3, MLJP3T5,

MLJP5T7, MLJP710, MLUK1T3, MLUK3T5,

MLUK5T7, MLUK710, MLUS1T3, MLUS3T5,

MLUS5T7, MLUS710

In�ation Datastream

and Global

Financial

Data(GFD)

Get annualized in�ation rates from

Datastream and take monthly di�erences to

account for seasonality; for France and UK,

data does not go back far enough because

data comes from newer HICP that started

in 1990's; thus, use GFD to get older CPI

for France and RPI for UK and manually

compute in�ation. We take LN of 1 +

monthly di�erence.

Datastream tickers: AUCPANNL, BDCPANNL,
CNCPANNL, FRCPANNL, JPCPANNL,

UKCPANNL, USCPANNL;

GFD tickers: CPAUSM, CPCANM, CPFRAM

(this is French CPI), CPHFRAM (this is French

HICP), CPDEUM, CPJPNM, CPGBRM (this is

UK RPI), CPHGBRM (this is UK HICP),

CPUSAM
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FX Data

(spot and

forward

currency level)

Datastream Currency returns calculated as

LN(SPOT(t+1)/SPOT(t)) for SPOT

currency levels for 1 USD; hedged currency

returns calculated as LN(FWD(t)/SPOT(t))

for FWD and SPOT currency levels for 1

USD; note that French and German data

switch to Euros at the beginning of 1999

Get spot currency levels with BBAUDSP,

BBCADSP, BBFRFSP, BBDEMSP, BBJPYSP,

BBGBPSP, BBEURSP - these are all in terms of

1 USD except for GBP, so need to invert GBP to

get correct reference frame; get 1m forward

currency levels with BBAUD1F, BBCAD1F,

BBFRF1F, BBDEM1F, BBJPY1F, BBGBP1F,

BBEUR1F - these are all in terms of 1 USD

except for GBP, so need to invert GBP to get

correct reference frame

Short Term

Interest Rate

GFD and

websites

Short nominal rates; Australia: target FF

rates; Canada: bank rates, which are

discount rates or +25bp over target FF

rates; France/Germany: 1 month Euribor

rates; Japan: basic discount rates/basic loan

rates; UK: bank rates, which are discount

rates; US: 12*RF where RF is the 1 month

T-bill rate; take LN of (1+SR) as de�ned

above and divides by 12 to get monthly

�gure

Australia: GFD (from Global Currency Hedging

paper) until 200605, then from http:

//www.rba.gov.au/statistics/cash-rate.html;

Canada: http://www.bankofcanada.ca/rates/

interest-rates/canadian-interest-rates/;

France: GFD (from Global Currency Hedging

paper) until 200412, then from

http://www.global-rates.com/

interest-rates/euribor/2010.aspx; Germany:

GFD (from Global Currency Hedging paper) until

200412, then from http://www.global-rates.

com/interest-rates/euribor/2010.aspx; Japan:

http://www.boj.or.jp/en/statistics/boj/

other/discount/index.htm/; UK:

http://www.bankofengland.co.uk/mfsd/iadb/

Repo.asp?Travel=NIxRPx; US: from Ken French's

website

Long Term

Interest Rate

GFD and

CRSP

Long nominal rates; essentially CMT at 5y

and 10y points; takes LN of 1 + LR using

the 10y point and divides by 12 to get

monthly �gure

For non-US, use GFD and the following symbols:
IGAUS5D, IGCANB5D, IGFRA5D, IGDEU5D,
IGJPN5D, IGGBR5D; IGAUS10D, IGCAN10D,
IGFRA10D, IGDEU10D, IGJPN10D, IGGBR10D

for US, use CRSP Fixed Term Indices (Daily

Series of Yield to Maturity) and the data for 2014

comes from, taking the yield at the end of each

month

http://www.treasury.gov/resource-center/

data-chart-center/interest-rates/Pages/

TextView.aspx?data=yieldYear&year=2014

Market

Capitalization

World Bank Market capitalization of each country "Market capitalization of listed companies

(current US$)" on world bank website

http://data.worldbank.org/indicator/CM.MKT.

LCAP.CD/countries

Credit
Spread

GFD and
Datastream

Investmet grade corporate bond index of
each country in excess of the government
bond index. For US, we use Moody's

Baa-Aaa as credit spread.

For Corporate Bonds: Australia use GFD
series "INAUSW" before 2005, use series

"Non-�nancial corporate BBB-rated bonds �
Yield � 7 year target tenor" from Reserve
Bank of Australia starting from 200501.

Canada use GFD series "INCANLTW" until
2006, then switch to "S&P CANADA IG
CORP BOND IDX" (from datastream)

starting from 200605. France use GFD series
"INFRAM". Germany use GFD series
"INDEUD". Japan use GFD series

"INJPNW". UK use GFD series "INGBRW".
Government bonds are from GFD with the
following symbols: IGAUS5D, IGAUS10D,

IGFRA3D, IGDEU5D, IGJPN5D,
IGGBR10D.

For US, we use Moody's Baa-Aaa as credit
spread.15

http://www.rba.gov.au/statistics/cash-rate.html
http://www.rba.gov.au/statistics/cash-rate.html
http://www.bankofcanada.ca/rates/interest-rates/canadian-interest-rates/
http://www.bankofcanada.ca/rates/interest-rates/canadian-interest-rates/
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.global-rates.com/interest-rates/euribor/2010.aspx
http://www.boj.or.jp/en/statistics/boj/other/discount/index.htm/
http://www.boj.or.jp/en/statistics/boj/other/discount/index.htm/
http://www.bankofengland.co.uk/mfsd/iadb/Repo.asp?Travel=NIxRPx
http://www.bankofengland.co.uk/mfsd/iadb/Repo.asp?Travel=NIxRPx
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2014
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD/countries
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD/countries


Real GDP GFD Real GDP in domestic currency From GFD, tickers as follows: GDPCCAN
(Canada Real GDP in 2007 Dollars)

GDPCDEU (Germany Real GDP in 2010
Euros) GDPCAUS (Australia Real GDP in
2007-2008 Dollars), GDPCGBR (Great
Britain Real GDP in 2008 Pounds),

GDPCFRA (France Real GDP in 2010
Euros), GDPCJPN (Japan Real GDP in 2010
Yen), GDPCUSA (United States Real GDP in

2009 Dollars)
Real

Industrial
Production

GFD Industrial Production Index in each
country

From GFD, tickers as follows: NDAUTM,
NDCANM, NDDEUM, NDFRAM,

NDGBRM, NDJPNM, USINDPROM
Real

Consumption
GFD Private Final Consumption Expenditure

in each country. We adjusted for
in�ation to get real variables (if the

original variable is nominal).

From GFD, tickers as follows:
GDPPCRAUSQ, GDPPCCANQ,
GDPPCFRAQ, GDPPCDEUQ,
GDPPCRJPNQ, GDPPCGBRQ,

GDPPCUSAQ
Real

Corporate
Earnings

Datastream Corporate pro�t, income or surplus
aggretate to country level. We adjust for

in�ation to get real variables.

From Datastream, tickers as follows:
USPROFTSB, AUPROFTSB, CNPROFTSB,
BDPROFTSB, JPNETPRFB, UKPROFTSB,

FRNFCGOSB
Real

Dividend
Datastream Use country level dividend yield and

stock price index and multiply to get
level of dividend (Dt = Dt

Pt
× Pt). And

then real by nominal dividend growth
adjusted for in�ation.

We use MSCI price index (MSPI) and
dividend yield (MSDY). Tickers are as follows:

MSAUSTL, MSCNDAL, MSFRNCL,

MSGERML, MSJPANL, MSUTDKL, MSUSAML

with �elds MSPI and MSDY.
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D.4 Correlation Summary Statistics

Table D.4 - Correlations (Jan. 1986 - Dec. 2016)
Bonds Stocks

AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.55 1.00
FRA 0.46 0.52 1.00
GER 0.49 0.58 0.86 1.00
JPN 0.22 0.33 0.30 0.39 1.00
UKI 0.53 0.44 0.57 0.59 0.27 1.00
USA 0.55 0.71 0.60 0.64 0.31 0.39 1.00

Stocks

AUS 0.21 -0.04 -0.06 -0.11 -0.11 0.13 -0.16 1.00
CAN 0.07 0.10 -0.07 -0.11 -0.04 0.03 -0.09 0.63 1.00
FRA -0.03 -0.02 0.09 -0.02 0.02 0.03 -0.14 0.57 0.63 1.00
GER -0.03 -0.05 -0.04 -0.10 -0.05 -0.05 -0.19 0.56 0.60 0.84 1.00
JPN -0.10 0.00 -0.03 -0.08 0.00 -0.02 -0.16 0.44 0.46 0.51 0.46 1.00
UKI 0.12 0.07 0.03 -0.03 0.01 0.15 -0.06 0.66 0.68 0.73 0.68 0.45 1.00
USA 0.04 0.08 -0.02 -0.11 0.00 0.03 -0.05 0.63 0.78 0.71 0.69 0.49 0.79 1.00

Table 2.B - Correlations (Jan. 1986 - Dec. 1999)
Bonds Stocks

AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.44 1.00
FRA 0.31 0.39 1.00
GER 0.31 0.46 0.78 1.00
JPN 0.18 0.34 0.30 0.43 1.00
UKI 0.44 0.29 0.45 0.46 0.24 1.00
USA 0.40 0.64 0.48 0.51 0.31 0.17 1.00

Stocks

AUS 0.44 0.01 0.01 -0.01 -0.12 0.29 -0.10 1.00
CAN 0.39 0.30 0.08 0.06 0.04 0.21 0.08 0.64 1.00
FRA 0.18 0.12 0.40 0.31 0.09 0.22 0.08 0.48 0.55 1.00
GER 0.25 0.13 0.24 0.23 -0.02 0.12 0.06 0.51 0.54 0.76 1.00
JPN 0.08 0.17 0.13 0.12 0.14 0.15 0.00 0.34 0.39 0.42 0.32 1.00
UKI 0.37 0.19 0.20 0.17 0.04 0.33 0.09 0.64 0.66 0.62 0.58 0.37 1.00
USA 0.35 0.34 0.19 0.12 0.05 0.22 0.24 0.58 0.78 0.59 0.55 0.36 0.74 1.00

Table 2.C - Correlations (Jan. 2000 - Dec. 2016)
Bonds Stocks

AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.73 1.00
FRA 0.66 0.70 1.00
GER 0.71 0.73 0.94 1.00
JPN 0.35 0.33 0.36 0.39 1.00
UKI 0.72 0.76 0.78 0.84 0.37 1.00
USA 0.74 0.83 0.72 0.76 0.36 0.76 1.00

Stocks

AUS -0.21 -0.12 -0.17 -0.24 -0.08 -0.22 -0.24 1.00
CAN -0.29 -0.13 -0.21 -0.26 -0.17 -0.22 -0.24 0.66 1.00
FRA -0.31 -0.20 -0.25 -0.34 -0.13 -0.27 -0.36 0.71 0.72 1.00
GER -0.34 -0.24 -0.29 -0.36 -0.12 -0.28 -0.38 0.66 0.65 0.92 1.00
JPN -0.34 -0.24 -0.20 -0.28 -0.31 -0.31 -0.33 0.61 0.55 0.62 0.59 1.00
UKI -0.22 -0.09 -0.16 -0.24 -0.06 -0.15 -0.22 0.71 0.72 0.86 0.79 0.56 1.00
USA -0.30 -0.21 -0.23 -0.30 -0.11 -0.25 -0.30 0.73 0.78 0.83 0.81 0.62 0.84 1.00

This table reports sample correlations of monthly bond and stock returns for the whole sample (January 1986 to December
2016), early sample (January 1986 to December 1999) and late sample (January 2000 to December 2016). Returns are in U.S.
Dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.
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Appendix E. VAR Model Estimation

Table E1. Pooled VAR(1) Model Estimates

Panel A

Model estimates Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.081 0.110 0.012 0.002 -0.776 1.305 0.015
(2.249) (1.151) (2.187) (0.005) (-0.737) (0.632)

(2) log bond excess returns -0.050 0.059 0.003 -0.227 0.458 2.232 0.042
(-4.786) (1.939) (1.766) (-1.800) (1.433) (3.432)

(3) log dividend yield -0.078 -0.141 0.978 0.142 -0.281 -3.879 0.963
(-2.057) (-1.390) (161.895) (0.328) (-0.254) (-1.776)

(4) log in�ation 0.004 -0.008 0.000 0.164 0.267 -0.014 0.085
(2.580) (-1.674) (0.035) (6.606) (5.809) (-0.145)

(5) log short rate 0.000 -0.002 0.000 0.004 1.003 0.068 0.981
(1.282) (-4.188) (-1.280) (2.217) (237.262) (7.051)

(6) log yield spread 0.000 0.001 0.000 -0.002 -0.011 0.910 0.863
(1.952) (1.070) (-0.289) (-0.841) (-2.004) (74.947)

Panel B

Within-country Residual Correlation Matrix (1986.01-2016.12)
averaged over 7 countries
average annualized volatility*100 in diagonal

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 17.702 0.062 -0.897 0.024 -0.018 -0.031
(2) log bond excess returns 0.062 5.829 -0.055 -0.076 -0.183 -0.461
(3) log dividend yield -0.897 -0.055 19.684 0.025 0.033 0.023
(4) log in�ation 0.024 -0.076 0.025 1.115 0.055 0.013
(5) log short rate -0.018 -0.183 0.033 0.055 0.102 -0.711
(6) log yield spread -0.031 -0.461 0.023 0.013 -0.711 0.119

Cross-country Residual Correlation Matrix (1986.01-2016.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 0.610 -0.050 -0.571 0.006 0.003 0.030
(2) log bond excess returns 0.000 0.458 0.002 -0.072 -0.051 -0.288
(3) log dividend yield -0.546 0.044 0.531 0.017 0.010 -0.039
(4) log in�ation 0.013 -0.036 0.014 0.186 0.032 0.001
(5) log short rate 0.007 -0.045 0.009 0.049 0.128 -0.062
(6) log yield spread -0.010 -0.257 0.000 0.015 -0.087 0.259
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Panel C

Within-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries

diagonal terms are annualized average volatility*100
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.213 0.293 -0.926 -0.026 -0.088 -0.109
(2) log bond excess returns 0.293 6.743 -0.290 -0.071 -0.209 -0.400
(3) log dividend yield -0.926 -0.290 20.863 0.058 0.083 0.115
(4) log in�ation -0.026 -0.071 0.058 1.058 0.041 0.021
(5) log short rate -0.088 -0.209 0.083 0.041 0.136 -0.721
(6) log yield spread -0.109 -0.400 0.115 0.021 -0.721 0.153

Cross-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries

diagonal terms are average cross-country correlation of the same state variable
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 0.538 0.080 -0.527 -0.060 -0.047 -0.012
(2) log bond excess returns 0.183 0.370 -0.177 -0.060 -0.072 -0.213
(3) log dividend yield -0.508 -0.084 0.509 0.069 0.045 0.015
(4) log in�ation -0.016 -0.020 0.027 0.093 0.006 0.009
(5) log short rate -0.035 -0.054 0.030 0.034 0.097 -0.032
(6) log yield spread -0.074 -0.196 0.078 0.033 -0.050 0.188

Panel D

Within-country Residual Correlation Matrix (2000.01-2016.12)
averaged over 7 countries
diagonal terms are annualized average volatility*100

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 16.244 -0.239 -0.871 0.071 0.129 0.095
(2) log bond excess returns -0.239 4.863 0.247 -0.086 -0.125 -0.643
(3) log dividend yield -0.871 0.247 18.416 -0.008 -0.080 -0.120
(4) log in�ation 0.071 -0.086 -0.008 1.135 0.091 0.017
(5) log short rate 0.129 -0.125 -0.080 0.091 0.053 -0.625
(6) log yield spread 0.095 -0.643 -0.120 0.017 -0.625 0.074

Cross-country Residual Correlation Matrix (2000.01-2016.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 0.700 -0.220 -0.633 0.068 0.110 0.083
(2) log bond excess returns -0.225 0.605 0.216 -0.101 -0.008 -0.442
(3) log dividend yield -0.600 0.198 0.573 -0.030 -0.061 -0.104
(4) log in�ation 0.046 -0.070 -0.006 0.249 0.057 0.014
(5) log short rate 0.115 -0.035 -0.040 0.107 0.271 -0.171
(6) log yield spread 0.100 -0.439 -0.140 0.004 -0.206 0.486
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Table E2. VAR(1) Model Estimates [Australia]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.080 0.024 -0.273 0.023 0.118 -0.774 0.714 0.018
(1.081) (0.566) (-1.540) (1.049) (0.105) (-0.553) (0.298)

(2) log bond excess returns 0.027 -0.041 0.110 0.009 -0.389 0.698 2.597 0.047
(1.322) (-2.144) (1.889) (1.433) (-0.862) (1.643) (2.586)

(3) log dividend yield -0.164 -0.051 0.291 0.950 1.044 -0.158 -4.370 0.923
(-2.058) (-0.948) (1.486) (40.451) (0.774) (-0.103) (-1.519)

(4) log in�ation -0.001 0.001 -0.003 0.000 0.737 0.117 0.001 0.709
(-0.558) (0.751) (-0.974) (-0.598) (10.216) (2.553) (0.021)

(5) log short rate 0.000 0.000 0.002 0.000 0.044 0.985 0.179 0.956
(0.305) (0.605) (0.880) (0.474) (2.262) (44.080) (3.591)

(6) log yield spread -0.001 0.000 -0.003 0.000 -0.043 0.004 0.786 0.702
(-0.797) (0.255) (-1.821) (-1.052) (-2.238) (0.180) (15.170)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 17.152 0.210 -0.918 0.001 -0.041 -0.032
(2) log bond excess returns 0.210 6.349 -0.177 -0.058 -0.061 -0.288
(3) log dividend yield -0.918 -0.177 18.997 0.004 0.027 0.040
(4) log in�ation 0.001 -0.058 0.004 0.437 0.091 -0.068
(5) log short rate -0.041 -0.061 0.027 0.091 0.215 -0.933
(6) log yield spread -0.032 -0.288 0.040 -0.068 -0.933 0.229

Table E3. VAR(1) Model Estimates [Canada]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.033 0.116 0.155 0.008 0.509 -0.983 1.908 0.029
(0.843) (1.915 ) (1.238) (0.757 ) (0.787) (-0.902) (0.755)

(2) log bond excess returns 0.007 -0.078 0.044 0.002 -0.065 0.429 2.555 0.057
(0.654) (-2.810 ) (0.652) (0.741 ) (-0.194) (0.969) (2.210)

(3) log dividend yield -0.076 -0.128 -0.217 0.978 -0.518 -0.450 -5.245 0.970
(-1.529) (-2.016 ) (-1.648) (73.081 ) (-0.655 ) (-0.378) (-1.867)

(4) log in�ation 0.000 0.008 -0.008 0.000 0.109 0.247 -0.129 0.077
(0.110) (1.726 ) (-0.774 ) (-0.228 ) (1.632 ) (2.717) (-0.675)

(5) log short rate 0.000 0.000 -0.004 0.000 0.000 1.000 0.029 0.989
(-1.635) (-0.172) (-3.091 ) (-1.499) (-0.025) (136.467) (1.451)

(6) log yield spread 0.000 0.001 0.002 0.000 0.000 -0.006 0.952 0.929
(1.156) (2.073) (2.259 ) (0.893) (-0.014) (-0.849) (49.350)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.048 0.119 -0.911 0.090 -0.016 -0.041
(2) log bond excess returns 0.119 5.837 -0.113 0.009 -0.309 -0.367
(3) log dividend yield -0.911 -0.113 16.963 -0.045 0.035 0.036
(4) log in�ation 0.090 0.009 -0.045 1.170 0.027 -0.014
(5) log short rate -0.016 -0.309 0.035 0.027 0.095 -0.724
(6) log yield spread -0.041 -0.367 0.036 -0.014 -0.724 0.099
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Table E4. VAR(1) Model Estimates [France]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.024 0.100 0.467 0.007 1.062 -0.310 3.542 0.034
(0.559) (1.440) (2.129) (0.625) (1.009) (-0.170) (0.753)

(2) log bond excess returns 0.027 -0.030 0.079 0.008 -0.650 0.568 2.187 0.063
(2.457) (-2.003) (1.338) (2.601) (-2.693) (1.290) (1.976)

(3) log dividend yield -0.100 -0.081 -0.581 0.968 -0.688 -0.781 -6.171 0.937
(-1.893) (-1.118) (-2.523) (66.628) (-0.575) (-0.414) (-1.222)

(4) log in�ation 0.000 0.005 -0.002 0.000 -0.028 0.264 0.192 0.053
(0.087) (2.072) (-0.187) (-0.124) (-0.502) (3.149) (0.973)

(5) log short rate -0.001 0.000 -0.003 0.000 -0.002 1.009 0.054 0.993
(-3.076) (-0.381) (-3.523) (-2.961) (-0.406) (144.631) (1.756)

(6) log yield spread 0.000 0.000 0.002 0.000 0.008 -0.018 0.927 0.922
(1.282) (1.786) (1.701) (0.866) (1.586) (-2.023) (28.193)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.104 0.090 -0.858 -0.029 -0.011 -0.072
(2) log bond excess returns 0.090 5.076 -0.022 -0.146 -0.150 -0.500
(3) log dividend yield -0.858 -0.022 21.924 0.127 -0.015 0.060
(4) log in�ation -0.029 -0.146 0.127 0.912 0.095 0.033
(5) log short rate -0.011 -0.150 -0.015 0.095 0.080 -0.747
(6) log yield spread -0.072 -0.500 0.060 0.033 -0.747 0.097

Table E5. VAR(1) Model Estimates [Germany]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.085 0.097 0.020 0.022 -0.548 -2.237 3.821 0.024
(1.544) (1.503) (0.082) (1.497) (-0.579) (-1.380) (0.802)

(2) log bond excess returns 0.007 -0.040 0.055 0.001 -0.350 -0.185 1.017 0.052
(0.662) (-3.110) (1.014) (0.445) (-1.559) (-0.484) (1.077)

(3) log dividend yield -0.170 -0.112 -0.069 0.951 0.328 1.066 -7.180 0.924
(-2.900) (-1.675) (-0.269) (59.279) (0.321) (0.647) (-1.494)

(4) log in�ation 0.003 0.005 -0.010 0.000 -0.125 0.236 -0.416 0.051
(1.202) (1.912) (-0.968) (0.620) (-2.217) (2.026) (-1.874)

(5) log short rate 0.000 0.000 -0.003 0.000 0.002 1.003 0.028 0.993
(-1.749) (1.028) (-4.439) (-1.613) (0.603) (272.038) (1.903)

(6) log yield spread 0.000 0.000 0.002 0.000 0.002 -0.004 0.969 0.939
(1.423) (1.877) (2.609) (1.277) (0.735) (-0.657) (58.023)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 21.496 -0.095 -0.875 0.085 0.083 -0.034
(2) log bond excess returns -0.095 4.789 0.081 -0.127 -0.310 -0.529
(3) log dividend yield -0.875 0.081 23.371 -0.046 -0.042 0.017
(4) log in�ation 0.085 -0.127 -0.046 1.140 0.033 0.096
(5) log short rate 0.083 -0.310 -0.042 0.033 0.054 -0.581
(6) log yield spread -0.034 -0.529 0.017 0.096 -0.581 0.069
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Table E6. VAR(1) Model Estimates [Japan]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.048 0.119 0.211 0.011 -0.535 -0.291 4.355 0.022
(1.128) (1.795) (0.885) (1.077) (-0.815) (-0.095) (0.646)

(2) log bond excess returns 0.035 -0.034 0.136 0.009 -0.018 0.888 7.955 0.095
(3.297) (-2.619) (2.095) (3.311) (-0.112) (1.172) (4.093)

(3) log dividend yield -0.096 -0.128 -0.225 0.975 0.631 -2.666 -13.637 0.981
(-1.609) (-1.592) (-0.783) (65.865) (0.846) (-0.722) (-1.537)

(4) log in�ation 0.000 0.002 0.001 0.000 0.181 0.374 -0.138 0.051
(-0.083) (0.383) (0.034) (-0.098) (4.731) (1.692) (-0.279)

(5) log short rate 0.000 0.000 -0.001 0.000 0.002 0.984 -0.003 0.992
(-2.430) (-0.166) (-2.350) (-2.439) (1.027) (121.339) (-0.253)

(6) log yield spread 0.000 0.000 -0.001 0.000 -0.002 0.004 0.924 0.930
(-2.229) (2.376) (-0.921) (-2.424) (-1.194) (0.421) (41.469)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.861 0.002 -0.860 0.041 -0.043 0.001
(2) log bond excess returns 0.002 4.927 -0.015 0.016 -0.187 -0.742
(3) log dividend yield -0.860 -0.015 22.954 0.004 0.066 0.005
(4) log in�ation 0.041 0.016 0.004 1.475 0.032 -0.016
(5) log short rate -0.043 -0.187 0.066 0.032 0.038 -0.407
(6) log yield spread 0.001 -0.742 0.005 -0.016 -0.407 0.059

Table E7. VAR(1) Model Estimates [United Kingdom]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.093 0.029 0.248 0.026 0.031 -0.930 0.189 0.034
(1.833) (0.518) (2.419) (1.917) (0.048) (-0.627) (0.059)

(2) log bond excess returns 0.023 -0.069 -0.010 0.006 0.034 -0.006 1.086 0.031
(1.249) (-1.452) (-0.128) (1.273) (0.119) (-0.010) (0.843)

(3) log dividend yield -0.083 -0.025 -0.264 0.975 -0.147 0.287 -1.345 0.952
(-1.487) (-0.413) (-2.374) (63.898) (-0.220) (0.183) (-0.404)

(4) log in�ation 0.003 0.004 -0.012 0.000 0.133 0.243 0.013 0.070
(0.584) (0.976) (-0.891) (0.336) (2.046) (2.197) (0.051)

(5) log short rate -0.001 0.000 -0.002 0.000 0.005 1.010 0.042 0.995
(-2.122) (0.928) (-3.303) (-2.033) (1.492) (135.818) (2.432)

(6) log yield spread 0.001 0.000 0.001 0.000 -0.006 -0.017 0.942 0.954
(1.949) (0.069) (1.735) (1.683) (-1.190) (-2.033) (48.304)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.385 0.153 -0.907 -0.011 -0.053 -0.099
(2) log bond excess returns 0.153 7.345 -0.144 -0.102 -0.304 -0.424
(3) log dividend yield -0.907 -0.144 17.152 0.066 0.058 0.091
(4) log in�ation -0.011 -0.102 0.066 1.412 0.117 0.033
(5) log short rate -0.053 -0.304 0.058 0.117 0.075 -0.578
(6) log yield spread -0.099 -0.424 0.091 0.033 -0.578 0.096
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Table E8. VAR(1) Model Estimates [United States]
Panel A. Model estimates

Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.111 0.062 0.030 0.023 0.212 -3.259 -6.290 0.024
(2.633) (0.876) (0.219) (2.505) (0.290) (-1.799) (-1.693)

(2) log bond excess returns -0.015 -0.079 0.034 -0.003 -0.831 1.422 3.670 0.075
(-0.979) (-3.138) (0.584) (-0.854) (-2.323) (2.263) (2.760)

(3) log dividend yield -0.092 -0.044 -0.001 0.979 0.369 1.421 4.942 0.981
(-2.117) (-0.643) (-0.006) (101.402) (0.556) (0.749) (1.350)

(4) log in�ation 0.002 0.009 -0.012 0.000 0.448 0.158 -0.052 0.263
(0.593) (1.635) (-1.394) (0.346) (5.998) (1.506) (-0.246)

(5) log short rate -0.001 0.001 0.000 0.000 0.006 1.029 0.154 0.964
(-3.505) (0.742) (-0.321) (-2.639) (1.063) (99.190) (5.568)

(6) log yield spread 0.001 0.000 0.000 0.000 0.003 -0.050 0.803 0.777
(3.487) (0.412) (-0.092) (2.650) (0.342) (-3.578) (25.018)

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.127 -0.034 -0.959 -0.024 0.031 -0.024
(2) log bond excess returns -0.034 6.147 0.015 -0.133 0.013 -0.452
(3) log dividend yield -0.959 0.015 15.323 0.038 0.005 0.002
(4) log in�ation -0.024 -0.133 0.038 0.971 -0.025 0.076
(5) log short rate 0.031 0.013 0.005 -0.025 0.133 -0.883
(6) log yield spread -0.024 -0.452 0.002 0.076 -0.883 0.160
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Appendix F. Fisher Transformation and Correlation Contribution

F.1 Fisher Transformation

We use Fisher transformation to test the hypothesis that cross-country correlations of the news components of excess stock

returns are di�erent between 1986-1999 subperiod and the 2000-2016 subperiod. De�ne z = 1
2 ln

(
1+r
1−r

)
. If (X,Y ) is bivariate

normal, and if (Xi, Yi) used to form r are independent, then z ∼ N
(

1
2 ln

(
1+ρ
1−ρ

)
, 1
N−3

)
, where N is the sample size. For two

samples of data, the early subperiod (1) and the late subperiod (2), de�ne z1 = 1
2 ln

(
1+r1
1−r1

)
and z2 = 1

2 ln
(

1+r2
1−r2

)
. The di�erence

is z1 − z2 ∼ N
(

1
2 ln

(
1+ρ1
1−ρ1

)
− 1

2 ln
(

1+ρ2
1−ρ2

)
, 1
N1−3 + 1

N2−3

)
. p-values can then be obtained in the normal way.

F.2 Correlation Contribution

For stocks, we can decompose the excess return news x̃st+1 = (Et+1 − Et) [xrs,t+1] = NCF,t+1 −NRR,t+1 −NRP,t+1. For bonds
we can decompose its excess return news as x̃rt+1 = (Et+1 − Et) [xrn,t+1] = NCF,n,t+1 −NRR,n,t+1 −NRP,n,t+1. (an increase in
NCF,n,t+1 for bonds is interpreted as negative in�ation news).

The reported �Component Contributions� in Figure 4 look at how much of the average covariance in excess returns is
being explained by covariances of news components. E.g., in Table 4, the stocks cash �ow/stocks real rate across coun-

tries component contribution is calculated as 1
N(N−1)/2

∑
i

∑
j 6=i

Cov(NCF,i,NRR,j)
Cov(x̃si ˜,xsj)

. For a given (i,j) pair, the denominator

Cov(x̃si ˜, xsj) = Cov(NCF,i − NRR,i − NRP,i, NCF,j − NRR,j − NRP,j) can be broken into 9 covariances of news components.
Therefore, the 9 terms in the �Component Contributions� table always sum up to 1.
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Appendix G. Semide�nite Programming Method

We do a constrained minimization problem to estimate the covariance matrices which satisfy two constraints: A). volatility
matrix and within-country correlation are the same across two sample period. B). covariance matrix is positive semi-de�nite.
First we decompose a covariance matrix into volatility matrix and correlation matrix

Σ = DΓD =

 σ1 · · · 0
...

. . .
...

0 · · · σm


 1 · · · ρ1m

...
. . .

...
ρ1m · · · 1


 σ1 · · · 0

...
. . .

...
0 · · · σm


Where the σi and ρij (i, j = 1, ...,m) are the coe�cients to be estimated. Suppose Σ̂1 and Σ̂2 are the sample covariance matrices
for early period and late period (known), then we need to estimate two covariance matrix Σ1 = D1Γ1D1 and Σ2 = D2Γ2D2

with the constraint D1 = D2 = D and Γwithin1 = Γwithin2 . We use the minimum distance estimation, and this is a well de�ned
constrained optimization problem

min
Σ1,Σ2

{
‖ Σ̂1 − Σ1 ‖2 + ‖ Σ̂2 − Σ2 ‖2

}
⇐⇒ min

D,Γ1,Γ2

{
‖ Σ̂1 −DΓ1D ‖2 + ‖ Σ̂2 −DΓ2D ‖2

}
s.t. Γi < 0 (i = 1, 2)

Γwithin2 = Γwithin1

where ‖ . ‖2 represents the norm in L2 space (‖ A−B ‖2=
∑
i,j(aij − bij)2), the notation Γ < 0 means the matrix Γ is positive

semi-de�nite, and Γwithin denotes the within-country correlation. To solve the Semide�nite programming (SDP) problem, we
use the MATLAB package CVX by Stephen Boyd. http://cvxr.com/cvx/doc/sdp.html
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Appendix H. VAR Model with Stochastic Volatility

Estimating VAR with Stochastic Volatility

We follow the methodology in Campbell, Giglio, Polk and Turley (CGPT 2017) in estimating VAR with stochastic volatility.
Our VAR includes 8 state variables: stock excess returns, bond excess returns, dividend yield, in�ation, short rate, yield spread,
credit spread and EVAR. This adds two additional variables to our baseline VAR (credit spread and EVAR). The credit spread
is constructed following the methodology in Kang and P�ueger (2013). It's constructed as the log yields of investment grade
corporate bond index subtracted by log yields of nominal government bond2. For U.S. credit spread, we use Moody's Baa log
yield minus Aaa log yield. Figure 1 plots the country level credit spread in our sample. As argued in CGPT 2017, shocks to
credit spread to some degree re�ect news about aggregate default probabilities, which in turn should re�ect news about the
market's future cash �ows and volatility.

We use daily MSCI price index (MSPI) denominated in USD to constructed monthly realized variance (RVAR). The daily

return is constructed by taking the daily di�erence of the price index rt+1 = ln(Pt+1

Pt
). The monthly realized variance is the sum

of daily squared return. In estimation of the VAR, we use a two stage method (as in CGPT 2017). In the �rst stage, we construct
period t + 1 expected market variance (EV ARt) based on information available at period t (i.e. all state variables at period
t: xt). Following CGPT, we �t the regression using weighted Least Squares (WLS). Speci�cally, we weight each observation
(RV ARt+1,xt) by previous period's realized variance RV AR−1

t . And we use a shrinkage factor as indicated in CGPT to ensure
the ratio of weights across observations is not too extreme. In the second stage, we estimate a VAR with the �rst stage �tted
value EVAR as a state variable. The second stage VAR is also estimated using WLS except that now the weight becomes
EV AR−1

t . We continue to apply the shrinkage factor in the second stage estimation. The results of the �rst stage regressions
and second stage VAR estimations for 7 countries are reported in Tables H.1 to H.7.

Simulating Symmetrical Model with Stochastic Volatility

To understand the impact of stochastic volatility on portfolio risk, we add volatility shock into our stylized symmetrical model
of asset returns of Section 3 and simulate the symmetrical model with stochastic volatility. The new model has the following
data generating process

rt+1 = µr + βst + σtur,t+1

st+1 = µs + φst + σtus,t+1

σt+1 = (1− ψ) + ψσt + vσ,t+1

The only di�erence from our previous symmetrical model is that here we added add a volatility, which follows a AR(1) process
with persistence ψ. Now the innovations to other variables (st and rt ) become heteroskedastic. In the simulation, we assume a
symmetrical model for 7 countries, and the shocks to the 7 country VAR follow a multivariate normal process. In the simulation,
we set φ = 0.9857 and β = 0.0123, which are estimated from US data. For the volatility persistence, we compared two values in
simulation: ψ = 0.9 and ψ = 0.99.

As a robustness check, we �rst reproduced the results in Figure 3 Panel A by simulating the 7 country symmetrical model
of 2 state variables (excess stock return, dividend price ratio) over a horizon of 800 periods. We simulate 20000 paths. Then
we simulate our symmetrical model with stochastic volatility speci�ed above. We set the within-country correlation of volatility
news and excess stock return news corr(vσ,i, ur,i) to be -0.625 and the within-country correlation of volatility news and dividend
yield news corr(vσ,i, ur,i) to be 0.595. The numbers come from our VAR estimation results in Appendix Table H7.

We focus on two exercises in the simulation. In the �rst exercise, the volatility news are not correlated across countries (i.e.
corr(vσ,i, vσ,j) = 0 for ∀i 6= j). Compare this with the symmetrical model of 2 state variables, we could see the impact of stochastic
volatility on portfolio risk. In the second exercise, we make volatility news correlated across countries ( corr(vσ,i, vσ,j) = 0.3 for
∀i 6= j) and everything else the same as in the �rst exercise. This exercise studies how volatility integration impacts portfolio
risk. In both exercises, we tried two speci�cations for the volatility persistence ( ψ = 0.9 and ψ = 0.99). We see that when
volatility is more persistent, the impact on portfolio risk is greater.

Figure H.4 plots the annualized global portfolio risk generated by the model as a function of investment horizon for dierent
degrees of persistence in volatility (0.90 in Panel A and 0.99 in Panel B) and dierent cross-country correlations (zero on left plots
and positive on right plots).3

2We selected government bonds with appropriate maturity so that the duration of it roughly match the duration of corporate bond indexes.

3Since there is no analytical expression
√

Vt[r
(k)
p,t+k]/k, we evaluate it through simulation.
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The left column of each panel in Figure H.4 shows the impact on portfolio risk of adding stochastic volatility to a model with
constant volatility in a scenario in which volatility shocks are uncorrelated across countries. The three solid lines in the plots
correspond to the scenarios we have considered for the model with constant volatility of Section 3. These are the lines shown
on Panel A of Figure 3. This column shows that stochastic volatility increases portfolio risk at all horizons, especially at short
horizons. The increase in market risk is more pronounced as volatility becomes more persistent.

The right column of each panel in Figure H.4 shows the impact of correlated stochastic volatility shocks. The three solid lines
in the plots correspond to the case with stochastic volatility with uncorrelated volatility shocks�i.e., the dashed lines on the left
column. These plots show that correlated volatility further increases portfolio risk, especially at long horizons. However, this
increase is signi�cant only when volatility shocks are highly persistent and correlated cash �ow news is the source of correlated
returns across countries. In that case, correlated volatility shocks amplify the e�ect of cash �ow news correlation on portfolio
risk at long horizons.

These results suggest that stochastic volatility shocks increase portfolio risk at all horizons when they are highly persistent.
However, allowing for correlated volatility shocks has only a small added impact on portfolio risk, except if returns are also
correlated across countries, and the source of this correlation is correlated cash �ow news. This scenario is not empirically
plausible, because the main source of correlation in returns is correlated discount rate news, not correlated cash �ow news.
Therefore, these results suggest that while stochastic volatility increases portfolio risk at all horizons, this risk doesn't necessarily
increase more during periods in which risk becomes more correlated across markets, as in the two episodes documented in Figure
8.These results suggest that stochastic volatility shocks increase portfolio risk at all horizons when they are highly persistent.
However, allowing for correlated volatility shocks has only a small added impact on portfolio risk, except if returns are also
correlated across countries, and the source of this correlation is correlated cash �ow news. This scenario is not empirically
plausible, because the main source of correlation in returns is correlated discount rate news, not correlated cash �ow news.
Therefore, these results suggest that while stochastic volatility increases portfolio risk at all horizons, this risk doesn't necessarily
increase more during periods in which risk becomes more correlated across markets, as in the two episodes documented in Figure
10. In light of this last consideration, the empirical analysis in our paper assumes away time variation in volatility. That is, we
present results based on a homoskedastic VAR model.
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Figure H.1: International credit spreads. This �gure shows the monthly credit spreads for Australia, Canada, France,
Germany, Japan, the UK, and the US. It's constructed as the log yields of investment grade corporate bond index subtracted
by log yields of duration matched nominal government bond. For U.S. credit spread, we use Moody's Baa log yield minus Aaa
log yield.
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Figure H.2: International realized variance (RVAR) and expected variance (EVAR). This �gure shows the monthly
realized variance (RVAR) and expected variance (EVAR) for Australia, Canada, France, Germany, Japan, the UK, and the US.
The monthly realized variance is constructed from daily MSCI price index (MSPI) denominated in USD.
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Figure H.3: Cross country correlation of heteroscedastic VAR news (stocks). This �gure plots the three year 3-year
moving average of average cross-country correlations of shocks to stock excess returns, cash �ow news, real rate news, and
risk premium news, both including the October 1987 observation and excluding it. The news components are extracted from
heteroscedastic VAR.
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Figure H.4: Impact of stochastic volatility news on equity portfolio risk This �gure plots the equity portfolio risk
√
Vt[r

(k)
p,t+k]/k

as a function of investment horizon k. As there's no analytical expression, we evaluate it by simulating our symmetrical model with stochastic
volatility. The left column of each panel plots the portfolio risk in a homoskedastic symmetrical model (solid line) and in a heteroskedastic
version of the symmetrical model with stochastic volatility news uncorrelated across countries (dashed line). In each version of the model,
we compare the term structure of portfolio risk across 3 scenarios (as described in Figure 3). The right column of each panel plots the
portfolio risk in a heteroskedastic version of the symmetrical model of Section 3 with stochastic volatility news uncorrelated across countries
(solid line) and with volatility news correlated across countries (dashed line). In this version of the model, volatility follows a AR(1) process
with persistence parameter ψ. Panel A is simulated with volatility persistence ψ = 0.9 and Panel B is simulated with ψ = 0.99.

Panel A: Impact of stochastic volatility news on equity portfolio risk

(volatility persistence ψ = 0.9)
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Panel B: Impact of stochastic volatility news on equity portfolio risk

(volatility persistence ψ = 0.99)
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Table H1. Estimates of VAR(1) Model with Stochastic Volatility (Australia)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

-0.036 -0.016 0.043 -0.010 0.015 0.662 -0.074 0.244 0.407 0.242
-1.232 -2.167 1.732 -1.273 0.155 1.217 -0.203 1.717 2.447

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.106 -0.017 -0.159 0.028 0.048 -1.443 -0.209 -0.219 -0.612 0.027

(0.714) (-0.242) (-1.059) (0.709) (0.044) (-0.485) (-0.086 ) (-0.272) (-0.629 )
(2) log bond excess returns 0.034 -0.025 0.092 0.011 -0.279 0.461 2.747 -0.078 0.345 0.053

(0.938) (-0.829) (1.600) (1.120) (-0.630) (0.581) (2.634 ) (-0.336 ) (0.938 )
(3) log dividend yield -0.174 -0.002 0.158 0.948 1.439 0.019 -3.339 0.056 0.660 0.923

(-1.102) (-0.031) (0.950) (22.667) (1.136) (0.006) (-1.156 ) (0.064 ) (0.539 )
(4) log in�ation -0.004 0.000 -0.001 -0.001 0.729 0.172 0.002 0.023 -0.023 0.710

(-1.884) (-0.038) (-0.434) (-1.800) (9.289) (2.843) (0.038 ) (1.990 ) (-0.855 )
(5) log short rate 0.001 0.000 0.002 0.000 0.049 0.961 0.164 -0.010 0.001 0.956

(0.954) (0.383) (1.033) (0.989) (2.498) (34.186) (3.151 ) (-1.295 ) (0.152 )
(6) log yield spread -0.002 0.000 -0.004 -0.001 -0.049 0.035 0.801 0.012 -0.007 0.705

(-1.289) (-0.189) (-1.845) (-1.383) (-2.513) (1.144) (15.210) (1.422 ) (-0.693)
(7) log credit spread 0.021 0.001 -0.017 0.005 -0.060 -0.385 -0.385 0.798 0.263 0.913

(2.892) (0.154) (-1.579) (2.592) (-0.657) (-2.767) (-2.129) (15.158) (2.256)
(8) EVAR -0.026 0.000 0.000 -0.007 0.002 0.547 0.068 0.178 0.483 0.443

(-2.133) (0.043) (-0.012) (-2.177) (0.038) (2.246) (0.486) (2.468) (2.825)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 17.078 0.217 -0.917 0.006 -0.051 -0.024 -0.135 -0.558
(2) log bond excess returns 0.217 6.329 -0.184 -0.056 -0.060 -0.290 0.260 0.120
(3) log dividend yield -0.917 -0.184 18.941 0.001 0.035 0.035 0.124 0.492
(4) log in�ation 0.006 -0.056 0.001 0.436 0.099 -0.078 0.002 -0.090
(5) log short rate -0.051 -0.060 0.035 0.099 0.213 -0.932 -0.113 0.104
(6) log yield spread -0.024 -0.290 0.035 -0.078 -0.932 0.228 0.013 -0.146
(7) log credit spread -0.135 0.260 0.124 0.002 -0.113 0.013 1.128 0.443
(8) EVAR -0.558 0.120 0.492 -0.090 0.104 -0.146 0.443 1.306

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 21.500 0.217 -0.922 0.028 -0.048 -0.029 -0.155 -0.578
(2) log bond excess returns 0.217 7.599 -0.172 -0.056 -0.049 -0.302 0.285 0.080
(3) log dividend yield -0.922 -0.172 23.812 -0.025 0.028 0.039 0.151 0.518
(4) log in�ation 0.028 -0.056 -0.025 0.519 0.102 -0.080 -0.044 -0.161
(5) log short rate -0.048 -0.049 0.028 0.102 0.252 -0.932 -0.097 0.080
(6) log yield spread -0.029 -0.302 0.039 -0.080 -0.932 0.271 -0.008 -0.108
(7) log credit spread -0.155 0.285 0.151 -0.044 -0.097 -0.008 1.441 0.477
(8) EVAR -0.578 0.080 0.518 -0.161 0.080 -0.108 0.477 1.916
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Table H2. Estimates of VAR(1) Model with Stochastic Volatility (Canada)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

-0.003 -0.010 -0.011 -0.001 -0.037 -0.065 -0.158 -0.020 0.656 0.418
-1.089 -1.162 -0.797 -1.678 -0.764 -0.456 -0.644 -0.443 4.796

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.033 0.066 0.153 0.008 0.408 -1.537 1.107 0.344 -0.540 0.032

(0.925) (1.045) (1.237) (0.770) (0.647) (-1.301) (0.425) (0.639) (-0.715)
(2) log bond excess returns 0.006 -0.087 0.073 0.002 0.050 0.683 3.032 -0.287 0.079 0.061

(0.614) (-3.544) (1.269) (0.549) (0.155) (1.462) (2.716 ) (-1.254) (0.233)
(3) log dividend yield -0.079 -0.085 -0.217 0.976 -0.392 0.249 -4.224 -0.834 0.326 0.970

(-1.689) (-1.210) (-1.614) (76.533) (-0.520) (0.197) (-1.523 ) (-1.378) (0.387)
(4) log in�ation 0.001 0.007 -0.006 0.000 0.086 0.235 -0.169 -0.017 -0.026 0.080

(0.349) (1.409) (-0.632) (-0.112) (1.352) (2.573) (-0.911 ) (-0.392 ) (-0.437)
(5) log short rate 0.000 0.000 -0.003 0.000 -0.001 1.002 0.029 -0.007 -0.002 0.990

(-1.857) (-0.388) (-3.089) (-1.900) (-0.228) (139.333) (1.628 ) (-1.630 ) (-0.597)
(6) log yield spread 0.000 0.001 0.002 0.000 0.000 -0.012 0.945 0.012 0.001 0.931

(1.136) (2.681) (1.678) (1.356) (0.048) (-1.625) (53.560) (2.807 ) (0.336)
(7) log credit spread -0.001 -0.009 0.011 0.000 0.022 0.075 0.051 0.915 0.002 0.885

(-1.171) (-3.739) (2.509) (-1.588) (1.132) (1.959) (0.636) (49.452 ) (0.032)
(8) EVAR -0.003 0.000 -0.003 -0.001 -0.007 -0.071 -0.191 -0.018 0.656 0.406

(-1.576) (0.066) (-0.277) (-2.178) (-0.208) (-0.734) (-1.126) (-0.542 ) (4.880)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 15.022 0.124 -0.911 0.088 -0.016 -0.045 -0.158 -0.510
(2) log bond excess returns 0.124 5.823 -0.119 0.009 -0.319 -0.362 0.396 -0.056
(3) log dividend yield -0.911 -0.119 16.927 -0.045 0.030 0.047 0.135 0.396
(4) log in�ation 0.088 0.009 -0.045 1.168 0.022 -0.008 -0.066 -0.172
(5) log short rate -0.016 -0.319 0.030 0.022 0.094 -0.719 -0.120 -0.138
(6) log yield spread -0.045 -0.362 0.047 -0.008 -0.719 0.097 -0.246 0.129
(7) log credit spread -0.158 0.396 0.135 -0.066 -0.120 -0.246 0.490 0.074
(8) EVAR -0.510 -0.056 0.396 -0.172 -0.138 0.129 0.074 1.247

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 17.015 0.115 -0.908 0.118 0.013 -0.064 -0.144 -0.481
(2) log bond excess returns 0.115 6.559 -0.112 -0.015 -0.302 -0.392 0.454 -0.059
(3) log dividend yield -0.908 -0.112 19.209 -0.073 0.011 0.061 0.123 0.347
(4) log in�ation 0.118 -0.015 -0.073 1.301 0.056 -0.019 -0.107 -0.212
(5) log short rate 0.013 -0.302 0.011 0.056 0.102 -0.711 -0.129 -0.182
(6) log yield spread -0.064 -0.392 0.061 -0.019 -0.711 0.108 -0.273 0.170
(7) log credit spread -0.144 0.454 0.123 -0.107 -0.129 -0.273 0.596 0.014
(8) EVAR -0.481 -0.059 0.347 -0.212 -0.182 0.170 0.014 1.699
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Table H3. Estimates of VAR(1) Model with Stochastic Volatility (France)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

0.006 -0.016 0.003 0.001 -0.048 -0.043 0.123 -0.023 0.558 0.376
1.911 -3.481 0.178 1.434 -0.631 -0.280 0.271 -0.380 5.624

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.032 0.050 0.477 0.009 0.721 -0.238 2.166 0.289 -0.759 0.037

(0.642) (0.656) (2.026) (0.726) (0.696) (-0.134) (0.380 ) (0.338) (-0.698)
(2) log bond excess returns 0.022 -0.025 0.076 0.007 -0.584 0.580 1.386 0.171 0.179 0.067

(1.708) (-1.341) (1.220) (2.199) (-2.424) (1.259) (0.808 ) (0.634) (0.533)
(3) log dividend yield -0.104 -0.020 -0.568 0.967 -0.109 -0.940 -2.378 -0.775 1.003 0.937

(-1.797) (-0.251) (-2.282) (65.397) (-0.095) (-0.505) (-0.387 ) (-0.825) (0.768)
(4) log in�ation 0.002 0.004 0.003 0.000 -0.033 0.224 0.332 -0.048 -0.044 0.062

(0.992) (1.394) (0.274) (0.552) (-0.564) (2.590) (1.364 ) (-1.182) (-0.905)
(5) log short rate 0.000 0.000 -0.001 0.000 -0.005 0.997 0.178 -0.030 -0.010 0.994

(1.949) (-1.245) (-1.499) (0.761) (-1.445) (189.147) (3.686) (-4.641) (-2.354)
(6) log yield spread -0.001 0.001 0.000 0.000 0.010 -0.005 0.810 0.029 0.009 0.930

(-2.696) (2.013 ) (-0.034) (-2.095) (2.408) (-0.646) (15.245) (4.072) (1.575)
(7) log credit spread 0.003 -0.001 -0.017 0.001 0.029 -0.094 -0.151 0.947 0.026 0.907

(1.792) (-0.253 ) (-2.065) (1.415) (0.890) (-1.759) (-0.624) (26.491) (0.590)
(8) EVAR 0.005 -0.001 -0.008 0.001 -0.009 -0.048 0.045 -0.019 0.569 0.349

(2.351) (-0.276 ) (-0.602) (1.679) (-0.179) (-0.462) (0.153) (-0.463) (5.550)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 19.079 0.093 -0.858 -0.033 -0.017 -0.074 -0.079 -0.612
(2) log bond excess returns 0.093 5.065 -0.025 -0.140 -0.138 -0.545 0.046 0.044
(3) log dividend yield -0.858 -0.025 21.879 0.132 -0.017 0.064 0.094 0.532
(4) log in�ation -0.033 -0.140 0.132 0.908 0.069 0.060 0.022 -0.013
(5) log short rate -0.017 -0.138 -0.017 0.069 0.073 -0.715 -0.294 -0.033
(6) log yield spread -0.074 -0.545 0.064 0.060 -0.715 0.092 0.252 -0.007
(7) log credit spread -0.079 0.046 0.094 0.022 -0.294 0.252 0.630 0.128
(8) EVAR -0.612 0.044 0.532 -0.013 -0.033 -0.007 0.128 1.124

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 22.277 0.049 -0.870 -0.027 -0.001 -0.056 -0.086 -0.579
(2) log bond excess returns 0.049 5.879 0.009 -0.165 -0.130 -0.555 -0.021 0.022
(3) log dividend yield -0.870 0.009 25.504 0.114 -0.024 0.044 0.095 0.505
(4) log in�ation -0.027 -0.165 0.114 1.037 0.092 0.054 0.033 -0.007
(5) log short rate -0.001 -0.130 -0.024 0.092 0.083 -0.713 -0.295 -0.065
(6) log yield spread -0.056 -0.555 0.044 0.054 -0.713 0.106 0.286 0.024
(7) log credit spread -0.086 -0.021 0.095 0.033 -0.295 0.286 0.732 0.177
(8) EVAR -0.579 0.022 0.505 -0.007 -0.065 0.024 0.177 1.479
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Table H4. Estimates of VAR(1) Model with Stochastic Volatility (Germany)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

-0.009 -0.019 -0.006 -0.002 0.036 0.666 0.214 0.179 0.456 0.388
-1.389 -3.680 -0.394 -1.461 0.448 2.106 0.565 2.244 7.912

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.280 0.092 0.157 0.059 -0.750 -12.280 -4.784 -2.532 0.830 0.050

(3.435) (1.240) (0.656) (3.110) (-0.832) (-3.440 ) (-1.051) (-3.153) (0.502 )
(2) log bond excess returns -0.014 -0.042 0.064 -0.003 -0.274 0.751 2.029 0.225 -0.010 0.057

(-0.824) (-2.398) (1.068) (-0.724) (-1.230) (0.888 ) (1.930) (1.142) (-0.026 )
(3) log dividend yield -0.287 -0.094 -0.166 0.930 0.547 7.074 -1.003 1.518 -0.364 0.925

(-3.341) (-1.099 ) (-0.647) (46.235) (0.583) (1.878 ) (-0.213) (1.773) (-0.197 )
(4) log in�ation 0.004 0.000 -0.007 0.001 -0.141 0.336 -0.449 0.030 -0.171 0.068

(0.845) (0.058 ) (-0.696) (0.545) (-2.331) (1.826 ) (-1.960) (0.688) (-2.523 )
(5) log short rate 0.001 0.000 -0.003 0.000 0.000 0.966 -0.005 -0.009 -0.006 0.994

(2.483) (-0.655 ) (-4.340) (1.933) (0.101) (93.908 ) (-0.424) (-3.389) (-1.524)
(6) log yield spread -0.001 0.001 0.001 0.000 0.003 0.029 0.996 0.007 0.007 0.942

(-1.920) (2.953 ) (1.737) (-1.506) (0.943) (2.212 ) (59.915) (2.394) (1.367)
(7) log credit spread 0.007 -0.007 -0.015 0.001 -0.045 -0.422 -0.613 0.884 0.044 0.929

(1.940) (-2.527 ) (-1.356) (1.371) (-1.165) (-2.288 ) (-3.082) (19.430) (0.729)
(8) EVAR -0.012 -0.002 -0.008 -0.003 0.005 0.806 0.178 0.200 0.426 0.421

(-3.017 (-0.651 (-0.738 (-3.186 0.108 4.109 0.741 4.112 5.813
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 21.207 -0.083 -0.875 0.080 0.035 0.001 -0.287 -0.686
(2) log bond excess returns -0.083 4.775 0.073 -0.119 -0.298 -0.569 0.384 0.113
(3) log dividend yield -0.875 0.073 23.262 -0.041 -0.010 -0.006 0.255 0.601
(4) log in�ation 0.080 -0.119 -0.041 1.130 -0.001 0.124 -0.079 -0.081
(5) log short rate 0.035 -0.298 -0.010 -0.001 0.051 -0.547 -0.132 -0.049
(6) log yield spread 0.001 -0.569 -0.006 0.124 -0.547 0.067 -0.253 -0.040
(7) log credit spread -0.287 0.384 0.255 -0.079 -0.132 -0.253 0.881 0.472
(8) EVAR -0.686 0.113 0.601 -0.081 -0.049 -0.040 0.472 1.043

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 26.729 -0.124 -0.891 0.068 0.096 -0.016 -0.320 -0.653
(2) log bond excess returns -0.124 5.851 0.113 -0.125 -0.314 -0.550 0.388 0.112
(3) log dividend yield -0.891 0.113 29.213 -0.029 -0.075 0.014 0.280 0.580
(4) log in�ation 0.068 -0.125 -0.029 1.339 0.009 0.118 -0.076 -0.090
(5) log short rate 0.096 -0.314 -0.075 0.009 0.063 -0.555 -0.153 -0.096
(6) log yield spread -0.016 -0.550 0.014 0.118 -0.555 0.081 -0.241 -0.002
(7) log credit spread -0.320 0.388 0.280 -0.076 -0.153 -0.241 1.106 0.496
(8) EVAR -0.653 0.112 0.580 -0.090 -0.096 -0.002 0.496 1.377
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Table H5. Estimates of VAR(1) Model with Stochastic Volatility (Japan)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

0.011 -0.018 -0.028 0.002 0.058 0.260 0.746 -0.170 0.325 0.183
2.328 -3.316 -0.809 1.523 0.894 1.412 0.881 -2.926 5.167

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.046 0.129 0.149 0.012 -0.572 0.434 5.300 0.603 0.040 0.024

(0.765 ) (1.717 ) (0.695) (0.965) (-0.899) (0.136) (0.725) (0.673 ) (0.019)
(2) log bond excess returns 0.038 -0.035 0.141 0.010 -0.045 0.752 7.478 -0.113 0.009 0.095

(2.354 ) (-1.713 ) (2.229) (2.707) (-0.291) (0.980) (3.369) (-0.552 ) (0.018)
(3) log dividend yield -0.071 -0.216 -0.278 0.976 1.013 -1.855 -14.450 -0.492 -3.145 0.981

(-1.019 ) (-2.180 ) (-1.022) (65.218) (1.427) (-0.435) (-1.605) (-0.494 ) (-1.112)
(4) log in�ation 0.004 -0.003 0.001 0.001 0.178 0.449 0.245 -0.059 -0.224 0.062

(1.141 ) (-0.539 ) (0.081 ) (0.891) (3.638) (2.043) (0.490 ) (-1.009 ) (-1.491)
(5) log short rate 0.000 0.000 -0.001 0.000 0.002 0.984 -0.006 0.000 0.001 0.992

(-1.765 ) (-0.127 ) (-2.335 ) (-1.945) (0.780) (116.578) (-0.533 ) (0.323 ) (0.158 )
(6) log yield spread 0.000 0.000 -0.001 0.000 -0.002 0.007 0.929 0.002 -0.002 0.930

(-1.547 ) (1.342 ) (-1.088 ) (-1.877) (-0.897) (0.688) (34.118 ) (0.635 ) (-0.326 )
(7) log credit spread 0.008 -0.004 -0.026 0.002 0.018 0.027 0.836 0.847 -0.020 0.776

(3.019 ) (-1.741 ) (-2.682 ) (2.794) (0.824) (0.244) (2.537 ) (23.371 ) (-0.317 )
(8) EVAR 0.008 -0.001 -0.001 0.001 0.016 0.255 0.140 -0.149 0.286 0.254

(3.565 ) (-0.273) (-0.074 ) (1.718) (0.707) (2.472) (0.490 ) (-5.290) (3.617 )
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 19.846 0.003 -0.863 0.042 -0.044 -0.002 -0.047 -0.690
(2) log bond excess returns 0.003 4.927 -0.015 0.015 -0.186 -0.742 0.265 -0.232
(3) log dividend yield -0.863 -0.015 22.935 -0.004 0.068 0.005 0.024 0.617
(4) log in�ation 0.042 0.015 -0.004 1.466 0.035 -0.017 -0.031 0.119
(5) log short rate -0.044 -0.186 0.068 0.035 0.038 -0.408 -0.099 0.037
(6) log yield spread -0.002 -0.742 0.005 -0.017 -0.408 0.059 -0.183 0.180
(7) log credit spread -0.047 0.265 0.024 -0.031 -0.099 -0.183 0.765 -0.111
(8) EVAR -0.690 -0.232 0.617 0.119 0.037 0.180 -0.111 0.765

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 26.162 0.035 -0.871 0.032 -0.057 -0.028 -0.026 -0.690
(2) log bond excess returns 0.035 6.326 -0.051 0.022 -0.178 -0.739 0.264 -0.217
(3) log dividend yield -0.871 -0.051 30.721 -0.013 0.081 0.032 0.009 0.610
(4) log in�ation 0.032 0.022 -0.013 1.882 0.040 -0.038 -0.014 0.121
(5) log short rate -0.057 -0.178 0.081 0.040 0.051 -0.426 -0.096 0.022
(6) log yield spread -0.028 -0.739 0.032 -0.038 -0.426 0.077 -0.185 0.165
(7) log credit spread -0.026 0.264 0.009 -0.014 -0.096 -0.185 0.995 -0.084
(8) EVAR -0.690 -0.217 0.610 0.121 0.022 0.165 -0.084 1.073
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Table H6. Estimates of VAR(1) Model with Stochastic Volatility (United Kingdom)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

-0.001 -0.016 0.011 0.000 0.059 -0.045 -0.231 0.149 0.362 0.305
-0.139 -2.045 1.470 -0.323 1.687 -0.229 -0.644 3.643 2.862

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.139 -0.011 0.227 0.037 -0.298 -1.661 -0.936 -0.595 0.138 0.042

(2.588 ) (-0.151) (2.039) (2.608) (-0.491) (-1.051) (-0.278 ) (-1.106) (0.079 )
(2) log bond excess returns 0.023 0.038 -0.037 0.007 -0.085 0.202 2.167 -0.782 3.033 0.081

(1.141 ) (0.826 ) (-0.474) (1.410) (-0.280) (0.280) (1.540 ) (-2.711 ) (2.832 )
(3) log dividend yield -0.100 0.003 -0.209 0.971 0.138 0.422 -0.911 0.394 -0.631 0.952

(-1.728 ) (0.043 ) (-1.746) (62.577) (0.226) (0.254) (-0.258 ) (0.636 ) (-0.316 )
(4) log in�ation 0.007 -0.005 -0.001 0.001 0.113 0.147 -0.244 0.057 -0.289 0.088

(1.661 ) (-0.798 ) (-0.063) (1.171) (2.228) (1.374 ) (-0.995 ) (1.379 ) (-2.137 )
(5) log short rate 0.000 -0.001 -0.002 0.000 0.004 1.000 0.021 0.002 -0.029 0.996

(-0.625 ) (-1.787 ) (-2.490) (-0.903) (1.343) (161.178 ) (1.325 ) (0.829 ) (-3.537)
(6) log yield spread 0.000 0.000 0.001 0.000 -0.003 -0.009 0.954 0.006 0.005 0.956

(-0.027 ) (0.872 ) (1.352) (0.017) (-0.703) (-1.188 ) (51.926) (2.017 ) (0.467)
(7) log credit spread 0.002 -0.005 -0.002 0.000 -0.015 0.055 0.053 0.853 0.305 0.916

(0.619 ) (-1.106 ) (-0.263) (0.558) (-0.474) (0.781 ) (0.279 ) (17.814 ) (1.889)
(8) EVAR -0.002 0.000 -0.005 -0.001 0.007 0.009 -0.181 0.132 0.405 0.509

(-0.770 ) (-0.069 ) (-1.031) (-1.189) (0.410) (0.098 ) (-1.015 ) (4.809 ) (3.341)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 15.321 0.163 -0.909 -0.022 -0.087 -0.080 -0.069 -0.572
(2) log bond excess returns 0.163 7.155 -0.150 -0.071 -0.269 -0.458 0.300 0.091
(3) log dividend yield -0.909 -0.150 17.178 0.071 0.072 0.088 0.075 0.515
(4) log in�ation -0.022 -0.071 0.071 1.398 0.073 0.057 -0.083 0.041
(5) log short rate -0.087 -0.269 0.072 0.073 0.071 -0.562 -0.076 -0.045
(6) log yield spread -0.080 -0.458 0.088 0.057 -0.562 0.094 -0.396 -0.173
(7) log credit spread -0.069 0.300 0.075 -0.083 -0.076 -0.396 0.927 0.536
(8) EVAR -0.572 0.091 0.515 0.041 -0.045 -0.173 0.536 0.823

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 18.215 0.088 -0.904 -0.018 -0.058 -0.086 -0.076 -0.539
(2) log bond excess returns 0.088 8.436 -0.092 -0.032 -0.260 -0.432 0.212 0.058
(3) log dividend yield -0.904 -0.092 20.521 0.087 0.050 0.106 0.059 0.457
(4) log in�ation -0.018 -0.032 0.087 1.669 0.085 0.054 -0.138 -0.010
(5) log short rate -0.058 -0.260 0.050 0.085 0.081 -0.557 -0.087 -0.055
(6) log yield spread -0.086 -0.432 0.106 0.054 -0.557 0.109 -0.382 -0.135
(7) log credit spread -0.076 0.212 0.059 -0.138 -0.087 -0.382 1.168 0.555
(8) EVAR -0.539 0.058 0.457 -0.010 -0.055 -0.135 0.555 1.138
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Table H7. Estimates of VAR(1) Model with Stochastic Volatility (United States)
Panel A: Forecasting Monthly Realized Variance (RVAR)

Intercept log stock log bond log dividend log log log log
excess returns excess returns yield in�ation short rate yield spread credit spread RVAR Rsq

-0.016 -0.020 -0.005 -0.003 -0.052 0.600 1.069 0.352 0.344 0.240
-2.485 -3.661 -0.280 -2.843 -1.051 1.683 1.455 2.895 1.955

Panel B: VAR Estimates
Second Stage Coe�cients on lagged variables

Intercept (1) (2) (3) (4) (5) (6) (7) (8) Rsq
(1) log stock excess returns 0.077 -0.110 0.037 0.016 -0.716 -1.537 -2.546 0.701 -3.295 0.054

(1.288) (-1.299 ) (0.288) (1.305) (-1.108) (-0.650) (-0.597 ) (0.507) (-1.620)
(2) log bond excess returns -0.005 -0.063 0.046 -0.001 -0.615 1.052 2.936 -0.259 0.314 0.074

(-0.193) (-1.871 ) (0.790) (-0.200) (-2.002) (1.099) (1.730 ) (-0.440) (0.357)
(3) log dividend yield -0.044 0.071 -0.023 0.988 0.951 -0.585 1.743 -1.179 2.065 0.981

(-0.711) (0.824 ) (-0.177) (80.168) (1.468) (-0.240) (0.399 ) (-0.788) (0.966)
(4) log in�ation -0.008 -0.008 -0.014 -0.002 0.384 0.508 0.511 0.278 -0.418 0.291

(-1.594) (-1.260 ) (-1.771) (-1.582) (6.756) (2.759) (1.648) (2.263 ) (-2.002)
(5) log short rate -0.002 -0.002 0.000 0.000 -0.001 1.074 0.227 0.030 -0.069 0.968

(-4.119) (-2.735 ) (0.131) (-3.672 ) (-0.103) (59.545) (6.074 ) (2.611 ) (-3.592)
(6) log yield spread 0.002 0.003 -0.001 0.000 0.008 -0.095 0.731 -0.030 0.072 0.793

(3.443) (3.299 ) (-0.659) (3.189 ) (1.092) (-3.813) (15.620) (-1.835 ) (2.643)
(7) log credit spread 0.005 0.000 0.003 0.001 -0.012 -0.169 -0.325 0.829 0.191 0.943

(2.476) (-0.124 ) (1.491) (2.159 ) (-0.821) (-2.224) (-2.542) (14.742 ) (1.964)
(8) EVAR -0.014 0.005 0.001 -0.003 -0.004 0.481 0.793 0.262 0.507 0.488

(-2.708) (0.930 ) (0.103) (-2.803 ) (-0.134) (2.385) (2.151) (2.270 ) (2.331)
Panel C1: Residual correlation matrix (scaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 14.892 -0.035 -0.964 -0.053 -0.023 0.025 -0.159 -0.664
(2) log bond excess returns -0.035 6.150 0.014 -0.133 0.018 -0.473 0.089 0.003
(3) log dividend yield -0.964 0.014 15.242 0.065 0.043 -0.031 0.152 0.637
(4) log in�ation -0.053 -0.133 0.065 0.952 -0.089 0.135 -0.296 -0.169
(5) log short rate -0.023 0.018 0.043 -0.089 0.127 -0.874 0.068 0.050
(6) log yield spread 0.025 -0.473 -0.031 0.135 -0.874 0.154 -0.102 -0.032
(7) log credit spread -0.159 0.089 0.152 -0.296 0.068 -0.102 0.298 0.463
(8) EVAR -0.664 0.003 0.637 -0.169 0.050 -0.032 0.463 0.805

Panel C2: Residual correlation matrix (unscaled)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) log stock excess returns 18.864 -0.026 -0.967 -0.032 -0.007 0.009 -0.153 -0.625
(2) log bond excess returns -0.026 7.668 0.002 -0.220 0.095 -0.527 0.157 0.052
(3) log dividend yield -0.967 0.002 19.352 0.049 0.020 -0.008 0.144 0.595
(4) log in�ation -0.032 -0.220 0.049 1.236 -0.144 0.217 -0.420 -0.283
(5) log short rate -0.007 0.095 0.020 -0.144 0.157 -0.880 0.138 0.090
(6) log yield spread 0.009 -0.527 -0.008 0.217 -0.880 0.196 -0.180 -0.085
(7) log credit spread -0.153 0.157 0.144 -0.420 0.138 -0.180 0.438 0.570
(8) EVAR -0.625 0.052 0.595 -0.283 0.090 -0.085 0.570 1.153
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Appendix I: Complementary Results of the Paper

Complementary Results of Table 3

Table I1. Return Correlation Decomposition (Bonds vs. Stocks Within Countries and Across Countries)
The left panel (right panel) of this table decomposes the sources of global bond v.s. stock return correlations within countries
(across countries). Correlations among individual return components (i.e., cash-�ow, real-rate, and risk premium news) within
countries are shown in the table. Estimates are reported for each subperiod as well as the di�erence between the two subperiods.
Tests for signi�cant correlation di�erences between subperiods are based on bootstrap and Fisher r-to-z methods for calculating
p-values.

Bonds vs. Stocks Within Countries Bonds vs. Stocks Across Countries
CF(s) RR(s) RP(s) CF(s) RR(s) RP(s)

Subperiod 1 CF (b) 0.10 -0.13 -0.46 CF (b) 0.00 -0.01 -0.2
RR (b) -0.94 0.98 -0.21 RR (b) -0.36 0.36 -0.03
RP (b) 0.66 -0.65 0.46 RP (b) 0.28 -0.28 0.20

Subperiod 2 CF (b) -0.27 0.24 -0.50 CF (b) -0.28 0.27 -0.38
RR (b) -0.91 0.98 -0.17 RR (b) -0.61 0.63 -0.09
RP (b) 0.84 -0.86 0.42 RP (b) 0.57 -0.57 0.23

Di�erence CF (b) -0.37 0.37 -0.04 CF (b) -0.28 0.28 -0.12
RR (b) 0.03 0.00 0.04 RR (b) -0.26 0.26 -0.06
RP (b) 0.18 -0.21 -0.04 RP (b) 0.29 -0.29 0.03

CF(s) RR(s) RP(s) CF(s) RR(s) RP(s)
p-values CF (b) 0.00 0.00 0.33 CF (b) 0.00 0.00 0.05

(bootstrap) RR (b) 0.01 0.37 0.36 RR (b) 0.00 0.00 0.34
RP (b) 0.00 0.00 0.37 RP (b) 0.00 0.00 0.46

p-values CF (b) 0.00 0.00 0.33 CF (b) 0.00 0.00 0.11
(Fisher r-to-z) RR (b) 0.05 0.41 0.35 RR (b) 0.00 0.00 0.29

RP (b) 0.00 0.00 0.32 RP (b) 0.00 0.00 0.39
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Complementary Results of Table 6

Table I2. Optimal Global Equity Portfolio Allocations and Expected Utility (value weighted myopic portfolio)
Panel A reports optimal global equity portfolio allocations by �JV� investor and �CCV� investor. The CCV investor has Epstein-Zin preference and the expected value function de�ned as

E[Vt] ≡ Ut
Wt

= (1 − δ)−ψ/(1−ψ)
(
Ct
Wt

)1/(1−ψ)
. The JV investor's utility is power utility de�ned on terminal wealth Et[

1
1−γW

1−γ
t+K ]. The myopic demand is the allocation of those two investors

at investment horizon 1. An investor's allocation is the sum of myopic demand and hedging demand. We report the JV hedging demand for an investor at horizon of 20 years (240 months). We
compare across 3 scenarios: optimal allocation in early sample, late sample and late sample with hypothetical covariance matrix that controls for within-country correlation. To make it comparable,
we �x the monthly implied excess returns across these 3 scenarios. We set implied excess returns for value weight portfolio such that investor hold the myopic demand equal to market cap weight.
�Total� allocation is the sum of the allocations to each country. Panel B reports the expected utility by �JV� investor (with RRAγ = 5) and �CCV� investor (with EIS ψ → 1 and RRAγ = 5),
assuming they allocate optimally to the 7 countries investment space as reported in Panel A. We also report investor's expected utility by constraining the investment space to USA only. We
assume investor has initial wealth of one dollar and look at investment horizons K of 5 years (60 months), 10 years (120 months), 15 years (180 months) and 20 years (240 months). We report
the certainty equivalent for the JV investor (with RRAγ = 5). The results are obtained by Monte Carlo simulation using 2,000 VAR paths sampled using the method of antithetic variates. The

certainty equivalent of wealth is computed by evaluating the mean utility realized across the simulated paths and computing, WCE = u−1
(
E[u(W̃t+K)]

)
.

Panel A: Optimal Global Equity Portfolio Allocations Panel B: Expected Utility
Country Myopic JV hedging CCV hedging JV WCE CCV E[Vt]

demand demand at 20 yr demand K=60 K=120 K=180 K=240

AUS 1.51% 13.62% 6.61%
CAN 2.83% 12.50% 8.02% 7 countries 3.31 158.81 259.44 30296.59 0.1021

Early Sample FRA 5.22% -7.25% -3.94%
GER 5.07% 22.15% 13.59%
JPN 16.09% 18.62% 12.04% USA only 1.85 4.01 5.33 22.91 0.0099
UKI 10.38% 0.25% 0.66%
USA 58.88% 52.20% 33.67%
Total 100.00% 112.09% 70.64%

AUS 23.09% 25.04% 18.53%
CAN 10.04% 34.31% 20.77%
FRA 12.06% 27.13% 19.72% 7 countries 4.13 104.61 750.64 1917218.32 0.1693

Late Sample GER -39.79% -20.41% -16.56%
JPN 5.17% 22.73% 12.34%
UKI 50.51% 4.61% 3.61% USA only 1.83 3.98 4.91 27.45 0.0135
USA 62.40% 72.43% 47.62%
Total 123.47% 165.85% 106.03%

AUS -9.05% 6.92% 4.02%
CAN 25.97% 2.42% 2.90%

Late Sample FRA -2.32% 17.46% 9.26% 7 countries 11.74 316.62 3005.15 690898.73 0.217
(Hypothetical GER -18.95% 22.21% 10.86%
Covariance JPN -1.51% 12.20% 7.09%
Matrix) UKI 19.72% 3.45% 1.80% USA only 1.85 4.01 5.33 22.91 0.010

USA 82.91% 50.24% 35.50%
Total 96.77% 114.89% 71.43%
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Complementary Results of Figure1

Figure I.1: Stock-bond correlations across and within countries
This �gure plots average stock-bond correlations across countries and within countries. Monthly averages are computed using pairwise
return correlations within and across seven di�erent countries over 3-year rolling windows (Australia, Canada, France, Germany, Japan,
United Kingdom, and United States). Returns are in U.S. Dollar currency-hedged terms in excess of the three-month U.S. Treasury bill
rate. The sample is from Jan 1986 to Dec 2016.
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Complementary Results of Figure 3

Annualized Portfolio Risk and Optimal Allocation to Risky Assets as a Function of Investment Horizon (2
symmetric countries)

The �gure plots annualized portfolio risk
√

Vt(r
(k)
p,t+k)/k (panel A) and optimal allocation to risky assets (panel B) as a function of investment horizon

k (months) for an asset space of 2 symmetrical countries, which complements to Figure 3 in the main paper (7 symmetric countries). We compare
the term structure of portfolio risk and optimal allocation for 3 scenarios: (1) Baseline case with zero cross-country return news correlations, both for
CF news and DR news. (2) CF news integration case, where cross-country return correlations come from positive cross-country CF news correlations;
cross-country correlations of DR news are zero. (3) DR integration case, where cross-country return correlations come from positive cross-country
DR news correlation; cross-country correlations of CF news are zero. To make Scenarios 2 and 3 comparable, we set the cross-country correlation of
one-period returns at the same value (0.07). Panel A plots portfolio risk in each scenario for a portfolio of seven symmetric countries. Panel B plots
optimal allocation to risky assets (for a portfolio of seven countries) as a function of time remaining to terminal date. The total optimal allocation is
the sum of two parts: myopic allocation (equals the intercept at τ = 1) and hedging allocation. The investor has horizon of K = 360 (30 years) and
rebalance his allocation each period. The x-axis τ is the time remaining to the terminal date. We compare the term structure of optimal allocation
to risky assets across the same 3 scenarios described above. We set the expected excess returns so that in the benchmark case, the myopic investor
(τ = 1) allocate 1/N to each risky asset (50% for N = 2) and zero to cash. The expected excess returns are kept the same across the three cases to
make them comparable.
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Complementary Results of Figure 4

Relative Contribution of Covariances of Return Components to Overall Return Covariance
Contributions of news components to unexpected bond v.s. stock return correlations within countries (Panel A) and bond v.s. stock return
correlations across countries (Panel B) are broken down in the columns. In Panel A (bond v.s. stock return correlations within countries),

the cash �ow component contribution is calculated as 1
N

∑
i

Cov(Nb,CF,i,Ns,CF,i)

Cov(x̃bi ˜,xsi)
, the real rate component contribution is calculated as

1
N

∑
i

Cov(Nb,RR,i,Ns,RR,i)

Cov(x̃bi ˜,xsi)
, the risk premium component contribution is calculated as 1

N

∑
i

Cov(Nb,RP,i,Ns,RP,i)

Cov(x̃bi ˜,xsi)
, and the cross components

is calculated as

1

N

∑
i

 Cov(Nb,CF,i,−Ns,RR,i)
Cov( ˜xbi ˜,xsi)

+
Cov(Nb,CF,i,−Ns,RP,i)

Cov( ˜xbi ˜,xsi)
+
Cov(−Nb,RR,i,−Ns,RP,i)

Cov( ˜xbi ˜,xsi)

+
Cov(−Nb,RR,i,Ns,CF,i)

Cov( ˜xbi ˜,xsi)
+
Cov(−Nb,RP,i,Ns,CF,i)

Cov( ˜xbi ˜,xsi)
+
Cov(−Nb,RP,i,−Ns,RR,i)

Cov( ˜xbi ˜,xsi)

 .

The component contributions in the panel B is calculated similarly (but with pairwise average across countries). Note that by de�nition,
values in the component contributions sum up to 1.
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Complementary Results of Figure 9

Value Weighted Portfolio Risk as a Function of Investment Horizon (Equities and Bonds)
The �gure compares the early sample (1986.01-1999.12) and late sample (2000.01-2016.12) value weighted portfolio risk across investment
horizons for equities (Panel A) and bonds (Panel B). For each panel, we plot the annualized conditional standard deviation of portfolio
excess returns, annualized average conditional volatility (across N countries) of excess returns , and pairwise average conditional correlation
of cross-country excess returns. Portfolios are value-weighted.
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