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Optimal Value and Growth Tilts in Long-Horizon Portfolios

Abstract

We develop an analytical solution to the dynamic portfolio choice problem of an investor with power

utility defined over wealth at a finite horizon, who faces a time-varying investment opportunity set,

parameterized using a flexible vector autoregression. We apply this framework to study the horizon

effects in the allocations of equity-only investors, who hold a mix of value and growth indices, and a

more general investor, who also has access to Treasury bills and bonds. We find that the mean allocation

of equity-only investors is heavily tilted towards value stocks at short-horizons, but the magnitude of this

tilt declines dramatically with the investment horizon, implying that growth is less risky than value at

long horizons. Investors with access to bills and bonds exhibit similar behavior, when value and growth

tilts are computed relative to the total equity allocation of the portfolio. However, after accounting for

the propensity of these investors to increase their total equity allocation as the horizon increases, the

mean value tilt of the optimal allocation is shown to be positive and stable across time.



1 Introduction

Long-term investors seek portfolio strategies that optimally trade off risk and reward, not in the immediate

future, but over the long term. Consider for example a long-term investor who cares only about the

distribution of her wealth at some given future date. Today, at time , the investor picks a portfolio to

maximize the expected utility of wealth at time +, where  is the investment horizon. If the portfolio

must be chosen once and for all, with no possibility of rebalancing between  and  + , then this is a

static portfolio choice problem of the sort studied by Markowitz (1952). The solution depends on the risk

properties of returns measured over  periods, but given these risk properties the portfolio choice problem

is straightforward.2

When investment opportunities (i.e. risk premia, interest rates, inflation, etc.) are time-varying,

however, it is unrealistic to assume that long-term investors will adopt this “invest and forget” strategy.

Instead, rather than find a single optimal portfolio, the investor must specify an entire optimal dynamic

portfolio strategy or contingent plan that delineates how to adjust asset allocations in response to changes

in investment opportunities. Solving for this contingent plan is a challenging problem. Samuelson (1969)

and Merton (1969, 1971, 1973) showed how to use dynamic programming to characterize the solution

to this type of problem, but did not derive closed-form solutions except for the special cases where the

long-term strategy is identical to a sequence of optimal short-term strategies.

In recent years financial economists have explored many alternative solution methods for the long-

term portfolio choice problem with rebalancing. Exact analytical solutions have been discovered for a

variety of special cases (e.g. Kim and Omberg 1996, Brennan and Xia 2002, Wachter 2002, Chacko and

Viceira 2005, Liu 2007), but these often fail to capture all the dimensions of variation in the investment

opportunity set that appear to be relevant empirically. In particular, with the exception of Liu (2007),

these models typically do not allow both the real interest rate and risk premia to vary over time. Numerical

methods have also been developed for this type of problem and range from discretizing the state space

(e.g. Balduzzi and Lynch 1999, Barberis 2000, Lynch 2001) to numerically solving the PDE characterizing

the dynamic program (e.g. Brennan, Schwartz, and Lagnado 1997, 1999). Although numerical methods

can, in principle, handle arbitrarily complex model setups with realistic return distributions and portfolio

constraints, in practice it has proven difficult to use these methods in problems with more than a few

state variables. Finally, there are approximate analytical methods that deliver solutions that are accurate

in the neighborhood of special cases for which closed-form results are available. Campbell and Viceira

(1999, 2001, 2002) develop this approach for the case of an infinitely lived investor who derives utility from

consumption rather than wealth. Their method is accurate provided the investor’s consumption-wealth

ratio is not too variable. Campbell, Chan, and Viceira (2003, CCV henceforth) apply the method to a

2Campbell and Viceira (2005) provide an accessible discussion of the risk properties of US stocks, bonds, and Treasury

bills at long horizons and the implications for optimal long-term buy-and-hold portfolios.
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problem with multiple risky assets and allow both the real interest rate and risk premia to change over

time.

This paper makes several contributions to the portfolio choice literature. First, we provide an analytical

recursive solution to the dynamic portfolio choice problem of an investor whose utility is defined over

wealth at a future date, in an environment with time-varying investment opportunities. The variation in

risk premia, inflation, interest rates and the state variables that drive them is parsimoniously captured

using a VAR(1) model. By using the vector autoregressive framework we are able to handle a large number

of investable assets and state variables, providing a convenient laboratory for the examination of horizon

effects in portfolio choice.3 Our recursive solution is based on the Campbell-Viceira approximation to the

log-portfolio return, and consequently–like the approximation itself–is exact in continuous time. In fact,

our solution can be interpreted as a discretized version of the exact solution obtained by Liu (2007) in

continuous time. Specifically, Liu (2007) shows that — when asset returns follow quadratic processes and

investors’ preferences are described by isoelastic utility — the dynamic portfolio choice problem reduces to

a system of Riccati equations, which can be solved analytically using Radon’s Lemma.

Second, we elucidate why log utility represents a knife-edge case in which dynamic asset pricing models

produce the same predictions as static asset pricing models even if investment opportunities are time

varying. The intuition we provide is based on the differing behavior of geometric mean returns and

arithmetic mean returns at long horizons. We show that expected per period long-horizon gross asset

returns–or arithmetic mean returns–are, in general, a function of investment horizon, while expected per

period long-horizon log asset returns–or geometric mean returns–are always independent of investment

horizon. Because log utility investors seek to maximize the mean log return on their wealth, horizon

considerations are not relevant to them, leading them to behave like investors with a one-period horizon.

Finally, we apply our method to study the optimal growth and value tilts in the portfolios of long-

horizon investors. Most empirically motivated studies of optimal dynamic portfolio choice problems focus

on the choice between a well-diversified portfolio of equities representing the market, and other assets such

as cash and long-term bonds. These studies constrain investors who want exposure to equities to hold the

aggregate stock market portfolio. However, in an environment of changing expected returns, it is plausible

that the composition of an investor’s optimal equity portfolio will differ from the market portfolio. Merton

(1969, 1971, 1973) shows that long-horizon risk averse investors optimally tilt their portfolios toward

those assets whose realized returns are most negatively correlated with unexpected changes in expected

returns, because they help hedge their wealth–and consumption–against a deterioration in investment

opportunities. In fact, recent work by Campbell and Vuolteenaho (2004) and others, has documented that

the risk characteristics of value and growth stocks differ precisely along these lines, motivating our interest

in understanding value and growth tilts in long-horizon portfolios.

3 In concurrent work, Sorensen and Trolle (2009) derive a solution similar to ours, which they use to study dynamic asset

allocation with latent state variables.
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Campbell and Vuolteenaho (2004) find that the conditional correlation of returns with variables that

proxy for time variation in aggregate stock market discount rates is larger for growth stocks than for value

stocks, while the conditional correlation of returns with changes in aggregate stock market cash flows is

larger for value stocks than for growth stocks. They argue that this should make value stocks riskier than

growth stocks from the perspective of a long-horizon risk averse investor, because empirically changes in

aggregate stock discount rates are transitory, while changes in aggregate expected cash flows are largely

permanent. We verify this prediction in the context of our portfolio choice framework by showing that a

risk-averse investor, constrained to hold only value and growth stocks, decreases his allocation to value as

his investment horizon increases.

The importance of understanding the optimal value and growth tilts in the portfolios of long-horizon

investors is further underscored by the composition of the retail mutual fund universe. According to the

CRSP Mutual Fund Database, as of the second quarter of 2005, there were 3797 diversified, domestic

equity mutual funds with roughly 2.32 trillion dollars in assets under management.4 Of these funds, 1748

(46%) were classified by CRSP as dedicated growth funds and 1219 (32%) were classified as dedicated

value funds, with the remaining 830 (22%) being classified as blend funds. Funds with a dedicated value

or growth tilt accounted for 76% of total assets under management (36% growth and 42% value). Thus

value and growth tilts are the norm, rather than the exception, in the mutual fund industry that serves

the investment needs of most retail investors.

We first apply our dynamic portfolio choice framework to the study the horizon effects in the allocations

of equity-only investors, who hold a mix of value and growth indices, and a more general investor, who

also has access to Treasury bills and bonds. Our interest in the equity-only investor is motivated by the

fact that this investor type is implicit in representative-agent general equilibrium models in which equities

are typically the only asset in positive net supply and variation in investment opportunities is specified

exogenously. To this end, we model investment opportunities using a vector autoregressive model that

includes the returns on growth and value stocks, as well as variables that proxy for expected aggregate

stock returns. We then explore the robustness of these results to the inclusion of other assets, such as T-bills

and long-term bonds, in the investment opportunity set while allowing for temporal variation in expected

bond excess returns, real interest rates, and inflation. We find that the mean-allocation of equity-only

investors is heavily tilted towards value stocks at short-horizons, but the magnitude of this tilt declines

dramatically with the investment horizon, implying that growth is less risky than value at long horizons.

Investors with access to bills and bonds exhibit similar behavior, when value and growth tilts are computed

relative to the total equity allocation of the portfolio. However, after accounting for the propensity of these

investors to increase their total equity allocation as the horizon increases, the mean value tilt of the optimal

allocation is shown to be positive and stable across time.

4We classify a mutual fund as an equity fund if its holdings of cash and common equities account for over 90% of the

portfolio value. Diversified equity funds exclude sector funds with total net assets under management of 191 billion dollars.
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Our empirical application is closest to Lynch’s (2001) numerical exploration of value and size tilts

in the portfolios of a long-horizon power utility investor in the presence of a time-varying investment

opportunity set.5 In his paper, the variation in investment opportunities is described by the dividend

yield on the aggregate stock market and the spread between the long and the short nominal interest rates.

Our results effectively represent the analytical counterpart to his analysis, which was based on numerical

dynamic programming methods. The convenience of our analytical solution, however, allows us to examine

a broader range asset classes and a richer specification of the state vector. Furthermore, we document that

his conclusions regarding the horizon dependence of value and growth tilts are sensitive to the methodology

applied in their computation.

The organization of the paper is as follows. Section 2 specifies investment opportunities and investor’s

preferences, and it states the intertemporal optimization problem. Section 3 solves the dynamic portfolio

model and discusses the solution. Section 4 applies our method to the empirically relevant problem of

constructing an optimal long-term portfolio of value stocks, growth stocks, bonds, and bills given historically

estimated return processes. Finally, Section 5 concludes. The Appendix provides a detailed derivation of

all the analytical results in the paper.

2 Investment opportunities and investors

We start by outlining our assumptions about the dynamics of the available investment opportunities. We

then turn to an analysis of the effect of intertemporal variation in the investment opportunity set on

the moments of risky asset returns at long-horizons, and finally, we formalize the investor’s optimization

problem.

2.1 Investment opportunities

We consider an economy with multiple assets available for investment, where expected returns and interest

rates are time varying. We assume that asset returns and the state variables that characterize time variation

in expected returns and interest rates are jointly determined by a first-order linear vector autoregression,

or VAR(1):

z+1 = Φ0 +Φ1z + v+1 (1)

Here z+1 denotes an (×1) column vector whose elements are the returns on all assets under consideration,
and the values of the state variables at time (+1). Φ0 is a vector of intercepts, and Φ1 is a square matrix

5 In another related paper, Brennan and Xia (2001), explore the value spread as a “data anomaly” whose existence as a

real phenomenon is assessed by a Bayesian investor. Unlike our paper, however, they ignore time variation in investment

opportunities.
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that stacks together the slope coefficients. Finally, v+1 is a vector of zero-mean shocks to the realizations

of returns and return forecasting variables. We assume these shocks are homoskedastic and normally

distributed:6

v+1
∼ N (0Σ)  (2)

For convenience for our subsequent portfolio analysis, we write the vector z+1 as

z+1 ≡

⎡⎢⎣ 1+1

r+1 − 1+1ι

s+1

⎤⎥⎦ ≡
⎡⎢⎣ 1+1

x+1

s+1

⎤⎥⎦  (3)

where 1+1 denotes the log real return on the asset that we use as a benchmark in excess return compu-

tations, x+1 is a vector of log excess returns on all other assets with respect to the benchmark, and s+1

is a vector with the realizations of the state variables. For future reference, we assume that there are +1

assets, and − − 1 state variables.

Consistent with our representation of z+1 in (3), we can write Σ as

Σ ≡ Var (v+1) =

⎡⎢⎣ σ21 σ01 σ01
σ1 Σ Σ

0


σ1 Σ Σ

⎤⎥⎦ 
where the elements on the main diagonal are the variance of the real return on the benchmark asset (σ21),

the variance-covariance matrix of unexpected excess returns (Σ), and the variance-covariance matrix of

the shocks to the state variables (Σ). The off-diagonal elements are the covariances of the real return on

the benchmark assets with excess returns on all other assets and with shocks to the state variables (σ1

and σ1), and the covariances of excess returns with shocks to the state variables (Σ).

2.2 Long-horizon asset return moments

Despite the seemingly restrictive assumption of homoskedasticity of the VAR shocks, the vector autore-

gressive specification is able to capture a rich set of dynamics in the moments of long-horizon asset returns.

In particular, at horizons exceeding one period, asset return predictability generates variation in per period

risk and expected gross returns (or arithmetic mean returns) across investment horizons, regardless of

whether the conditional second moments of the VAR shocks are constant over time or not. We emphasize

6While the simplifying assumption of time invariant risk is perhaps not empirically plausible, it is nonetheless relatively

harmless given our focus on long-term portfolio choice decisions. Using a realistically calibrated model of stock return volatility,

Chacko and Viceira (2005) argue that the persistence and volatility of risk are not large enough to have a sizable impact on

the portfolio decisions of long-term investors, relative to the portfolio decisions of short-horizon investors.
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these implications of asset return predictability here, because they are useful in understanding horizon

effects on portfolio choice shown in Section 3.

Consider the conditional variance of -period log excess returns,

Var [r→+ − 1→+] ≡ Σ() 

where we have defined r→+ =
P

=1 r+ and 1→+ =
P

=1 1+. Of course, Σ
(1)
 is simply the

conditional variance of one-period excess returns, Σ.

We show in the Appendix that when expected returns are constant–that is, when the slope coefficients

in the equations for excess returns in the VAR(1) model are all zero– Σ
()
  = Σ at all horizons. By

contrast, return predictability implies that Σ
()
  will generally be different from Σ, thus generating

a term structure of risk (Campbell and Viceira 2005). Similar considerations apply to the conditional

variance of -period returns on the benchmark asset, which we denote by (σ
()
1 )2, and the conditional

covariance of excess returns with the return on the benchmark asset, which we denote by σ
()
1 .

Return predictability also generates a term structure of expected gross returns. To see this, note that

under (1)-(2), the log of the unconditional mean gross excess return per period at horizon  (or the log of

the population arithmetic mean return) is related to the unconditional mean log excess return per period

at horizon  (the population geometric mean return) as follows:7

1


log E [exp(r→+ − 1→+)] = E [r+1 − 1+1ι] +

1

2
diag

³
Σ()

´
+
1

2
Var [E [r→+ − 1→+]] (4)

Equation (4) implies that the arithmetic mean return is horizon dependent, whereas the geometric mean

return is horizon independent. The dependence of the arithmetic mean return on horizon operates through

the variance terms, which do not grow linearly with horizon unless returns are not predictable. In the

special case of no return predictability, we have that Σ
()
 = Σ and Var [E [r→+ − 1→+]] = 0.

8

7This equation follows immediately from applying a standard variance decomposition result:

log E [exp(r→+ − 1→+)] = E [r→+ − 1→+] +
1

2


E [Var [r→+ − 1→+]] +

+Var [E [r→+ − 1→+]]


8More generally Var [E [r→+ − 1→+]] equals the elements in the diagonal of

=1

Φ

1

0
Var[z]



=1

Φ

1



corresponding to log excess returns.

6



Equation (4) gives us strong intuition about the set of investors for whom horizon effects are important.

It suggests that investment horizon considerations will be irrelevant to investors who care only about

maximizing the geometric mean return on their wealth, while they will be highly relevant to investors for

whom the criterion for making portfolio decisions is the arithmetic mean return on their wealth.

Figure 1 gives an empirical illustration of horizon effects on expected returns. This figure plots the

annualized geometric mean return (dash-dot line) and annualized arithmetic mean return (solid line) on

U.S. stocks and a constant maturity 5-year Treasury bond as a function of investment horizon. The figure

considers investment horizons between 1 month and 300 months (or 25 years).9 The geometric average

return per period of course does not change with the horizon, but the arithmetic mean return per period

does change significantly. For U.S. equities, it goes from about 5.3% per year at a 1-quarter horizon to

about 4.9% at a 25-year horizon. For U.S. bonds, it decreases from about 1.8% per year to about 1.7% per

year. The declining average arithmetic return is the direct result of a pattern of decreasing volatility per

period of stock and bond returns across investment horizons, which is more pronounced for stocks than for

bonds (Campbell and Viceira, 2005).

2.3 Investor’s Problem

We consider an investor with initial wealth  at time  who chooses a portfolio strategy that maximizes

the expected utility of wealth  periods ahead. The investor has isoelastic preferences with a constant

coefficient of relative risk aversion, , and consumes the accumulated wealth at the terminal date, +.

Formally, the investor chooses the sequence of portfolio weights α+− between time  and (+−1)
such that n

α
()
+−

o=1
=

= argmaxE

∙
1

1− 
 1−

+

¸
 (5)

when  6= 1, and n
α
()
+−

o=1
=

= argmaxE [log (+)] 

when  = 1. Note that we index the sequence of portfolio weight vectors by the time at which they at

chosen (subscript) and the time-remaining to the horizon (superscript ).

Investor’s wealth evolves over time as:

+1 = (1 ++1)  (6)

9This figure is based on a VAR(1) system estimated using postwar monthly data. The VAR includes the same state

variables as the VAR we use in our empirical application. See Section 5 for details.
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where (1 ++1), the gross return on wealth, is given by

1 ++1 =
X

=1

 (+1 −1+1) + (1 +1+1)

= α0 (R+1 −1+1ι) + (1 +1+1)  (7)

which is a linear function of the vector of portfolio weights at time .

Equation (6) implies that the terminal wealth, + , is equal to the initial wealth, , multiplied

by the cumulative -period gross return on wealth, which itself is a function of the sequence of decision

variables {α()+−}=1= :

+ = ·
Y
=1

(1 ++(α
(−+1)
+−1 ))

The preference structure in the model implies that the investor always chooses a portfolio policy such that

(1 ++)  0.10 Thus, along the optimal path,

+ = · exp {→+}  (8)

where →+ =
P

=1 + is the -period log return on wealth between times  and +.

Using (8) we can rewrite the objective function (5) as:n
α
()
+−

o=1
=

= argmax
1

1− 
E [exp {(1− ) →+}]  (9)

when  6= 1, and n
α
()
+−

o=1
=

= argmaxE [→+ ]  (10)

when  = 1. For simplicity we have dropped the scaling factors  1−
 and log() from the objective

functions (9) and (10), which are irrelevant for optimality conditions.

Equation (9) says that a power utility investor with  6= 1 seeks to maximize a power function of the
expected long-horizon gross return on wealth. By contrast, equation (10) says that a log utility investor

seeks to maximize the expected long-horizon log return on wealth. Section 2.2 shows that expected long-

horizon gross returns per period are in general a function of investment horizon, while expected long-horizon

log returns per period are not. Since the first order conditions implied by these objective functions are

invariant to a change of scale, we can already say, before formally deriving the optimal portfolio policies

for each type of investor, that the optimal portfolio policy for investors with  6= 1 will be a function of
10To see this, note that a zero one-period gross return on wealth at any date implies zero wealth and consumption at time

+, which in turn implies that marginal utility of consumption approaches infinity. This is a state of the world the investor
will surely avoid.
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investment horizon, while the optimal portfolio policy for log utility investors will not.

Finally, following CCV (2003) we approximate the log return on the wealth portfolio (7) as:

+1 ≈ 1+1 +α0 (r+ − 1+1ι) +
1

2
α0
¡
σ2 −Σα

¢
 (11)

where σ2 ≡ (Σ) is the vector consisting of the diagonal elements of Σ, the variances of log

excess returns. Equation (11) is an approximation which becomes increasingly accurate as the frequency

of portfolio rebalancing increases, and it is exact in the continuous time limit.

3 A general recursive solution

We solve for the optimal dynamic rebalancing strategy by applying a standard backwards recursion argu-

ment. We first derive the portfolio rule in the last period (the base case for the policy function recursion)

and the associated value function (the base case for the value function recursion). We then solve the prob-

lem for the period preceding the last portfolio choice date as a function of the value and policy function

coefficients from the terminal period. This enables us to isolate the recursive relationship linking the policy

function and value function recursions for two adjacent periods. By iterating this relationship we arrive at

the solution to the general multi-period portfolio choice problem with dynamic rebalancing.

Our solution is a discretized version of the solution in Liu (2007) for the case in which the vector of

state variables follows a multivariate Ornstein-Uhlenbeck process–see Definition 1.2 in Liu (2007)–and

there is no instantaneously riskless asset. As such, our solution possesses a variety of attractive features.

First, it flexibly accommodates any number of risky assets and state variables. Second, it is exact in the

limit when the investor can rebalance the portfolio continuously, since the loglinear approximation (11)

is exact in continuous time. And lastly, in the special cases when there is only one period remaining or

returns are not predictable, our solution simplifies to the well known myopic portfolio choice rule.

3.1 Optimal portfolio policy and value functions with one period remaining

Equation (9) implies that the objective for an investor with one period remaining to the terminal date,

+, is to choose α
(1)
+−1 such that:

α
(1)
+−1 = argmax

1

1− 
E+−1 [exp {(1− ) +}]  (12)
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Under the distributional assumption (2) and the approximation to the portfolio return (11), + is

conditionally lognormal allowing us to re-express the expectation in equation (12) as:

E+−1 [exp {(1− ) +}] = exp
½
(1− )E+−1 [+ ] +

1

2
(1− )2Var+−1 [+ ]

¾
 (13)

Substituting (13) into (12) and solving for the optimal portfolio weight vector we obtain the following

solution:

α
(1)
+−1 =

1


Σ−1

µ
E+−1 [r+ − 1+ι] +

1

2
σ2 + (1− )σ1

¶
 (14)

where

E+−1 [r+ − 0+ι] =H (Φ0 +Φ1z+−1)  (15)

and H is a matrix operator that selects the rows corresponding to the vector of excess returns x from the

target matrix. Thus the solution (14) implicitly defines an affine function of the state vector z+−1.

Equation (14) is the well-known “myopic” or one-period mean-variance efficient portfolio rule. The

optimal myopic portfolio (14) combines the tangency portfolio and the global minimum variance portfolio of

the mean-variance efficient frontier generated by one-period expected returns and the conditional variance-

covariance matrix of one-period returns. The tangency portfolio is:

Σ−1 E+−1 [r+ − 1+ι] +
1

2
σ2 (16)

This portfolio depends on expected returns and the variance-covariance matrix of returns. In our model,

expected returns are time-varying, causing this portfolio to change with the investment opportunities. The

global minimum variance (GMV) portfolio is

−Σ−1σ1 (17)

and depends only on the variance-covariance structure of returns. Our assumption of constant variances and

covariances implies that the single-period GMV portfolio does not change with investment opportunities.

Investors combine these two portfolios using weights 1 and (1−1), respectively. Log utility investors
(investors with unit coefficient of relative risk aversion ) hold only the tangency portfolio, while highly

risk averse investors (investors for whom  → ∞) hold only the GMV portfolio. Other investors hold a
mixture of both.

Value function

The conditional lognormality of + and equation (13) indicate that the value function at time

( + − 1) depends on the expected log return on wealth and its variance. Substitution of the optimal
portfolio rule (14) into the equation for the log return on wealth (11) leads to expressions for the expected

10



log return on wealth and its variance which are both quadratic functions of the z+−1 vector. This is
intuitive, since the expected log return on wealth depends on the product of α

(1)
+−1 and the expected

return on wealth, both of which are linear in z+−1; similarly, the conditional variance of the log return
on wealth depends quadratically on α

(1)
+−1, which is itself a linear function of z+−1. Therefore, the

expectation in the value function at time (+−1) is itself an exponential quadratic polynomial of z+−1:

E+−1 [exp {(1− ) +}] ∝ exp
n
(1− )

³

(1)
0 +

(1)
1 z+−1 + z

0
+−1

(1)
2 z+−1

´o
(18)

where 
(1)
0 , 

(1)
1 , and 

(1)
2 are given in the Appendix.

3.2 Optimal portfolio policy and value functions with two periods remaining

We now proceed to compute the optimal portfolio policy and the value function at time (+−2). When
the remaining horizon is two periods, the investor’s objective function is

max

(2)
+−2

(1)
+−1

1

1− 
E+−2 [exp {(1− ) (+−1 + +)}] (19)

which, using the law of iterated expectations and equation (18), we can further rewrite as

max

(2)
+−2

1

1− 
E+−2

h
exp

n
(1− )

³
+−1 +

(1)
1 z+−1 + z

0
+−1

(1)
2 z+−1

´oi
 (20)

In order to compute the optimal portfolio policy and the value function at ( +  − 2), we need to
evaluate the expectation (20). Note that the last two terms inside the expectation define an affine-quadratic

function of z+−1, and that equation (11) implies that +−1 is an affine function of z+−1. Thus the
term inside the expectation is an exponential quadratic polynomial function of the vector of state variables

z+−1. We can evaluate this expectation in closed form using standard results on the expectation of an

exponential quadratic polynomial of normal variables. The Appendix provides an analytical expression for

(20), and some additional simplifications applicable in the continuous-time limit.

The analytical evaluation of the expectation (20) results in an objective function11 whose first order

condition implies an optimal portfolio policy which, similar to the optimal one-period portfolio policy, is

also an affine function of the state vector z+−2. It is important however to note that the coefficients of
this function will, in general, be different from the coefficients of the state vector z+−1 in the one-period
solution. They differ in qualitatively important ways that capture the fact that the optimal portfolio rule

11The objective function is itself an exponential quadratic polynomial function of z+−2 whose coefficients depend on

(2)
+−2, the decision variable. Viewed as a function of 

(2)
+−2, the objective function is also an exponential quadratic

polynomial function of 
(2)
+−2.

11



is not necessarily myopic when the remaining investment horizon is longer than one period–and the agent

anticipates further opportunities for portfolio rebalancing in the face of changing investment opportunities.

We defer the discussion of these differences until we present the general solution at any remaining horizon

 in the next section.

Value function

Substitution of the optimal portfolio policy α
(2)
+−2 back into the objective function leads to a value

function at (+ − 2) which has the same functional form as the value function (18) at (+ − 1), but
with coefficients 

(2)
0 , 

(2)
1 , and 

(2)
2 that will generally be different from the coefficients of the one-period

value function. The Appendix provides expressions for these coefficients.

3.3 General recursive solution and its properties

The results for the cases with one ( = 1) and two ( = 2) periods remaining to the terminal date implicitly

define the recursion generating the optimal portfolio policy for an arbitrary horizon  . The solution to the

one-period problem represents the base case for the recursive solution, and the solution to the two-period

problem provides the link between the policy and value functions in adjacent time periods.

In the Appendix, we show that with  periods remaining to the terminal date, the optimal portfolio

rule is given by

α
()
+− =

1


Σ−1

µ
E+− [r+−+1 − 1+−+1ι] +

1

2
σ2 + (1− )σ1

¶
(21)

−
µ
1− 1



¶
Σ−1Σ

³

(−1)0
1 +

³

(−1)
2 +

(−1)0
2

´
E+− [z+−+1]

´


where Σ = [ σ1 Σ Σ
0
 ] and 

(−1)
1 , 

(−1)
2 , and 

(−1)
2 are functions of the remaining investment

horizon  , the coefficient of relative risk aversion , and the coefficients of the VAR system given in the

Appendix.

Equation (21) provides a fully analytical solution to the intertemporal portfolio choice problem of

Section 2. It shows that optimal portfolio demand is the sum of two components or portfolios. The first

component, given by the first line in the equation, is identical to the one-period myopic portfolio demand

(14). The second component, given by the second line in the equation, reflects an additional intertemporal

hedging portfolio demand for risky assets (Merton 1969, 1971, 1973).

Equation (21) shows that the myopic component of total portfolio demand is independent of investment

horizon  . It also shows that this component of total portfolio demand is the total optimal portfolio demand

for log utility investors–i.e., investors with  = 1. This confirms our intuition in Section 2.3 that horizon

12



considerations are irrelevant for log utility investors, since they seek to maximize the long-horizon log

return on wealth per period, which is independent of horizon.

The intertemporal hedging component of portfolio demand combines two elements: The first element,

Σ−1Σ, captures the ability of assets to hedge changes in investment opportunities through their instan-

taneous correlation with the vector of state variables. The second element, given by (1 − 1) and the
terms post-multiplying Σ−1Σ in (21), captures the effect of changes in investment opportunities on the

investor’s marginal utility of wealth.12 Equation (21) shows that this element is both state-dependent,

through E+− [z+−+1], and horizon-dependent, through 
(−1)
1 , 

(−1)
2 , and 

(−1)
2 .

Therefore, it is through the intertemporal hedging component that investment horizon affects optimal

portfolio demand. Equation (14) shows that this component is always zero when  = 1, that is, when

investors have only one period to go before liquidating their assets and consuming their wealth, but it is

not necessarily zero when   1. Investors with multi-period horizons are exposed to shocks affecting not

only their realized wealth, but also the future productivity of their wealth. They choose portfolios which

respond optimally not only to prevailing market conditions (myopic demand), but also to future changes

in investment opportunities. In particular, risk averse investors might want to tilt their portfolios toward

assets that protect their wealth from adverse changes in investment opportunities (Merton 1969, 1971,

1973).

Re-expressing the expectations in equation (21) in terms of z+− shows that each component of total
portfolio demand is an affine function of the vector of state variables z+− . Thus we can rewrite total
portfolio demand 

()
+− itself as an affine function of the vector of state variables:


()
+− = 

()
0 +

()
1 z+−  (22)

where the expressions for 
()
0 and 

()
1 can be deduced straightforwardly from (21). The dynamic con-

sistency of the policy function ensures that the coefficient matrices, 
()
0 and 

()
1 , depend on the time

remaining to the terminal horizon date, but are independent of time itself. Consequently, we index these

coefficients by the time remaining to the consumption date.

The optimal dynamic portfolio policy (21) converges to well-known solutions in certain limiting cases.

We show in the Appendix that when investors have log utility ( → 1), or when investment opportunities

are constant (HΦ1 = 0), we have 
()
0 = 

(1)
0 and 

()
1 = 

(1)
1 for all  . Thus the optimal dynamic policy

(21) reduces to the myopic solution at all horizons.

We also show in the Appendix that as we consider increasingly risk averse investors (i.e., as  →∞),
the optimal portfolio policy becomes decoupled from the intercept vector, Φ0, of the VAR(1). That is,

12 It corresponds to the ratio of the cross-partial derivative of the value function with respect to wealth and the vector of

state variables and the product of wealth and the second derivative of the value function with respect to wealth.
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the least-risky portfolio from the perspective of a long-horizon investor, who can rebalance dynamically, is

independent of the vector of unconditional mean returns. This portfolio converges to the one-period GMV

when investment opportunities are constant.

Value function

The value function with  periods remaining continues to be an exponential quadratic function of the

state vector:

max


1

1− 
E+−

"
exp

(
(1− )

X
=1

+−+
³
α
(+1−)
++−(+1)

´)#
=

1

1− 
exp

n
(1− )

³

()
0 +

()
1 z+− + z

0
+−

()
2 z+−

´o
 (23)

The Appendix provides a detailed derivation of all these results, as well as expressions for the coefficients

of the optimal portfolio policy and the value function.13

4 Optimal growth and value investing

The empirical analysis of optimal dynamic portfolio choice with time-varying investment opportunities has

focused primarily on the choice between a well-diversified portfolio of equities representing the market,

cash, and - in some cases - long-term bonds. Although this setup allows for the analysis of horizon effects

in the allocation to equities relative to cash or bonds, it is not designed to yield insights into horizon effects

in the composition of the optimal equity portfolio. Investors might also want to optimally change the

composition of their equity portfolio across investment horizons if the covariation of equity returns with

state variables is not homogeneous across all types of equities.

Recent work by Campbell and Vuolteenaho (2004) and others has reported empirical evidence of such

differences in the risk characteristics of value stocks and growth stocks. Campbell and Vuolteenaho (2004)

decompose the covariance of a stock’s unexpected return with the unexpected return on the stock market

into the covariance of the return with shocks to aggregate stock cash flows (“stock market cash flow news”)

and the covariance of the return with shocks to aggregate stock discount rates (“stock market discount rate

news”). They find that the conditional correlation of returns with variables that proxy for time variation in

aggregate stock market discount rates is larger for growth stocks than for value stocks, while the conditional

13 In brief, we show in the Appendix that the policy and value function coefficients satisfy a linear recursive relation where

the 
()
 coefficients depend linearly on the 

(−1)
 value function coefficients, and the 

()
 coefficients depend linearly on

both the 
(−1)
 and the 

(−1)
 coefficients. The parameters of this linear recursion are nonlinear functions of the parameters

of the VAR(1) system, and the coefficient of relative risk aversion. These expressions are algebraically involved but trivial to

program, allowing for the examination of portfolio choice problems involving an arbitrary number of assets and state variables.

MATLAB routines which execute the policy and value function recursions are available on the authors’ websites.
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correlation of returns with changes in aggregate stock market cash flows is larger for value stocks than for

growth stocks. They argue that their empirical finding implies that value stocks are riskier than growth

stocks from the perspective of a risk-averse, long-horizon investor who holds the market portfolio, because

aggregate cash flow shocks appear to be permanent, while aggregate discount rate shocks appear to be

transitory.

The flexible framework for the analysis of dynamic portfolio choice problems developed in Sections 2

and 3 is ideally suited for the systematic investigation of value and growth tilts in equity portfolios. To

this end, we consider an empirical specification of our dynamic portfolio choice problem in which investors

can invest in two equity portfolios, a portfolio of value stocks and a portfolio of growth stocks. We consider

two types of investors. The first type of investor can only invest in these two equity portfolios. This is the

type of investor implicit in most representative investor models of equilibrium asset prices, which assume

that bonds are in zero net supply. The second type of investor is an investor who can also invest in cash

(or Treasury bills) and bonds in addition to value and growth stocks. In both cases we explore optimal

value and growth tilts across investment horizons and across varying levels of risk aversion. We have also

explored a third case where the investor can only invest in cash in addition to value and growth stocks.

The results from this case are nearly identical to the case with cash and bonds regarding the allocation to

equities and are omitted to conserve space.

4.1 Investment opportunities

4.1.1 Assets, state variables, and data

Following our theoretical framework, we model the dynamics of investment opportunities as a first-order

VAR system. As we have already noted, we consider two sets of investable assets and estimate a companion

VAR system for each of these investment sets. The first set is comprised only of equities, and consequently,

we refer to this set as the “equity-only case.” In this scenario the investor chooses between a value-weighted

portfolio of growth stocks and a complementary value-weighted portfolio of value stocks. The value of the

two portfolios adds up to the aggregate stock market portfolio. The companion VAR system includes

the log real return on the growth stock portfolio (labelled G in tables), the log return on the value stock

portfolio (V) in excess of the log return on the growth portfolio (V-G), and a set of common state variables

which we describe below.14

We construct the value and growth portfolios using data on six stock portfolios sorted by the ratio of

14We consider V-G instead of V and G separately for consistency with the VAR formulation in our portfolio choice model,

which assumes that one of the assets in the investment opportunity set acts as a benchmark asset over which we measure

excess returns on all other assets. Since this VAR includes only equity portfolios, the benchmark asset must be one of them.We

have chosen the growth portfolio as the benchmark asset, but of course this choice is inconsequential to the portfolio choice

results.
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book value of equity to market value of equity (BM) and market capitalization, available from Professor

Ken French’s website and based on raw data from CRSP and COMPUSTAT. We begin by aggregating the

six portfolios across size terciles to obtain three portfolios — the low, medium and high BM portfolios. We

then build the value portfolio (V) as a market capitalization weighted combination of the low BM portfolio

with half of the medium BM portfolio. The growth index (G) has the complementary composition.15 Figure

2 plots the share of total stock market value of these portfolios over time. On average the value portfolio

represents 30% of total market capitalization, and the growth portfolio represents the remaining 70%. This

split is remarkably stable over time. Growth represents more than 80% of total market capitalization only

in three episodes, the early 1930’s, the mid-1970’s and the end of the 1990’s. By contrast, the largest

market share of the value portfolio occurs in the late 1940’s, late 1960’s and in the mid 1980’s.

The second investment set adds cash and long-term Treasury bonds to the two equity portfolios, leading

us to refer to it as the “equities-and-bonds case.” The companion VAR system includes the log excess return

on the value portfolio, the log excess return on the growth portfolio, the log excess return on a constant

maturity 5-year Treasury bond (B5), the ex-post real rate of return on a 30-day Treasury bill, and the

same set of state variables as in the first system. Excess returns are computed using the 30-day Treasury

bill as the benchmark asset.

The common set of state variables includes variables known to forecast aggregate stock excess returns,

bond excess returns, interest rates, and inflation. The first of these variables is the price-earnings ratio

(PE) on the S&P 500, which forecasts aggregate stock returns negatively at long horizons (Campbell and

Shiller 1988, 1998, 2005).16 The rest of the state variables are related to the term structure of interest rates

and inflation. We include the short-term nominal interest rate (t30_YIELD), which forecasts aggregate

stock returns negatively (Fama and Schwert 1977, Campbell 1987, Glosten et al. 1993); the yield spread

(YSPR), which forecasts bond excess returns positively (Fama and Bliss 1987, Fama and French 1989,

Campbell and Shiller 1991, Campbell, Chan and Viceira 2003, Campbell and Viceira 2005); and the ex-

post real rate of return on a 30-day Treasury bill (t30_REALRET). Note that the ex-post real rate plays

a dual role as the real return on an investable asset (Treasury Bills) and as an additional state variable

which, together with the nominal short-term interest rate and the yield spread, allow the VAR system to

capture the dynamics of inflation and real interest rates.17

15Our results are robust to other possible definitions of the V and G portfolios–for example, using only the first and the

third BM portfolios to define V and G, or constructing the V and G indices from the 25 book-to-market/size Fama-French

portfolios.
16An alternative variable that captures similar information in expected aggregate stock returns is the dividend-price ratio.

This ratio forecasts future stock returns postively (Campbell and Shiller 1988, Fama and French 1989, Hodrick 1992, Goetz-

mann and Jorion 1993). Brandt (1999), Campbell and Viceira (1999, 2005), Campbell, Chan, and Viceira (2003) and others

use this variable in empirically calibrated models of portfolio choice with time-varying expected stock returns.
17 In their study of the cross-sectional pricing of value and growth stocks, Campbell and Vuolteenaho (2004) consider an

additional stock market variable. This variable is the small-stock value spread (VS), which is known to forecast aggregate

stock returns negatively (Eleswarapu and Reinganum 2004, Brennan, Wang and Xia 2004, Campbell and Vuolteenaho 2004).

The inclusion of this variable does not make any difference to our results, so we have excluded it from our analysis in the

interest of parsimony.
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Our empirical measure of PE is the value of the S&P 500 portfolio divided by the ten-year trailing

moving average of aggregate earnings on the S&P 500 companies, which we obtain from CRSP and Professor

Robert Shiller’s website. We have also used the empirical measure of PE of Campbell and Vuolteenaho

(2004) with similar results. The data source for bond returns, interest rates and inflation is CRSP. The

return on bonds is the log return on a constant maturity 5-year Treasury bond from the CRSP US Treasury

and Inflation database. The nominal short rate is the log yield on a 30-day Treasury bill from CRSP. The

yield spread is the difference between the log yield on a five-year discount bond from the CRSP Fama-Bliss

files, and the log yield on the 30-day Treasury bill. Finally, we use the CPI inflation series in the CRSP US

Treasury and Inflation database to construct the ex-post real short-term interest rate and the real return

on the growth stock portfolio. We provide full details of the variable definitions and construction in Table

1.

Because we do not observe the relations between state variables and asset returns, we estimate both

VAR systems using monthly data for the period December 1952 through December 2003. We restrict

our sample to the post-1952 period because the Federal Reserve kept short-term nominal rates essentially

fixed before the Treasury Accord of 1952, making it impossible to capture interest rate dynamics using the

pre-1953 data series. In our subsequent portfolio choice exercise, we also assume that investors take the

VAR parameter estimates at face value, ignoring estimation uncertainty.

4.1.2 VAR estimates

Table 2 presents descriptive statistics of the variables included in the VAR system. This table provides a

clear illustration of the empirical regularity known as the “value premium.” While the value stock portfolio,

the growth stock portfolio and the aggregate stock market portfolio have almost identical short-term return

volatility, the average return on the value stock portfolio is significantly higher than the average return on

the growth stock portfolio and the aggregate stock portfolio. The average spread between the returns on

value stocks and the returns on growth stocks is about 2.45% per year.18 This spread however exhibits

non-trivial variation over time and has an annualized standard deviation of nearly 7%. Overall, the Sharpe

ratio on the value portfolio is 0.61, which is about 47% larger than the Sharpe ratio on the growth portfolio.

Thus from a purely myopic perspective, the ex-post performance of the value portfolio suggests that it

represents a more attractive investment opportunity than the growth portfolio.

Table 3 presents estimates for the equity-only VAR system. The table has two panels. Panel A reports

the slope coefficient estimates with heteroskedasticity and autocorrelation consistent t-statistics below in

parenthesis, and bootstrapped 95% confidence intervals in brackets. The bootstrap estimates are generated

18This estimate of the value premium is cautious because it is computed using the return series on two highly-aggregated

portfolios (see Section 4.1.1). If we exclude the middle BM portfolio in the construction of the value (V) and growth (G)

indices, the value spread rises to 4.01% per year. The spread increases even further when the extreme quintile BM portfolios

are taken to represent V and G.
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from sample paths simulated under the null hypothesis that the estimated VAR model represents the true

data generating process. The rightmost column in the panel reports the 2 for each equation, and the

p-value of the F-statistic of the overall significance of the slopes in each equation. Panel B reports the

percentage standard deviation of the innovations to each equation (on the main diagonal) and the cross-

correlations of the innovations (off the main diagonal).

Panel A in Table 3 shows that own lagged returns forecast returns positively, though only the coefficient

on the lagged return on V-G is statistically significant. PE, the nominal short rate, and the ex-post

real short rate are all highly significant in the forecasting equation for the real return on the growth

stock portfolio. Both PE and the nominal short interest rate forecast the real return on growth stocks

negatively, and the ex-post real rate forecasts this return positively. By contrast, none of the state variables

is significant in the forecasting equation for the return on V-G. This implies that these variables forecast the

return on the value stock portfolio with coefficients which are not statistically different from the coefficients

in the equation for the return on the growth stock portfolio. Table 4, which considers the return on the

value stock portfolio separately from the return on the growth stock portfolio, confirms this result. In the

case of PE, even the point estimate of its coefficient in the V-G equation is essentially zero.

These results show that variables known to forecast aggregate stock market returns also forecast both

the returns of growth stocks and the returns on value stocks separately.19 Of course, that this holds for the

growth portfolio is not surprising, since this portfolio represents about 70% of total market capitalization.

It is perhaps less obvious that these variables would also forecast the return on the relatively small value

stock portfolio.

Panel A in Table 3 also indicates that the state variables are all well described as persistent autoregres-

sive processes. Except for the ex-post real rate, the autoregressive coefficients for all the state variables

are above .90 and, in some cases, above .99. This raises the question of whether the processes for the state

variables are unit-root processes rather than highly persistent, but ultimately stationary, processes. Recent

research (Campbell and Yogo, 2005) supports the second conclusion, which we adopt in our portfolio choice

exercise. Finally, it is interesting to note that there exist some cross-forecasting effects in the equations

for the state variables. The ex-post real short rate and the yield spread forecast PE positively, while the

nominal short rate forecasts the ex-post real short rate positively, and PE negatively.

As the results in Sections 2-4 show, the optimal portfolio allocations depend not only on the slope

coefficients in the VAR, but also on the variance-covariance structure of the innovations to the VAR

variables. Panel B in Table 3 presents this matrix for the equity-only VAR system. Two facts stand out

from this panel.

19We have estimated a VAR system for the real return on the market portfolio with the same state variables. Our estimate

confirms that these three state variables forecast aggregate stock market returns in the same direction and with similar

statistical significance in our sample period.
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First, the correlation between the unexpected return on growth stocks and the unexpected return on

V-G is about −40%. The negative of this correlation determines the sign of the one-period GMV portfolio
allocation to value stocks in the equity-only case–see equation (17). Its negative sign implies that this

portfolio loads positively on value stocks.

Second, shocks to PE are highly positively correlated with unexpected returns on the growth stock

portfolio, and negatively correlated with unexpected returns in V-G. This implies that innovations to PE

are more correlated with unexpected returns on the growth portfolio than with unexpected returns on

the value portfolio. Since innovations to PE proxy for innovations to expected returns on the aggregate

stock market portfolio, our results suggest–consistent with the evidence in Campbell and Vuolteenaho

(2004)–that returns on growth stocks covary more with stock market discount rate news than the returns

on value stocks. We validate this conclusion by bootstrapping the distribution of the covariance estimator

under the null hypothesis of an equal covariance between innovations to value and growth and PE. Our

simulation reveals that the historical estimate of the covariance between shocks to the value-growth spread

and PE is sufficient to reject then null hypothesis at the 0.01%-level (the maximal theoretical level possible

under a simulation with 10,000 paths).

Table 4 presents estimates for the equities-and-bonds VAR system. We present constrained estimates in

which only the lagged values of the state variables forecast future returns. We have chosen to constrain this

system because lagged returns, particularly lagged bond returns, forecast next period’s returns at monthly

frequencies positively. This short-lived “momentum” effect induces short-horizon effects in portfolio allo-

cations unrelated to the effects of persistent changes in investment opportunities, which are well captured

by our state variables. Because our primary interest is in long-horizon effects in portfolio allocations, we

choose to present constrained estimates for the equities-and-bonds VAR system, and portfolio allocations

based on these constrained estimates.20

The estimation results for the equities-and-bonds VAR system are consistent with the estimates of the

equity-only VAR system. Panel A shows that PE forecasts the excess returns on both the value and growth

portfolios negatively, with similar coefficients in both equations. The nominal short rate also forecasts the

excess return on both portfolios negatively. Table 4 also considers the real return on Treasury bills (or

ex-post real short interest rate) and the excess return on long-term bonds. It shows the well known result

that the yield spread forecasts bond excess returns positively, with a t-statistic above 4. It also shows that

the nominal short rate weakly forecasts bond excess returns with a positive sign. The yield spread and the

nominal short rate all forecasts the real return on T-bills. In both tables, the 2’s of the return forecasting

equations are below 5%. This magnitude is typical of return forecasting equations at monthly frequencies,

and it implies considerably larger 2’s at lower frequencies (Campbell and Thompson, 2005).

Panel B in Table 4 shows the covariance structure of innovations in the equities-and-bonds system.

20Unconstrained VAR estimates and the associated portfolio allocations are available from the authors upon request.
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The upper left block of the table shows the covariance structure of unexpected excess returns. Unexpected

excess returns on value stocks are highly positively correlated with unexpected excess returns on growth

stocks. Both portfolios show similar low positive correlations with the real return on T-bills and bonds.

The upper right block shows the correlation structure of unexpected returns with the state variables. We

have already discussed the large positive correlation of unexpected returns on growth stocks with PE.

Unexpected returns on value stocks are also positively correlated with shocks to PE, but their correlation

is smaller than the correlation of growth stocks with shocks to PE. This is consistent with the negative

correlation between shocks to PE and the unexpected return on V-G shown in Table 3. We have already

noted that this lower correlation implies that value stocks are less correlated with innovations in aggregate

stock market discount rates than growth stocks. As we show below, this has important implications for

our asset allocation results. Finally, unexpected excess returns on bonds are highly negatively correlated

with the short nominal interest rate (Campbell, Chan and Viceira 2003, Campbell and Viceira 2005).

4.2 Portfolio allocations in the equity-only case

We now examine the optimal portfolio allocation of a-period, power-utility investor who is constrained to

invest only in two portfolios of equities–a value stock portfolio and a growth stock portfolio–and behaves

as if investment opportunities evolved according to the equity-only VAR of Table 3. Section 4 shows that the

optimal portfolio rule for this investor is an affine function of the vector of state variables, with coefficients

that change with the investor’s investment horizon. To facilitate interpretation, we omit reporting these

coefficients and instead present our results in the form of plots with mean percentage portfolio allocations

to each asset across different investment horizons. Given the affine form of the portfolio rule, the mean

portfolio allocation at any horizon is simply the optimal portfolio rule evaluated at the unconditional mean

of the vector of state variables. We consider horizons between 1 month, at the left end of the plots, and

300 months (or 25 years) at the other end.

The 1-month mean percentage allocations correspond to the one-period myopic allocation described in

equation (14). We have shown that the myopic portfolio allocation is a weighted average of the one-period

mean-variance efficient tangency portfolio (16) and the one-period mean-variance efficient GMV portfolio

(17), with weights 1 and (1 − 1). Thus a short-term log utility investor holds only the tangency

portfolio, and a short-term, infinitely risk averse investor holds only the GMV portfolio.

Table 5 shows the composition of the tangency portfolio and the GMV portfolio in the equity-only

case and in the equities-and-bonds case. The tangency portfolio is heavily tilted toward value stocks. A

short-term log utility investor holding this portfolio invests on average about 572% of her wealth in the

value portfolio, and finances this long position with a 472% short position in growth stocks. Table 2 and

Table 4 help in understanding the value tilt in the tangency portfolio. Table 2 shows that the mean return

on the value portfolio is larger than the mean return on the growth portfolio, and Table 4 shows that the
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returns on the value portfolio are highly positively correlated with the returns on the growth portfolio.

This large positive correlation (90%) implies that, from the perspective of a short-term investor, value and

growth stocks are close substitutes. Thus a modestly risk averse myopic investor will try to take advantage

of the mean return spread between value and growth by taking aggressive long and short positions in value

and growth stocks, respectively.

The GMV portfolio is also heavily tilted toward value stocks–about 90% long value stocks. With a

short-run return correlation of 90% between the return on the value stock portfolio and the growth stock

portfolio, the GMV portfolio is heavily tilted toward the portfolio with the smallest return volatility, which

Table 4 shows is the value stock portfolio.21

Figure 3 presents plots of the mean percentage allocation to growth and value for an investor with

coefficients of relative risk aversion of 2 (Panel A), 5, 10 and 20 (Panel B), and 500 (Panel C). These figures

show that the composition of the optimal portfolio changes dramatically across investment horizons. The

left end of the plots shows the 1-month myopic portfolio allocations which, consistent with the results

shown in Table 5, is largely invested in the value stock portfolio with short positions in the growth stock

portfolio. But as we consider longer investment horizons, the mean optimal allocation to value decreases–

and correspondingly the mean allocation to growth increases–and eventually flattens out.22 Interestingly,

the reduction in the value tilt of the portfolio becomes more pronounced as we consider increasingly risk

averse investors. This reflects an intertemporal hedging demand for growth stocks which is increasing in

risk aversion and investment horizon.

Panel C in Figure 3 makes this point clear. This panel plots the mean portfolio allocation of an

investor who is effectively infinitely risk averse.23 This investor chooses the least risky portfolio at any

given investment horizon, regardless of expected return. Of course, at short horizons this is the GMV

portfolio, which Table 5 and the leftmost point in the plots show is 90% invested in the value portfolio,

and only 10% invested in the growth portfolio. But intertemporal hedging considerations lead highly

conservative investors with longer investment horizons to move away from value into growth. For investors

with horizons of about 4 years (or 48 months), the least risky portfolio is already 50% in value stocks and

50% in growth stocks. At horizons of about 12 years (or 144 months), the long-run least risky portfolio is

about 30% in the value portfolio, and 70% in the growth portfolio. Interestingly, this portfolio is very close

to the aggregate stock market portfolio, suggesting that the least risky portfolio of a long-term, all-equity

21Another way to understand this result is to apply equation (17), which describes the GMV portfolio, to the only-equities

case. Equation (17) implies that the GMV portfolio allocation to value stocks is equal to the negative of the correlation

between the unexpected return on growth stocks with the unexpected return on V-G, times the ratio of return volatilities.

Table 3 shows that this correlation is about −41%, and the ratio of volatilities is about 23. The product of these two quantities
is .93, which is the GMV allocation to value stocks.
22The pattern is monotonically decreasing for most coefficients of relative risk aversion. However, for some investors there

is a slight increase in the value allocation as they move from a 1-month horizon to a 2-month horizon. As we have already

noted, this short-term effect is caused by lagged return predictability.
23We show in the Appendix that the optimal portfolio policy converges to an envelope as  → ∞. In this particular

application, the convergence occurs for values of  in the vicinity of 500.
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investor has no value tilt or a very small tilt.

In order to best understand the increasing allocation to growth as a function of the agent’s risk aversion

and investment horizon it is useful to consider the two components of total portfolio demand. Since equation

(14) implies that the mean myopic portfolio demand is constant across all investment horizons, the entire

variation across investment horizons in total portfolio demand we observe in Figure 3 must be ascribed

to the hedging component of portfolio demand. Thus the increasing allocation to growth as investment

horizon and risk aversion increase reflects intertemporal hedging considerations. Growth stocks appear

to be less risky than value stocks to long-term investors because they help investors hedge temporary

fluctuations in aggregate stock market discount rates.

4.3 Portfolio allocations in the presence of bonds and cash

We now examine the optimal portfolio strategies of investors who can invest in long-term nominal bonds

and Treasury bills, in addition to the value and the growth stock portfolios. As mentioned, an additional

case which allows only for cash in addition to value and growth stock portfolios produces nearly identical

results regarding the allocation to equities, and it is omitted to save space. This section assumes that

investors view investment opportunities as reflected in the VAR estimates of Table 4. Figures 4 and 5 show

the mean portfolio allocations to each asset of investors with different coefficients of relative risk aversion

and investment horizons. (The layout of these figures is identical to the asset allocation figures described

in Section 5.2.) Investors with moderate levels of risk aversion (Figure 4) take long levered positions in the

value stock portfolio and the long-term bond, financed with short positions in the growth stock portfolio

and cash. As expected, the degree of leverage decreases as we consider increasingly risk averse investors.

In contrast with Panel B in Figure 3, Panel A in Figure 4 indicates that when cash and long-term

bonds are made available to moderately risk averse equity-only investors, the optimal allocation to value

increases with the horizon, albeit slowly. Moreover, rather than finance the expansion in the allocation to

value through a commensurate reduction in the allocation to growth, the allocation to growth increases

as well. In fact, the magnitude of the increase in the allocation to growth stocks appears to be somewhat

larger than the increase in the allocation to value stocks. For example, the investor with a coefficient of

relative risk aversion of 5 increases her allocation to growth from about −087 at a one-month horizon to
about −064 at a 25-year horizon–an increase of 23 percentage points–, and increases her allocation to
value from about 146 at a one-month horizon to about 163 at a 25-year horizon–a increase of only 17

percentage points.

The relatively larger magnitude of the increase in the allocation to growth stocks relative to value

stocks becomes even more transparent when we rescale the allocation to each portfolio by the total equity

allocation ( + ) at the corresponding horizon, as in Lynch (2001). Panel B in Figure 4 plots the
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rescaled allocations to growth stocks and value stocks, and shows that indeed the allocation to growth

stocks relative to the total allocation to equities increases with investment horizon, while the allocation to

value stocks decreases. Our findings generally corroborate and extend the results reported in Lynch (2001)

for an investor with a coefficient of relative risk aversion of four who has cash, value stocks and growth

stocks available for investment.

However, it is not clear whether the increase in the allocation to growth stocks at long horizons is

of the same nature as the increase we have reported for equity-only investors, because the allocation to

value also increases with investment horizon. The increased allocation to growth relative to value at longer

investment horizons could be the result of the investor’s desire to optimally increase the overall allocation

to the value-weighted stock market portfolio, with no particular desire to actively tilt the portfolio toward

growth relative to value.

To examine this hypothesis, we compute value and growth tilts in the optimal portfolio at each invest-

ment horizon as the deviation in the optimal portfolio weights relative to the composition of the market

portfolio. Consistent with the evidence shown in Figure 1, we take the composition of the stock market

portfolio to be 30% value and 70% growth. This methodology allows us to separately examine the vari-

ation in the total equity allocation across horizons and compositional shifts in the equity portfolio. It

also underscores the equilibrium significance of the market portfolio, and coincides with the practitioner

definition of an active position when the market portfolio is taken as the benchmark for the overall equity

allocation.

Specifically, we transform the optimal allocations to growth and value into an equivalent allocation to

the market portfolio and a value tilt. To do this we compute the mean total stock market exposure of a

portfolio at any horizon as 07, where  is the mean portfolio allocation to the growth stock portfolio.

The mean active value tilt of the portfolio is then given by  −(0307), where  is the mean portfolio
allocation to the value stock portfolio.24 Figure 5 plots the allocation to the overall equity market and

the active value tilt (with respect to the market portfolio) implicit in the equity allocations presented in

Figure 4. The active tilt is toward value when the allocation shown in the plot is positive, and toward

growth when it is negative. Figure 5 reveals that the portfolios of short-horizon investors have a value tilt,

which is very pronounced for aggressive investors, combined with a short position in the market portfolio.

Interestingly, the value tilt remains fairly constant as we consider longer investment horizons. By contrast,

the short position in the market portfolio becomes smaller as the investment horizon increases.

Thus these results suggests that after accounting for the propensity of the investor to increase her

total equity allocation as the horizon increases, the mean value tilt of the optimal allocation appears to

be positive and stable across investment horizons. Long-horizon stock investors hedge time variation in

24The results obtained using this methodology are essentially equivalent to those that arise from re-estimating the VAR

model in Table 3, but replacing the growth portfolio with the market portfolio.
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investment opportunities by increasing their exposure to the overall stock market portfolio, but they do

not revise their tilt towards value stocks as the investment horizon varies. Thus the increasing allocations

to growth and value observed in Figure 4 simply reflect that investors with low or moderate levels of risk

aversion increase their allocation to equities at long horizons.25

Finally, Figure 6 plots the mean portfolio allocation to Treasury bills, long-term bonds, the market

portfolio, and the active value-growth tilt for an investor who is effectively infinitely risk averse. This

figure shows that growth stocks play no role in the optimal portfolios of highly risk averse investors when

bonds and cash are available for investment, regardless of horizon. Brennan and Xia (2000), Campbell

and Viceira (2001), Wachter (2003) and others have shown that highly risk averse investors are interested

in hedging time variation in real interest rates, rather than time variation in expected stock returns. For

these investors the optimal portfolio strategy is to be fully invested in a zero-coupon, inflation-indexed

bond that matches their investment horizon. When this bond is not directly available to them, investors

will try to synthesize it out of the menu of available assets. Figure 6 shows that the portfolio that best

synthesizes this bond out of cash, a constant maturity nominal long-term bond, and value and growth

equities, is a mix of cash and the nominal long-term bond. The weight of cash in this mix decreases as

horizon increases. Growth stocks do not play any role in the portfolio of these investors, suggesting that

they are not particularly good hedges of bond returns.

4.4 The value of dynamic rebalancing

Our empirical analysis so far has focused on the portfolio allocations to value and growth stocks implied by

the optimal dynamic portfolio strategy (22) of Section 4. Under this strategy, investors dynamically vary

their portfolio shares each period in response to changes in investment opportunities. They also change

portfolio shares as their investment horizon shortens, even if investment opportunities do not change from

one period to the next–this is the effect captured by the 
()
 coefficients and reflected in the mean

allocation plots in Section 5.

In practice, however, investors might not revise their investment policy continuously. For example,

many institutional and individual investors adopt long-horizon asset allocation policies that are revised

at lower frequencies, typically annually. In the interim, the portfolio weights are either held constant or

allowed to drift. This section explores the effect of decreasing the frequency with which investors revise

their asset allocation policy on the welfare of investors with different investment horizons and risk aversion

coefficients. In our computations we adopt the convention that portfolio weights are held constant between

policy re-evaluation dates, but our results are largely unaffected if the weights are allowed to drift.

25Campbell and Viceira (1999, 2002, 2003) and others have shown that investors use the aggregate stock market portfolio

to hedge time variation in expected stock returns. Since realized stock returns tend to increase at times when expected stock

returns decrease, investors whose coefficient of risk aversion exceeds one will have a positive positive intertemporal hedging

demand for equities.
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To examine the welfare loss in detail, we take advantage of the fact that the VAR(1) class of models is

closed under temporal aggregation–see proof in the Appendix. This allows us to aggregate the systems

we estimate using monthly data to any desired frequency, and to examine the value of the rebalancing

frequency to the investor. We evaluate the welfare effects using the value function (23), which is based on

our approximation (11) to the instantaneous return on wealth. Although Campbell, Chacko, Rodriguez

and Viceira (2004) show that the approximation to the log return on wealth is highly accurate even when

applied to low-frequency returns, additional care is necessary to understand how these one-period errors

cumulate over the long-horizons considered in the paper. To ensure that our results are robust to the

use of the approximation, we have repeated our numerical simulations using exact portfolio returns. We

find that our results are qualitatively unchanged and quantitatively only slightly affected, so we choose to

present the results based on the approximation to maintain consistency with the analytical derivations of

the paper.26

Table 6 explores the welfare effect of decreasing the rebalancing frequency in the context of the equity-

only case. Our base case is the dynamic strategy (22) with a monthly rebalancing periodicity, which

we extend gradually to a quarter, half-year, and one year. Panel A shows the certainty equivalent of the

dynamically rebalanced strategy (21) in the equity-only case. Panel B reports the welfare losses of dynamic

strategies with lower rebalancing frequencies. All welfare losses are computed as the percentage difference

between the certainty equivalent of the strategy with limited rebalancing and the certainty equivalent of

the strategy with monthly rebalancing.27 Panel C reports the largest monthly management fee which an

investor constrained to follow a strategy with limited rebalancing would pay to gain access to the monthly

dynamically rebalanced strategy. These fees re-scale the welfare losses in Panel B to facilitate comparisons

across investment horizons.28

Panel B shows that the welfare loss from not rebalancing dynamically at a monthly frequency increases

as we lower the rebalancing frequency. Controlling for rebalancing frequency, total welfare loss rises as

the investment horizon increases (more time to exploit return predictability) and as risk-aversion decreases

(more aggressive portfolio positions). At long horizons, welfare losses are large for all investors, but they

26Results based on exact portfolio returns are readily available upon request.
27 In both strategies we hold weights constant between rebalancing dates, and we use simulated data at a monthly frequency.

To compute the certainty equivalent measure for each rebalancing frequency we simulate 20,000 paths of the VAR system

shown in Table 2. Next we compute the optimal strategy (22) along each path. This allows us to compute the realized

terminal wealth and realized utility of terminal wealth for each path. We then average realized utility across paths to obtain

our measure of expected utility. This measure is subsequently inverted to obtain a certainty equivalent of wealth. We use the

same set of simulated paths to evaluate combinations of the investment horizon, risk aversion and rebalancing frequency, and

for each rebalancing frequency we appropriately perform a temporal aggregation of the VAR system.
28Specifically, the fee  is computed as the solution to

(1 + ) (1− ) = (1 + ) 

where  and  are the monthly growth rates implied by the certainty equivalent of wealth of the monthly dynamic
rebalancing strategy and the constrained rebalancing strategy respectively. If  denotes the certainty equivalent of wealth,

the growth rate is equal to ()
1 − 1.
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are particularly large for aggressive investors. For example, at a horizon of 25 years (or 300 months) and

at an annual re-evaluation frequency, the welfare loss is 56.0% for log utility investors and about a fourth

of that (a large 11.9%) for investors with coefficient of relative risk aversion of 10.

The normalization of welfare losses shown in Panel C suggests however that welfare losses are roughly

similar across investment horizons for all investors with the same re-evaluation frequency. Of course, they

increase as we consider longer re-evaluation intervals.

In general, Table 6 shows that long-horizon, log utility investors are the investors who suffer the

largest welfare losses from not re-evaluating their policy portfolios frequently. These investors change

their portfolios in response to changes in expected returns, but choose their portfolios disregarding any

intertemporal hedging considerations. Thus for these investors welfare losses are all about the timing value

of predictability. By contrast, intertemporal hedging considerations in optimal portfolio decisions become

more important as we consider increasingly risk averse investors. The relatively small welfare losses for

conservative investors from not re-evaluating their portfolios frequently suggest that intertemporal hedging

portfolio demands are relatively stable over time, and change only slowly in response to changes in expected

returns. Table 7 illustrates this intuition.

Table 7 reports the monthly standard deviation of the portfolio allocation to value–the volatility of the

portfolio allocation to growth is identical29–and the ratio of the standard deviation of the intertemporal

hedging demand to value over the standard deviation of the total portfolio demand for investors with

coefficients of relative risk aversion of 5, 10, and 500, and investment horizons of 12 months, 60 months,

120 months, and 300 months. This table shows that the volatility of total portfolio demand does not change

across investment horizons, but it declines dramatically as we consider increasingly risk averse investors.

For example, the monthly volatility of the allocation of an investor with a coefficient of relative risk

aversion of 2 is about 400% per month, while the corresponding volatility for an investor with a coefficient

of relative risk aversion of 500 is less than 2%. Most interestingly, this table shows that most of portfolio

volatility is caused by the variability of the myopic component. The fraction of total portfolio volatility

due to intertemporal hedging is very low for all investors regardless of their risk aversion: It is always

smaller than 5%. Thus while intertemporal hedging accounts for all the variability of portfolio demand

across investment horizons, myopic portfolio demand accounts for almost all of the variability of portfolio

demand over time. This helps understand why welfare losses from following a low frequency re-evaluation

policy are much smaller for highly conservative all-equity investors than for aggressive all-equity investors.

Next we turn to the welfare analysis of the case when the investable universe is expanded to include

T-bills and the 5-year bond. This is shown in Table 8, whose structure is identical to Table 6. Although we

find an identical set of patterns of welfare losses across re-evaluation frequencies, investment horizons and

29To see this note that the myopic portfolio demands add up to one, and the intertemporal hedging demands add up to

zero. Thus the total portfolio allocation to growth is just one minus the total portfolio allocation to value.
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levels of risk aversion, their magnitudes are much larger than in the all-equities case, particularly for highly

risk averse investors. For example, the welfare loss from following a strategy with an annual re-evaluation

frequency ranges from 98.9% (when  = 1) to 55.1% (when  = 10) for investors with a 25-year investment

horizon. These differences in the certainty equivalents of wealth imply maximal management monthly fees

of 1.49% and 0.27% per month, or 17.9% and 3.2% per year, respectively.

This result suggests that with an expanded investment set, infrequent re-evaluation of investment

policies is very costly to all investors when cash and bonds are also included in the menu of available

assets. It is very costly to aggressive investors because it is optimal for them to adopt highly variable

myopic portfolio demands. It is also very costly to highly conservative investors because their intertemporal

hedging demands also change as their horizon shortens and they try to change the relative allocation to

cash and bonds to synthesize the inflation-indexed bonds that best matches their investment horizon.

5 Conclusion

This paper makes several contributions to the theory and practical implementation of modern portfolio

theory. First, it examines the portfolio choice problem of a long-term investor with isoelastic utility of

wealth at a finite horizon, who faces time variation in expected returns and interest rates described by a

first-order vector autoregressive system. The paper develops closed form solutions for the problem, and

provides useful economic insights on horizon effects on portfolio choice based on the distinction between

geometric mean returns and arithmetic mean returns. We show that the optimal dynamic rebalancing

strategy is affine in the vector of state variables describing investment opportunities, with coefficients that

change with investment horizon. This solution is based on an approximation to the log return on wealth

which becomes increasingly accurate as the frequency of rebalancing increases, and it is exact in continuous

time. As such, our solution is a discretized version of the continuous time solution obtained by Liu (2007).

An important advantage of this solution is that it can be readily implemented for investment opportunity

sets with any number of assets and state variables. By contrast, existing analytical models do not allow

for simultaneous time variation in risk premia and interest rates–with the exception of the approximate

solution in Campbell, Chan and Viceira, (2003)–, and traditional numerical solution methods, which can

handle both, become difficult to apply in problems with more than a few state variables. Thus our solution

method provides a step forward toward the practical implementation of dynamic portfolio choice models

with realistically complex investment opportunity sets.

Second, we apply our method to study the practically relevant problem of value and growth investing

at long horizons. We consider two types of investors: Investors who can only invest in equities, which is

the type of investor implicit in representative agent equilibrium models, and investors who can also invest

in short-term and long-term bonds in addition to equities.
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We find that on average equity-only investors with short horizons optimally choose portfolios heavily

tilted toward value and away from growth, regardless of their risk aversion. Aggressive short-term investors

find it optimal to hold long large positions in value stocks offset by large short positions in growth stocks,

because the mean return spread between value and growth is positive, and their returns are highly positively

correlated. Highly risk averse short-term investors hold large positions in value stocks because of their

smaller return volatility and high correlation with growth. However, the optimal allocation to value

decreases dramatically–and correspondingly the optimal allocation to growth increases–for investors with

longer horizons. This effect is strongest for long-horizon, highly risk averse investors, who hold large long

positions in growth stocks. The increasing portfolio demand for growth stocks across investment horizons

is driven by intertemporal hedging motives. Growth stocks are better suited than value stocks to hedge

against adverse changes in investment opportunities in the equity market, because they are more highly

negatively correlated with changes in aggregate stock discount rates than value stocks are. Thus long-

horizon “representative” investors find value stocks riskier than growth stocks, and see the unconditional

value spread as a risk premium for bearing this risk.

We also consider investors who can choose among value stocks, growth stocks, cash, and long-term

bonds. In this case, we find that investors willing to hold equities in their portfolios still increase their

allocation to growth stocks as their investment horizon lengthens. This demand is once again driven by

intertemporal hedging motives. However, in this case they have the ability to increase their portfolio

demand for growth stocks without sacrificing their exposure to value stocks. We find that the active value

tilt–relative to the aggregate market exposure–of these investors remains fairly stable across investment

horizons. These investors increase their allocation to growth stocks as investor horizon lengthens as part

of their desire to optimally increase their aggregate stock exposure. As we consider increasingly risk averse

investors, they shift out of equities and into fixed income instruments. Short-horizon, highly risk averse

investors hold large positions in cash, while long-horizon highly risk averse investors hold large positions

in long-term bonds.

Third, we compare the welfare loss to investors from using constrained portfolio rules instead of the

unconstrained dynamic rebalancing strategy. We consider the welfare loss from infrequent re-evaluation

of portfolio policies relative to the optimal dynamic strategy as we vary the horizon and re-evaluation

frequencies. For all-equity investors, we find that the welfare losses from infrequent rebalancing are sig-

nificant for long-horizon investors with low risk aversion coefficients. By contrast, moderately risk averse,

long horizon all-equity investors do not face large welfare losses from adopting asset allocation policies

that are reevaluated infrequently. For long-horizon investors who can invest in equities, bonds, and cash,

welfare losses from adopting investment policies with infrequent re-evaluation of portfolio weights are large,

regardless of their risk aversion coefficient.

This paper develops a flexible analytical framework for the study of dynamic portfolio choice problems

with a large number of assets and state variables. This flexibility is enhanced by modeling investment
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opportunities as a VAR(1), which is extremely easy to estimate from data. However, the model has

important limitations that should be kept in mind. First, the model ignores intermediate consumption or

labor income, which are relevant for individual investors. Campbell, Chan, and Viceira (2003) also study

a high-dimensional portfolio choice problem with intermediate consumption, but their solution is accurate

only when the optimal consumption-wealth ratio is not too variable. Second, our model does not consider

short-sales or borrowing constraints. Allowing for either of these constraints would take us outside the

realm of analytically tractable models, and would require a fully numerical solution which might be difficult

to implement in high-dimensional problems. Constraints typically ameliorate the extreme positions that

unconstrained models sometimes recommend based on the capital market assumptions of the investor,

but they do not often change the direction of those recommendations. Thus an unconstrained solution

is an essential step in any asset allocation problem, since it allows for an examination of the economic

implications of the investor’s view of investment opportunities. Third, when the VAR parameters are

estimated from data, we assume that investors take them at face value, ignoring estimation uncertainty

or learning (Brennan 1998, Xia 2001). Of course, one could consider investors who weight the empirical

likelihood function with priors that are not fully informative. Previous research suggests that, as long as

investor’s priors are not completely diffuse, allowing for parameter uncertainty typically results in portfolio

allocations which are a smoothed version of the allocations that result from ignoring it (Kandel and

Stambaugh 1996, Barberis 2000, Wachter and Warusawitharana 2005). Investigation of highly dimensional

models with labor earnings uncertainty, portfolio constraints, and parameter uncertainty and learning are

important directions for future research.
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A Appendix: Model setup

In this section we introduce the VAR(1) specification describing the evolution of the risky asset returns and the state variables

used to forecast them. We then present the Campbell-Viceira (2003) approximation to the log portfolio return, state the

formulas relating the single-period VAR moments to their long-horizon counterparts, and introduce the selector matrix notation

used in the ensuing derivations.

A.1 VAR(1) Model

The vector being modeled as a first order auto-regression, z+1, is comprised of the log return on the benchmark asset (1+1),

the excess log returns on the  risky assets computed in relation to the benchmark asset (x+1) and the  state variables

(s+1), which characterize the investment opportunity set and are assumed to have predictive power for the asset returns. The

dynamics of the vector auto-regression are given by:

z+1 = Φ0 +Φ1z + v+1 (24)

where z+1 is:

z+1 =

 1+1

x+1

s+1

 (25)

The VAR(1) model is parameterized by: an (1++)× 1 vector of intercepts - Φ0, and an (1++)× (1++) matrix

of slope coefficients - Φ1. The (1 + +) × 1 vector of shocks v+1 has a mean zero multivariate normal distribution with
covariance matrix:

Σ =

 21 01 01
1 Σ Σ0



1 Σ Σ

 (26)

A.2 Portfolio return approximation

Following Campbell and Viceira (QJE 1999), we approximate the log return on the portfolio as:

+1 = 0x+1 + 1+1 +
1

2
0

2 −Σ


(27)

where 2 ≡ (Σ), is the vector consisting of the diagonal elements of Σ, the variances of the excess returns. The

accuracy of this approximation increases with the rebalancing frequency, and is exact in the limit of continuous trading.

A.3 Conditional K-period moments

In order to assess the value an agent places on the ability to re-balance his portfolio at intermediate dates, when his objective

is to maximize the utility of terminal wealth, it is necessary to consider some benchmark portfolio strategies where the

opportunity for re-balancing is restricted. The two most intuitive cases are: one period (myopic) portfolio choice based on

K-period return moments and a strategy in which the portfolio weights are chosen at inception and held constant across time

(i.e. re-balanced each period to fixed proportions). Because we examine portfolio choice decisions over relatively long horizons

the latter strategy is more plausible, as agents are unlikely to allow their weights to drift significantly without intervening.

34



Furthermore, our analytical solutions are based on an approximation to the log portfolio return, which is only accurate at

short horizons.

Both of the benchmark strategies require the computation of the conditional K-period moments of the VAR variables,

and we present these results here for completeness:30





=1

z+


=


−1
=0

( − )Φ
1


Φ0 +



=1

Φ

1


z (28)

 



=1

z+


=  



=1


−
=0

Φ

1+


(29)

In the important case of no predictability (Φ1 = 0) it is trivial to verify that the moment equations simplify to:

1






=1

z+


= Φ0

1


 



=1

z+


= Σ (30)

A.4 Selector matrix notation

In order to facilitate matrix operations in the remainder of the derivations we introduce the selector matrix notation. A selector

matrix is simply a matrix that, when post-multiplied by the target matrix, returns a set of rows and columns from the target.

A selector matrix (operator), H, has equal row and column size as the target matrix and is comprised of zeros and ones. An

operator with a single subscript, e.g. H, selects the rows corresponding to the set of variables  from the target matrix; an

operator with a double subscript H first selects the rows corresponding to variable  and then the columns corresponding to

variable . In other words if we denote the target matrix T, the double selection operation can be expressed as:

HT = (H(H(T))
0)0

Further, we denote the result of selecting the rows and columns corresponding to the set of variables  from the target matrix,

T, as follows:

HT = T

If the target matrix already has a subscript (e.g. Φ0 or Φ1) the selected rows and columns will be indicated with a superscript.

30A detailed derivation can be found in Campbell and Viceira (2005).

35



B Appendix: The optimal dynamic strategy

The K-period dynamic portfolio choice problem can be solved, without loss of generality, by a recursive extension of the

solution for the optimization problem of the last two periods. In order to arrive at the recursive solution we proceed in two

steps. First we derive the portfolio rule in the last period (the base case for policy function recursion) and the associated value

function (the base case for the value function recursion). Then we solve the problem in the preceding period, as a function of

the value and policy function coefficients from the last period. This enables us to isolate the recursive relationship linking the

policy function and value function recursions for two adjacent periods.

For the two period case, the investor’s objective remains to maximize:

+−2


1

1− 
 1−

+


=

1

1− 
 1−

+−2+−2

(1 ++−1)

1− (1 ++)
1−

=
1

1− 
 1−

+−2+−2 [exp {(1− ) +−1}+−1 [exp {(1− ) +}]]

with respect to the sequence of portfolio choices {(2)+−2 
(1)
+−1}. The control variables are indexed by the time at which

they are to be applied (subscript) and the time remaining to the horizon (superscript). This convention will allow us to

distinguish the fact that while the value of the portfolio weight vector will depend on the realization of the state vector, the

characterization of the optimal dynamic policy will only depend on the time remaining to the horizon,  .

B.1 Time + − 1 ( = 1)

B.1.1 Policy function

The (+ − 1) objective function remains unchanged relative to the problem we considered in the previous section:

max

(1)
+−1

+−1 [exp {(1− ) +}] ≡ max

(1)
+−1

exp


(1− )+−1 [+ ] +

1

2
(1− )2  +−1 [+ ]



Using the selector matrix notation the first two moments of the portfolio return are now given by:

+−1 [+ ] = 
(1)0
+−1H (Φ0 +Φ1z+−1) +H1 (Φ0 +Φ1z+−1) +

1

2

(1)0
+−1


2 −Σ

(1)
+−1


 +−1 [+ ] = 

(1)0
+−1Σ

(1)
+−1 + 21 + 2

(1)0
+−11

After substituting the moments into the objective function and simplifying we obtain the following first order condition:

H (Φ0 +Φ1z+−1) +
1

2
2 −Σ

(1)
+−1 + (1− )


Σ

(1)
+−1 + 1


= 0

Assuming that the Σ is non-singular this equality is solved by:


(1)
+−1 =

1


Σ
−1



H (Φ0 +Φ1z+−1) +

1

2
2 + (1− )1


(31)

The optimal portfolio can then be written as a affine function of the z+−1 vector and can be expressed as:


(1)
+−1 = 

(1)
0 +

(1)
1 z+−1 (32)
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where:


(1)
0 =

1


Σ
−1



Φ

0 +

1

2
2 + (1− )1


(33)


(1)
1 =

1


Σ
−1
Φ


1 (34)

B.1.2 Value function

We begin the derivation of the last period value function by substituting (32) into the expression for the portfolio return

moments in order to express them as a function of the 
(1)
 coefficients:

+−1 [+ ] =


(1)
0 +

(1)
1 z+−1

0
(Φ

0 +Φ

1z+−1) +


Φ
1
0 +Φ

1
1z+−1


+

+
1

2



(1)
0 +

(1)
1 z+−1

0 
2 −Σ



(1)
0 +
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= Φ
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0
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1
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0
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+ z
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1
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0
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+

+
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0
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Φ
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1
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0
+−1
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1


Φ
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2
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1
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+ z
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
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Since each summand in the above expressions is a scalar we are free to replace any component with its transpose. This

will enable us to gather terms on z
0
+−1 and z+−1. Substituting these expressions into the ( + − 1) objective leads to

an expression which takes the form of an expectation of an exponential polynomial of the state vector and can be solved in

closed form to yield the maximized value function:

+−1

exp


(1− ) ∗+


= exp


(1− )



(1)
0 +

(1)
1 z+−1 + z

0
+−1

(1)
2 z+−1


(35)

where:


(1)
0 ≡ Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2


+
1− 

2


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
− 

2

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0 (36)


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1 ≡ Φ

1
1 +
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1 − Σ
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
+


Φ
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0

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1 (37)


(1)
2 ≡ 

(1)0
1


Φ

1 − 

2
Σ

(1)
1


(38)

In order to retain the generality of the formulae we refrain from substituting in period specific values for the coefficients of

the optimal portfolio (e.g. 
(1)
0 and 

(1)
1 ). By establishing the general form of the relationship between the value and policy

function coefficients in adjacent periods we will be able to adapt the solution to a general multi-period setting without having

to do any additional derivations.
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B.2 Time + − 2 ( = 2)

B.2.1 Policy function

The (+ − 2) problem involves the choice of the portfolio 
(2)
+−2 which maximizes the following objective:

 1−
+−2
1− 

+−2

exp {(1− ) +−1} exp


(1− )



(1)
0 +
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1 z+−1 + z

0
+−1

(1)
2 z+−1


(39)

Since the prefactor involving +−2 and  does not affect the optimization problem, we drop it in subsequent expressions in

order to economize on notation. We begin the derivation of the optimal policy function by making use of the Campbell-Viceira

approximation to express the time (+ − 1) log portfolio return in terms of the z+−1. This allows us to collect terms in
the exponential and compute its expectation.

The (+ − 1) log portfolio return can be approximated by:
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2

(2)0
+−2


2 −Σ

(2)
+−2


=


1 

(2)
+−2 0


z+−1 +

1

2

(2)0
+−2


2 −Σ

(2)
+−2


which - after substituting into the objective function and dropping the prefactor - yields:

+−2

exp


(1− )

1
2

(2)0
+−2


2 −Σ

(2)
+−2


+

(1)
0 +



(1)
1 +


1 

(2)
+−2 0


z+−1 +

+z
0
+−1

(1)
2 z+−1


(40)

From the point of view of the investor at time ( + − 2) only the last two summands in the exponential are random. The
computation of the expectation can therefore be simplified by focusing on the random components. We therefore focus on

evaluating the following expression given the investor’s choice of 
(2)
+−2:

+−2

exp


(1− )



(1)
1 +


1 

(2)
+−2 0


z+−1 + z

0
+−1

(1)
2 z+−1


(41)

The result of this computation is then substituted back into (40) to obtain the expectation of the value function conditional

on the investor’s portfolio choice decision, which is then maximized over 
(2)
+−2.

Since the distribution of z+−1 conditional on time (+ − 2) information is :

z+−1|+−2 ∼  (Φ0 +Φ1z+−2Σv)

it is clear that the evaluation of (41) is tantamount to computing the expectation of an exponential of a quadratic polynomial

in a normal random variable. We can proceed from here in one of two ways depending on whether we use the continuous

time approximation to (41) or not. We present the solutions for both scenarios, but we elect to focus on the continuous-

time approximation since this approach is complementary to the continuous-time approximation to the portfolio return used

throughout the paper.
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In order economize on space we first introduce the following notation:


(2)
1 ≡ (1− )

 1


(2)
+−2
0

+ (1− )
(1)0
1


(2)
2 ≡ (1− )

(1)
2

which, when combined with the conditional distribution of z+−1|+−2, allows us to re-express (41) as:

+−2

exp



(2)0
1 z+−1 + z

0
+−1

(2)
2 z+−1


= +−2


exp



(2)0
1 (Φ0 +Φ1z+−2 + v+−2) + (42)

+(Φ0 +Φ1z+−2 + v+−2)
0 (2)

2 (Φ0 +Φ1z+−2 + v+−2)


Inspection of this equation makes immediately clear that the terms appearing in the exponential are either constants, linear

combinations of the v+−2 shocks or quadratic forms in v+−2 (i.e. the term v0+−2
(2)
2 v+−2). We can further reorder

the terms in equation (42) as follows

+−2 [exp (·)] = exp


(2)0
1 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)
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
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
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

(2)0
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0
+−2

(2)
2 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0 (2)
2 v

0
+−2 +

+ v0+−2
(2)
2 v+−2


= exp



(2)0
1 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0 (2)
2 (Φ0 +Φ1z+−2)


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
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

(2)0
1 v+−2 + v

0
+−2

(2)
2 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0 (2)
2 v+−2


× exp


v
0
+−2

(2)
2 v+−2


= exp



(2)0
1 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0 (2)
2 (Φ0 +Φ1z+−2)


×+−2


exp


v
0
+−2

(2)
2 v+−2


× exp



(2)0
1 + 2 (Φ0 +Φ1z+−2)

0 (2)
2


v+−2


 (43)

where we have introduced the convention that any matrix annotated with a tilde is to be interpreted as the average of the

non-tilde matrix and its transpose. For example:

(2)
2 ≡ 1

2



(2)
2 + 

(2)0
2


Clearly, all such matrices are symmetric by construction. The tilde convention is introduced to ensure that the validity of our

results does not hinge on the symmetry of the underlying matrices - in this case 
(2)
2 . However, whenever we show that the

underlying matrix is symmetric we drop the tilde notation to avoid redundancy since in those cases the underlying-matrix and

the tilde-matrix are identical.

There are two approaches that we can adopt to evaluate the expectation operator in equation (43). First, we can

introduce an additional approximation which is exact in continuous time and - in this sense - complements the portfolio return

approximation; second, we can simply evaluate the expectation by “completing the square" of the expression in the exponential,

following CCV (2003). We present both results for completeness even though they provide empirically indistinguishable results

with return data measured at the monthly frequency.

Complementary approximation

We begin by presenting the complementary approximation, which we utilize to obtain the value of the first expectation.

To arrive at our result we simply rely on the fact that all terms of order exceeding  have vanishing probability limits as the
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time interval shrinks to zero. Thus in the limit of continuous time, only the linear terms in equation (43) remain random.

More precisely, the linear terms are of order , while the quadratic terms are of order  (i.e. asymptotically they are

deterministic). Thus

lim
∆→0

exp

v
0
+−2

(2)
2 v+−2


 = exp


tr(

(2)
2 Σ)




and equation (43) becomes

exp


(2)0
1 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0 (2)
2 (Φ0 +Φ1z+−2) + tr(

(2)
2 Σ)


×+−2


exp



(2)0
1 + 2 (Φ0 +Φ1z+−2)

0 (2)
2


v+−2


(44)

Fortunately, the expectation in (44) is nothing more than an expectation of a log-normal random variable, and is given by

+−2

exp



(2)0
1 + 2 (Φ0 +Φ1z+−2)

0 (2)
2


v+−2


=

= exp


1

2



(2)0
1 + 2 (Φ0 +Φ1z+−2)
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2

0
Σ



(2)0
1 + 2 (Φ0 +Φ1z+−2)

0 (2)
2


(45)

Combining (44) and (45) we see that in the continuous-time limit (41) is equal to:

lim
∆→0

+−2

exp



(2)0
1 z+−1 + z

0
+−1

(2)
2 z+−1


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
tr(

(2)
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1
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
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1 Σ
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1


(46)

where


(2)
0 = 

(2)0
1 (Φ0 +Φ1z+−2) + (Φ0 +Φ1z+−2)

0(2)
2 (Φ0 +Φ1z+−2)


(2)
1 = 

(2)0
1 + 2(Φ0 +Φ1z+−2)

0 (2)
2 

Exact evaluation

Had we elected not to rely on the continuous-time approximation to the exponential quadratic term a closed-form solution

would still be available. In particular, the results derived in CCV (2003) provide a direct route to the computing the expectation

in (41). Using the previously introduced notation we can apply equation (46) from the technical appendix to CCV (2003) to

arrive at the following expression:

+−2

exp



(2)0
1 z+−1 + z

0
+−1

(2)
2 z+−1


=

|Σ|− 1
2Σ−1 − 2(+−2)

2

 12 exp


(+−2)
0 +

1

2

(+−2)
1


Ω
(1)
−1


(+−2)0
1


(47)

where we have additionally introduced 
(2)
2 = 

(2)
2 and

Ω
(1) ≡


Σ
−1
 − 2(2)

2

−1
=

Σ
−1
 − 2(1− )

(1)
2

−1
 (48)

The similarities and differences between equation (46) and equation (47) are immediate.

Optimal portfolio policy

With (46) or (47) in hand, we can replace the (conditional) expectation of the random component of the value function,

(41), with a function that only depends on 
(2)
+−2 and the time (+ − 2) state vector. Since equations (46) and (47) are

functionally identical, the derivation and the form of the solution under each is identical–and numerically indistinguishable

in our empirical calibration exercise with return data measured at the monthly frequency. We now derive the solution implied
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by (47), and state the solution implied by (46).

To derive the optimal portfolio rule, we economize on notation by dropping the prefactor arising from the computation of

the expectation of the exponential polynomial (47), since constant prefactors do not affect the solution to the maximization

problem.31 This allows us to reformulate the problem facing the investor at time (+ − 2) as:

max

(2)
+−2


(1− )


1

2

(2)0
+−2
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1 Ω

(1)
(+−2)0
1



Taking first derivatives with respect to the vector of portfolio weights we arrive at the following first order condition for


(2)
+−2:

0 = (1− )


Φ

0 +Φ
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
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
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1

+−2

0 Ω(1)
(+−2)0
1

Given the definition for 
(2)
1 , we can relate its derivative with respect to the portfolio allocation to the risky asset excess

return selector matrix (i.e. the selector matrix which returns the rows denoted by x):


(+−2)0
1

+−2
= (1− )

 0
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


(+−2)0
1

+−2

0
= (1− )H

This ultimately leads us to the following form of the first order condition:

0 = Φ

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
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
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1
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2 −Σ
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
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1 +

+ 2Ω(1)

(1)
2 (Φ0 +Φ1z+−2)


=


(1− )Ω(1)

 −Σ



(2)
+−2 +Φ


0 + (1− )

Ω(1)
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Ω(1)




(1)0
1 + 2 (1)

2 Φ0


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+
1

2
2 +


Φ

1 + 2(1− )Ω(1)


(1)
2 Φ1


z+−2

Solving the first order condition yields an expression for the optimal portfolio holding at time ( + − 2) in the form of an

affine function of z+−2:


(2)
+−2 = 

(2)
0 +

(2)
1 z+−2 (49)

where:


(2)
0 =


Σ − (1− )Ω(1)



−1 
Φ

0 +

1

2
2 + (1− )

Ω(1)
1 +

Ω(1)




(1)0
1 + 2 (1)

2 Φ0


(50)


(2)
1 =


Σ − (1− )Ω(1)



−1 
Φ

1 + 2(1− )Ω(1)


(1)
2 Φ1


(51)

31While dropping the prefactors arising from the evaluation of the expectation does not affect the choice of the optimal

portfolio, it will affect the value function for the problem. By keeping track of these prefactors it is possible to derive a

closed-form expression for the value function, and consequently, conduct an extensive welfare analysis.

41



Similar computations based on (46) lead to the following expression:


(2)
0 =

1


Σ
−1



Φ

0 +

1

2
2 + (1− )


Σ1 +Σ



(1)0
1 + 2 (1)

2 Φ0


(52)


(2)
1 =

1


Σ
−1



Φ

1 + 2(1− )Σ

(1)
2 Φ1


(53)

It is important to note that (52) and (53) are identical to (50) and (51), except that Ω(1) is replaced with Σ.

B.2.2 Value function

In order to to complete the derivation of the general recursive solution we still need to develop the relevant expressions for

the coefficients in the maximized value function, 
(2)
 . This will enable us to determine the relationship with the preceding

values of the 
(1)
 and 

(1)
 coefficients. Substituting the optimal portfolio allocation for (+ − 2) into the value function,

(39), and omitting any prefactors multiplying the expectation we obtain:
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where:
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
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
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Ω(1)0
 +Φ

0
0Ξ

(1)0




(1)
1 +

+ (1− )

4Φ

0
0
Λ(1) +Ξ

(1)
1 +

(1)0
0 Ξ

(1)
 +

(1)
1 Ξ

(1)

Φ1 (56)


(2)
2 = 

(1)0
1


Φ

1 − 1

2


Σ − (1− )Ω(1)





(1)
1


+Φ

0
1



(1)
2 + 2(1− )Λ(1)


Φ1 +

+ (1− )Φ0
1Ξ

(1)0
 

(1)
1 (57)

where we have defined the auxiliary matrices Λ(1) = (1)
2 Ω(1) (1)0

2 , Γ(1) = 2 (1)
2
Ω(1) and Ξ(1) = Γ(1)

0
.

In the limit of continuous-time we obtain a set of simplifications analogous to those appearing in the derivation of the

policy function. In particular, making the relevant substitutions we find the following expressions for the value function
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coefficients:


(2)
0 = Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2


+
1− 

2


Σ11 + 2

(1)0
0 Σ1


− 

2

(1)0
0 Σ

(1)
0 +

(1)
0 +



(1)
1 +Φ

0
0

(1)
2


Φ0 +

+ (1− )
(1)
1


Σ
0
1 +

1

2
Σ

(1)0
1 +Σ

0


(1)
0


+ (1− )Φ0

0


2Λ(1)

Φ0 +Ξ
(1)0
1 +Ξ

(1)0
 

(1)
0 + Γ

(1)
(1)0
1


(58)


(2)
1 = Φ

1
1 +

(1)0
0 (Φ

1 − Σ)
(1)
1 +


Φ

0 +

1

2
2 + (1− )Σ1

0

(1)
1 +

+


(1)
1 + 2Φ0

0
(1)
2


Φ1 + (1− )



(1)
1 Σ

0
 +Φ

0
0Ξ

(1)0




(1)
1 +

+ (1− )

4Φ

0
0
Λ(1) +Ξ

(1)
1 +

(1)0
0 Ξ

(1)
 +

(1)
1 Ξ

(1)

Φ1 (59)


(2)
2 = 

(1)0
1


Φ

1 − 

2
Σ

(1)
1


+Φ

0
1



(1)
2 + 2(1− )Λ(1)


Φ1 + (1− )Φ0

1Ξ
(1)0
 

(1)
1 (60)

where we have defined the auxiliary matrices Λ(1) = (1)
2 Σ

(1)0
2 , Γ(1) = 2 (1)

2 Σ and Ξ
(1) = Γ(1)

0
.

B.2.3 The general recursive solution

Since we have refrained from substituting any period specific values in the derivation of the time ( +  − 2) formulas of
the policy and value function coefficients, the results of the previous section provide the complete characterization of the link

between the policy and value functions in any two adjacent periods. In other words, the link between the coefficients governing

policy and value functions in periods () and ( − 1), is exactly the same as the link between periods (2) and (1). Therefore
the general recursive solution is obtained simply by making the following replacements:

(1)→ ( − 1) and (2)→ ()

in the recursive formulas for the policy function (eqs. (50) and (51)) and value function coefficients (eqs. (55), (56) and (57)).

The base cases for the recursions in the policy and value function coefficients are given by, (eqs. (33) and (34)) and (eqs. (36),

(37) and (38)), respectively. These two sets of recursions, along with their base cases, provide a complete characterization of

the optimal dynamically consistent portfolio policy.

B.2.4 Matrix symmetry

Having derived the general solution we now check whether any further simplification is possible as a result of the symmetry of

the matrices in the policy and value function recursions. In particular, throughout the derivations we used the tilde convention

to assure that our results would be robust to any underlying matrix non-symmetries. Here we verify that the tilde notation

can indeed be dropped.

The matrices which were affected by the tilde notation are 
()
2 , 

()
2 and Ω(1). However, as can be seen directly from

the derivation the second two matrices are merely transformations of the corresponding 
()
2 matrices. Therefore if we can

ascertain that 
()
2 is symmetric then so will 

()
2 and Ω(1). In order to ascertain this fact we need to show that 

(1)
2 is

symmetric and the recursion relating 
()
2 to 

(−1)
2 preserves this symmetry. The first fact is readily established since:


(1)
2 ≡ 

(1)0
1


Φ

1 − 

2
Σ

(1)
1


=

1

2
Φ
0
1 ΣΦ


1

which is clearly symmetric.
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B.3 Special cases

To gain additional intuition regarding the solution and to confirm its validity we examine two corner cases:  = 1 and  →∞.
Below we present the simplified forms of the base cases and recursive relationships:

1. Myopic portfolio choice. Substituting in  = 1 into the general relationships derived in the previous two sections

results in the following expressions. The portfolio choice policy coefficients evolve according to:


()
0 = Σ

−1



Φ

0 +

1

2
2


∀


()
1 = Σ

−1
Φ


1 ∀

since:

Ω
(1) = Σ ∀

Consequently, the base case for the policy function recursion becomes:


(1)
0 = Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2 − 1

2
Σ

(1)
0


= Φ

1
0


(1)
1 = Φ

1
1 +

(1)0
0


Φ

1 −Σ

(1)
1


+


Φ

0 +

1

2
2

0

(1)
1 = Φ

1
1 +


Φ

0 +

1

2
2

0
Σ
−1
Φ


1


(1)
2 = 

(1)0
1


Φ

1 − 1

2
Σ

(1)
1


=
1

2
Φ
0
1 Σ

−1
Φ


1

and the recursive relationship itself is given by:


()
0 = Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2 − 1

2
Σ

(−1)
0


+

(−1)
0 +



(−1)
1 +Φ

0
0

(−1)
2


Φ0

= Φ
1
0 +

1

2


Φ

0 +

1

2
2

0
Σ
−1



Φ

0 +

1

2
2


+

(−1)
0 +



(−1)
1 +Φ

0
0

(−1)
2


Φ0


()
1 = Φ

1
1 +

(−1)0
0


Φ

1 − Σ

(−1)
1


+


Φ

0 +

1

2
2

0

(−1)
1 +



(−1)
1 + 2Φ0

0
(−1)
2


Φ1

= Φ
1
1 +


Φ

0 +

1

2
2

0
Σ
−1
Φ


1 +



(−1)
1 + 2Φ0

0
(−1)
2


Φ1


()
2 = 

(−1)0
1


Φ

1 − 1

2
Σ

(−1)
1


+Φ

0
1

(−1)
2 Φ1 =

1

2
Φ
0
1 Σ

−1
Φ


1 +Φ

0
1

(−1)
2 Φ1

2. Infinite risk aversion ( → ∞). In order to examine the asymptotic behavior of the recursive relationships deter-
mining portfolio choice it is useful to first focus on the order of the terms in , 


−


. Terms for which  ≥ 1 will

disappear in the limit, those with  = 0 will yield constants, and those with   0 will diverge. Intuitively, we expect

that while terms in the value function recursion may diverge those in the portfolio policy functions will not. Since the

value function is an exponential polynomial function, divergence to negative infinity is permissible as it indicates that

the value of the problem tends to zero.

We begin with the base case for the policy function recursion. It is immediate that the terms, 
(1)
0 , and 

(1)
1 , are of

order (1) and (−1). In particular we obtain the following limits:


(1)
0 → −Σ−11 

(1)
1 → 0

A similar examination for the base case of the policy function recursion reveals that, 
(1)
0 has order () and diverges
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to negative infinity, 
(1)
1 has order (1) and converges to:


(1)
1 → Φ

1
1 − 01Σ

−1
Φ


1

Lastly, 
(1)
2 is of order (−1) and hence converges to zero. With these results we can infer that Ω(1) will be (1) in the

coefficient of risk aversion and, consequently, each iteration will lead to a non-negligible adjustment to the covariance

matrix of the shocks. In particular we have that:

Ω(1) →

Σ
−1
 +Φ

0
1 Σ

−1
Φ


1

−1
Next we proceed to the + − 2 policy function coefficients. To make the analysis easier to interpret we can write the
expressions in the following form:


(2)
0 =


1


Σ −


1


− 1
 Ω(1)



−1
1


Φ

0 +

1

2
2 +


1


− 1
Ω(1)

1 +

+Ω(1)




(1)0
1 + 2 (1)

2 Φ0




(2)
1 =


1


Σ −


1


− 1
 Ω(1)



−1
1


Φ

1 + 2


1


− 1
 Ω(1)


(1)
2 Φ1


Taking limits and noting the previously derived orders of the constituent terms leads to:


(2)
0 → −

Ω(1)


−1 Ω(1)
1 +

Ω(1)
 

(1)0
1



(2)
1 → 0

Continuing in this fashion it is possible to show that the order of each of the terms appearing in the solution is conserved

under the recursion, and therefore, that the results we just derived apply to all time periods. In particular - with a

slight abuse of limit notation - the recursion for the value function coefficients truncates to:


(2)
0 → −∞


(2)
1 → Φ

1
1 +

(1)0
0 Φ


1 +

(1)
1 Φ1 − 

(1)
1
Ω(1)0
 

(1)
1 −

− 

Ξ
(1)
1 +

(1)0
0 Ξ

(1)
 +

(1)
1 Ξ

(1)

Φ1


(2)
2 → 0

In particular, although some expressions continue to have  in them they are (1) due to the presence of offsetting

terms that are (−1), which are not fully expanded. For completeness we note that in arriving at these simplified

expressions we have made use of the fact that Λ(1) ∼ (−2), Γ(1) ∼ (−1) and Ξ(1) ∼ (−1), and hence all converge

to zero as  diverges.

Consequently, it is clear that as the agent becomes infinitely risk averse the policy function becomes decoupled from the

intercept vector, Φ0, of the vector autoregressive model. This result is similar to the optimal portfolio allocation of an

infinitely risk averse investor maximizing a mean-variance objective based on K-period moments. In fact, the portfolio

allocation at + − 1 is precisely the global minimum variance portfolio for the one-period problem.

3. No Predictability (Φ1 = 0) When returns are unpredictable the slope matrix of the VAR(1) model is identically

equal to zero. In this case the first period policy function coefficients truncate to:


(1)
0 =

1


Σ
−1



Φ

0 +

1

2
2 + (1− )1



(1)
1 = 0
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and lead to the following set of coefficients for the base case of the value function recursion:


(1)
0 = Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2


+
1− 

2


21 + 2

(1)0
0 1


− 

2

(1)0
0 Σ

(1)
0


(1)
1 = 

(1)
2 = 0

Consequently, it is easy to see that we have Ω(1) = Σ which, along with the values of the value function coefficients,

yields:


(2)
0 = 

(1)
0 

(2)
1 = 

(1)
0

Continuing, by substituting these values into the time (2) value function coefficients leads to:


(2)
0 = Φ

1
0 +

(1)0
0


Φ

0 +

1

2
2


+
1− 

2


21 + 2

(1)0
0 1


− 

2

(1)0
0 Σ

(1)
0 +

(1)
0


(2)
1 = 

(2)
2 = 0

since Λ(1) = Γ(1) = Ξ(1) = 0. Given that the portfolio rule is only affected by the 1 and 2 matrices and the fact

that the value of these two matrices only depends on their own lagged values and the lagged value of 1, one can

immediately conclude that the portfolio allocation is constant across time and uniquely determined by 0. The value

of the problem, on the other hand, is determined by 0.
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C Appendix: Temporal Aggregation of the VAR(1) model

The VAR(1) class of time-series models is closed under temporal aggregation. In other words, if zt+1 follows an VAR(1)

process, so will


=0 zt+1+i. This observation enables us to interpret our model as applying at different data frequencies, and

consequently, allows us to examine the effect of the re-balancing frequency on the agent’s welfare.

Consider the constrained version of the VAR(1) model in which the state variables forecast themselves and returns, but the

returns are forecast only by the state variables and do not have any forecasting power themselves. This system is equivalent

to the system of equations:

r+1 = Φ0 +Φ1s + v+1

s+1 = Φ0 +Φ1s + v+1

The covariance matrix of the shocks to the constrained system can be decomposed into three matrices, ΣΣ and Σ.

Now consider forecasting k-period returns at time  using the time  values of the state variables. A simple recursion

indicates that:

−1
=0

r+1+ =  ·Φ0 +Φ1 ·
−1
=0

+ +
−1
=0

v+1+ ≡ r̃+ (61)

s+ =


−1
=0

Φ

1


·Φ0 +Φ


1 +

−1
=0

Φ
−1−
1 v+1+ ≡ s̃+ (62)

From this representation it is immediate that the state variables follow an aggregated VAR(1) with the following intercepts

and slopes:

Φ̃0 = Φ0 ·
−1
=0

Φ

1 = Φ0 ·Θ() Φ̃1 = Φ


1

where we have defined a sequence of matrices parameterized by the aggregation horizon - , Θ() = (I−Φ
1) · (I−Φ1)

−1.

The covariance matrix of the k-period shocks to the state variables is given by:

 


−1
=0

Φ
−1−
1 v+1+


=

−1
=0


Φ
−1−
1 ·Σ · (Φ−1−

1 )0

≡ Σ̃ (63)

With these results we can re-express the k-period return as follows:

r̃+ =  ·Φ0 +Φ1 ·
−1
=0


Θ() ·Φ0 +Φ


1 ·  +

−1
=0

Φ
−1−
1 v+1+


+

−1
=0

v+1+

=  ·Φ0 +Φ1 ·

(I−Θ()) · (I−Φ1)

−1 ·Φ0 +Θ() ·  +
−1
=0

−1
=0

Φ
−1−
1 v+1+


+

+

−1
=0

v+1+ (64)

The form of the above expression confirms that the k-period returns also follow a first-order auto-regression with intercepts

and slopes given by:

Φ̃0 =  ·Φ0 +Φ1 · (I−Θ()) · (I−Φ1)
−1 ·Φ0 Φ̃1 = Φ1 ·Θ()
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The remaining two results that have to be established are the forms of the variance matrix of the k-period returns and the

covariance matrix of k-period returns with the k-period ahead innovation to the state variables. We begin with the variance

matrix of the k-period returns, Σ̃. From the expression for the k-period return we see that there are two components to the

shock, related to the shocks to the state variables and returns, respectively. We compute their second moments sequentially.

 


Φ1 ·

−1
=0

−1
=0

Φ
−1−
1 v+1+


=  


Φ1 ·

−1
=1


−−1
=0

Φ

1


v+



=  


Φ1 ·

−1
=1


(I−Φ

−
1 ) · (I−Φ1)

−1

v+



=

−1
=1

Φ1 ·Θ( − ) ·Σ ·Θ( − )0 ·Φ0
1

 


−1
=0

v+1+


=  ·Σ

The covariance term appearing in the variance of the k-period return is:




Φ1 ·

−1
=0

−1
=0

Φ
−1−
1 v+1+

−1
=0

v+1+


=

= 


Φ1 ·

−1
=1


(I−Φ

−
1 ) · (I−Φ1)

−1

v+


=1

v+



= Φ1 ·
−1
=1

Θ( − ) ·Σ

Hence we arrive at the following formula for the variance of the k-period return:

 


−1
=0

r+1+


=

−1
=1

Φ1 ·Θ( − ) ·Σ ·Θ( − )0 ·Φ0
1 +

+  ·Σ + 2Φ1 ·
−1
=1

Θ( − ) ·Σ ≡ Σ̃ (65)

Lastly, we turn to the covariance of the k-period shocks to the state variables and the shocks to the k-period return:




−1
=0

Φ
−1−
1 v+1+Φ1 ·

−1
=0

−1
=0

Φ
−1−
1 v+1+ +

−1
=0

v+1+


≡ Σ̃

Using the properties of the covariance operator, computing the sums and simplifying the notation using the Θ() matrices

allows us to re-express the covariance as:

Σ̃ = 



=1

Φ
−
1 v+Φ1 ·

−1
=1


(I−Φ

−
1 ) · (I−Φ1)

−1

v+ +


=1

v+



=

−1
=1

Φ
−
1 ·Σ ·Θ( − )0 ·Φ0

1 +


=1

Φ
−
1 Σ

=
−1
=1

Φ
−
1 ·Σ ·Θ( − )0 ·Φ0

1 +Θ() ·Σ ≡ Σ̃ (66)
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Ultimately, we are in position to conclude that the aggregated VAR(1) model takes the following form:
r̃+

s̃+


=


Φ̃0

Φ̃0


+


0(1+)×(1+) Φ̃1

0×(1+) Φ̃1


·

0(1+)×1

s


+ ṽ+

where the covariance matrix of the shocks to the aggregated system is given by:

Σ̃ =


Σ̃ Σ̃

Σ̃0
 Σ̃


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Table 1: Sources of time-series used in the construction of state variables and asset returns for the
VAR(1) model. The first panel provides the origin of the raw data used to estimate the model, while the second
describes the variables included in the VAR(1) along with the acronyms used in tables reporting model estimates.

Time series Source Series name
Inflation CRSP cpiret
Returns on the 30-day T-bill CRSP t30ret
Returns on the 5-yr Treasury bond CRSP b5ret
30-day T-bill yield (in percentage points) CRSP tb30yield
5-year discount bond yield (in percentage points) CRSP yield5
Returns on the value-weighted CRSP Index constructed from FF25 data -
Returns on the value stock index constructed from FF25 data -
Returns on the growth stock index constructed from FF25 data -
S&P 500 PE ratio (P/10-yr E) Shiller website -

Variable definition VAR(1) Acronym
Log ex-post real return on the 30-day T-bill t30 realret
Log excess return on the value-weighted CRSP index M-rf
Log excess return on the value stock index V-rf
Log excess return on the growth stock index G-rf
Log excess return on the 5-yr Treasury bond B5-rf
Log value/growth return spread V-G
Log ex-post real return on the growth stock index G real

The return series for the value and growth indices are constructed as a value-weighted average of the returns on
the six book-to-market/size sorted Fama-French portfolios. The weights are computed as the ratio of the market
capitalizations of the underlying portfolios to the market capitalization of the respective index (defined in the
caption to Figure 1). Hence the return on the value and growth indices at time t is defined as follows:
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Table 2: Summary statistics for variables used in VAR estimation. The dataset is comprised of monthly
data from 1952:12 to 2003:12 (613 data points).

Assets Mean (% p.a.) St. dev. (% p.a.)
Log (nominal) return on 30-day T-bill 5.07% 0.83%
Log (ex-post real) return on 30-day T-bill 1.28% 0.98%
Log return on market portfolio 10.68% 14.99%
Log return on growth portfolio 10.36% 15.50%
Log return on value portfolio 12.81% 14.20%
Log value-growth spread return 2.45% 6.74%
Log return on 5-year bond 6.46% 5.23%
State variables Mean (% p.a.) St. dev. (% p.a.)
Yield spread (5-yr Bond – 30-day T-bill) 1.31% 1.09%
Log PE ratio 2.82 0.41
Nominal yield (30-day T-bill) 4.98% 2.77%
Other Mean (% p.a.) St. dev. (% p.a.)
Log CPI 3.78% 1.15%
Growth share (in MKT portfolio) 70.18% 7.68%
Value share (in MKT portfolio) 29.82% 7.68%

Sharpe Ratio
Market portfolio (MKT) 0.449

Growth portfolio (G) 0.419
Value portfolio (V) 0.616

5-yr Bond (B5) 0.295



Table 3: Estimates of the equity-only VAR(1) system. The investable universe only includes the value
(V) and growth (G) stock portfolios. The VAR estimates are obtained using monthly data from 1952:12
to 2003:12 (613 data points). The top panel contains the estimates of the VAR coefficients with t-statistics
(round brackets) and bootstrap estimates of the 95%-confidence intervals (square brackets). The t-statistics
are computed using Newey-West standard errors with 12 lags. The bootstrap estimates are produced from
10,000 paths (with length equal to the historical sample) simulated under the assumption that the estimated
VAR process is the true data generating process. The rightmost column reports the regression R2 and
the p-value of the F-test for no predictability in parentheses. The bottom panel contains the residual corre-
lation matrix for the VAR(1) shocks; entries on the diagonal correspond to monthly residual standard deviations.

A. VAR Coefficient Estimates
G real V-G YSPR PE t30 yield t30 realret R2

G real 0.0201 -0.1319 0.0021 -0.0142 -0.2909 1.8668 4.81%
(0.45) (-1.33) (1.10) (-2.24) (-3.51) (3.39) (0.00)

[-0.0582, 0.0875] [-0.3000, 0.0368] [-0.0013, 0.0055] [-0.0344, -0.0091] [-0.5064, -0.1167] [0.7415, 2.9656]

V-G 0.0265 0.1434 -0.0006 0.0004 0.0422 -0.3958 2.46%
(1.17) (2.86) (-0.77) (0.08) (0.96) (-1.29) (0.01)

[-0.0053, 0.0575] [0.0625, 0.2067] [-0.0021, 0.0008] [-0.0036, 0.0064] [-0.0260, 0.1291] [-0.8731, 0.0906]

YSPR -0.3900 0.6553 0.8656 -0.0678 0.0160 3.3763 75.46%
(-0.64) (0.59) (34.22) (-1.20) (0.02) (0.54) (0.00)

[-1.2569, 0.5124] [-1.3595, 2.7278] [0.8120, 0.8949] [-0.2693, 0.0282] [-2.1041, 2.5877] [-10.3248, 16.9942]

PE 0.4166 -0.0448 0.0024 0.9920 -0.1407 1.0233 99.53%
(16.39) (-0.69) (2.15) (264.64) (-2.81) (2.73) (0.00)

[0.3670, 0.4609] [-0.1560, 0.0597] [0.0001, 0.0045] [0.9789, 0.9951] [-0.2775, -0.0296] [0.3029, 1.7246]

t30 yield 0.0157 -0.0028 0.0010 0.0005 0.9949 -0.1789 95.13%
(1.87) (-0.19) (3.02) (0.87) (79.78) (-2.08) (0.00)

[0.0053, 0.0256] [-0.0259, 0.0200] [0.0005, 0.0015] [-0.0007, 0.0029] [0.9539, 1.0112] [-0.3296, -0.0240]

t30 realret 0.0036 -0.0005 0.0003 0.0010 0.0262 0.2758 15.81%
(1.17) (-0.08) (2.33) (2.39) (3.94) (4.59) (0.00)

[-0.0006, 0.0080] [-0.0104, 0.0095] [0.0002, 0.0006] [0.0001, 0.0015] [0.0175, 0.0387] [0.2021, 0.3310]

B. VAR Residual Correlations and Standard Deviations
G real V-G YSPR PE t30 yield t30 realret

G real 0.0442 -0.3927 -0.0618 0.7732 -0.0240 0.1544
V-G - 0.0192 0.0384 -0.1911 -0.0550 -0.0021

YSPR - - 0.5418 -0.0268 -0.8149 0.0969
PE - - - 0.0283 -0.0247 0.1303

t30 yield - - - - 0.0061 -0.1391
t30 realret - - - - - 0.0026



Table 4: Estimates of VAR(1) system when the investable universe is comprised of T-bills, 5-year
bonds and the value and growth stock portfolios. The VAR estimates are obtained using monthly
data from 1952:12 to 2003:12 (613 data points). The top panel contains the estimates of the VAR coefficients
with t-statistics (round brackets) and bootstrap estimates of the 95%-confidence intervals (square brackets).
The t-statistics are computed using Newey-West standard errors with 12 lags. The bootstrap estimates are
produced from 10,000 paths (with length equal to the historical sample) simulated under the assumption that
the estimated VAR process is the true data generating process. The rightmost column reports the regression R2

and the p-value of the F-test for no predictability in parentheses. The bottom panel contains the residual corre-
lation matrix for the VAR(1) shocks; entries on the diagonal correspond to monthly residual standard deviations.

A. VAR Coefficient Estimates
V-rf G-rf B5-rf YSPR PE t30 yield t30 realret R2

V-rf - - - 0.0011 -0.0152 -0.2870 1.3185 3.80%
- - - (0.69) (-2.57) (-3.41) (2.67) (0.00)
- - - [-0.0018, 0.0043] [-0.0318, -0.0090] [-0.4465, -0.1200] [0.2820, 2.3012]

G-rf - - - 0.0018 -0.0151 -0.3237 1.6496 4.34%
- - - (0.93) (-2.22) (-3.69) (2.98) (0.00)
- - - [-0.0013, 0.0053] [-0.0334, -0.0082] [-0.4987, -0.1427] [0.5360, 2.7171]

B5-rf - - - 0.0022 0.0012 0.0321 0.3974 3.15%
- - - (2.71) (0.68) (1.24) (2.20) (0.00)
- - - [0.0014, 0.0037] [-0.0040, 0.0053] [0.0073, 0.1404] [0.0307, 0.7638]

YSPR - - - 0.8652 -0.0656 0.1367 2.1941 75.41%
- - - (33.88) (-1.17) (0.13) (0.35) (0.00)
- - - [0.8110, 0.8943] [-0.2867, 0.0267] [-2.0385, 2.5902] [-10.6869, 15.6692]

PE - - - 0.0025 0.9887 -0.2604 2.2314 99.32%
- - - (1.33) (167.61) (-3.32) (4.81) (0.00)
- - - [-0.0002, 0.0050] [0.9721, 0.9924] [-0.4228, -0.1345] [1.3681, 3.0533]

t30 yield - - - 0.0010 0.0004 0.9903 -0.1313 95.06%
- - - (2.99) (0.64) (76.82) (-1.70) (0.00)
- - - [0.0005, 0.0015] [-0.0008, 0.0030] [0.9502, 1.0062] [-0.2905, 0.0173]

t30 realret - - - 0.0003 0.0009 0.0252 0.2863 15.47%
- - - (2.31) (2.25) (3.83) (4.95) (0.00)
- - - [0.0002, 0.0006] [0.0000, 0.0014] [0.0162, 0.0369] [0.2129, 0.3403]

B. VAR Residual Correlations and Standard Deviations
V-rf G-rf B5-rf YSPR PE t30 yield t30 realret

V-rf 0.0404 0.8979 0.1377 -0.0575 0.6467 -0.0381 0.1063
G-rf - 0.0440 0.1132 -0.0706 0.6642 -0.0107 0.0986
B5-rf - - 0.0148 -0.0828 -0.0235 -0.5000 0.0772
YSPR - - - 0.5424 -0.0457 -0.8135 0.0940

PE - - - - 0.0340 0.0442 0.1433
t30 yield - - - - - 0.0062 -0.1306

t30 realret - - - - - - 0.0026



Table 5: Composition of the one-period tangency and global minimum variance (GMV) portfolios.

Investable universe Asset Tangency GMV
(V, G) V 572.23% 90.35%

G -472.23% 9.65%
(T-bill, V, G, B5) T-bill -726.84% 101.76%

V 730.51% -0.51%
G -434.14% -0.12%
B5 530.47% -1.13%



Table 6: Welfare simulation results for the equity-only case by horizon, risk-aversion and rebal-
ancing frequency. Panel A reports the certainty equivalents of wealth for the dynamic strategy with monthly
rebalancing, which serves as the base case for the welfare loss computations. Panels B1-B4 report the wel-
fare losses of dynamic strategies with lower rebalancing frequencies and the constant proportion strategy. The
welfare loss (η) is computed as the percentage loss in the certainty equivalent of wealth between the proposed
rebalancing scheme and the base case. Panels C1-C4 compute the maximal monthly management fee (φ) an
agent would be willing to pay in order to gain access to the dynamic monthly strategy. The fee is computed as
φ = 1 − (1 + η)

1
τ . The results are obtained by Monte Carlo simulation using 20,000 VAR paths sampled using

the method of antithetic variates, with the same path set being used to evaluate the welfare loss in all cases. The
certainty equivalent of wealth is computed by evaluating the mean utility realized across the simulated paths
and computing, WCE = u−1(E[u(W̃T )]). γ denotes the investor’s coefficient of relative risk aversion.

γ 1mo 6mo 12mo 24mo 60mo 120mo 300mo
A. Certainty Equivalent

A. Dynamic / monthly 1 2.744 2.878 3.054 3.451 4.982 9.548 81.002
2 1.013 1.080 1.168 1.364 2.154 4.567 41.200
5 1.005 1.027 1.055 1.104 1.264 1.580 3.577
10 0.999 0.990 0.978 0.937 0.841 0.810 1.160

B. Welfare loss
B1. Dynamic / quarterly 1 - -0.7% -1.4% -3.5% -8.5% -16.0% -34.3%

2 - -0.3% -0.6% -1.7% -4.4% -8.7% -19.8%
5 - -0.1% -0.2% -0.5% -2.2% -4.2% -9.7%
10 - -0.0% -0.2% 0.1% -2.0% -2.6% -3.3%

B2. Dynamic / semi-annual 1 - -1.3% -2.6% -5.4% -13.0% -23.3% -47.3%
2 - -0.6% -1.2% -2.6% -6.8% -12.9% -27.8%
5 - -0.2% -0.5% -0.7% -3.0% -6.8% -14.1%
10 - -0.0% -0.3% 0.5% -1.1% -5.5% -9.3%

B3. Dynamic / annual 1 - - -3.2% -7.0% -15.8% -28.5% -56.0%
2 - - -1.6% -3.5% -8.5% -16.1% -34.7%
5 - - -0.7% -1.0% -4.1% -9.1% -18.5%
10 - - -0.6% 0.1% -3.5% -5.6% -11.9%

C. Maximal monthly fee
C1. Dynamic / quarterly 1 - 0.11% 0.12% 0.15% 0.15% 0.15% 0.14%

2 - 0.05% 0.05% 0.07% 0.07% 0.08% 0.07%
5 - 0.01% 0.02% 0.02% 0.04% 0.04% 0.03%
10 - 0.00% 0.01% 0.00% 0.03% 0.02% 0.01%

C2. Dynamic / semi-annual 1 - 0.22% 0.22% 0.23% 0.23% 0.22% 0.21%
2 - 0.10% 0.10% 0.11% 0.12% 0.11% 0.11%
5 - 0.03% 0.04% 0.03% 0.05% 0.06% 0.05%
10 - 0.00% 0.03% 0.00% 0.02% 0.05% 0.03%

C3. Dynamic / annual 1 - - 0.27% 0.30% 0.29% 0.28% 0.27%
2 - - 0.14% 0.15% 0.15% 0.15% 0.14%
5 - - 0.06% 0.04% 0.07% 0.08% 0.07%
10 - - 0.05% 0.00% 0.06% 0.05% 0.04%



Table 7: Time-series variance of the portfolio allocation to value (V). The table presents a decompo-
sition of the time-series variance of the portfolio allocation to value (V) in the equity-only case for an investor
with relative risk aversion of γ who chooses her portfolio as if there perpetually were τ periods remaining to
the investment horizon. The table reports the total variance realized over the period 1952:12 to 2003:12 for
which VAR data is available, and the fraction of the portfolio weight variance due to the intertemporal hedging
component. Since the growth (G) portfolio weight for any horizon is defined as the residual between unity and
the value portfolio weight, the analogous variances for the growth portfolio weight are identical.

γ Variable 12mo 60mo 120mo 300mo
2 σ (αtot

V ) 406.52% 406.62% 406.62% 406.60%
σ(αh

V )
σ(αtot

V ) 0.0237 0.0231 0.0231 0.0232

10 σ (αtot
V ) 80.86% 80.89% 80.89% 80.89%

σ(αh
V )

σ(αtot
V ) 0.0383 0.0374 0.0375 0.0376

500 σ (αtot
V ) 1.62% 1.62% 1.62% 1.62%

σ(αh
V )

σ(αtot
V ) 0.0414 0.0405 0.0405 0.0406



Table 8: Welfare simulation results for the T-bills, bonds, and equities case by horizon, risk-aversion
and rebalancing frequency. Panel A reports the certainty equivalents of wealth for the dynamic strategy with
monthly rebalancing, which serves as the base case for the welfare loss computations. Panels B1-B4 report the
welfare losses of dynamic strategies with lower rebalancing frequencies and the constant proportion strategy. The
welfare loss (η) is computed as the percentage loss in the certainty equivalent of wealth between the proposed
rebalancing scheme and the base case. Panels C1-C4 compute the maximal monthly management fee (φ) an
agent would be willing to pay in order to gain access to the dynamic monthly strategy. The fee is computed as
φ = 1 − (1 + η)

1
τ . The results are obtained by Monte Carlo simulation using 20,000 VAR paths sampled using

the method of antithetic variates, with the same path set being used to evaluate the welfare loss in all cases. The
certainty equivalent of wealth is computed by evaluating the mean utility realized across the simulated paths
and computing, WCE = u−1(E[u(W̃T )]). γ denotes the investor’s coefficient of relative risk aversion

γ 1mo 6mo 12mo 24mo 60mo 120mo 300mo
A. Certainty Equivalent

A. Dynamic / monthly 1 2.831 3.478 4.399 7.133 31.178 368.769 8.608× 105

2 1.027 1.173 1.372 1.878 4.861 24.759 4481.890
5 1.011 1.065 1.135 1.288 1.918 3.916 53.223
10 1.006 1.035 1.071 1.148 1.436 2.136 10.590

B. Welfare loss
B1. Dynamic / quarterly 1 - -3.6% -6.1% -11.5% -26.0% -44.3% -77.0%

2 - -1.6% -3.1% -5.7% -13.1% -25.6% -52.8%
5 - -0.6% -1.2% -2.1% -5.1% -11.5% -28.9%
10 - -0.3% -0.6% -1.0% -2.7% -6.4% -18.9%

B2. Dynamic / semi-annual 1 - -6.4% -11.3% -21.0% -44.2% -68.8% -94.6%
2 - -2.9% -5.7% -10.9% -24.3% -44.7% -79.3%
5 - -1.1% -2.3% -4.5% -10.6% -22.0% -54.6%
10 - -0.6% -1.2% -2.2% -5.7% -11.7% -38.0%

B3. Dynamic / annual 1 - - -16.7% -30.6% -59.8% -83.3% -98.9%
2 - - -8.7% -16.5% -36.0% -60.1% -91.4%
5 - - -3.6% -7.1% -16.8% -33.3% -72.9%
10 - - -1.9% -3.6% -9.2% -19.2% -55.1%

C. Maximal monthly fee
C1. Dynamic / quarterly 1 - 0.61% 0.53% 0.51% 0.50% 0.49% 0.49%

2 - 0.27% 0.26% 0.24% 0.23% 0.25% 0.25%
5 - 0.10% 0.10% 0.09% 0.09% 0.10% 0.11%
10 - 0.05% 0.05% 0.04% 0.04% 0.06% 0.07%

C2. Dynamic / semi-annual 1 - 1.09% 1.00% 0.98% 0.97% 0.97% 0.97%
2 - 0.50% 0.49% 0.48% 0.46% 0.49% 0.52%
5 - 0.19% 0.20% 0.19% 0.19% 0.21% 0.26%
10 - 0.10% 0.10% 0.09% 0.10% 0.10% 0.16%

C3. Dynamic / annual 1 - - 1.51% 1.51% 1.51% 1.48% 1.49%
2 - - 0.75% 0.75% 0.74% 0.76% 0.81%
5 - - 0.31% 0.31% 0.31% 0.34% 0.43%
10 - - 0.16% 0.15% 0.16% 0.18% 0.27%



Figure 1: Term-structure of the annualized log population arithmetic and geometric mean excess
returns on the aggregate stock market (Mkt) and the 5-yr Treasury bond (B5).
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Figure 2: Market capitalization of value and growth stock portfolios as a fraction of total market
capitalization. The value (V) and growth (G) indices used in the VAR estimation are constructed using the data
available on Prof. Ken French’s website. We use the time series of data available for six portfolios resulting from
a intersection of two portfolios formed on size (market equity) and three portfolios formed on the ratio of book
equity to market equity. The value index is defined to include the SMHI and BIHI portfolios, as well as, one half of
the SMME and BIME portfolios. The growth index has the complementary composition and includes the SMLO
and BILO portfolios, and one half of the SMME and BIME portfolios. To construct the time series of the market
capitalizations of each of the indices we use the data on number of companies in each of the sub-portfolios (Nt) and
their average market capitalization (MEt). Thus the market capitalization of the value index index at time t is
defined as follows: MEV

t = NSMHI
t ·ME

SMHI

t + 1
2NSMME

t ·ME
SMME

t +NBIHI
t ·ME

BIHI

t + 1
2NBIME

t ·ME
BIME

t .
The market capitalization of the growth index (G) has the complementary definition.
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Figure 5: Stock market allocation and active value tilt implied by the optimal equity portfolio.
This figure decomposes the optimal allocation to value and growth stocks (Figure 4, Panel A) into an equivalent
allocation to the market portfolio and an active value tilt. The allocations are computed for investors with
γ = {5, 10, 20} who can invest in cash, bonds, and the growth and value portfolios.
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Figure 6: Mean percentage allocations to cash, bonds, the aggregate stock market, and the optimal
value tilt for investors with γ = 500.
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