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Abstract

This paper derives a methodology for the estimation of continuous-time stochastic models
based on the characteristic function. The estimation method does not require discretization of the
stochastic process, and it is simple to apply in practice. The method is essentially generalized
method of moments on the complex plane. Hence it shares the e2ciency and distribution proper-
ties of GMM estimators. We illustrate the method with some applications to relevant estimation
problems in continuous-time Finance. We estimate a model of stochastic volatility, a jump–dif-
fusion model with constant volatility and a model that nests both the stochastic volatility model
and the jump–di6usion model. We 7nd that negative jumps are important to explain skewness
and asymmetry in excess kurtosis of the stock return distribution, while stochastic volatility is
important to capture the overall level of this kurtosis. Positive jumps are not statistically signif-
icant once we allow for stochastic volatility in the model. We also estimate a non-a2ne model
of stochastic volatility, and 7nd that the power of the di6usion coe2cient appears to be between
one and two, rather than the value of one-half that leads to the standard a2ne stochastic volatility
model. However, we 7nd that including jumps into this non-a2ne, stochastic volatility model
reduces the power of the di6usion coe2cient to one-half. Finally, we o6er an explanation for
the observation that the estimate of persistence in stochastic volatility increases dramatically as
the frequency of the observed data falls based on a multiple factor stochastic volatility model.
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1. Introduction

Continuous-time mathematics has become one of the essential tools of modern
7nance. The elegant mathematics of stochastic calculus simpli7es the solution of
a wide range of important problems in 7nance. However, while continuous-time mod-
els are generally easier to solve than discrete-time models, they are also more dif-
7cult to estimate than discrete-time models due to the discrete nature of observable
data. Therefore, this paper derives an estimation methodology that expands the set of
continuous-time stochastic processes for which estimation without Euler discretization
is feasible. We call this estimation technique Spectral GMM. This name emphasizes the
fact that this technique is essentially Generalized Method of Moments constructed in
a complex (imaginary) setting, as the basis for estimation is the characteristic function
of the process.
The use of the characteristic function for parameter estimation has an important

precedent in the work of Feuerverger and McDunnough (1981a) and Feuerverger
(1990), who have developed characteristic-function based estimation techniques for
discrete-time i.i.d. and ARMA processes. 1 Working in continuous-time, Das (1996)
and Bates (1996) have also used the characteristic function in estimation problems, but
they use it to recover the density function via inversion before estimation. This paper,
as well as independent work by Singleton (2001) and Jiang and Knight (2002), shows
that this inversion is not necessary, and we can use the characteristic function directly
for estimation.
The approach in this paper, as well as in Singleton (2001) and Jiang and Knight

(2002), traces its roots to Lo’s (1988) method for estimating continuous-time models
by maximum likelihood. The key insight in this paper is to perform estimation using
the conditional characteristic function of the continuous-time process rather than its
conditional density function. The characteristic function solves the same Kolmogorov
forward and backward equations as the conditional density. However, the boundary
conditions are di6erent for the characteristic function, rendering the solution to the
characteristic function a more tractable problem. We show that estimation can be
accomplished directly o6 the characteristic function using spectral moments, via
Hansen’s (1982) GMM, rather than inverting the characteristic function to recover the
density function. Accordingly we refer to this estimation technique as simply Spectral
GMM.
The Spectral GMM estimation procedure has several important advantages. First, no

discretization of the continuous-time process is necessary for a wide class of relevant
univariate and multivariate continuous-time processes; second, this procedure can eas-
ily handle certain continuous-time latent variable models, such as the a2ne stochastic
volatility model, because the latent variable can be integrated out of the characteristic
function trivially; third, jump processes are no more di2cult to estimate than pure dif-
fusion processes using this approach. We demonstrate the versatility of our approach
by estimating two stochastic volatility models, a jump–di6usion model and a mixed

1 We thank Ken Singleton for pointing out to us the statistical literature on the empirical characteristic
function.
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stochastic-volatility, jump–di6usion model. 2 These are all models for which the con-
ditional density functions are unknown and are di2cult to handle by other methods.
We have already mentioned that Singleton (2001) and Jiang and Knight (2002) have

also suggested in independent work the use of characteristic functions for the direct
estimation of continuous-time processes. The main di6erence between the procedure
we suggest in this paper and those used in Singleton (2001) and Jiang and Knight
(2002) occurs when estimating models with latent variables—such as models with
stochastic volatility, or models with time-varying expected returns. In order to take full
advantage of conditioning information and achieve asymptotically e2cient estimates,
Singleton (2001) integrates out the latent variable in the conditional characteristic func-
tion. However, because the marginal stock return process in these latent variable mod-
els are non-Markov, integration requires using a simulation procedure, which almost
always involves discretizing the model. This discretization induces an estimation bias,
though it is likely that this bias is much smaller than the bias introduced by sim-
ply discretizing the continuous-time model for the entire estimation procedure. The
procedure suggested in this paper utilizes the unconditional characteristic function for
estimation. This has the advantage of not requiring discretization for path simulation,
and of being computationally far less demanding. However, this comes at the cost of
e2ciency in estimation. When the conditional characteristic function is known in closed
form, as it is with the general class of a2ne processes used commonly in 7nance, the
implementation of our technique is particularly simple.
Jiang and Knight (2002) suggest an estimation technique that lies in between our

technique and that of Singleton (2001). They condition on a small part of the data
rather than the entire sample path as in Singleton (2001). Then they integrate out the
joint process of the latent variable over a time block from the characteristic function.
In comparison, the procedure in this paper can be thought of as integrating out the
latent variable over an in7nitesimally small time block. Thus the e2ciency of the
Jiang and Knight (2002) procedure is greater than that achieved by the estimator in
our paper (though less than that of Singleton (2001)), while at the same time being
less computationally intensive than the Singleton (2001) estimator (though more than
ours).
While our paper avoids the need for discretizing a continuous-time process, we do

use a discrete set of moment conditions as is typical with GMM-based procedures. 3

However, we should point out that a continuum of moment conditions may also be
used, the advantage being that an estimator based on a continuum of moment con-
ditions can achieve the Cramer–Rao lower bound achievable by maximum likelihood
estimation. This approach has been pointed out in the context of discrete-time processes
by Carrasco and Florens (2000). Subsequently, Carrasco et al. (2001) has integrated
the continuum of moment conditions approach in Carrasco and Florens (2000) with

2 Some other applications of this technique include Chacko (1999) and Chacko and Viceira (1999). Chacko
(1999) uses this approach to estimate continuous-time models of the term structure of interest rates. Chacko
and Viceira (1999) use this technique to estimate a model of stochastic precision (the reciprocal of volatility)
for stock returns.

3 We thank Eric Ghysels for pointing this out and directing us to the literature utilizing a continuum of
moment conditions with GMM.
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the characteristic function-based estimation of di6usions employed in our paper, as
well as Singleton (2001) and Jiang and Knight (2002), to produce a characteristic
function-based estimation approach for di6usion processes that utilizes a continuum of
moment conditions. Carrasco et al. (2001) show through Monte Carlo simulations that
their integrated approach results in 7nite sample performance that is comparable to
maximum likelihood estimation for di6usion processes.
The organization of the paper is as follows. Section 2 shows how to derive the

partial di6erential equation (PDE) governing the characteristic function of a general
continuous-time process. Section 3 outlines the direct estimation procedure utilizing
the characteristic function. Section 4 discusses how to design Spectral GMM estimators
to attain the e2ciency of a minimum-variance estimator. Section 5, the heart of the
paper, demonstrates the versatility and ease of the procedure with several applications
relevant to 7nance. Finally, Section 6 o6ers concluding comments and directions for
further research.

2. Characteristic functions of continuous-time stochastic processes

We start by assuming that a state variable, Xt ∈R follows a jump–di6usion process
adapted to some augmented 7ltration (Ft)t¿0 in a probability space (�;F;P). Let
R denote the range of this state variable. The 7ltration is generated by a Wiener
process, Wt , and a jump (or Poisson) process, Nt(�). The jump process Nt(�) takes on
a value of one when a jump occurs and it is zero otherwise. Nt(�) is assumed to have
a constant jump frequency �. 4 The dynamics of the state variable is given by

dXt = �(Xt ; �) dt + 	(Xt ; �) dWt + Jt�(Xt ; �) dNt(�); (1)

where � is a k-dimensional vector of parameters that determine the probability distribu-
tion of Xt , and �(Xt ; �) and 	(Xt ; �) represent the drift and di6usion, respectively, of the
stochastic di6erential equation. The product Jt�(Xt ; �) represents the jump magnitude.
When a jump occurs, a draw takes place from a distribution function that determines
the value of J . This value is then multiplied by �(Xt ; �) to determine the magnitude
of the jump.
The conditional characteristic function for Xt is de7ned as


(!; �; �; Xt) = E[exp(i!Xt+�) |Xt]

= E[cos(!Xt+�) |Xt] + iE[sin(!Xt+�) |Xt]; (2)

where the second line is just the Euler expansion of the exponential of a complex
variable, �¿ 0; i =

√−1 and ! represents a real-valued dummy variable. Therefore,
the conditional characteristic function is simply the conditional expectation at time t
of the exponentiated state variable � periods ahead.

4 We use a univariate setting here for the sake of ease of exposition. However, all the results in the
paper, unless otherwise speci7ed, extend trivially to the multivariate case with multiple Wiener processes
and Poisson processes. It is also easy to extend the results to include a stochastic jump frequency. In
Section 5, we consider the bivariate setting of a stochastic volatility model to demonstrate that the univariate
results do in fact extend easily.
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The characteristic function 
(!; �; �; Xt) is the integral of a complex-valued random
variable. It can be shown that this integral is always 7nite, with 
(0; �; �; Xt) = 1
and |
(!; �; �; Xt)|6 1 for all ! (Grimmett and Stirzaker, 1992, Theorem 5.7.3).
Another important property of the characteristic function is uniqueness. If two stochas-
tic processes have the same characteristic function, then they have the same probability
distribution. Finally, we can compute all non-central moments for Xt+� from the char-
acteristic function by the formula

E[(Xt+�)n |Ft] =
1
in

dn

d!n 
(!; �; �; Xt)
∣∣∣∣
!=0

: (3)

Our procedure essentially uses the characteristic functions of continuous-time pro-
cesses to derive moment conditions, not on the real plane as indicated by (3), but
instead on the complex plane. For this procedure to be useful it needs to be shown
that the conditional characteristic function can be derived in closed-form for some class
of continuous-time processes. Papers by Bakshi and Madan (2000), Du2e et al. (2000),
and Chacko and Das (2002) have shown that conditional characteristic functions can
be derived in closed form for stochastic processes that are exponential a3ne, even
though the corresponding density functions are almost always unknown. 5 The class of
exponential a2ne processes encompass most of the stochastic processes used currently
in continuous-time 7nance.
The most widely used method for deriving characteristic functions for a continuous-

time process is to solve the associated Kolmogorov backward equation (KBE) for the
process. 6 The KBE for the process in (1) is given by

D
(!; �; �; Xt) = 0; (4)

where D represents the in7nitesimal generator for the process. In general, this equation
is a partial di6erential-di6erence equation (PDDE) which can be solved using the
boundary condition for a characteristic function:


(!; 0; �; Xt) = exp(i!Xt) (5)

Examples of deriving the characteristic function by solving the KBE for a process are
given throughout the paper. We will focus on the class of exponential a2ne processes;
however, it should be noted that the estimation approach via the empirical characteristic
function is feasible regardless of whether the characteristic function is exponential-a2ne
in form or not.

3. Spectral GMM estimation procedure

We have pointed out in Section 2 that unfortunately there are only a few continuous-
time processes for which the conditional density function is known in closed form.

5 See Du2e and Kan (1993) for a de7nition of exponential-a2ne processes.
6 See Lo (1988) for a simple description of the KBE for a process or Karatzas and Shreve (1988) for

a more rigorous treatment. Heston (1993) was the 7rst to utilize the KBE to solve for the characteristic
function of a continuous-time process in a 7nance setting.
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Since the conditional (and unconditional) densities for most processes are unknown, it
is impossible to implement a direct maximum likelihood estimation procedure and we
need to resort to indirect estimation procedures such as e2cient method of moments
(EMM) or SMM. Section 2 also shows that for a large class of these processes the
conditional characteristic function is known. Hence it would be possible to implement
maximum likelihood estimation by integrating the conditional characteristic function to
obtain the conditional density function. This indirect procedure, while theoretically pos-
sible, can be very expensive computationally, especially when both the dimensionality
of the state vector and the sample size are large.
In this section we show that we can still use the conditional characteristic function

to carry out consistent estimation of the parameter vector � using standard GMM
procedures. To see this, 7rst note that the de7nition of the conditional characteristic
function implies

E[exp(i!Xt+�)− 
(!; �; �; Xt) |Xt] = 0; (6)

for all !∈R. Eq. (6) de7nes an (in7nite) set of complex-valued moment conditions.
We can use the Euler expansion of the exponential function of a complex variable to
transform each one of these complex-valued moment conditions into the following pair
of real-valued moment conditions:

E[Re(exp(i!Xt+�)− 
(!; �; �; Xt)) |Xt] = 0;

E[Im(exp(i!Xt+�)− 
(!; �; �; Xt)) |Xt] = 0;

where Re(·) and Im(·) are real-valued operators that extract the real part and the
imaginary part of a complex number. For the pair of moment conditions above, these
operators give

Re(exp(i!Xt+�)− 
(!; �; �; Xt)) = cos(i!Xt+�)− Re(
(!; �; �; Xt));

Im(exp(i!Xt+�)− 
(!; �; �; Xt)) = sin(i!Xt+�)− Im(
(!; �; �; Xt)):

More generally, if there is a set of (real- or complex-valued) instruments available,
we have the following complex-valued unconditional moments:

E[h(X; t)⊗ �(�; !; t)] = 0; (7)

where �(�; !; t)=exp(i!Xt+�)−
(!; �; �; Xt), h(X; t)=(h1(X; t); h2(X; t); : : : ; hr(X; t))′ is
an r-dimensional vector of instruments orthogonal to �(�; !; t) and !∈R. Once again,
each of these complex-valued moment conditions imply a set of pairs of real-valued
moment conditions

E[Re(h(X; t)⊗ �(�; !; t))] = 0;

E[Im(h(X; t)⊗ �(�; !; t))] = 0:
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Choosing a 7xed grid for ! = {!1; !2; : : : ; !n} (for example, ! = {1; 2; : : : ; n}), 7 we
can stack the pairs of real-valued moment conditions as

E[G(�;X; t)] = 0; (8)

where G(�;X; t) is a (2rn× 1) vector of moment conditions,

G(�;P; t) =
[
Re(h(X; t)⊗ ”(�; t))
Im(h(X; t)⊗ ”(�; t))

]
;

and �(�; t) = (�(�; !1; t); �(�; !2; t); : : : ; �(�; !n; t))′ is an n-dimensional vector of error
terms orthogonal to h(X; t).
Thus we have transformed the set of complex-valued moment conditions given in (7)

into the set of real-valued moment conditions given in (6). This transformation allows
us to treat the characteristic-based estimation problem as a standard GMM estimation
problem as follows. Given a sample of the state variable Xt observed at discrete time
intervals, t = {t1; t2; : : : ; tT}, we can construct a sample counterpart of the expectation
on the left-hand-side of (8) as

g(�;X; T ) = 1
T

T∑
i=1

G(�;X; ti):

We de7ne the Spectral GMM (SGMM) estimator of � as the solution to

�̂SGMM = argmin
{�}

g(�;X; T )′W(�;X; T )g(�;X; T ); (9)

where W(�;X; T ) is a positive-de7nite, symmetric weighting matrix.
Therefore, the SGMM estimator of � will inherit the optimality properties of GMM

estimators, provided that the usual regularity conditions hold (Hansen, 1982). Thus,
the asymptotic variance of the SGMM estimator �̂SGMM is minimized when we choose
the following (optimal) weighting matrix:

W∗(�;X; T ) = S−1;

where S = limT→∞ TE[g(�;X; T )g(�;X; T )′]. In practice, we can replace W∗(�;X; T )
with any consistent estimate. For example, if g(�;X; T ) is serially uncorrelated, a con-
sistent estimate of W∗ is given by the inverse of

Ŝ=
1
T

T∑
i=1

G(�̂;X; ti)G(�̂;X; ti)′;

where �̂ is any consistent estimator of �. If the vector G(�̂;X; ti) is autocorrelated,
we can use a Newey-West (1987) estimate of S or any other autocorrelation and
heteroskedasticity consistent estimate. 8

7 In this paper, we typically use !=1; 2; : : : : This choice is arbitrary, but choosing these values carefully
can lead to more e2cient estimators. See Singleton (2001) for a detailed discussion of this. Furthermore,
Carrasco et al. (2001) show how to use a continuum of values for !, which in theory can allow one to
achieve the e2ciency of maximum likelihood estimation.

8 Note that if Pt is Markov, and the instruments h depend only on Pt then {G}t are serially uncorrelated.
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Given any sequence of optimal weighting matrices, the SGMM estimator has the
following properties (see Proposition 14.1 in Hamilton, 1994):

1. Consistency: �̂SGMM
p→�.

2. Asymptotic normality:
√
T (�̂SGMM − �) p→N(0;V), where V−1 =DW∗D′, and

D′ = plim

{
9g(�̂SGMM;X; ti)

9�′

}
:

4. Spectral GMM and ML estimation

Maximum likelihood (ML) estimators are globally e2cient and unbiased. Whenever
there exists an unbiased estimator whose variance attains the CramPer–Rao (CR) bound,
the ML estimator coincides with this (Silvey, 1975). GMM estimators are not generally
equivalent to ML estimators and hence they do not share with them this desirable
optimality property. However, with the use of an appropriate weighting function and
a continuum of moment conditions, GMM estimators can be made equivalent to ML
and attain the CR bound. We demonstrate that in this section using arguments adopted
from Feuerverger and McDunnough (1981a,b). We keep the discussion brief here and
refer the reader to Feuerverger and McDunnough (1981a,b) and Singleton (2001) for
further details regarding the optimal weighting function, and Feuerverger (1990) and
Singleton (2001) regarding the issue of the appropriate set of moment conditions.
To see this, note that the gradient of the likelihood function veri7es

E
[
9 logf(Xt+�; �|�; Xt)

9�

∣∣∣∣ Ft

]
=
∫ ∞

−∞

9 logf(Xt+�; �|�; Xt)
9� f(Xt+�; �|�; Xt) dXt+�

= 0: (10)

But substituting the conditional characteristic function for f(Xt+�; �|�; Xt) in (10) and
reordering terms we obtain

0 =
∫ ∞

−∞

[
1
2�

∫ ∞

−∞

9 logf(Xt+�; �|�; Xt)
9� exp(−i!Xt+�) dXt+�

]

(!; �; �; Xt) d!

≡
∫ ∞

−∞
h(!; Xt)
(!; �; �; Xt) d!;

which implies immediately the following moment condition:

E
[∫ ∞

−∞
h(!; Xt)[exp(i!Xt+�)− 
(!; �; �; Xt)] d!

]
= 0: (11)

This transformation shows that moment conditions (10) and (11) are equivalent.
This implies in turn that a GMM estimator based on the moment condition (10) will
be equivalent to a Spectral GMM estimator based on the complex-valued moment
condition (11). But the GMM estimator based on the moment condition (10) is just
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the ML estimator. Therefore, the Spectral GMM estimator based on (11) must also be
ML and globally e2cient.
Eq. (11) shows that an appropriate choice of instruments in the Spectral GMM pro-

cedure will render GMM estimates that are also globally e2cient ML estimates. These
instruments are in fact a continuum of instruments indexed by !. 9 These instruments
also depend on the particular form of the density function. However, we can still sub-
stitute h(!; t) for any consistent estimate, and the integral for a discrete partition that
is 7ne enough, and the resulting estimates will still verify (11) asymptotically.

5. Applications to %nance

In this section we present some applications relevant for 7nance for which estimation
using maximum likelihood is di2cult because an analytical expression for the density
function of the stochastic process is unknown, but for which estimation via Spectral
GMM is simple, because the characteristic function is known. Because the di6erences
between the technique in this paper and those in Singleton (2001) and Jiang and Knight
(2002) occur with latent variable models, our applications are focused exclusively on
stochastic volatility models.
We 7rst estimate a stochastic volatility model for stock prices. Next we estimate

a pure jump–di6usion model with constant volatility, and then a combined stochastic
volatility, jump–di6usion model. This combination is interesting, because it allows us
to better understand the contribution of each component to explain the excess kurtosis
and skewness observed in stock return data. We next show how Spectral GMM may
be employed in non-a2ne settings in the context of a stochastic volatility model. We
estimate a model where the di6usion term on the variance process is proportional to
variance raised to an arbitrary power, similar to the Chan et al. (1992) speci7cation
for interest rates. Finally, we also use Spectral GMM to show some evidence of the
presence of high and low frequency components in stock return volatility.
A number of papers have estimated models of the types used in this section. We

pick a representative sample of the most recent papers and we compare the results
obtained in our paper against these. The single-factor, square root stochastic volatility
model (with no jumps) has been estimated by Jiang and Knight (2002) and an earlier
(working paper) version of Singleton (2001) 10 using empirical characteristic function
estimation. Because these two papers are the closest in methodology to ours we in-
clude these in our comparison set. The results of this section will also be compared
with other recent papers estimating similar models (though with di6ering empirical

9 It should be noted, however, that in practice a continuum of moment conditions is di2cult to implement.
The decision of which moments to choose is a di2cult issue. Singleton (2001) contains a discussion regarding
this.
10 While the published version of Singleton (2001) does not contain these empirical results, we neverthe-

less thought it would be valuable to compare our empirical results to those that would be obtained from
Singleton’s (2001) procedure with the same data set. Hence, we used the empirical results that were con-
tained in earlier versions of the Singleton paper. The empirical results that are contained in these earlier
versions of Singleton (2001) can be obtained from Ken Singleton, or from the authors of this paper.
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methods), including Chernov and Ghysels (2000), Chernov et al. (2000) (CGGT),
Andersen et al. (2002), Chernov et al. (2002), and Pan (2002).

5.1. Stochastic volatility

A great deal of research in 7nance, beginning with Black (1976), has looked at the
implications of time-varying volatility for asset prices. This research includes stochastic
volatility models, such as those in Wiggins (1987), Hull and White (1987), Melino
and Turnbull (1990), Stein and Stein (1991), and Amin and Ng (1993), as well
as GARCH models, such as Engle (1982), Bollerslev (1986), Nelson (1989), and
Hentschel (1995). 11 In this section, we estimate a model of stock price dynamics
where the instantaneous volatility of the stock price is stochastic. We augment the
basic geometric Brownian motion model with a square-root model for volatility as
follows:

dSt

St
= � dt +

√
vt dWS; (12)

dvt = !(�− vt) dt + 	
√
vt dWv; (13)

where vt represents the instantaneous variance of the stock price. The parameters
�; !; �, and 	 are all constants. The instantaneous correlation between WS and Wv is
a constant ".
In this model for stock return dynamics, volatility is an unobservable stochastic

variable. To estimate the parameters of this process by traditional maximum likeli-
hood methods we would need 7rst to obtain the density function for the stock price
conditional on the current stock price and volatility. Next we would need to inte-
grate volatility out of the density function to obtain the density function for the stock
price conditional only on the current stock price. Unfortunately, there is no known
analytical expression for the conditional density function. This fact makes impossible
direct maximum likelihood estimation, and it has led to an explosion of research on
numerical methods that can be helpful to attack this problem. 12 However, all of the
methods developed so far have been computationally intensive because they have to
deal simultaneously with solving numerically for the conditional density and integrat-
ing volatility out of this density. By contrast, we can easily estimate this stochastic
volatility model using Spectral GMM, because we can derive a closed-from expression
for the conditional characteristic function of this process.

11 Nelson (1990) shows that GARCH processes converge in distribution to di6usion processes as the time
interval shrinks. Bollerslev et al. (1992) provide a comprehensive review of the use of GARCH models in
Finance.
12 Common techniques used have included GMM (and the EMM procedure of Gallant and Tauchen (1996)),

Kalman 7ltering, simulated maximum likelihood, and Bayesian estimation. The choice between these usually
becomes a tradeo6 between accuracy and computation time. See Melino and Turnbull (1990), Gallant et al.
(1997), Harvey et al. (1994), Danielsson (1994), and Jacquier et al. (1994) for examples of these estimation
methods in the context of stochastic volatility models. See Ghysels et al. (1996) for a literature review on
estimation methods associated with stochastic volatility models.
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To derive the conditional characteristic function for (12), we 7rst transform (12) so
that it satis7es the conditions in Du2e et al. (2000) and Chacko and Das (2002) for
an exponential-a2ne solution. The transformed model is given by

d log St =
(
� − 1

2
vt

)
dt +

√
vt dWS;

dvt = !(�− vt) dt + 	
√
vt dWv: (14)

The conditional characteristic function, 
(!; �; �; log St), 13 satis7es the following PDE:

D
(!; �; �; log St ; vt) = 0; (15)

where

D
=
1
2
vt

92

9 log S2

t
+ "	vt

92

9 log St9vt

+
1
2
	2vt

92

9v2t

+
(
� − 1

2
vt

)
9


9 log St

+ !(�− vt)
9

9vt

− 9

9� :

The boundary condition for (15) is given by 
(!; 0; �; log ST ; vT )=exp(i! log ST ). For
details on the derivation of this PDE and others in this paper, see Du2e et al. (2000)
or Chacko and Das (2002).
Eq. (15) has an exact solution given by


(!; �; �; log St ; vt) = exp[i! log St + A(!; �; �)vt + B(!; �; �)]; (16)

where

A(!; �; �) = 2
	2

[
u1u2eu1� − u1u2eu2�

u1eu2� − u2eu1�

]
;

B(!; �; �) = �i!�+
2!�
	2 log

[
u2 − u1

u2eu1� − u1eu2�

]
;

u1 =
1
2

[
"	i!− ! +

√
("	i!− !)2 − 	2i!(i!− 1)

]
;

u2 = "
1
2

[
	i!− ! −

√
("	i!− !)2 − 	2i!(i!− 1)

]
:

Eq. (16) is the characteristic function of the stock price conditional on the current
stock price and volatility, which is unobservable. To estimate the parameters of the

13 We are using a shortcut notation here. To be precise, we should 7rst de7ne the joint characteristic
function of the stock price and volatility as


(!1; !2; �; �; log St ; vt) = E[exp (i!1 log St+� + i!2vt+�)|log St ; vt ]

The characteristic function notation that we use throughout the paper would then be de7ned as that with !2
set equal to 0 always, i.e.,


(!; �; �; log St) ≡ 
(!1; 0; �; �; log St ; vt);
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stochastic volatility model we need 7rst to integrate out the unobservable variable out
of this function:


(!; �; �; log St) =
∫ ∞

0

(!; �; �; log St ; vt)f(vt) dvt

= exp[i! log St + B(!; �; �)]
∫ ∞

0
exp[A(!; �; �)vt]f(vt) dvt :

where f(vt) represents the unconditional density of vt . The integral
∫∞
0 exp[A(!; �; �)vt]

f(vt) dvt can simply the be thought of as a version of the unconditional characteristic
function of vt , where instead of i! we have a slightly more complicated expression in
A(!; �; �). 14 In general, any a2ne latent variable model can be estimated by following
this method of integrating the latent variable out of the characteristic function.
It is important to note that what we are calling the conditional characteristic function

in this particular example, as well as in subsequent examples involving latent variables,
is not entirely conditional in the sense that we do not condition on all of the information
available in the previous time period. Speci7cally, we do not condition on the entire
path of the stock price, but rather on the level of the stock price in the previous period.
However, due to the correlation between stock returns and volatility, the level of the
stock price alone in the previous period does not contain all the available information
about the conditional distribution of the following period’s stock price, i.e., the stock
price alone is non-Markov. 15 Therefore, the entire path that the stock price takes
to some time t contains information about the level of volatility at time t. By not
conditioning on this information we lose e2ciency, but the trade-o6 is that we gain
immensely in terms of computational speed. Singleton (2001) and Jiang and Knight
(2002) achieve greater e2ciency at the cost of greater computation time by constructing
estimators that utilize more information along the historical path of stock prices than
utilized here. 16 Finally, it is important to remember that the loss of e2ciency relative
to Singleton (2001) and Jiang and Knight (2002) occurs only with latent variable
models and not generally with observable multi-factor models or jump–di6usion based
models.
Integrating the variance vt out of the characteristic function leads to the following

expression for the characteristic function conditional only on the stock price:


(!; �; �; log St) = exp
[
i! log St + B(!; �; �)

+
2!�
	2 log

(
2!

2! − 	2A(!; �; �)

)]
: (17)

14 The conditional moment generating function, 
t(�), for any random variable, xt , satis7es the same PDE
as the characterisic function, but subject to a di6erent boundary condition given by 
t(0) = exp[!xt ]. The
unconditional moment generating function obtains as lim�→∞ 
t(�).
15 Note however that the stock price and volatility form a Markov system, but the problem in these types

of latent variable models is that volatility is unobservable. This creates the need to calculate the density of
the stock price conditional only on past stock prices.
16 Singleton (2001) uses a simulated method of moments procedure utilizing a fully conditional character-

istic function (using the entire path of stock prices), while Jiang and Knight (2002) proposes an estimator
that utilizes part (ranging from two to six prior observations) of the historical path of stock prices.
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Table 1
Parameter estimates for the stochastic volatility model
This table presents parameter estimates (standard errors) for the stochastic volatility model

dSt
St

= � dt +
√

vt dWs;t ;

dvt = !(� − vt) dt + 	
√

vt dWv;t ;

where
Corr(dWs;t ; dWv;t) = ":

The column “Daily1” represents parameter estimates using daily stock price data from 1990–1999, the
column “Daily2” represents parameter estimates using daily stock price data for 1980–2000, the column
“Weekly” represents estimates using weekly data for 1962–2000, while the column “Monthly” represents
estimates using monthly data for 1926–1997.

Parameter Daily1 data Daily2 data Weekly data Monthly data

� 0.1406 0.1121 0.1028 0.1204
(0.0573) (0.0379) (0.0239) (0.0257)

! 16.6997 14.2819 2.5371 0.6309
(4.5364) (3.2753) (2.1627) (0.3528)

� 0.0255 0.0330 0.0247 0.0371
(0.0039) (0.0021) (0.0028) (0.0051)

	 4.7148 5.1925 1.0370 0.2611
(0.5860) (0.4722) (0.1092) (0.0340)

" −0.4135 −0.6289 −0.5163 −0.6714
(0.2269) (0.2097) (0.2625) (0.4180)

With the unobservable state variable integrated out, we can now apply a Spectral GMM
procedure to estimate the parameters of the process (12)–(13) using stock price data.
Note that we can compute the n-th conditional moment of exp (i log St) by simple
substitution of !=n into (17). We can then use these moments in a conditional GMM
procedure.
Table 1 reports Spectral GMM estimates of the process (12)–(13) for the CRSP

value-weighted portfolio measured at three di6erent frequencies, monthly (from January
1926 to December 2000) and weekly (from the 7rst week of 1962 to the last week of
2000). In addition we provide estimates using daily data on the S&P 500 index from
January 1980 to December 2000 as well as from January 1990 to December 1999. 17

The daily data is provided primarily to facilitate comparison with other papers that
have estimated stochastic volatility models. It is important to note that while data
from the S&P 500 index with a daily sampling frequency is used in our paper as
well as the papers we compare amongst, all of the papers use di6ering time periods
for estimation, so the results are not entirely comparable. However, because the time

17 We use two sets of daily data for this subsection only. This is because Jiang and Knight (2002) and
Singleton (2001), the papers that are closest in methodology to ours, use data from 1990 to 1999, while the
other papers we compare with use various other time periods. By providing estimates for 1990 to 1999,
the comparisons with Jiang and Knight (2002) and Singleton (2001) will be the most direct and valid of
the comparisons we do.



272 G. Chacko, L.M. Viceira / Journal of Econometrics 116 (2003) 259–292

periods do overlap among all of the papers, we use the comparisons merely to get
a “sense” of how estimation results vary across papers.
We estimate the stochastic volatility model using the 7rst 7ve spectral moments,

i.e., for ! = 1; 2; : : : ; 5. For ease of comparing estimates produced from di6erent data
frequencies, we also set � such that the resulting parameter estimates are annualized—
for example, with monthly data, we set �=1=12 and with weekly data we set �=1=52.
With annualized parameter estimates the reader does not have to concern himself with
the frequency of the data in comparing parameter estimates; estimates produced from
di6erent data sets and di6erent sampling frequencies can be directly compared with
each other. Finally, h(·; ·) is a vector of ones.

The estimation results show that stochastic volatility is clearly an important factor
in stock price dynamics: The parameter 	, which premultiplies shocks to volatility,
is strongly statistically signi7cant both in the monthly and in the weekly data. This
parameter is important to capture excess kurtosis in the data, and its strong signi7cance
indicates the importance of this feature in stock price dynamics. Furthermore, the esti-
mate of 	 from weekly returns is much larger than the estimate from monthly returns,
while the estimate from daily returns is higher still, implying that the distribution of
daily and weekly returns has much fatter tails than the distribution of monthly returns.
The unconditional mean (�) of stock volatility is also strongly signi7cant in all three
datasets, and the estimate from weekly returns is lower than the estimate from monthly
returns.
The correlation coe2cient, ", captures skewness in the distribution of stock returns.

The negative sign indicates the presence of negative skewness in stock returns. Inter-
estingly, the correlation is larger in magnitude with monthly data than weekly data.
This suggests greater skewness in monthly returns than in weekly returns. However,
this may also occur simply because the monthly data comprises the 1926–1940 period,
in which there are many large negative returns.
The estimate for !, the rate of mean reversion in volatility, is much lower for monthly

returns than for weekly returns, while the daily return estimate is even higher. This has
strong implications for the persistence of shocks to volatility at di6erent frequencies.
The estimate of ! for weekly returns implies a half-life of a shock to volatility of
3.3 months, while the estimate with daily data implies a half-life of 0.6 months. 18

By contrast, there appears to be much more persistence when we measure returns at
a monthly frequency. In that case the estimate of ! implies a the half-life of a shock
of 13.1 months. This suggests the presence of both short and long-run components
in volatility. Section 5.5 explores this issue in detail, including the pattern of rising
estimates for ! obtained as the data frequency increases. The rising values for ! with

18 The half-life of a process is simple to compute; if we take a stochastic process at its unconditional
mean and shock the process, then the expected time it would take the process to return half way to its
unconditional mean is its half-life. For a square root process, the conditional mean of the process is given
by the expression

E(vt |v0) = v0e−!t + �(1− e−!t):

So, if we shock the process so that v0 = 2�, then the amount of time t it takes for v to get to a value of
1:5� is 1=! log 2.
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data frequency also explain why we observe 	 increasing with data frequency. As !
increases, volatility becomes less persistent; thus 	, the volatility of volatility, needs
to rise to help explain the variation of volatility observed in the data. In other words,
the drift of the volatility process explains less and less of the variation in volatility,
causing the data to load more heavily on the di6usion term in the volatility process.
In comparing our results with daily S&P 500 data (between 1990 and 1999) against

those found in Singleton (2001) and Jiang and Knight (2002), we 7nd that our results
are in line with those found in both of these papers. The only area where our results
di6er signi7cantly is in the estimate of !. Singleton (2001) and Jiang and Knight
(2002) obtain half-life estimates of between 2 and 3 days. Our estimate, on the other
hand, implies a half-life for our process of roughly 10 days. The explanation for this
di6erence is likely the fact that because Singleton’s (2001) and Jiang and Knight’s
(2002) procedures utilizes more time-series information than ours, they should be able
to capture the dynamic properties of the stochastic volatility process better. This seems
to be exhibiting itself mostly in the estimate of the mean reversion parameter. This
has important economic implications; for example, Chacko and Viceira (1999) show
that portfolio choice decisions can be very sensitive to the mean reversion parameter.
The other di6erence to note between our results and those of Singleton (2001) and
Jiang and Knight (2002) is that our standard errors are higher: this is to be expected as
our integration procedure results in a loss of information, and therefore, e2ciency. It is
di2cult to make more general conclusions about our approach versus those in Singleton
(2001) and Jiang and Knight (2002) without the use of carefully done simulation
studies; however, these studies are beyond the scope of this paper and are currently
being undertaken as part of another project.
The papers utilizing e2cient method of moments (EMM) all obtain signi7cantly

lower rates of mean reversion than us. In Andersen et al. (2002), for example, the
estimate of the half-life for the same stochastic volatility model ranges from 43 to 54
days, depending on the length of the time series. Meanwhile, Chernov and Ghysels
(2000) obtains a half-life estimate of 188 days. Similar results are found in Chernov
et al. (2002), though Chernov et al. (2002) seems to obtain slightly lower values. 19

These results, while indicating a disparity between the estimation techniques, can be
explained intuitively. As discussed above, the higher the estimate of the mean reversion
parameter, the higher the estimate of 	 that is obtained because the decrease in volatility
persistence needs to be o6set by an increase in the volatility of volatility in order to
explain the conditional volatility observed in the data. A more formal way of seeing
this is to look at the expression for conditional volatility of volatility:

Var[vT |vt] = 	2

2!
(1− e−2!(T−t))

In this expression, for a given value of conditional variance, as the estimate for ! rises,
the higher the value of 	 must be in order to match the given conditional variance.
While we obtain an estimate for ! of 14.3 (using data from 1980 to 2000), Chernov

19 These models utilize stochastic drift terms as well, thus a6ecting the estimates of volatility. E6ectively,
some of the variation in stock price that is due to volatility in our model and others is explained by the
time-varying drift, thus dampening the volatility process.
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and Ghysels (2000) estimate a value of 0.9 (using data from 1985 to 1993). Therefore,
our estimate for 	 must be higher than theirs to explain the variance of volatility. This
is why we obtain an estimate of 5.2 while theirs is 0.06. There remains a large disparity
between the two estimates, but this is likely due to di6erence in the time period covered
by the data sets. Pan (2002), utilizing an alternative estimation procedure, obtains
a half-life estimate that is in between ours and that of Chernov and Ghysels (2000);
however her volatility of volatility estimate is also in between ours and Chernov and
Ghysels (2000), as predicted.
In conclusion, the various papers estimating stochastic volatility models all seem

to agree on most parameter estimates. However, the estimates for the rate of mean
reversion, !, and the volatility of volatility, 	, seem to be di2cult to pin down
independently. These two values seem to vary widely across papers, so it would
seem that further work exploring how to better nail down these estimates would
be useful. This is particularly so due to the economic importance of these para-
meters: the rate of mean reversion has been shown to be important for portfolio
choice decisions, while the volatility of volatility is of importance in pricing derivative
securities.

5.2. Jump–di4usion process

Jump–di6usion processes are regularly used in 7nance to capture discontinuous
behavior in asset pricing. 20 Return discontinuities typically exhibit themselves in discre-
tely-sampled data in the form of excess kurtosis. In this section we estimate via a Spec-
tral GMM procedure the following jump–di6usion process for stock price dynamics
with asymmetric upward and downward jumps:

dSt

St
= � dt + 	 dZ + [exp(Ju)− 1] dNu(�u) + [exp(−Jd)− 1] dNd(�d); (18)

where � and 	 are constants, Ju; Jd ¿ 0 are stochastic jump magnitudes, and �u; �d ¿ 0
are constants that determine jump frequencies. Hence [exp(Ju)− 1] dNu(�u) represents
a positive jump and [exp(Jd) − 1] dNd(�d) represents a downward jump. Note that
Ju; Jd ¿ 0 implies that the stock price will remain non-negative. We assume that the
jump magnitudes are determined by draws from exponential distributions, with densities

f(Ju) =
1
-u

exp
(
− Ju

-u

)
; (19)

and

f(Jd) =
1
-d

exp
(
− Jd

-d

)
:

20 After introduction of continuous-time 7nancial methods by Black and Scholes (1973) and Merton (1973),
Merton (1976) pioneered the use of jump processes in continuous-time 7nance. Recent examples include
Ahn and Thompson (1988), Jorion (1988), Bates (1996), and Das and Foresi (1996).
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The combination of the Normal process plus a mixed Poisson-Exponential process
in the jump–di6usion model results in a conditional density function for St that is
unknown. In addition, with discretely sampled data, it is di2cult to tell which returns
have a discontinuous component(s) in them and which ones do not. Therefore, esti-
mating this process using the estimation procedures currently available is extremely
di2cult. Even the standard Euler discretization scheme does not work here because the
jump term, which contains Poisson and Exponentially distributed components, cannot
be well approximated with a Normally distributed shock.
By contrast, it is straightforward to derive the conditional characteristic function of

this process. This provides a simple, consistent procedure to estimate this process via
spectral GMM. To derive the conditional characteristic function, we 7rst utilize a log
transformation of (18):

d log St =
(
� − 1

2
	2
)
dt + 	 dZ + Ju dNu(�u)− Jd dNd(�d):

Next we need to derive the conditional characteristic function, 
(!; �; �; log St), for
the log stock price. The characteristic function satis7es the equation

D
(!; �; �; log St)=0; (20)

where

D
=
1
2
	2 92

9 log S2

t
+
(
� − 1

2
	2
)

9

9 log St

− 9

9�

+�uEt[
(!; �; �; log St + Ju)− 
(!; �; �; log St)]

+�dEt[
(!; �; �; log St − Jd)− 
(!; �; �; log St)]:

The boundary condition for (20) is given by 
(!; 0; �; log ST ) = exp(i! log ST ).
Solving (20), we obtain the characteristic function for (18). This function is given

by


(!; �; �; log St)=exp[i! log St+A(!; �; �)];

where

A(!; �; �)=1
2
	2(i!)2�+

(
�−1

2
	2
)
i!�+

�u�
1−i!-u

+
�d�

1−i!-d
−(�u+�d)�:

With the characteristic function known in closed-form,we can now apply the spec-
tral GMM procedure. We use the same data as that used for the stochastic volatility
model above. We estimate the process using the 7rst six spectral moments, i.e., for
! = 1; 2; : : : ; 6. For ease of comparing estimates, we also set � such that the resulting
parameter estimates are annualized. Finally, h(·; ·) is a vector of ones.
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Table 2
Parameter estimates for the jump–di6usion model
This table presents parameter estimates (standard errors) for the jump–di6usion model of stock prices given
by

dSt
St

= � dt + 	 dWs;t + [exp(Ju)− 1] dNu(�u)− [exp(−Jd)− 1] dNd(�d);

where the jump magnitudes Ju and Jd are draws from exponential distributions with means -u and -d,
respectively. The column “Daily” represents parameter estimates using daily stock price data for 1980–2000,
the column “Weekly” represents estimates using weekly data for 1962–2000, while the column “Monthly”
represents estimates using monthly data for 1926–1997.

Parameter Daily data Weekly data Monthly data

� 0.1926 0.1831 0.1448
(0.0537) (0.0392) (0.0309)

	 0.1236 0.1067 0.1729
(0.0297) (0.0269) (0.0447)

-u 0.0492 0.0458 0.0095
(0.0088) (0.0147) (0.0045)

�u 1.5390 1.2103 1.9529
(0.2115) (0.2993) (10.0580)

-d 0.0476 0.0432 0.0177
(0.0063) (0.0083) (0.0071)

�d 3.6329 3.0143 2.4067
(0.7238) (1.1875) (1.0849)

Table 2 displays the estimation results. The jump components are all statistically
signi7cant both in the weekly data and in the monthly data. They capture both the
skewness and excess kurtosis present in stock returns data. The skewness is captured
by the asymmetry in upward versus downward jumps. The estimates of �u and �d,
which may be interpreted as the number of positive and negative jumps per annum,
respectively, imply that upward jumps occur less frequently than downward jumps.
This is particularly true in the weekly and daily data. Additionally, the estimates of -u

and -d imply that the average magnitude of a negative jump is larger than the average
magnitude of a positive jump in monthly data, while they are about the same in weekly
and daily data. These results indicate that the data is negatively skewed, causing the
model to have a higher loading on expected downward jumps versus expected upward
jumps.
The negative skewness is an important trait in returns data and is commonly observed

to play a substantial role in model estimation. Pan (2002) estimates a negative mean
jump size (both on an objective and risk-neutral basis), and excess kurtosis is captured
by the jump frequency of roughly 27 jumps per year. The jump frequency in this
paper is signi7cantly higher than ours, but excess kurtosis is captured in her model
through a higher jump variance than what we calculate. In Andersen et al. (2002),
a zero-mean jump magnitude is imposed so that they are not able to capture skewness
through jumps (though as discussed later, they capture skewness through the correlation
term between returns and volatility), but their jump frequency estimates are of the same
order of magnitude as ours. Chernov et al. (2000, 2002), like Andersen et al. (2002),
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nest both stochastic volatility and jumps in their models, but they do not impose a
zero-mean restriction. They too estimate a negative mean jump size and their jump
frequency estimates are lower than those of Pan (2002) and very similar to ours. Thus,
the negative skewness in returns is captured in these models by the jump process,
though only partially. Their model speci7cations load on the correlation parameter as
well, so time-varying volatility seems to explain some of the empirical skewness results
as well.
Thus, negative skewness in stock returns exhibits itself in the form of negative

correlation between stock returns and volatility with a stochastic volatility model and
more downward jumps with a jump–di6usion, constant volatility model. Meanwhile,
the presence of jumps of time-varying volatility is su2cient to capture the excess
kurtosis in stock returns. The question as to which of these models better 7ts these
higher moments of stock returns is addressed in the next section.

5.3. Mixed stochastic volatility, jump–di4usion model

The question of whether jump processes or stochastic volatility better describe stock
price dynamics has been a long running debate in 7nancial modelling. 21 In this section,
we nest the models of the previous two section in one model to determine what is
the contribution of stochastic volatility and jump processes to stock price dynamics.
We estimate the following model for stock price dynamics:

d log St =
(
� − 1

2
vt

)
dt +

√
vt dWS + [exp(Ju)− 1] dNu(�u)

+ [exp(−Jd)− 1] dNd(�d);

dvt = !(�− vt) dt + 	
√
vt dWv; (21)

where the parameters are de7ned as in the previous in the two section.
From (4), the conditional characteristic function of the process, 
(!; �; �; log St),

satis7es the following PDE:

D
(!; �; �; log St ; vt) = 0; (22)

where

D
=
1
2
vt

92

9 log S2

t
+ "	vt

92

9 log St9vt

+
1
2
	2vt

92

9v2t

+
(
� − 1

2
vt

)
9


9 log St

+ !(�− vt)
9

9vt

− 9

9� + �uEt[
(!; �; �; log St + Ju)− 
(!; �; �; log St)]

+ �dEt[
(!; �; �; log St − Jd)− 
(!; �; �; log St)]

The solution to (22) subject to the boundary condition 
(!; 0; �; log ST ; vT )=exp(i!
log ST ) gives us the conditional characteristic function for the process (21). This solu-
tion is simply a combination of the characteristic functions for the stochastic volatility

21 See, for example, Das and Sundaram (1999) and the citations within.
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model estimated in Section 5.1 and the jump–di6usion model estimated in Section 5.2.
The characteristic function is given by


(!; �; �; log St ; vt) = exp[i! log St + A(!; �; �)vt + B(!; �; �)];

where

A(!; �; �) = 2
	2

[
u1u2eu1� − u1u2eu2�

u1eu2� − u2eu1�

]
;

B(!; �; �) = 2!�
	2 log

[
u2 − u1

u2eu1� − u1eu2�

]
+

1
2
	2(i!)2�+

(
� − 1

2
	2
)
i!�

+
�u�

1− i!-u
+

�d�
1− i!-d

− (�u + �d)�;

u1 = "	i!− ! +
√

("	i!− !)2 − 	2i!(i!− 1);

u2 = "	i!− ! −
√

("	i!− !)2 − 	2i!(i!− 1):

As we did with the pure stochastic volatility process, we now proceed to integrate
volatility out of the conditional characteristic function, so that the resulting characteristic
function is conditional only on the stock price. This gives


(!; �; �; log St) = exp
[
i! log St + B(!; �; �) + 2!�

	2 log
(

2!
2! − 	2A(!; �; �)

)]
:

We can now apply spectral GMM to estimate this model using stock price data.
We do so using the same data used in the previous two section. We use the 7rst
nine spectral moments of the process. For ease of comparing estimates produced from
di6erent data frequencies, we also set � such that the resulting parameter estimates are
annualized—for example, with monthly data, we set � = 1=12 and with weekly data
we set �= 1=52. Finally, h(·; ·) is a vector of ones.
Table 3 reports the estimation results. It is immediately apparent from this table that

both stochastic volatility and jumps are needed to capture stock return dynamics. The
coe2cients for many of the jump components as well as 	, the volatility coe2cient
of stock variance, are statistically signi7cant. However, it is interesting to note that
the estimate of the upward jump frequency, �u, drops considerably from the jump–
di6usion only (JDO) model of the previous section. The estimates of the upward jump
frequency from the JDO model reported in Table 2 imply positive jumps occurring on
average one to two times a year. In the stochastic volatility, jump–di6usion (SVJD)
model this frequency drops to once every 3 years with the daily data, once every
5 years according to the weekly data, and only once every 35 years in the monthly
data. Thus, it would seem that stochastic volatility is more important than jumps in
explaining infrequent large positive stock returns.
By contrast, the estimate of the frequency of large negative jumps in stock returns

increases from once every four months in the JDO model (Table 2) to once every two
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Table 3
Parameter estimates for the stochastic volatility, jump–di6usion model
This table presents parameter estimates (standard errors) for the stochastic volatility, jump–di6usion model
of stock prices given by

dSt
St

= � dt +
√

vt dWs;t + [exp(Ju)− 1] dNu(�u)− [exp(−Jd)− 1] dNd(�d)

dvt = !(� − vt) dt + 	
√

vt dWv;t ;

where the jump magnitudes Ju and Jd are draws from exponential distributions with means -u and -d,
respectively, and Corr(dWs;t ; dWv;t) = ".
The column “Daily” represents parameter estimates using daily stock price data for 1980–2000, the column
“Weekly” represents estimates using weekly data for 1962–2000, while the column “Monthly” represents
estimates using monthly data for 1926–1997.

Parameter Daily data Weekly data Monthly data

� 0.2238 0.2153 0.1581
(0.0540) (0.0447) (0.0281)

-u 0.0513 0.0481 0.0346
(0.0093) (0.0178) (0.0207)

�u 0.3722 0.1851 0.0311
(0.0945) (0.0733) (0.0168)

-d 0.0258 0.0202 0.0341
(0.0039) (0.0060) (0.0113)

�d 5.3791 6.6105 1.2399
(0.8900) (2.7273) (0.4910)

! 12.1865 3.8406 0.6971
(3.9180) (1.7078) (0.4680)

� 0.0185 0.0203 0.0314
(0.0021) (0.0021) (0.0046)

	 4.2739 0.5952 0.3510
(0.7502) (0.1804) (0.0498)

" −0.2712 −0.4285 −0.0994
(0.0849) (0.1806) (0.0700)

months in the SVJD model (Table 3) with both weekly and daily data. For monthly
data this frequency drops, though not in a statistically signi7cant sense, from the JDO
model to the SVJD model, but the average magnitude of a negative jump increases from
1.8% to 3.4% per year. This suggests that negative jumps are an important component
of stock returns even in the monthly data.
It is also important to note that ", the correlation coe2cient between shocks to

volatility and shocks to stock returns, drops (in absolute value) from −67% (Table 1)
to −10% (Table 3) in monthly data after allowing for jumps in the process for stock
returns. A similar drop is estimated with the daily data as well. The correlation para-
meter captures skewness in stock returns in the stochastic volatility only (SVO) model.
This suggests that negative jumps, rather than stochastic volatility, drive the negative
skewness that characterize stock returns, though stochastic volatility still remains im-
portant in explaining excess kurtosis (this can be seen from the fact that 	 remains
strongly signi7cant in the SVJD model).
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The results found here are consistent with those in other papers. For example,
Andersen et al. (2002) 7nd the speci7cations with both jumps and volatility to be
the most robust in explaining daily returns both over the recent 20 years as well as
the last 50 years. Their model loads on both the volatility correlation parameter as
well as the jump parameter. In their paper, because the mean jump size is restricted
to zero, the volatility correlation parameter picks up the negative skewness in returns,
while jumps are found to be necessary in addition to time-varying volatility to explain
excess kurtosis. This result is true in Pan (2002) as well. However, because the mean
jump size is not restricted to be zero in her model, jumps do explain a portion of the
negative skewness. However, similar to our results, the correlation parameter associated
with volatility plays the bigger part in explaining negative skewness. A similar result is
found in Chernov et al. (2002). Their estimate of the mean jump size is negative, so it
helps explain some of the negative skewness in the data, but the mean is fairly small.
The negative skewness in the data loads heavily on the correlation parameter associated
with volatility. Similar results are found in Chernov et al. (2002). CGGT (2002) also
estimate models that incorporate jumps in volatility as well as stock returns. This type
of model has the appealing feature that when negative jumps hit returns, they can result
in positive jumps in volatility. The high persistence of volatility then allows volatility
to stay high for a short while—creating a kind of high volatility regime, which is a
popular notion. However, upon estimating this model, there does not seem to be clear
evidence of the superiority of this model speci7cation versus one which incorporates
jumps only in returns.

5.4. Non-a3ne models: non-a3ne stochastic volatility

We have so far shown applications of spectral GMM to a2ne models for stochastic
processes—i.e., to stochastic processes whose characteristic function is log-linear in the
state variables. But spectral GMM estimation works for any type of stochastic process
—a2ne or non-a2ne, discrete-time or continuous-time. In this section, we show one
application of the spectral GMM methodology to an interesting problem in 7nance
that involves a non-a2ne stochastic process for stochastic volatility. This application
involves constructing an approximate a2ne characteristic function for the underlying
process using perturbation methods. In particular, we want to estimate the following
generalized version of the stochastic volatility model (12)–(13):

dSt

St
= � dt +

√
vt dWS;

dvt = !(�− vt) dt + 	v.=2t dWv; (23)

where WS and Wv have an instantaneous correlation of ".
This model generalizes the stochastic volatility model (12)–(13) by allowing the in-

stantaneous standard deviation of variance to be proportional to any power of
variance. 22 For values of . other than one, this results in a non-a2ne stochastic
volatility model because the square of the di6usion term for the volatility process

22 Model (12)–(13) restricts . to be equal to 1.



G. Chacko, L.M. Viceira / Journal of Econometrics 116 (2003) 259–292 281

is no longer linear in vt . Chan et al. (1992) have proposed a model like (23) for
the instantaneous interest rate, and they have found an estimate of . equal to 3. The
literature on volatility estimation has not yet estimated these types of models simply be-
cause estimation of even a2ne models have been so inherently di2cult. However, this
estimation problem is relatively simple using perturbation methods and spectral GMM.
In order for a stochastic di6erential equation to be well-behaved (for moments to

exist, discretization schemes to converge weakly, and for strong solutions to exist),
it needs to be square-integrable. To ensure this condition, it needs to satisfy local
Lipschitz and linear growth conditions (see Karatzas and Shreve, 1988). A necessary
condition for satisfying the growth condition is that . needs to be less than 2. It is
common, however, in the 7nance literature to estimate the value of . without imposing
this restriction (e.g., Chan et al. 1992; AVWt-Sahalia, 1996). Since we are simply trying
to demonstrate a methodology for estimating non-a2ne models, we will also follow the
literature and not impose this restriction. 23 When interpreting the results, therefore, care
should be taken in assigning too much weight on values of . estimated to be greater
than 2. An estimate of . signi7cantly greater than 2 should only be interpreted as
a rejection of our choice of model speci7cation, (23), rather than the possibility of the
data generating process being of the form in (23) with .¿ 2.
To apply spectral GMM, the 7rst step is to calculate the conditional characteristic

function. We do this for the transformed process

d log St = (� − 1
2 vt) dt +

√
vt dWS;

dvt = !(�− vt) dt + 	v.=2 dWv:

From (4), the conditional characteristic function, 
(!; �; �; log St), satis7es the fol-
lowing PDE:

D
(!; �; �; log St ; vt) = 0;

where

D
=
1
2
vt

92

9 log S2

t
+ "	v(.+1)=2

t
92


9 log St9vt
+

1
2
	2v.t

92

9v2t

+
(
� − 1

2
vt

)
9


9 log St
+ !(�− vt)

9

9vt

− 9

9� :

The boundary condition for (15) is given by 
(!; 0; �; log ST ; vT ) = exp (i! log ST ).
This is no longer a linear PDDE. The general results stated earlier for a2ne processes

no longer apply here, and there is no known exact analytical solution to this equation.

23 It is important to note that the mere fact that . can be estimated to be greater than 2 indicates the level
of inaccuracy that the a2ne approximation can lead to. Care needs to be taken in general when interpreting
estimates from linearized non-a2ne models as parameters can be badly biased.
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However, we utilize a perturbation method to derive an approximate solution. 24 The
main feature of the method relies on approximating v(.+1)=2

t and v.t in the PDDE using
Taylor expansions around the unconditional mean of vt as follows:

v(.+1)=2
t ≈ � (.+1)=2

(
1− .
2

)
+

.+ 1
2

� (.−1)=2vt ;

v.t ≈ � .(1− .) + .� .−1vt :

These approximations result in the following PDDE:

0 =
1
2
vt

92

9 log S2

t
+ "	

[
� (.+1)=2

(
1− .
2

)
+

.+ 1
2

� (.−1)=2vt

]
92


9 log St9vt

+
1
2
	2[� .(1− .) + .� .−1vt]

92

9v2t

+
(
� − 1

2
vt

)
9


9 log St

+ !(�− vt)
9

9vt

− 9

9� :

This equation has an exponential-a2ne solution of the form,


(!; �; �; log St ; vt) = exp[i! log St + A(!; �; �)vt + B(!; �; �)]; (24)

where A and B solve the following two ordinary di6erential equations:

dA
d�

=
1
2
	2.� .−1A2 +

[
"	i!

.+ 1
2

� (.−1)=2 − !
]
A− 1

2
i!(i!− 1); (25)

dB
d�

=
1
2
	2� .(1− .)A2 +

[
"	i!� (.+1)=2

(
1− .
2

)
+ !�

]
A+ �i!: (26)

Solving these linear ODEs is fairly simple to do. Subsequently, we need to integrate the
instantaneous variance out of the solution to make the characteristic function conditional
only on the observed stock price, just as we did in Section 5.1.
Alternatively, we can use the results in Section 5.1 directly by noting that the con-

ditional characteristic function in (24) is equivalent to the conditional characteristic
function for the stochastic volatility model (14) with �; 	, and " replaced with �̃; 	̃,
and "̃:

�̃= �
[
"	� (.−1)=2

(
1− .
2

)
+

1
2
	2� .−1(1− .)A+ 1

]
;

	̃2 = 	2.� .−1;

"̃= "
.+ 1
2
√
.
:

24 See Kevorkian and Cole (1981) for more on perturbation methods.
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Table 4
Parameter estimates for the non-a2ne stochastic volatility model
This table presents parameter estimates (standard errors) for the non-a2ne stochastic volatility model of
stock prices given by

dSt
St

= � dt +
√

vt dWs;t ;

dvt = !(� − vt) dt + 	v.=2t dWv;t ;

where Corr(dWs;t ; dWv;t) = ".
The column “Daily” represents parameter estimates using daily stock price data for 1980–2000, the column
“Weekly” represents estimates using weekly data for 1962–2000, while the column “Monthly” represents
estimates using monthly data for 1926–1997.

Parameter Daily data Weekly data Monthly data

� 0.1196 0.1096 0.1248
(0.0393) (0.0210) (0.0226)

! 13.7259 4.5040 0.7225
(3.0526) (3.1088) (0.4003)

� 0.0341 0.0255 0.0347
(0.0026) (0.0034) (0.0042)

	 4.5403 0.7893 1.5035
(0.4191) (0.1312) (0.2974)

" −0.5089 −0.3218 −0.7864
(0.1845) (0.1848) (0.5327)

. 1.8927 2.1087 2.9480
(0.5041) (0.7149) (0.9825)

Hence we can use the expressions in Section 5 to estimate (23) using spectral GMM
on this approximate characteristic function.
Table 4 shows the results of this estimation using the same weekly and monthly data

sets as in the previous applications. The point estimates and standard errors are adjusted
for any bias induced by the approximation using a bootstrap procedure (explained
below). The conclusion is similar to that obtained by Chan et al. (1992) in the context
of interest rates. The value of . appears to be di6erent from 1.0, the baseline case
that leads to an a2ne volatility model. With monthly data, our estimate of . is 3.3,
while with weekly data our estimate of . is 2.2. The standard errors indicate that the
di6erences between these values and the baseline value for . of one are statistically
signi7cant. This suggests that the a2ne volatility model might not be a good description
of stock return data; in fact, due to the regularity conditions restricting the value of .,
it suggests that the entire speci7cation in (23) should perhaps be rejected.
However, this estimation exercise does not incorporate jumps into the stock price

process. If, as suggested by the estimation results in Section 5.3, both stochastic vola-
tility and jump di6usions are important in explaining strong negative skewness and
excess kurtosis in stock returns, the large estimate of . might be just the result of
forcing the model to ignore the jump components. The inclusion of jumps may lessen
the point estimate for ., as jumps may account for the strong negative skewness and
some of the excess kurtosis in the data.
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Table 5
Parameter estimates for the non-a2ne stochastic volatility, jump–di6usion model
This table presents parameter estimates (standard errors) for the non-a2ne stochastic volatility model of
stock prices given by

dSt
St

= � dt +
√

vt dWs;t + [exp(Ju)− 1] dNu(�u)− [exp(−Jd)− 1] dNd(�d);

dvt = !(� − vt) dt + 	v.=2t dWv;t ;

where Corr(dWs;t ; dWv;t) = ".
The column “Daily” represents parameter estimates using daily stock price data for 1980–2000, the column
“Weekly” represents estimates using weekly data for 1962–2000, while the column “Monthly” represents
estimates using monthly data for 1926–1997.

Parameter Daily data Weekly data Monthly data

� 0.2205 0.2296 0.1618
(0.0377) (0.0438) (0.0279)

-u 0.0316 0.0309 0.0284
(0.0063) (0.0078) (0.0147)

�u 0.4059 0.2362 0.0197
(0.0407) (0.0756) (0.0112)

-d 0.0188 0.0156 0.0279
(0.0032) (0.0043) (0.0095)

�d 6.0713 6.3912 1.3726
(1.3698) (2.5793) (0.4327)

! 11.8948 4.9220 0.5304
(3.0980) (1.9892) (0.3031)

� 0.0223 0.0213 0.0327
(0.0015) (0.0016) (0.0039)

	 4.7199 0.5280 0.3971
(0.6641) (0.1608) (0.0822)

" −0.1926 −0.3796 −0.2329
(0.0714) (0.1923) (0.1198)

. 1.2193 1.1884 1.7138
(0.2589) (0.3305) (0.6167)

In order to test the inYuence of misspeci7cation on the estimate of . obtained in
Table 4, we re-estimated the model with jumps included in the model:

d log St =
(
� − 1

2
vt

)
dt +

√
vt dWS + [exp(Ju)− 1] dNu(�u)

+ [exp(−Jd)− 1] dNd(�d);

dvt = !(�− vt) dt + 	v.=2t dWv; (27)

where the jumps are modeled as in previous section. The jump densities are given
by (19). The characteristic function for this process is a straightforward extension
of the one used without jumps in this section. 25 Table 5 displays the estimation

25 The characteristic function is extended in exactly the same way the a2ne stochastic volatility model
was extended when jumps were added in the previous section. The same three additional terms appear in
the exponential function.
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results. 26 What is noteworthy about these results is the fact that the estimate for .
is now no longer statistically di6erent from the value of 1.0. These results seem to
indicate that the higher values of . obtained previously were likely due to the omission
of jumps from the model. While these results are only suggestive, they do seem to
parallel those found in the interest rate literature, where the addition of jumps also
seem to reduce the Chan et al. (1992) estimates for ..

The purpose of this section was to illustrate one way that spectral GMM could be
used with non-a2ne stochastic processes. With a simple perturbation, we were able to
produce approximate characteristic functions for non-linear processes that could be used
to generate moment restrictions in the spectral GMM procedure. However, it should
be noted that the point estimates produced through any type of approximation method
are biased and inconsistent. A theoretical value for the bias is di2cult to calculate, so
we used a bootstrap approach to partially correct for the bias. 27 As a rough check to
see how far o6 our results might be, we simulated the model in (23) using a known
set of parameters. 10,000 data sets of 30 years of weekly data were created. Table 6
displays these results. The e6ect of the approximation does not seem to be statistically
signi7cant for most parameters as the means of the parameter distributions are within
roughly 1 standard deviation of the true estimates, including the parameter estimate for
.. The exception occurs with the estimate for �. This parameter estimate, 0.0357, is
signi7cantly di6erent from the true value of 0.04. The di6erence is likely a reYection
of the bias caused by the approximation.

5.5. Volatility persistence

Our 7nal application applies spectral GMM method to o6er one possible explanation
to a puzzling phenomenon observed in many 7nancial markets. It has been observed
that in estimating volatility, the point estimate for the rate of mean reversion changes
dramatically with the frequency of the observed data. For example, Table 1 shows
that for the stochastic volatility model in (12) above, the point estimate of the rate of
mean reversion, !, changes from 0.6 to 2.5 to 14 as we go from monthly to weekly to
daily data. This feature has been observed in many 7nancial markets for volatility and
non-volatility processes alike. The point estimates for the rate of mean reversion drop

26 As with the estimates in Table 4, these estimates have been modi7ed by a bootstrap method to adjust
for the bias caused by the approximation.
27 The procedure we used was to simply simulate sets of data using the initial values for the esti-

mated parameters. Then, parameter estimates are produced for each of these new data sets. This results in
a distribution for each parameter. The di6erence between the mean of this distribution and the initial para-
meter estimates gives a rough value for the bias in the initial parameter estimates. The initial parameter
estimate is then adjusted using this estimate for the bias. While this procedure is crude, we have found this
bootstrap procedure to reduce the bias inherent in parameter estimates produced from approximation-based
methods (such as the perturbation method used in this paper as well as the commonly used Euler approxi-
mation) considerably. See Efron and Tibshirani (1993) for more on the bootstrap.
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Table 6
Measure of error produced via perturbation method
This table presents the results of simulating the stochastic volatility model

dSt
St

= � dt +
√

vt dWs;t ;

dvt = !(� − vt) dt + 	v.=2t dWv;t

to produce 10,000 data sets of 30 years of weekly stock return data. The parameters used in the simulations
are given below under the heading “simulation value”. Then, these datasets are used to perform an approxi-
mate estimation using a perturbation approach. The mean and standard deviation of the estimated parameter
distributions are given in far right column.

Parameter Simulation value Estimated value

� 0.1000 0.1103
(0.3696)

! 1.000 0.6896
(0.4265)

� 0.0400 0.0357
(0.0021)

	 1.500 1.3340
(0.1218)

" −0.5000 −0.4258
(0.2672)

. 1.500 1.8128
(0.6211)

as the frequency of the data drops, i.e., persistence in volatility appears to increase
when lower frequency data is used for estimation.
In this section, we o6er one possible explanation. We speculate that there might be

multiple frequency components to volatility, and that lowering the frequency of the
data used for estimation simply causes a single-factor stochastic volatility model to
load on the lower frequency (higher persistence) volatility component.
We begin by assuming that the data generating process for a stock price is given by

dSt

St
= � dt +

√
vt dWS;

where the instantaneous variance is determined by three additive components:

vt = xt + yt + zt :

Each component is determined by a square-root process:

dxt = !x(�− xt) dt + 	
√
xt dWv;

dyt = !y(�− yt) dt + 	
√
yt dWv;

dzt = !z(�− zt) dt + 	
√
zt dWv:
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Table 7
Parameter estimates for multiple factor stochastic volatility model
This table presents parameter estimates for the stochastic volatility model of stock prices given by

dSt
St

= � dt +
√

vt dWs;t ;

dvt = !(� − vt) dt + 	
√

vt dWv;t ;

where Corr(dWs;t ; dWv;t) = ". However, the data generating process is a multiple factor volatility model
given by

dSt
St

= � dt +
√

vt dWs;t :

Volatility is composed of three factors: vt = xt + yt + zt . The three factors are themselves determined by
square root processes with di6erent rates of mean reversion.

dxt = !x(� − xt) dt + 	
√

xt dW

dyt = !y(� − yt) dt + 	
√

yt dW

dzt = !z(� − zt) dt + 	
√

zt dW:

The parameters used for the data generating process were � = 0:13, !x = 0:2, !y = 1, !z = 5, �= 0:01, and
	 = 0:05.
The columns “Weekly”, “Monthly”, and “Annual” represent parameter estimates using weekly, monthly, and
annual sampling frequencies for the data produced from the data generating process. 100 data sets were
generated, and the parameter estimates below give the means of the point estimates produced with each
dataset.

Parameter Weekly data Monthly data Annual data

� 0.1715 0.1191 0.1380
! 5.3315 2.7060 0.7601
� 0.0282 0.0276 0.0348
	 0.3356 0.2550 0.2188
" −0.8738 −0.5815 −0.3550

The instantaneous correlation between dWS and dWv is given by ". Note that the only
di6erence between each component is in the rate of mean reversion, and they are
all subject to the same shock. 28 Thus, each process represents a di6erent frequency
component of volatility.
For our speci7c example, we parameterize the data generating process as follows:

� = 0:13, !x = 0:2, !y = 1, !z = 5, � = 0:01, 	 = 0:05 and " = −0:5. To show how
sampling frequency a6ects estimation, we generate data from this process and estimate
the parameters of the process via spectral GMM by sampling this data at di6erent
frequencies and using the single factor model (12)–(13). We generate 100 data sets
to ensure that one unusual sample path for the stock price does not skew the results.
Table 7 reports the means of the estimates from the 100 sets of parameter estimates.

As we speculated, the estimate of !, the rate of mean reversion, decreases as we
decrease the sampling frequency from weekly to monthly to annual. The estimate of !

28 Note that the results presented here also work when � and 	 di6er across the volatility components. We
could also allow for a di6erent shock to each component. However, we keep things as simple as possible
to illustrate our point.
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starts from 5.33 with weekly data, decreases to 2.71 with monthly data, and it further
decreases to 0.76 with annual data. This is precisely the pattern observed for the rate of
mean reversion in volatility in many 7nancial markets—Table 1 illustrates this pattern
for the US equity market. As we lower the sampling frequency from weekly to monthly
to annual, the single factor model is forced to load on one of the volatility factors of
the data generating process. The model loads on the volatility factor whose frequency
is closest to the sampling frequency. Therefore, we observe the rate of mean reversion
decreasing, and persistence increasing, as we decrease the sampling frequency. Other
interesting results to note is that the correlation level, ", also drops (in absolute value)
as the sampling frequency drops, while the parameter 	 displays a strong positive bias
due to the model misspeci7cation.
Chernov et al. (2000, 2002) estimate multi-factor stochastic volatility models as well,

though they do not explore this changing volatility persistence e6ect explored in this
section. Chernov et al. (2000, 2002) 7nd that the addition of a second volatility factor
improves the 7t of the model relative to a single-factor volatility model. However,
when the choice of using jumps or a second volatility factor in the model needs to be
made, it appears that jumps are far more important in capturing return dynamics than
the second volatility factor. This could be indicative that the e6ects discussed in this
section are second-order in comparison to the e6ects of incorporating jump processes
in returns. Additionally, Chernov et al. (2002) 7nd that when a second volatility factor
is allowed to have its own correlation with returns (we impose a constant correlation
between all volatility factors and the returns process), the correlation parameters can
take on both positive and negative values, contrary to the 7ndings in single factor
volatility models, where the correlation parameter is always found to be negative.
While the results of this section are far from conclusive, they are suggestive of

one potential explanation for the pattern of persistence observed in volatility and also
interest rates and exchange rates. There could be di6erent frequency components to
each of these 7nancial variables, but because researchers tend to model these as
one factor models, they pick up only a narrow band of these frequencies depend-
ing on the particular sampling frequency used for the data. Indeed, in the case of
interest rates, researchers have determined using principal components and other sta-
tistical analyses that there are three important factors determining interest rates. We
suspect that similar results will hold true for volatility in many 7nancial markets
as well.

6. Conclusion

This paper derives a methodology for the direct estimation of continuous-time
stochastic models based on the characteristic function. The estimation method does not
require discretization of the process, and it is easy to apply. The method is essentially
generalized method of moments on the complex plane. Hence it shares the optimality
and distribution properties of GMM estimators. Moreover, an appropriate choice of in-
struments delivers an asymptotically e2cient estimator. This estimation method expands
the set of continuous-time stochastic processes for which simple estimation without
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discretization is feasible. This is so because computing the characteristic function is
easier than computing the likelihood function for a large number of stochastic processes.
We illustrate the method with some applications to relevant estimation problems in

continuous-time 7nance. We estimate a model of stochastic volatility, and we show that
stochastic volatility is important in capturing stock return dynamics. We also estimate
a jump–di6usion model with constant volatility and show that both upward and down-
ward jumps are also important in explaining stock returns. Indeed, both the stochastic
volatility model and the jump–di6usion model can capture the skewness and excess
kurtosis that we observe in stock returns. Next we estimate a model that nests both
the stochastic volatility model and the jump–di6usion model to ascertain the contribu-
tion of each component in explaining the higher order moments in stock returns. We
7nd that negative jumps are important to explain skewness and asymmetry in excess
kurtosis of the return distribution, while stochastic volatility is important to capture the
overall level of this kurtosis. Positive jumps are not statistically signi7cant once we
allow for stochastic volatility in the model. We also explores a potential explanation
for the observation that the point estimate for the rate of mean reversion in a stochastic
volatility model decreases dramatically with the frequency of the observed data. We
show that this is consistent with a model of multiple additive components in volatility,
each of them operating at a di6erent frequency.
Most of the processes in the paper have characteristic functions which are exponential

a2ne in the vector of state variables (mirroring the current practice in 7nance), but this
method is also feasible in non-a2ne settings if one utilizes perturbation methods. To
illustrate this, we estimate a non-a2ne model of stochastic volatility with an arbitrary
power in the di6usion coe2cient. We 7nd that the power of the di6usion coe2cient
appears to be between one and two, rather than the value of one-half that leads to
the standard a2ne stochastic volatility model. However, we also show that this result
may be driven by model misspeci7cation. When we include jumps into this non-a2ne
model, the power of the di6usion coe2cient is no longer estimated to be statistically
di6erent from one-half.
The estimates we present in this paper are based on a 7nite set of moment conditions

implied by the empirical characteristic function of the process at hand. However, the
characteristic function of a process generates a continuum of moment conditions. In
a recent paper, Carrasco et al. (2001), building on the work of Carrasco and Florens
(2000), utilize a continuum of moment conditions to estimate multivariate di6usions,
and show that this improves the e2ciency of the estimator, as this allows the esti-
mator to achieve the lower Cramer–Rao bound. Incorporating the full set of in7nite
moment conditions into the spectral GMM procedure would improve the e2ciency of
the estimator.
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