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Abstract

This paper solves numerically the intertemporal consumption and portfolio choice
problem of an infinitely-lived investor who faces a time-varying equity premium. The
solutions we obtain are very similar to the approximate analytical solutions of Camp-
bell and Viceira (1999), except at the upper extreme of the state space where both
the numerical consumption and portfolio rules flatten out. We also consider a con-
strained version of the problem in which the investor faces borrowing and short-sales
restrictions. These constraints bind when the equity premium moves away from its
mean in either direction, and are particularly severe for risk-tolerant investors. The
constraints have substantial effects on optimal consumption, but much more modest
effects on optimal portfolio choice in the region of the state space where they are not
binding.

JEL classification: G12.
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1 Introduction

This paper solves numerically the intertemporal consumption and portfolio choice
problem of an infinitely-lived investor who faces a time-varying equity premium. It
has been understood for many years that, in principle, the solution to this problem
can be very different from the solution to a familiar static optimization problem.
The classic papers of Merton (1969, 1971) and Samuelson (1969) showed that time
variation in investment opportunities affects the portfolio choice of power-utility in-
vestors unless they have log utility. More generally, if investors have Epstein-Zin
utility (Epstein and Zin (1989), Weil (1990)) with separate coefficients governing risk
aversion and the elasticity of intertemporal substitution in consumption, Giovannini
and Weil (1989) have shown that time-variation in investment opportunities affects
portfolio choice unless the coefficient of relative risk aversion equals one.

More recently, two lines of empirical research have made it clear that this is
an important issue in practice. First, many authors have documented evidence
that the excess return on stocks over Treasury bills is predictable (see Campbell
1987, Campbell and Shiller 1988, Fama and French 1988, 1989, Hodrick 1992, or
the textbook treatment in Campbell, Lo, and MacKinlay 1997, Chapter 7). Second,
the large literature on the equity premium puzzle finds that average excess stock
returns are too high to be consistent with a representative-investor model with unit
relative risk aversion (see Campbell 1996, Cecchetti, Lam, and Mark 1994, Cochrane
and Hansen 1992, Hansen and Jagannathan 1991, Kocherlakota 1996, Mehra and
Prescott 1985, or the textbook treatment in Campbell, Lo, and MacKinlay 1997,
Chapter 8). These results suggest that it is important for economists to have a good
understanding of the microeconomic problem of optimal consumption and portfolio
choice when there is time variation in the investment opportunity set and investors
have relative risk aversion greater than one. Only when we understand this problem
can we hope to build general equilibrium models that are consistent with the observed
behavior of asset markets.

The problem, however, is not trivial analytically. Nonlinearities in both the Euler
equations and the intertemporal budget constraint make it extremely hard to find
exact analytical solutions. Recently a few special cases have been solved. In a
continuous-time model with a constant riskless interest rate and a single risky as-
set whose expected return follows a mean-reverting AR(1) process, for example, the
model can be solved if long-lived investors have power utility defined over terminal
wealth (Kim and Omberg 1996), or if investors have power utility defined over con-
sumption and the innovation to the expected asset return is perfectly correlated with
the innovation to the unexpected return, making the asset market effectively complete



(Wachter 1999), or if the investor has Epstein-Zin utility with intertemporal elastic-
ity of substitution restricted to equal one (Campbell and Viceira 1999, Schroder and
Skiadas 1999). Campbell and Viceira (1999, henceforth CV) also present an approx-
imate analytical solution for a discrete-time model with general Epstein-Zin utility.
Their approach is to log-linearize the Euler equations and the intertemporal budget
constraint around the exact solution that applies if the intertemporal elasticity of
substitution is one. They obtain approximate portfolio and consumption rules that
are, respectively, linear and quadratic in the single state variable of the problem.

In this paper we consider the same discrete-time model as CV; that is, we assume
a constant riskless interest rate and an AR(1) process for the risky asset return,
but we do not assume perfect correlation between innovations to the expected and
unexpected return, and we allow the investor to have general Epstein-Zin utility
defined over consumption. We make two contributions relative to CV.

First, we use a numerical solution method that allows us to evaluate the accuracy
of CV’s approximate solution. We discretize the state-space and approximate the
distribution for the innovations in the random variables using Gaussian quadrature.
The solution algorithm assumes a portfolio allocation rule which is a p’th order poly-
nomial in the state-variable and uses a variant of the Newton-Raphson algorithm
to optimize over the coefficients of this polynomial. We use the Den Haan-Marcet
(DHM) statistic (Den Haan and Marcet 1994) to choose the optimal value for p, and
to check the accuracy of the numerical solution. Consistent with CV, we find that
the portfolio rule depends strongly on risk aversion but hardly at all on the elasticity
of intertemporal substitution, and that the portfolio rule is approximately linear in
the state variable while the log consumption-wealth ratio is approximately quadratic.
However these approximations break down at the upper extreme of the state space,
where both the numerical portfolio and consumption rules flatten out in a way that
is not captured by CV. We also use the DHM statistic to test the accuracy of the CV
solution.

Second, our numerical solution method allows us to consider a constrained version
of the CV problem in which the investor is not allowed to borrow at the riskless
interest rate or to short-sell the risky asset. Such constraints are realistic, and they
affect the form of the solution since the investor’s optimal plans take account of the
possibility that the constraints may bind in the future, even if they are not binding
today. Relatively little is known about the effects of such constraints on optimal
portfolios, because the constraints make it hard to find analytical solutions except in
special cases with constant portfolio rules such as Campbell and Viceira (2001). In
our model we find substantial effects of the constraints on optimal consumption, but
relatively small effects on portfolio choice in the region of the state space in which
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the constraints are not binding.

This paper extends the results in Campbell and Koo (1997, henceforth CK). CK
take the agent’s portfolio at each point in time as given and assume a time-series
process for the return on this portfolio. They solve numerically for the optimal
allocation of the investor’s wealth between consumption and savings. Here we solve
numerically for the investor’s optimal portfolio as well. This allows us to assess
the accuracy of log-linear approximations in problems involving both portfolio and
consumption choice.

A number of other recent papers have also presented numerical solutions to in-
tertemporal consumption and portfolio choice problems. Important examples in-
clude Balduzzi and Lynch (1999), Barberis (2000), Brandt (1999), Brennan, Schwartz,
and Lagnado (1996, 1997), Cocco, Gomes, and Maenhout (1998), and Lynch (2001).
These papers concentrate on problems with a finite horizon and power utility, typ-
ically defined over wealth, whereas we consider an infinite horizon and Epstein-Zin
utility over consumption. Our paper also differs in its careful comparison of analytical
and numerical solutions, and of constrained and unconstrained solutions.

The structure of the paper is as follows. In section 2 we present the problem we
would like to solve, following CV. Section 3 describes the solution algorithm as well
as the DHM test used to evaluate its accuracy. In Section 4 we present and discuss
the numerical solutions for the unconstrained and constrained optimization problems.
Section 5 concludes.



2 The Model

We consider an infinitely-lived investor with recursive preferences described by:

1—1 _ j 1_%
U(Ct, Bt Ur) = {(1 —0)C, Y +6 (Et Ut1+17) o } ) (1)

where C; is the investor’s period t consumption, 6 < 1 is the discount factor, v > 0
is the coefficient of relative risk aversion and v > 0 is the elasticity of intertemporal
substitution. These preferences were proposed by Epstein and Zin (1989) and Weil
(1990) as a generalization of power utility that disentangles risk aversion from the
elasticity of intertemporal substitution. Power utility is the special case where ) =
1/7.

Each period the investor must decide how much to consume out of her wealth
and how to allocate the remaining wealth between two tradable assets: A risky asset
(asset 1) with one-period log return given by r; ;41 and a riskless asset (asset f) with
constant log return given by 7.

The model assumes that the expectation of the log excess return (71,41 — 7) on
the risky asset is state-dependent,

Ei [11441 — 7] = @4, (2)

where z; is the single state variable of the model that follows an AR(1) process:

Top1 = p+ d(oy — p) + Met1- (3)

The unexpected log excess return is denoted by u;y1. The random variables u;; and
7+, are jointly normal and conditionally homoskedastic, with variances o7, and o7,
respectively. We also allow for correlation between the unexpected log excess return
and innovations in the state variable, and denote their covariance by o,.

So far the setup is very similar to the one in CK. They however take the rate of
return on the portfolio as given, whereas we consider the investor’s optimal portfolio
as well and thus introduce an additional choice variable. The one-period return on

the portfolio from time ¢ to time t 4+ 1 is
Rpi11 = ay(Ri1 — Ry) + Ry, (4)

where Ry ;11 = exp{ris11}, Ry = exp{rs} and «; is the proportion of total wealth
invested in the risky asset at time t¢.



We want to solve for the intertemporal consumption and portfolio policies that
maximize (1) subject to the budget constraint

Wipn = Ry (W = Cy), (5)

where W, is total wealth at the beginning of time t and R, ;.; is the return on wealth
(4).

The investor’s objective function (1) has been normalized so that the value func-
tion is homogeneous of degree one. Therefore, we can solve for the optimal consumption-
wealth ratio and portfolio allocation rule when the investor has wealth equal to one.
Following CK we simplify notation by defining x = z;, ¥y = 2441, B1 = Ri441 and
R, = R,;+1. We also denote the unit wealth indirect value function by V(z), the
consumption-wealth ratio by ¢(z), and the fraction of wealth invested in the risky
asset by a(x). The problem we solve is:
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(6)
Epstein and Zin (1989) show that the Euler equations for consumption and portfolio
choice for this problem are given by

C
c(x) = o¢ (7)
where s\
o= (452) telvirmou) .
E[V(y)' "R, (R — Ry)lz] =0, (8)
and
R, = a(z)(Ri — Ry) + Ry. (9)

Unfortunately, it is not possible to write a(z) explicitly as a function of V(y)
and c(z). Therefore a fully numerical solution to this problem would involve solving
the non-linear equation (8) for a(z). Instead we assume that «o(z) is a p’th order
polynomial in the state-variable:

a(z) = ag + a1z + axz® + ... + a,a” (10)

and optimize with respect to the coefficients of the polynomial. The approximate
analytical solution proposed by CV is a particular case of (10), with a; = 0 for j > 2.



3 Numerical Solution Method

3.1 Finding the solution

We discretize the state space and approximate it with 35 equally spaced grid points,
centered at the unconditional mean of the state variable. We set the distance between
any two points to 0.25%. We approximate the distribution for the innovations to the
state variable using Gaussian quadrature methods with 9 quadrature points.

We use the Newton-Raphson algorithm to optimize over the coefficients of the
policy function for a(z), allowing for either a third or a fourth order polynomial in
the state variable. The approximate analytical solution in CV involves a portfolio
allocation rule which is linear in the state variable. Since the log-linear solution is
likely to be close to the optimal solution we use its coefficients as our initial values,
with the coefficients on the higher order terms initialized at zero. This makes diver-
gence of our numerical algorithm less likely and reduces the time needed to obtain
convergence.

We initialize the value function by setting it equal to a constant. The results
obtained are not sensitive to the value of this constant in a wide range around the
mean value implied by the CV log-linear solution. More details of the numerical
solution algorithm are given in the Appendix.?

For some parameter values the exact analytical solution is known for part of the
problem (Giovannini and Weil 1989). In particular, when ¢) = 1 the investor consumes
in each period a fixed fraction of his wealth, and when v = 1 the optimal portfolio rule
is the same as with log utility so there is no intertemporal hedging demand for the
risky asset. For these special cases we change our numerical algorithm by imposing the
known exact analytical solution for the consumption and portfolio rules, respectively.

3.2 Evaluating solution accuracy

To test the accuracy of the numerical solution we use the Den Haan-Marcet (DHM)
statistic (Den Haan and Marcet 1994).3 The DHM statistic does not require knowl-
edge of the true solution and it can be used to select between different functional
forms for the policy functions. We based our choice between a third and a fourth
order polynomial for a(z) on the values obtained for the DHM statistics.

2The program used to solve this model, written in Gauss, is available for download at
www.london.edu/faculty /fgomes.
3The corresponding Gauss code is also available for download at www.london.edu/faculty/fgomes.



In order to implement this test we first simulate different time series of realizations
for the exogenous variables, u and 1. Given these realizations and the optimal numer-
ical consumption and portfolio allocation rules, we compute the expectational errors
(€t41) implied by the Euler equations of the model, (7) and (8). These expectational
errors should be orthogonal to the previous period’s information set:

Eler1 © h(z)] =0, (11)

for any function A(.) and any variable z; belonging to the information set available
at time t. In our application we choose a vector of instruments z; = (1, z;, 2?), and
set h(.) equal to the identity function.

Given these instruments we can test the accuracy of our numerical solution by
computing:
_ Zthl €141 @ h(z)
= T ,
and testing whether Br is statistically different from zero. The significance of devia-
tions from zero is evaluated by using the DHM test statistic

B,

(12)

TB%A;lBTa (13)

where
_ e ® h(z)] e @ h(z)]'
= T .

Under the null hypothesis that the numerical solution is correct the asymptotic
distribution (as T' — o0) of this test statistic is a Xflm where m is the number of Euler
equations being tested (two in the general case and one in the special cases where
part of the solution is known) and ¢ is the dimension of h (three in our application
with three instruments where h is the identity function).

By comparing the result of (13) with the relevant critical values we can obtain
evidence on the validity of the numerical solution. In order to reduce (and in the limit
eliminate) the possibility of type I errors we performed a large number of simulations
and computed the percentage of test results in the upper and lower 5% critical values
of a Xgm- In particular, we used 2000 time-series of 400 observations each, giving us
100 years of data as in CK (1997).

Ar

(14)



4 Optimal Portfolio Choice

4.1 Parameter values

We calibrate the model using quarterly US data from the Center for Research in
Securities Prices (CRSP) over the period 1926.1-1999.4. We take the risky asset to
be an aggregate stock market index and the riskless asset to be a short-term Treasury
bill.  (Of course the real return on a nominal Treasury bill is not literally riskless,
but following a long tradition in empirical finance we ignore the small amount of
uncertainty caused by short-term inflation risk.) The single state variable of the
problem is the log dividend-price ratio, (d; — p;). We obtain the parameters that
define the stochastic structure of the model by estimating of the following restricted

VAR(1) model:
Tig+1 —TF\ 90) (91) (51,t+1>
= + dy — + , 15
<dt+1 —Pt+1) (50 51 ( ' pt) €2t+1 ( )

where (£144+1,€2441) ~ N(0,€). CV show how to solve for the parameters of the
theoretical model given the estimated parameters of (15). Table 1 reports both sets
of parameters in natural quarterly units.

In our 1926-1999 sample period, the average real return on Treasury bills was
extremely low at 44 basis points per year, and the average equity premium was ex-
tremely high at 9.2% per year. One could argue, following Campbell and Shiller
(1998) and Fama and French (2000), that the historical equity premium greatly over-
states prospects for stock returns in the future. However we do not make any ad-
justment to the sample average, merely noting that it implies extremely large average
stockholdings for investors with moderate risk aversion coefficients; this is a mani-
festation of the equity premium puzzle in our microeconomic model with exogenous
asset returns and endogenous portfolios.

The predictability of stock returns from the dividend-price ratio is modest in this
sample period. The t-statistic for the dividend-price ratio is only about 1.2, and
the R? statistic in the quarterly return regression is only 0.5%. The evidence for
predictability is stronger if one considers only the postwar period, or ends the sample
before the extraordinary runup of the US stock market during the late 1990’s. Once
again, however, we make no adjustment to the sample estimates but merely calculate
the portfolio implications of our point estimates.

Two other characteristics of the estimated model are worth noting. The log
dividend-price ratio is extraordinarily persistent, with a quarterly serial correlation
of 0.97, and its innovations have an almost perfect negative correlation of —0.95 with
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stock returns. Both the persistence and the negative correlation with returns are
increased by the inclusion of the late 1990’s in the sample period.* They have the
effect of increasing the importance of intertemporal hedging demand, counteracting
the effect of reduced short-term return predictability.

The discount factor under time-additive utility ¢ is set to 0.94 in annual terms.
We solve the model for coefficients of relative risk aversion ~ of 1, 2, 4, 10, and 20,
and for elasticities of intertemporal substitution ¢ of 1, 0.5, 0.25, 0.1, and 0.05. Each
of these values is the reciprocal of one of our risk aversion values, so we consider
the power utility cases for which ¢» = 1/4. We emphasize values for ¢» < 1 since
time-series studies of representative-agent models suggest that 1 is well below one
and may be close to zero (Hall 1988, Campbell and Mankiw 1989).

4.2 Unconstrained portfolio choice

In this section we present our numerical results for the unconstrained problem in which
the investor can short-sell either of the assets. We report results when the portfolio
allocation rule is modelled as a third-order polynomial in the state variable. We choose
a third-order polynomial because convergence for a fourth-order polynomial is much
slower while the DHM statistics are little better than for a third-order polynomial.

Figures 1a and 2a plot the optimal portfolio rule as a function of the state variable.
For comparison purposes the log-linear (CV) solution is also included. Figure 1a plots
the portfolio allocation rules for v = 4 and 20 and ¢ = 1/.75, while Figure 2a plots
those rules for the same coeflicients of relative risk aversion and ¢ = 1/4. The solid
vertical lines in the figures are drawn two standard deviations above and below the
unconditional mean of the state variable.

Several interesting results are visible in these figures. First, as in CV the optimal
portfolio allocations to stocks are positive even at the point of the state space where
the expected gross excess stock return is zero—that is, even when the stock market is
pure risk with no reward. Short-term investors would invest nothing in a risky asset
unless induced to do so by a positive expected excess return. Long-term investors,
however, know that on average they hold profitable long positions in stocks. An
increase in the expected return is therefore welfare-enhancing, while a decrease is
welfare-reducing.  The negative correlation of the realized stock return with the
dividend-price ratio implies that stock prices move opposite expected returns, and

4CV report a much smaller negative correlation of -0.74 for the period 1947.1-1995.4. However
this is due to a timing error in the construction of stock returns. Campbell and Viceira (2000)
correct the error and report a correlation of -0.96. They also report complete corrected solutions
to the consumption and portfolio choice problem.



therefore can be used to hedge the risk of random variation in the expected return.
For this reason long-term investors with relative risk aversion greater than one hold
stocks even when there is no current reward for doing so.

Second, the portfolio rules are almost identical in Figures 1a and 2a. This shows
that the elasticity of intertemporal substitution has almost no effect on optimal port-
folio choice, while the coefficient of relative risk aversion has a large effect. This is
another property of the CV solution that is verified by the numerical solution.

Third, the log-linear solution and the numerical solution are very close in a large
interval around the mean of the state-space, where both rules are approximately linear
with almost exactly the same level and slope. However the numerical solution flattens
out towards the upper extreme of the state-space.

Figures 1b and 2b plot the optimal consumption-wealth ratio as a function of the
state variable, using the same preference parameters as Figures 1a and 2a. Again the
solution in CV is also reported for comparison. Instead of postulating a functional
form for the numerical optimal consumption rule, we used (7) to obtain it; thus the
only approximations involved in our solution method are the discretization of the
state-space, the 9-point Gaussian quadrature approximation of the distribution of
the random variables, and the restriction of the functional form for a(z).

The consumption rules depend sensitively on both the elasticity of intertempo-
ral substitution and the coefficient of relative risk aversion. Risk aversion matters
because it affects the expected return on the portfolio and thus the income that is
available for consumption. The elasticity of intertemporal substitution matters be-
cause changing expected returns have opposing income and substitution effects. As
the expected portfolio return increases, it is possible to consume more out of wealth
(the income effect), but there is an incentive to consume less in order to profit from
favorable investment opportunities (the substitution effect). The former effect dom-
inates if the elasticity of substitution is less than one as in Figure 2b, while the latter
dominates if the elasticity is greater than one as in Figure 1b. The consumption-
wealth ratio is a constant if the elasticity of intertemporal substitution is exactly
equal to one.

The consumption rules are nonlinear and roughly quadratic. CV give the intu-
ition for this. As the expected stock return increases, the investor earns a higher
return on given stockholdings, and also increases the portfolio weight on stocks; thus
the expected portfolio return increases nonlinearly, and this feeds through into the
consumption rule whenever the elasticity of intertemporal substitution is different
from one.

Like the portfolio rules, the optimal numerical and log-linear consumption rules
are very close in most of the state space, except at the upper extreme, where the
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numerical solution flattens out. It is interesting to note that the optimal numerical
and log-linear rules tend to be closer over a larger portion of the state space when
the coefficient of relative risk aversion is large than when it is small. One might
have thought that the greater curvature of the utility function implied by large risk
aversion would negatively affect the accuracy of the approximation; but in this model
greater curvature actually helps the approximation because it limits the extent to
which the investor wants to take advantage of the predictability in excess returns.

Table 2 presents the mean optimal numerical percentage allocation to stocks and
the optimal numerical and log-linear percentage allocation to stocks at the mean of
the state-space. The difference between these two values is the result of Jensen’s
inequality; there is no difference in the approximate solution, since it is linear in the
state variable. For v = 1 portfolio choice is myopic, and therefore the log-linear and
numerical results coincide (and do not depend on ). In general, the average optimal
allocation to stocks varies significantly with ~, but little with ¢, a pattern already
identified by CV.

We do not present results for v < 1 because in this region of the parameter space
we encounter difficult numerical convergence problems. The value function tends to
increase without limit at the extremes of the state space, because the investor’s low
risk aversion combined with a high and time-varying equity premium lead the indi-
vidual to aggressively time the stock market and achieve very high or even unbounded
utility. One way to assist convergence is to consider a lower ¢, but even with this
shift in parameters the DHM statistics indicate that the numerical solution is not
very accurate.

As we increase risk aversion above one in Table 2, we see that average allocations
to stocks fall less than proportionately with risk aversion. The investor with v =
1 holds on average a leveraged portfolio with a 200% allocation to stocks. The
investor with v = 4 holds on average about 75% in stocks, rather than the 50%
that would be implied by a static portfolio rule; and the investor with v = 20 holds
on average about 20% in stocks, rather than the 10% that would be implied by
a static rule.  The increase in average stock allocations is the result of positive
intertemporal hedging demand for stocks by conservative investors. Even with the
modest predictability in returns that we have estimated using a single state variable
over the period 1926-1999, conservative investors’ hedging demand can be important
relative to their static demand. Substantially larger hedging demands are reported
by Campbell and Viceira (2000) and Campbell, Chan, and Viceira (2001) who look
at alternative sample periods and consider multiple state variables.

Table 2 shows that the mean optimal log-linear percentage allocation to stocks is
slightly larger than the one obtained numerically. This is due to the fact that the
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numerical optimal portfolio allocation rule flattens out towards the upper extreme
of the state-space whereas the approximate analytical rule keeps on increasing lin-
early. However, this happens mostly for values of the state-variable for which the
unconditional probability is very small, and therefore the mean optimal log-linear
and numerical allocations are very close.

Table 3 reports the standard deviations of the optimal numerical and log-linear
portfolio rules. The fact that the optimal numerical portfolio rule is approximately
linear around the unconditional mean of the state-variable but flattens out towards
the upper extreme of the state-space, whereas the log-linear portfolio rule is linear
throughout, explains why the latter has a higher standard deviation. Again, the dif-
ference between the two standard deviations is small because of the low unconditional
probability of the portion of the state space where the flattening occurs. The stan-
dard deviation of the optimal percentage allocation to stocks decreases with ~ since
risk-averse individuals are less aggressive market timers.

Tables 4 through 6 present analogous calculations for the consumption-wealth
ratio. In interpreting these tables one should remember that the optimal log-linear
consumption policy is quadratic in the state-variable. This is why the optimal log-
linear percentage consumption-wealth ratio at the mean of the state-space and the
mean optimal log-linear consumption wealth ratio do not coincide. Also, for ¢ = 1
the exact analytical consumption-wealth ratio is known and therefore the log-linear
and numerical solutions coincide (and do not depend on 7).

The sensitivity of the consumption-wealth ratio to the parameters v and v is sim-
ilar for the log-linear and numerical solutions. For values of ¢ < 1 (> 1) the mean
optimal percentage consumption-wealth ratio is increasing (decreasing) in 7. For low
(high) values of y the mean optimal percentage consumption-wealth ratio is increasing
(decreasing) in ¢. The intuition is the same as in CV. Highly risk-averse investors, at
the bottom of the table, hold most of their wealth in the riskless asset and hence earn
a low return. If this return is below the rate of time preference, investors that are
unwilling to substitute consumption intertemporally () < 1) choose to consume more
out of wealth than investors who are willing to substitute consumption intertempo-
rally (¢ > 1). The income effect of a negative time-preference-adjusted rate of return
on saving dominates for investors with ¢ < 1, while the substitution effect dominates
for investors with ¢ > 1. This pattern reverses for risk-tolerant investors, in the
upper part of the table, because these investors hold risky portfolios whose expected
rate of return is larger than their rate of time preference.

Table 6 presents the standard deviations of the optimal log-linear and numerical
consumption-wealth ratios. In general the log-linear standard deviations are larger.
The reason is that our numerical policy functions are approximately quadratic at
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the unconditional mean of the state-space (and very similar to the log-linear policy
functions) but flatten out towards the upper extreme of the state-space as shown in
Figures 1b and 2b. This pattern is similar to the one we obtained for the portfolio
rule in Table 3.

Table 7 presents DHM tests of the accuracy of our numerical solutions. If our
solutions were exact, the DHM statistics would give us 5% of errors in both the lower
and upper critical tails. The numbers reported in Table 7 lie between 2% and 10% and
generally cluster around 5%, implying that our numerical solutions are quite accurate.
CK obtained better DHM test results, but their model has only one decision variable
and one Euler equation. We note that we also obtain DHM statistics closer to 5% in
the special cases (7 =1 or ¢ = 1) for which we have only one decision variable.

We also used DHM statistics to evaluate the accuracy of the log-linear (CV)
solution. In order to do this we calculated numerically the value function implied
by the log-linear portfolio and consumption rules, using stage 2 of our numerical
algorithm. The log-linear solution dramatically fails the DHM test, giving 0% of
errors in the lower tail and 100% of errors in the upper tail. Evidently the inaccuracy
at the upper extreme of the state space, shown in Figures 1 and 2, has a large impact
on the DHM statistics. These findings also illustrate the power of DHM statistics to
detect small deviations from the optimal solution.

Finally, we use DHM statistics to explore the importance of nonlinearities in the
portfolio rule. We compare the DHM statistics for numerical solutions based on
polynomial portfolio rules that are third-order, second-order, first-order, and first-
order restricted to have the slope implied by the log-linear CV solution. In each case
we calculate the optimal portfolio rule, consumption rule, and value function using
our standard numerical algorithm. The results are not reported in a table, but can be
summarized as follows. Comparing the second-order with the third-order polynomial
rule, there is moderate deterioration in the DHM statistics to about 10% with the
deterioration being worse for high values of gamma. The deterioration is much worse
for the first-order polynomial rules especially when gamma is 10 or higher. In the
extreme, when the slope is restricted to the CV value and gamma is high, 100% of
the DHM statistics fall in the upper 5% critical tail.

4.3 Constrained portfolio choice

In this section we present numerical results for the constrained problem in which the
investor is not allowed to borrow at the riskfree rate or to short-sell the risky asset,
so the portfolio share a(x) is constrained to lie in the unit interval. Our main focus
in this section is to compare the constrained and unconstrained numerical solutions.
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Our solution algorithm for the constrained problem is a slight variation of the one
presented above for the unconstrained problem. At each iteration of the algorithm
the portfolio allocation rule is given by:

OéiOHSt(x) — Min[Max(alg + alff + a§x2 + a§x3, 0)7 1] (16)

where k refers to the iteration. The results for the constrained problem are presented
in Tables 8 and 9. Figures 3 and 4 plot the constrained and unconstrained optimal
portfolio and consumption rules for v = 4 and 20 and ¢ = 1/4.

The constrained portfolio rules, like the unconstrained rules, are nondecreasing
in the state variable. Thus the zero constraint binds when the state variable is low,
and the unit constraint binds when the state variable is high. This means that if
the constrained model is a reasonable approximation to reality investors should be
out of the stock market at a time when the log dividend-price ratio is low. Figure
3 illustrates that the area over which the portfolio rules are constrained decreases as
the coefficient of relative risk aversion increases. This is of course a consequence of
the fact that risk-averse investors have lower average stock allocations and are less
aggressive market timers. The figure also shows that the slope of the optimal rule in
the unconstrained region may be affected by the existence of the constrained region;
nonetheless the unconstrained solution, with the constraints imposed, appears to be
a good first approximation to the constrained solution.

The presence of binding constraints implies that the standard deviation of the
optimal constrained percentage allocation to stocks (Table 8) is smaller than the
standard deviation of the unconstrained allocation (Table 3). The constraints reduce
the average allocation to stocks for investors with low coefficients of risk aversion,
since these investors more often wish to leverage their stockholdings than to sell
stocks short; the constraints have no detectable effect on the average allocation for
highly risk-averse investors.

The portfolio constraints also affect the consumption-investment decision as shown
in Table 9. For example, when the state variable is sufficiently high the investor
would like to hold a leveraged position in the risky asset, which he is not allowed
to do. Instead he holds an unleveraged position, and earns a smaller return than
he would otherwise. This affects the steady-state value of his consumption-wealth
ratio. Comparing Tables 5 and 9 we see that for ¢ < 1 the mean optimal percentage
consumption-wealth ratio with constrained portfolio choice is smaller than the one
with unconstrained portfolio choice. This result can be understood by considering the
income and substitution effects of portfolio constraints. Portfolio constraints reduce
the average portfolio return, which reduces consumption through the income effect

14



but increases consumption through the substitution effect. When ¢ < 1 the income
effect dominates, but when ¢ > 1 the substitution effect dominates and the portfolio
constraints increase average consumption.

Comparing Tables 6 and 9 we see that portfolio constraints reduce the standard
deviation of the optimal consumption-wealth ratio. An intuitive way of understanding
this result is to note that portfolio constraints make the several states look more alike.
For example, even if the log dividend-price ratio is very high, the investor is limited
in his ability to exploit this unusual investment opportunity. This effect is stronger
for investors with low risk aversion, who are constrained over a larger region of the
state space.

15



5 Conclusion

This paper has analyzed the implications of stock return predictability for the portfo-
lio and consumption decisions of long-lived investors. We have studied investors who
consume out of their financial wealth and have recursive Epstein-Zin-Weil utility, a
generalization of power utility that enables us to distinguish between the coefficient of
relative risk aversion and the elasticity of intertemporal substitution. We assume that
these investors choose in discrete time between a riskless asset with a constant return,
and a risky asset with constant return variance whose expected log return follows an
AR(1) process. We have calibrated the asset return processes to fit the behavior of
quarterly US stock returns over the period 1926-1999, using the log dividend-price
ratio as a proxy for the expected log stock return.

We have used numerical techniques to obtain the optimal policies. We find that
the optimal portfolio rule is approximately linear and the log consumption-wealth
ratio approximately quadratic in the state variable over a wide interval around the
unconditional mean of the state variable. However, both policy functions flatten out
towards the upper extreme of the state space. The investor responds less aggressively
to movements in the log dividend-price ratio when the ratio is already extremely high.

We have also calculated the optimal policies for investors who face borrowing and
short-sales constraints. This is probably a more realistic problem for many investors.
We find that the constrained optimal portfolio rules are close to the unconstrained
optimal rules with constraints imposed, and are particularly close for investors with
high risk aversion. The presence of constraints has important effects on both the level
and variability of optimal consumption.

We have compared our numerical solution with the approximate analytical solu-
tion proposed by Campbell and Viceira (1999), in which the portfolio rule is globally
linear and the consumption rule is globally quadratic. For the parameter values
considered here, the approximate analytical solution is very close to the numerical
solution provided that the state variable is no more than two standard deviations
above its mean. However the analytical solution cannot capture the flattening out of
the policy functions at high values of the state variable.

Den Haan-Marcet (1994) statistics are sensitive indicators of errors in candidate
solutions to dynamic optimization problems. These statistics indicate that our nu-
merical solution is quite accurate, but they are able to pick up the approximation
errors in the analytical solution at the upper end of the state space.

This paper has the important limitation that it studies a partial equilibrium model.
We have solved the microeconomic problem of an investor facing exogenous asset
returns, but we do not show how these asset returns could be consistent with general
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equilibrium. The difficulty is particularly severe because we find that all investors
should change their portfolio allocations in the same direction as the expected stock
return, regardless of their preferences. That is, all investors should buy and sell
assets at the same time. This cannot be consistent with a general equilibrium model
that makes realistic assumptions about asset supplies.

One possible resolution of this difficulty is that the representative investor has dif-
ferent preferences from those assumed here, perhaps the habit-formation preferences
of Campbell and Cochrane (1999) that can generate shifts in risk aversion and hence
changing risk premia with a constant riskless interest rate. Under this interpreta-
tion the portfolio rules described in this paper should be used only by investors with
constant risk aversion, who cannot be typical of the market as a whole.
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Appendix: Numerical Solution Algorithm

We use Newton-Raphson’s algorithm to optimize over the coefficients of the policy
function for a(z). We discretize the state space and approximate it with 35 equally
spaced grid points, centered at the unconditional mean of the state variable. We
set the distance between any two points to 0.25%. We approximate the distribution
for the innovations to the state variable using Gaussian quadrature methods with 9
quadrature points.

Since the log-linear solution in Campbell and Viceira (CV, 1999) is likely to be
close to the optimal solution we use its coefficients as our initial values, with the
coefficients in the higher order terms initialized at zero. This makes divergence of our
numerical algorithm less likely and reduces the time needed to obtain convergence.
We initialize the value function by setting it equal to a constant. The results obtained
are not sensitive to the value of this constant in a wide range around the mean value
implied by the CV log-linear solution.

The algorithm consists of the following steps:

1. Given initial values for the coefficients of the portfolio rule (10) and for the
value function, we compute the consumption rule using equation (7):

1-5\¥ =Y R1=7|p =
c(x) = (5) iE V) E, 1’ Iy — for each z, given V(.), (17)
) PV R R

2. We use this consumption rule to compute a new value function using equation

(6):

V(z) = {(1 — 5)0(:(:)1_% +6(1— c(m))l_% {E [V(y)I’VR;’wx] }II_Tf } o (18)

for each x, given ¢(.). We iterate on this functional equation until we obtain conver-
gence of the value function at each state. This gives us values for the value function
and the CWR which correspond to the parameters of the portfolio rule.

3. We evaluate numerically the gradient (G) of the value function at each state
with respect to the coefficients of «(z) as follows. Using 1 and 2 we compute the
value function and CWR corresponding to perturbed coefficients. Given these values
we compute the gradient for each state:

G(r;a%) = (V(z;0° +e* 1) — V(x;a” — e % 1)) /2e, (19)
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where o denotes the vector of parameters of the portfolio rule, ¢ is a small increment,
and I, is a unit vector of dimension p.

In order to determine the direction of steepest ascent (G*) we compute an weighted
average of these gradients using the ergodic distribution of the state variable:

G = / Gla: o®)dF (z), (20)

where F'(x) is the cumulative distribution function corresponding to the ergodic dis-
tribution of .

4. To determine the optimal step size we compute the Hessian (H) of the value
function with respect to the coefficients, using the same approach as in the calculation
of the gradient. To avoid divergence problems we control the step size. The new
coeflicients are given by

ot =aof — NHT'G7, (21)

where k refers to the iteration, and A is set initially to 2/3. Given these coefficients the
new value function is compared with the previous one and in case there is no improve-
ment A is reduced (multiplied by 2/3). This is repeated as long as no improvement
occurs.

5. With the coefficients obtained in 4 we compute the value function and CWR
using 1 and 2.

6. We iterate 3, 4 and 5 until the weighted average value function converges.
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Table 1: Estimates of the Stochastic Process for Returns (1926.1 - 1999.4)

(A) Restricted VAR(1):

0.083 0.020

r—r | (0.057) (0.017) - et

<dt+1—pt+1 = o008 | T| oo |EP)EL
(0.059) (0.018)

11.598E —3 —11.392E — 3

q_ | (0:960E—3) (0.970E —3) g2 (0005
~11.392F —3 12.503E — 3 0.908
(0.970E — 3)  (1.035E — 3)

(B) Derived model:

T4l —Tf = Ty + Uy
Tpi1 = 1L7I8E -2 + 0970 (x;—p) + naa
(0.003) (0.018)

11.598F — 3 —0.229F — 3
02 oun )\ | (0.960E—3) (0.199E —3)

Guy 02 ) | —0.229E—-3 0.005E — 3
(0.199E — 3) (0.009E — 3)

rg=011E—-2  02/02=0.737E — 2 corr(n,u) = —0.946



Table 2: Mean Optimal Numerical Percentage Allocation to Stocks and Optimal Numerical
(Log-Linear) Percentage Allocation to Stocks at the Mean of the State-Space

RRA. ELS.
1/.75 1 1/2 1/4 1/10 1/20
1.00 19814  198.14  198.14  198.14 19814  198.14
198.14  198.14  198.14  198.14 19814  198.14
(198.14) (198.14) (198.14) (198.14) (198.14) (198.14)
200 12890 124.00 12254 12127 12243  121.90
120.62  124.03 12295 121.31  123.70  123.60
(130.87) (129.30) (127.41) (126.64) (126.21) (126.08)
400 7615  77.67 7550  76.62 7714  75.99
7729 7993 7630 7814 7867  77.18
(77.94)  (78.46) (79.25)  (79.53)  (79.71)  (79.77)
10.00 3203 3320 3554  36.61 3828  37.20
3259 3381 3652  37.63 3922  37.66
(34.92)  (36.61) (39.50) (41.10)  (42.11)  (42.45)
20.00  16.67  17.46 1938 2076  19.86  19.48
16.67 1746 1937 2075 19.82  19.49
(18.14)  (1947) (22.08) (23.74) (24.84)  (25.23)




Table 3: Standard Deviation of the Optimal Numerical (Log-Linear) Percentage Allocation
to Stocks

RRA. ELS.
1/.75 1 172 /4 1/10  1/20
1.00 7729 7729 7729 7729  77.29  77.29
(77.29) (77.29) (77.29) (77.29) (77.29) (77.29)
200 4241 4511  43.27 4438 4181 4263
(45.28) (45.08) (44.83) (44.73) (44.67) (44.65)
400 2266 2340 21.98 21.75 2179 2185
(25.04) (25.10) (25.19) (25.22) (25.24) (25.25)
10.00 858 842 920 899 826  8.32
(10.71) (10.91) (11.21) (11.36) (11.46) (11.49)
2000 344 341 266 205 337  3.86
(5.48) (5.63) (5.89) (6.04) (6.12) (6.15)

Table 4: Optimal Numerical (Log-Linear) Percentage Consumption-Wealth Ratio at the
Mean of the State-Space

RRA. ELS.
1/.75 1 12 1/4 1/10 1/20
1.00 117 153 203 226 239 243
(1.16) (1.53) (2.08) (2.34) (2.50) (2.55)
200 140 153 169 175 178 1.79
(1.38) (1.53) (1.74) (1.83) (1.88) (1.90)
400 163 153 139 132 128 127
(1.60) (1.53) (1.45) (1.41) (1.39) (1.38)
1000 1.84 153 111 091 079  0.75
(1.81) (1.53) (1.16) (1.00) (0.90) (0.87)
2000 192 153 098 071 055  0.49
(1.90) (1.53) (1.02) (0.78) (0.65) (0.61)




Table 5: Mean Optimal Numerical (Log-Linear) Percentage Consumption-Wealth Ratio

RRA. ELS.
1/.75 1 1/2 1/4 1/10 1/20
1.00 1.16 153 209 237 253 259
(1.15) (1.53) (2.16) (2.50) (2.71) (2.78)
200 139 153 172 181 1.85 187
(1.37) (1.53) (L.78) (L.91) (1.98) (2.01)
400 162 153 141 135 131  1.30
(1.59) (1.53) (1.47) (1.44) (1.43) (1.43)
10.00 183 153 111 091 080 0.76
(1.81) (1.53) (1.17) (1.01) (0.92) (0.89)
2000 192 153 098 071 055  0.50
(1.90) (1.53) (1.02) (0.79) (0.65) (0.61)

Table 6: Standard Deviation of the Optimal Numerical (Log-Linear) Percentage
Consumption-Wealth Ratio

RRA. ELS.
1/.75 1 1/2 1/4 1/10 1/20
1.00 015 000 036 059 073 0.78
(0.16) (0.00) (0.41) (0.71) (0.92) (1.00)
200 012 000 022 033 041 0.44
(0.13)  (0.00) (0.25) (0.40) (0.50) (0.54)
400 008 000 012 017 020 021
(0.09) (0.00) (0.14) (0.21) (0.26) (0.27)
10.00 004 000 004 006 0.07 0.06
(0.05) (0.00) (0.06) (0.08) (0.10) (0.10)
2000 0.02 000 002 003 002 0.02
(0.03) (0.00) (0.03) (0.04) (0.04) (0.04)




Table 7: Percentage of Den Haan-Marcet Statistics in the Lower (Upper) 5% Critical Tail

RR.A. ELS.
1/.75 1 1/2 1/4 1/10 1/20
1.00  5.25 — 450 550 355 5.00

(6.10)  (—) (6.35) (7.65) (6.95) (7.35)
200 615 505 510 495 585  5.20
(6.70) (6.90) (8.20) (9.10) (7.65) (7.25)
400 500 555 530 415 425  4.70
(6.85) (5.00) (6.80) (7.25) (7.30) (8.05)
10.00 415 595 365 265 3.15 3.30
(5.85) (5.05) (7.25) (7.80) (7.05) (6.55)
2000 165 410 1.70 055 3.60  2.60
(8.75) (4.85) (8.50) (9.50) (6.40) (8.75)




Table 8: Constrained Portfolio Choice: Mean Optimal Percentage Allocation to Stocks,
Optimal Percentage Allocation to Stocks at the Mean of the State-Space and Standard
Deviation of the Optimal Percentage Allocation to Stocks

RRA. ELS.
1/.75 1 172 /4  1/10  1/20
1.00  96.04 96.04 9604 96.04 96.04  96.04
100.00 100.00 100.00 100.00 100.00  100.00
(15.53) (15.53) (15.53) (15.53) (15.53) (15.53)
200 9170 9171  91.69  91.30 9173  91.82
100.00  100.00 100.00 100.00 100.00  100.00
(17.50) (17.45) (17.51) (18.17) (17.45) (17.34)
400 7165 71.96 7256 7274 7292 72.92
72.63 7291 7334 7363 73.78  73.85
(21.07) (20.81) (20.22) (20.20) (20.03) (20.10)
10.00 3203 3320 3555 36.62 3828  37.20
3259 3381 3652 37.63 39.22  37.66
(857) (842) (9.18) (8.98) (8.26) (8.32)
2000 16.67 17.46 19.38  20.76  19.86  19.48
16.67 1746 1937 2075  19.82  19.49
(3.44)  (3.41) (2.66) (2.05) (3.37) (3.86)




Table 9: Constrained Portfolio Choice: Mean Optimal Percentage Consumption-Wealth
Ratio, Optimal Percentage Consumption-Wealth Ratio at the Mean of the State-Space and
Standard Deviation of the Optimal Percentage Consumption-Wealth Ratio

RRA. ELS.
1/.75 1 1/2 1/4 1/10 1/20
1.00 144 153 168 175 179 181
144 153 167 174 177 179
(0.09) (0.00) (0.15) (0.23) (0.28) (0.29)
200 151 153 157 159 1.60  1.60
151 153 156 157 157 157
(0.09) (0.00) (0.14) (0.21) (0.25) (0.26)
400 1.63 153 140 134 130  1.29
163 153 139 131 127 1.25
(0.08) (0.00) (0.11) (0.16) (0.19) (0.20)
1000 1.83 153 111 091 080 0.76
1.84 153 111 091 079 0.75
(0.04) (0.00) (0.04) (0.06) (0.07) (0.06)
2000 1.92 153 098 071 055 0.50
192 153 098 071 055 049
(0.02) (0.00) (0.02) (0.03) (0.02) (0.02)
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