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Buckling as a failure or a feature

Photo by Tony Granelli

Localizes damage

Introduces frustration

Photo by Oliver Leembruggen

Alters properties

Fig. 1 of A state variable for crumpled sheets by 
O. Gottesman, J. Andrejevic, C.H. Rycroft, and S.M. Rubenstein 
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Buckling as a failure or a feature

These consequences could be seen as failures of a material; 
alternatively, if we can learn to predict the transitions, these could be 

exploited as features in materials designed to deform controllably.

Photo by Adam Kuban

Photo by John H. Lienhard

Photo by Tony Granelli

Localizes damage

Alters properties

Introduces frustration
TresBonneVintage shop on Etsy

Fig. 1 of A state variable for crumpled sheets by 
O. Gottesman, J. Andrejevic, C.H. Rycroft, and S.M. Rubenstein 

Photo by Oliver Leembruggen
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Steps to realizing design dreams

Statistical progression of crease formation

Fig. 3a of A model for the fragmentation kinetics of crumpled thin sheets
by J. Andrejevic, L.M. Lee, S.M. Rubenstein, and C.H. Rycroft

𝑥
𝑦
𝑧

𝑓 =
𝐹
𝑊

𝑊

ω

Two simulated crumpling procedures

Dynamic fragmentation kinetics

Facet evolution during crumpling via twisting

What are the energetic 
trade-offs which result in 
damage accumulation?

How does geometry of 
confinement dictate facet 

fragmentation?

Curvature

Above plane

Below plane
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Computational model for elasticity

In-plane springs:             𝐸* =
+
,
𝑘*
./ 𝒓./1 − 𝒓./

, ⟹ 𝑌,5 = 	
,
7�
𝑘* ,	𝜈 = 	 + 7⁄

Out-of-plane rigidity:                  𝐸; =
+
,
𝑘;
./ 𝜅./

, ⟹ B = 	 7�

,
𝑘; , ℎ = ?	@A

@B

�

Triangular and random lattices can be mapped to a continuous elastic sheet with this model.

𝒓./ = 𝒙. − 𝒙/
𝜅./ ≡ 𝑎𝑛𝑔𝑙𝑒	𝑜𝑓	𝑛𝑜𝑟𝑚𝑎𝑙𝑠
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Computational model for elasticity

Stats:

Regular triangular lattice, 

𝑛NOPQ* = 30551, 𝑛*VW.NX* = 90880,

𝑊×𝐿×ℎ = 10×26×0.01	𝑐𝑚,

𝑌75 = 	1.5	𝐺𝑃𝑎, f = 86	𝑁/𝑚,

2.26×10f time steps, 

36 hours using 16 threads

Features: 

o Cross sections of deflection

o Strain tensor at each facet

o Bulk and local energy analysis

o Fine temporal resolution of buckling 

transitions and stress-focusing
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Elastic deformation modes

Fig. 2 of Roadmap to the morphological instabilities of a stretched 
twisted ribbon by J. Chopin, V. Démery, and B. Davidovitch

The sprawling zoo of elastic 
ribbon morphologies can be 

replicated with our model.

We gain insight to the 
energetic trade-offs which 

drive these transitions.
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Computational model for plasticity

Stats:

Regular triangular lattice, 

𝑛NOPQ* = 30551, 𝑛*VW.NX* = 90880,

𝑊×𝐿×ℎ = 10×26×0.013	𝑐𝑚,

𝑌75 = 0.996	𝐺𝑃𝑎, f = 30	𝑁/𝑚,

1.76×10h time steps, 

~6 days using 16 threads

Features: 

o All the elastic model features

o Precise maps of plastic damage

o ~Continuous evolution of facet 

fragmentation and ridge “mileage”
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Simulated data to augment experiments

Curvature

Above plane

Below plane
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Simulated data to augment experiments

Distribution of all facets

Distribution excluding four largest facets
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Summary and acknowledgements

o Simply-motivated model, with easy mapping 
from discrete mesh to continuous sheet

o Access to internal dynamics and ability to 
generate large volume of data

o Fine temporal resolution of buckling 
transitions and crumpling evolution

Huge thanks to Jovana Andrejevic, Prof. Chris Rycroft, Prof. Arshad Kudrolli, and Rycroft Group!

This research was partially supported by NSF through the Harvard University MRSEC DMR-2011754.
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Characterizing material defects

With this mass-spring-model we 
precisely control our mesh topology. 
We can study defects, puckers, and 

dimples, individually or in arrays.

Characterizing how various defect 
models respond to loads can improve 

how we simulate material imperfections. Buckled 5-7 dislocation

Fig. 1 of Buckling and metastability in membranes 
with dilation arrays by A. Plummer and D.R. Nelson

Puckered dilation defects

Plastically deformed dimples
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Model validation tests
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Dark gray band indicates 1% error, lighter gray band 3% error



Computational model for plasticity

In-plane springs:             	𝐸* =
+
,
𝑘*
./ 𝒓./1 − 𝒓./ + 𝑞./

,

Out-of-plane bending:      𝐸; =
+
,
ku
vw 𝜅./ − 𝑝./

,

𝑞./ and 𝑝./ store local 

stretching and bending 
damage respectively, 

effectively changing the rest 
length or angle at an edge.

They are signed quantities 
and are updated using a 
strain-hardening model. 

𝒓./ = 𝒙. − 𝒙/
𝜅./ ≡ 𝑎𝑛𝑔𝑙𝑒	𝑜𝑓	𝑛𝑜𝑟𝑚𝑎𝑙𝑠
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Strain models for plasticity

𝑑𝑞
𝑑𝑡

= 	 { 𝑔 𝑙 − 𝑞 													𝑙 − 𝑞 > 0
−𝑔 −𝑙 + 𝑞 							𝑙 − 𝑞 ≤ 0	

𝑔 𝜆 = �
0																													𝜆 < 𝑙1
1

1 + 𝛾
𝜆 − 𝑙1 					𝜆 ≥ 𝑙1
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𝜎
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𝜀 = Δ𝑙/𝐿

𝜀+ = 𝜀1 + 𝑞

Perfectly plastic Linear hardening

𝑌

q

(1 + 𝛽)𝑞
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𝜎
=
𝐹/
𝑊

𝜀 = Δ𝑙/𝐿

𝜀+ = 𝜀1 + 1 + 𝛽 𝑞

𝜎1
𝐻 = 1 + 𝛽 �+𝜎+

Nonlinear hardening

𝑌

q

1 + 𝛽 𝑞�

𝜀1 𝜀+
𝜎
=
𝐹/
𝑊

𝜀 = Δ𝑙/𝐿

𝜀+ = 𝜀1 + 1 + 𝛽 𝑞�

𝜎1

𝐻 = 2𝜀(1 + 𝛽 )�+𝜎+

• Isotropic hardening: yield surface 
is modified (σ+� = −σ+�) 

• Kinematic hardening: yield surface 
is shifted ( σ+� − σ+� = 2Yε1)

Current strain-hardening model
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