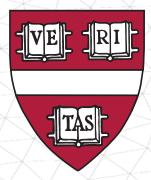
A computational model of thin sheets crumpled via twisting

Madelyn Leembruggen*, Jovana Andrejevic, Chris Rycroft, Arshad Kudrolli

Harvard University, Rycroft Group

March Meeting 2021



* scholar.harvard.edu/madelynleembruggen

Buckling as a failure

Localizes damage

Photo by Oliver Leembruggen

Introduces frustration

Alters properties

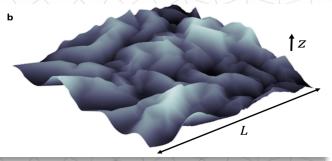
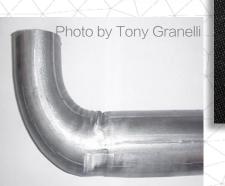


Fig. 1 of A state variable for crumpled sheets by O. Gottesman, J. Andrejevic, C.H. Rycroft, and S.M. Rubenstein

Buckling as a failure or a feature



Alters properties

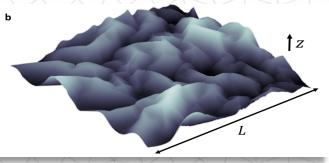


Fig. 1 of A state variable for crumpled sheets by O. Gottesman, J. Andrejevic, C.H. Rycroft, and S.M. Rubenstein

Localizes damage

Photo by Adam Kuban

Introduces frustration

These consequences could be seen as failures of a material; alternatively, if we can learn to predict the transitions, these could be exploited as features in materials designed to deform controllably.

Steps to realizing design dreams

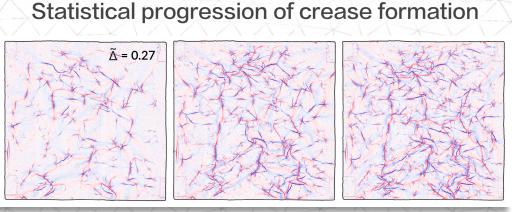


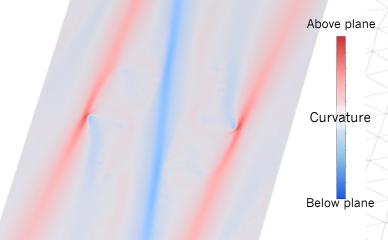
Fig. 3a of A model for the fragmentation kinetics of crumpled thin sheets by J. Andrejevic, L.M. Lee, S.M. Rubenstein, and C.H. Rycroft Two simulated crumpling procedures

4

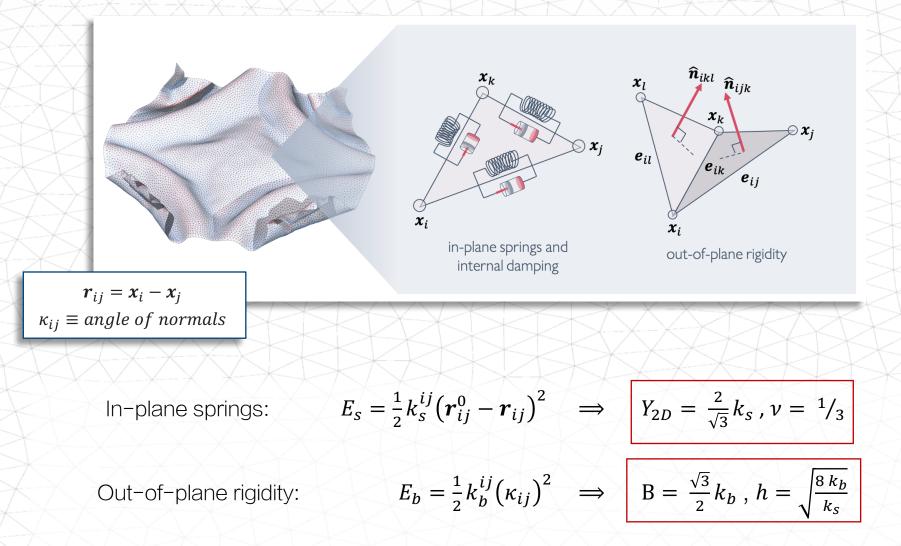
What are the energetic trade-offs which result in damage accumulation?

How does geometry of confinement dictate facet fragmentation?

Dynamic fragmentation kinetics

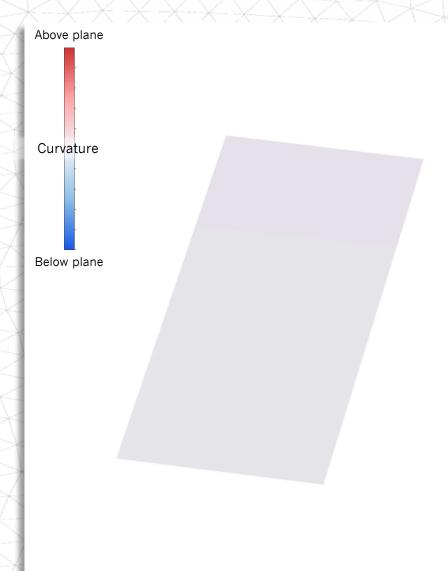


Computational model for elasticity



Triangular **and** random lattices can be mapped to a continuous elastic sheet with this model.

Computational model for elasticity



Stats:

Regular triangular lattice,

 $n_{nodes} = 30551, n_{springs} = 90880,$

 $W \times L \times h = 10 \times 26 \times 0.01 \ cm,$

 $Y_{3D} = 1.5 \ GPa, f = 86 \ N/m,$

2.26×10⁶ time steps,36 hours using 16 threads

Features:

Cross sections of deflection

- Strain tensor at each facet
- Bulk and local energy analysis
- Fine temporal resolution of buckling
 - transitions and stress-focusing

Elastic deformation modes

Fig. 2 of Roadmap to the morphological instabilities of a stretched twisted ribbon by J. Chopin, V. Démery, and B. Davidovitch

The sprawling zoo of elastic ribbon morphologies can be replicated with our model.

We gain insight to the energetic trade-offs which drive these transitions.

7

Computational model for plasticity

Stats:

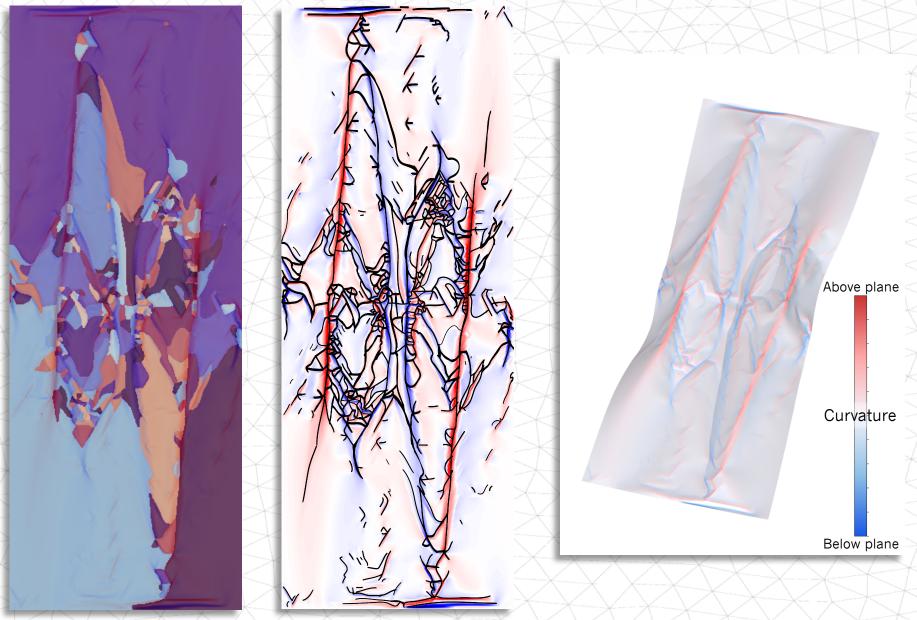
Regular triangular lattice,

 $n_{nodes} = 30551, n_{springs} = 90880,$ $W \times L \times h = 10 \times 26 \times 0.013 \ cm,$ $Y_{3D} = 0.996 \ GPa, f = 30 \ N/m,$ $1.76 \times 10^7 \ time \ steps,$ ~6 days using 16 threads

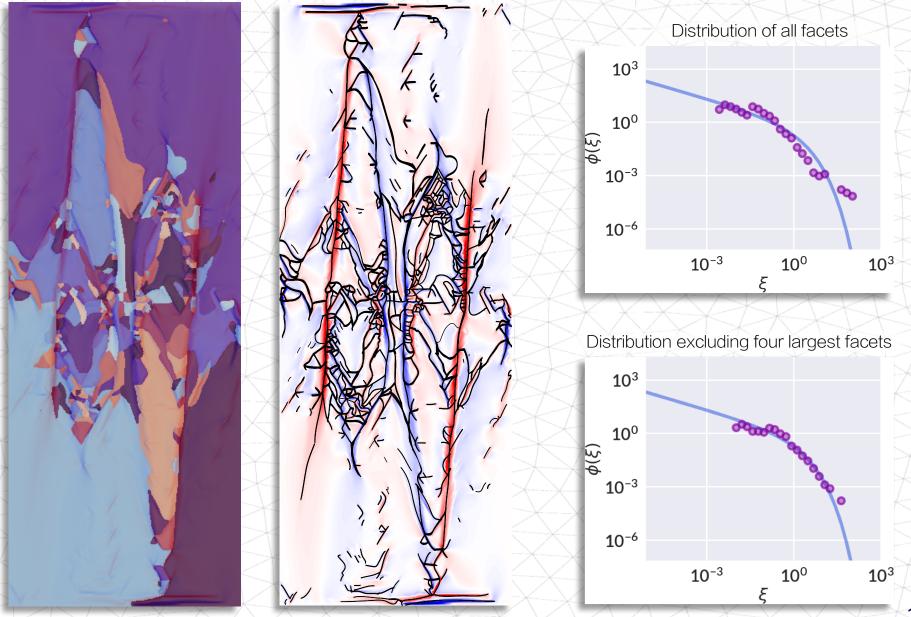
Features:

- All the elastic model features
- Precise maps of plastic damage
 - ~Continuous evolution of facet
- fragmentation and ridge "mileage"

Simulated data to augment experiments



Simulated data to augment experiments



Summary and acknowledgements

 Simply-motivated model, with easy mapping from discrete mesh to continuous sheet

- Access to internal dynamics and ability to generate large volume of data
 - Fine temporal resolution of buckling transitions and crumpling evolution

Huge thanks to Jovana Andrejevic, Prof. Chris Rycroft, Prof. Arshad Kudrolli, and Rycroft Group! This research was partially supported by NSF through the Harvard University MRSEC DMR-2011754.

The National Academies of Academics of MEDICINE

Characterizing material defects

With this mass-spring-model we precisely control our mesh topology. We can study defects, puckers, and dimples, individually or in arrays.

Characterizing how various defect models respond to loads can improve how we simulate material imperfections.

Buckled 5-7 dislocation

Puckered dilation defects

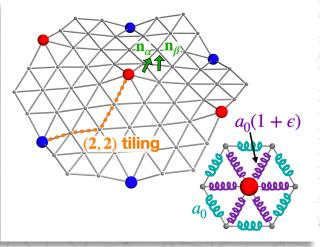


Fig. 1 of *Buckling and metastability in membranes* with dilation arrays by A. Plummer and D.R. Nelson

Plastically deformed dimples

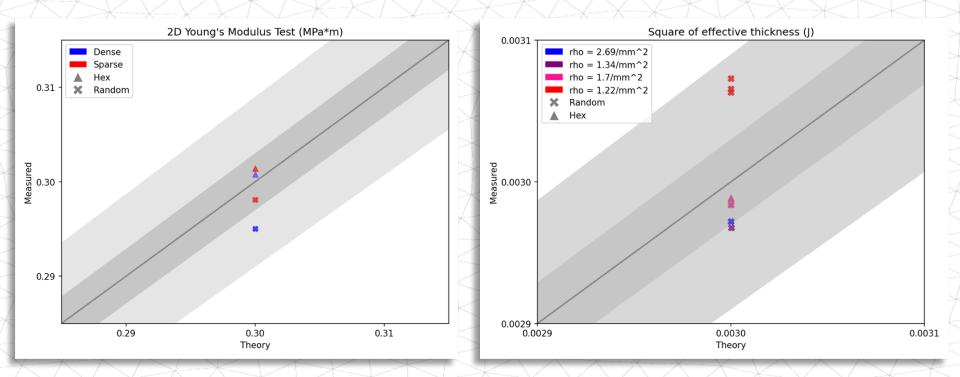
Model validation tests

$$E_{s} = \frac{1}{\sqrt{3}} \frac{\bar{A}}{\|\boldsymbol{e}_{ik}\|^{2}} k_{s} (l_{ik} - \|\boldsymbol{e}_{ik}\|)^{2}$$

 $Y_{2D} = \frac{2}{\sqrt{3}}k_s$

$$E_{b} = \frac{\sqrt{3}}{4} \frac{\|\boldsymbol{e}_{ik}\|^{2}}{\overline{A}} k_{b} \|\hat{n}_{ijk} - \hat{n}_{ikl}\|^{2}$$

$$\mathbf{h}_{eff}^2 = \frac{16}{\sqrt{3}} k_b$$



Dark gray band indicates 1% error, lighter gray band 3% error

Computational model for plasticity

2

 $r_{ij} = x_i - x_j$ $\kappa_{ij} \equiv angle \ of \ normals$

In-plane springs:

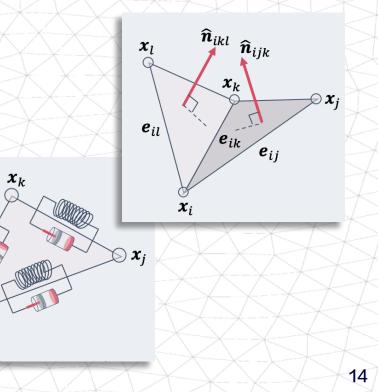
$$E_s = \frac{1}{2}k_s^{ij} \left(\boldsymbol{r}_{ij}^0 - \boldsymbol{r}_{ij} + \boldsymbol{q}_{ij} \right)$$

Out-of-plane bending: $E_b = \frac{1}{2} k_b^{ij} (\kappa_{ij} - p_{ij})^2$

 \boldsymbol{x}_i

 q_{ij} and p_{ij} store local stretching and bending damage respectively, effectively changing the rest length or angle at an edge.

They are signed quantities and are updated using a strain-hardening model.



Strain models for plasticity

Current strain-hardening model

$$\frac{dq}{dt} = \begin{cases} g(l-q) & l-q > 0\\ -g(-l+q) & l-q \le 0 \end{cases}$$

$$g(\lambda) = \begin{cases} 0 & \lambda < l_0 \\ \frac{1}{1+\gamma} (\lambda - l_0) & \lambda \ge l_0 \end{cases}$$

- Isotropic hardening: yield surface is modified $(\sigma_1^t = -\sigma_1^c)$
- Kinematic hardening: yield surface is shifted $(|\sigma_1^t \sigma_1^c| = 2Y\epsilon_0)$

