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. Goal

e Determine stable sizes
— Increase number of particles

— Postulated to collapse to a black
hole
e P.Chavanis, Phys. Rev. D. 94 (2016) 083007
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Stability of an axion star

— Improve approximations
e J.Eby, P. Suranyi, C.Vaz, L.C.R. Wijewardhana,
JHEP 1503 (2015) 080 arXiv:1412.3430

— Variational method
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A Numerical Aside

e Gross-Pitaevskii + Poisson System

. o 1 2 A 2
0 = | =5 =V 4 Voraw + 5 [0 |

VVyraw = 41Gm? Y]

e Shooting method
— Specify the initial conditions to match appropriate end behavior
— ,V, go to zero at infinity, Y'(0) = o

e Sowhy use a variational method?
— Numerical results exist only for stationary configurations

— Ansatze are powerful tools for solving dynamic problems

— We use numerical solutions to choose the best ansatz, but use the
variational method to model collapse, collision, expansion...
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— First order approximation sufficient
for large radii
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v Concluding Thoughts

e Axions are well-motivated dark matter candidates
— Condensates range from asteroid-size to hundreds of lightyears radii
— Unique self-interactions
e Testable theories
— Indirect detection of QCD axion stars
— Novel use of UCD galaxies to constrain dark matter
e Formalism is broadly applicable
— Oscillons attached to inflationary and quintessence fields
e Plenty of room to grow

— Arealm of dark photons or gauge bosons to facilitate dark matter
energy transitions

— Rotation curves to test the viability of varying bosonic candidates
— Develop more precise methods to analyze dynamic condensates




13

Acknowledgements

Profs. Wijewardhana, Suranyi, Ma, and Vaz
Drs. Eby, and Gass

L. Street and J. Leeney

WISE Program and Prof. Ghia

Funding from:

— The University of Cincinnati
— Department of Physics

— Barry Goldwater Scholarship Foundation




14

Papers based on this work

Collapse of Axion Stars

— J. Eby, M. Leembruggen, P. Suranyi, L.C.R. Wijewardhana. JHEP1612
(2016) 066. arXiv: 1608.06911

Collisions of Dark Matter Axion Stars with Astrophysical Sources

— J. Eby, M. Leembruggen, J. Leeney, P. Suranyi, L.C.R. Wijewardhana.
JHEP1704 (2017) 099. arXiv: 1701.01476

QCD Axion Star Collapse with the Chiral Potential

— J. Eby, M. Leembruggen, P. Suranyi, L.C.R. Wijewardhana. JHEP1706
(2017) 014. arXiv: 1702.05504

Stability of Condensed Fuzzy Dark Matter Halos

— J. Eby, M. Leembruggen, P. Suranyi, L.C.R. Wijewardhana. Submitted
to JCAP_o40P_0718. arXiv: 1805.12147

In preparation:

— On Approximation Methods in the Study of Boson Stars
— Fragmented Astrophysical Bose-Einstein Condensates




QUESTIONS?




* Motivation for the Axion

e The Strong CP Problem

— QCD has very small CP violations

— Peccei and Quinn suggest treating the CP-violation parameter as a field
e R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38 (1977) 1440

— Through the "“misalignment mechanism” the field produces cold axions
— An early universe overabundance could lead to condensation
— Spin zero bosons, electrically neutral, real scalar field

e Ultra-Light Axions

— String theory allows for the existence of lighter classes of “axions” or
axion-like particles (ALPs)
e A.Arvanitaki et al, Phys. Rev. D 81 (2010) 123530
— Solves cusp-core and missing satellites problems

— Calculations can also be treated as generic bosons with various self-
interactions




7 Searching for the Axion

e Coupledtothe EMfield
AL x ¢F - B

— Added to EM Lagrangian, modifies Maxwell’s equations accordingly
e F.Wilczek, Phys. Rev. Lett. 58 (1987) 1799

— Interaction of axion field with B field produces oscillating E fields
— Frequency of E field oscillations depends on mass of axion
e Direct Detection Searches
— ADMX, ABRACADABRA
— CASPEr, atomic clocks
— ALPS
— Radio telescopes, CAST




*  Gross-Pitaevskii + Poisson from
Klein-Gordon + Einstein

e Klein-Gordon + Einstein equations

o+ V' (¢) =0 8TG T = G
— Expand ¢ in creation and annihilation operators:

¢ =ae P'R(r) +a'eP'R(r) + Z Z (aim Y Rime ™"t + h.c.)

1 [0 m
a0 >

Vv N!
— Assuming most of the action comes from the lowest modes, drop the
higher harmonics

N >=

— Non-trivial expectation values:
< N|Op+V' (¢)|N —1>=0
< N |8mGT,,| N >=< N |G,,| N >
e Write the field in terms of a wave function:

Qb — % <¢6—imt 4+ w*eimt)




» The Axion Potential

e |nstanton Potential

0= o-on ()

— m, f are the mass and decay parameter, ¢ is the axion field

e Chiral Potential
1—|—Z—\/1—|—2’2—|—22’COS (?)}

— z=m,/m,, the ratio of the up quark mass to the down quark mass

— QCD Axion Star Collapse with the Chiral Potential shows that using
either potential yields the same qualitative results numerically

1+ 2
z

Ve (¢) =m?f?




o More on Bose-Einstein Condensates

e BECbasics
— Fermions are subject to the Pauli
Exclusion principle
— Bosons prefer the same energy state

— Inlow temperature/high pressure
conditions, bosons condense into a
macroscopic quantum system

e Bose-Einstein Condensation in Dilute Gases by
C.J. Pethick and H. Smith

— Described by a single wavefunction
e History

— Predicted by Bose and Einstein in the
19205

— Created inthe labin 1995 d
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Credit: Université Paris Sud/Labex Palm



» More on Ultra Compact Dwarf
Galaxies

e UCD formation theories

— Small galaxies which were stripped of their stars by a larger host galaxy

— Globular clusters from the high-mass tail of GC distribution
e S. Mieske, M. Hilker, I. Misgeld, A&A 2012, vol. 537, A3

— Independently formed dense galaxies

e Size and mass
— Radii in the 100 ly range

— Mass ranging up to 10%° solar masses

— Often contain SMBHs
e A.C.Seth et al, Nature 513, 398-400 (2014)




2 Why doesn’t the black hole eat the
FDM particles?

Ryp,
N 2
W (r) = V w3z © 7 P:47T/O r’ W‘er

e ULAs have deBroglie wavelength much larger than R,
— Somewhat analogous to optical wavelength vs lens diameter

e P(absorption by black hole) = P(particle within R, ;)

e Estimate probability with integral:
— Dilute condensate with N = 0.9 N,
— 108 solar mass black hole with corresponding Schwarzschild radius
— P=g5x2107°




