
THE STABILITY OF CONDENSED 
DARK MATTER CANDIDATES

Madelyn Leembruggen
University of Cincinnati
Department of Physics

1



Introduction

2

2



Introduction

3

• The Dark Matter Problem
– Flat galactic rotation curve
– Bullet Cluster collision
– 5x as abundant as luminous matter

2



Introduction

4

• The Dark Matter Problem
– Flat galactic rotation curve
– Bullet Cluster collision
– 5x as abundant as luminous matter

2



Introduction

5

• The Dark Matter Problem
– Flat galactic rotation curve
– Bullet Cluster collision
– 5x as abundant as luminous matter

2



Introduction

6

Credit: NASA/CXC/M.Weiss

• The Dark Matter Problem
– Flat galactic rotation curve
– Bullet Cluster collision
– 5x as abundant as luminous matter

2



Goal

7

1 2 3 4 5
Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

3



Goal

8

1 2 3 4 5
Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

3



Goal

9

1 2 3 4 5
Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

10

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007 1 2 3 4 5

Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

11

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007 1 2 3 4 5

Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

12

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007 1 2 3 4 5

Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

13

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007 1 2 3 4 5

Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

14

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007 1 2 3 4 5

Radius

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Energy
Example Energy Functional

Energy

Radius

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

-10

-8

-6

-4

-2

0

ρ

e 0
(ρ
)Energy

Radius

3



Goal

15

• Determine stable sizes
– Increase number of particles
– Postulated to collapse to a black 

hole
• P. Chavanis, Phys. Rev. D. 94 (2016) 083007

• Stability of an axion star
– Improve approximations

• J. Eby, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, 
JHEP 1503 (2015) 080 arXiv:1412.3430

– Variational method
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Axion dynamics lead us to a Hamiltonian,

Here W(ѱ) is the effective self-interaction potential, and can be 
expressed in two equivalent ways.
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• Gross-Pitäevskii + Poisson System

• Shooting method
– Specify the initial conditions to match appropriate end behavior
– ψ, Vg go to zero at infinity, ψ’(0) = 0

• So why use a variational method?
– Numerical results exist only for stationary configurations
– Ansätze are powerful tools for solving dynamic problems
– We use numerical solutions to choose the best ansatz, but use the 

variational method to model collapse, collision, expansion…
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for large radii
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• A dense radius exists
– Stabilized by repulsive self-

interactions
– Corroborated by numerical solutions
– Star will decay via a   AN →AN-3 + a 
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• Axions are well-motivated dark matter candidates
– Condensates range from asteroid-size to hundreds of lightyears radii
– Unique self-interactions

• Testable theories
– Indirect detection of QCD axion stars
– Novel use of UCD galaxies to constrain dark matter

• Formalism is broadly applicable
– Oscillons attached to inflationary and quintessence fields

• Plenty of room to grow
– A realm of dark photons or gauge bosons to facilitate dark matter 

energy transitions
– Rotation curves to test the viability of varying bosonic candidates
– Develop more precise methods to analyze dynamic condensates
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Motivation for the Axion

60

• The Strong CP Problem
– QCD has very small CP violations
– Peccei and Quinn suggest treating the CP-violation parameter as a field

• R. D. Peccei, H. R. Quinn, Phys. Rev. Lett. 38 (1977) 1440

– Through the ”misalignment mechanism” the field produces cold axions
– An early universe overabundance could lead to condensation 
– Spin zero bosons, electrically neutral, real scalar field

• Ultra-Light Axions
– String theory allows for the existence of lighter classes of “axions” or 

axion-like particles (ALPs)
• A. Arvanitaki et al, Phys. Rev. D 81 (2010) 123530

– Solves cusp-core and missing satellites problems
– Calculations can also be treated as generic bosons with various self-

interactions
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Searching for the Axion

61

• Coupled to the EM field

– Added to EM Lagrangian, modifies Maxwell’s equations accordingly
• F. Wilczek, Phys. Rev. Lett. 58 (1987) 1799

– Interaction of axion field with B field produces oscillating E fields
– Frequency of E field oscillations depends on mass of axion

• Direct Detection Searches
– ADMX, ABRACADABRA
– CASPEr, atomic clocks
– ALPS
– Radio telescopes, CAST
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Gross-Pitaevskii + Poisson from 
Klein-Gordon + Einstein

62

• Klein-Gordon + Einstein equations

– Expand ɸ in creation and annihilation operators:

– Assuming most of the action comes from the lowest modes, drop the 
higher harmonics

– Non-trivial expectation values:

• Write the field in terms of a wave function:

18



The Axion Potential

63

• Instanton Potential

– m, f are the mass and decay parameter, ɸ is the axion field

• Chiral Potential

– z = mu /md , the ratio of the up quark mass to the down quark mass
– QCD Axion Star Collapse with the Chiral Potential shows that using 

either potential yields the same qualitative results numerically
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• BEC basics
– Fermions are subject to the Pauli 

Exclusion principle
– Bosons prefer the same energy state
– In low temperature/high pressure 

conditions, bosons condense into a 
macroscopic quantum system

• Bose-Einstein Condensation in Dilute Gases by 
C.J. Pethick and H. Smith

– Described by a single wavefunction

• History
– Predicted by Bose and Einstein in the 

1920s
– Created in the lab in 1995
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• BEC basics
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– Bosons prefer the same energy state
– In low temperature/high pressure 

conditions, bosons condense into a 
macroscopic quantum system

• Bose-Einstein Condensation in Dilute Gases by 
C.J. Pethick and H. Smith

– Described by a single wavefunction

• History
– Predicted by Bose and Einstein in the 

1920s
– Created in the lab in 1995

Credit: Université Paris Sud/Labex Palm
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More on Ultra Compact Dwarf 
Galaxies

68

• UCD formation theories
– Small galaxies which were stripped of their stars by a larger host galaxy
– Globular clusters from the high-mass tail of GC distribution

• S. Mieske, M. Hilker, I. Misgeld, A&A 2012, vol. 537, A3

– Independently formed dense galaxies

• Size and mass
– Radii in the 100 ly range
– Mass ranging up to 1010 solar masses
– Often contain SMBHs

• A.C. Seth et al, Nature 513, 398-400 (2014)
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Why doesn’t the black hole eat the 
FDM particles?

69

• ULAs have deBroglie wavelength much larger than Rbh

– Somewhat analogous to optical wavelength vs lens diameter

• P(absorption by black hole) = P(particle within Rbh)
• Estimate probability with integral:

– Dilute condensate with N = 0.9 Nc

– 108 solar mass black hole with corresponding Schwarzschild radius
– P = 5 x 10-19

22


