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A B S T R A C T

Measuring energy access in developing countries involves much more than simply recording whether or
not households are connected to the grid. Both international organizations and scholars now recognize
the importance of reliable electricity supply for achieving positive development outcomes. Yet, measuring
reliability is much more difficult than measuring the existence of connections. We propose an economical
croudsourcing method for measuring reliability, and compare this method to energy monitor data for 122
households over 12 months. The results suggest that, while far from perfect, crowdsourcing provides a
reasonably accurate method for monitoring the reliability of access over time, especially when modeled as
a non-linear relationship. We apply these findings to model energy reliability in a broader group of villages
across Uttar Pradesh, India, demonstrating the existence of disparities between urban and rural reliability
and seasonal fluctuations in reliability. The system laid out in this study can be utilized by government and
non-government organizations to quickly and cheaply monitor energy reliability.

1. Introduction

Efforts to measure progress in energy access play a critical role in
the quest for sustainable energy for all. In the field of rural electrifi-
cation, almost one billion people globally remain without electricity at
home (IEA, 2018). What is more, the reliability of electricity service
remains poor across many developing countries, reducing the social
and economic benefits of electric connections (Chakravorty et al., 2014;
Aklin et al., 2016b; Allcott et al., 2016). In India, there have been
massive gains in electricity access over the past decade, culminating
with the Indian government announcing 100% village electrification in
2018.1 But scholars worry that these gains may be subject to backslid-
ing, especially for low-income groups (Aklin and Urpelainen, 2020),
and the reliability of these new connections may be suspect (Phadke
et al., 2019).

Unfortunately, measuring reliability can be quite challenging. While
household surveys can be useful for estimating household connections,
they offer only limited insights into the reliability of service. Cross-
sectional surveys reflect recent situation, but fail to give an adequate
understanding of reliability of service across seasons and over longer
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time spans. On the other hand, technical measurement of reliability
is expensive and difficult in remote rural areas. In the developing
world, few governments collect and publish data on electricity service
at the local level, and the data that is available from utilities can be
misleading.

To address this problem, we explore the potential of crowdsourcing
to measure the reliability of electricity service. While the concept of
crowdsourcing – gathering information electronically from disparate
individuals or groups – has been applied in a range of fields, from
tracking illness outbreaks (Smolinski et al., 2015; Baltrusaitis et al.,
2017) to preventing civil conflict (Heinzelman et al., 2011), there have
been few examples of this type of work for measuring public service
provision in the developing world (Post et al., 2018). Leveraging mod-
ern telecommunications technology, we are now able to quickly and
repeatedly survey a large number of households about the reliability
of their electricity services. Moreover, we can compare these reports
to real-time monitoring of reliability to test the degree to which such
crowd-sourced measures correspond to ground-truth.

We report results from two studies for measuring the reliability of
rural electricity service in the state of Uttar Pradesh, India. In the first
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study, we conduct short telephone interviews on a weekly basis with a
sample of 122 households from 12 villages in the Sitapur district over a
period of 12 months starting in October 2017. In these mobile-phone-
based surveys, we ask respondents to describe their electricity supply
over the past 24 h. Responses are compared with actual electricity
service data from the Prayas Energy Group’s Energy Supply Monitoring
Initiative (ESMI), which records voltage by the minute using Electricity
Supply Monitors (ESMs) in households, farms, and small commercial
establishments all over India.

We find that respondents have difficulty assessing the reliability of
electricity service over the previous 24 h when daily hours of power
are low. In the low- to mid-levels of electricity availability, respondents
tend to underestimate the power that is available. But as daily hours
of power increase, respondents begin to notice a clear difference in the
reliability of service. Overall, the correlation between reported and true
hours of supply is about 0.194, which is not strong, but is still quite
informative, especially at distinguishing those areas with reliable power
from those with less-reliable power. We find that this can be improved
substantially by explicitly incorporating the information about the
non-linear pattern between the survey responses and the actual supply.

Building on these findings, we survey a representative sample of
1800 households across 96 villages and 96 urban wards in 24 dis-
tricts of Uttar Pradesh. Using both the linear and non-linear models
developed on the Sitapur study sample, we estimate the reliability
of power across seasons and compare the differences between rural
and urban areas. We detect significantly fewer problems with power
reliability in rural areas across the districts, as well as decreased reli-
ability during monsoon seasons. These reliability problems are much
less pronounced in urban areas, and we do not see the same dropoff
in reliability during the monsoon season. Both of these findings sup-
port the concerns of scholars that rural areas suffer from a large
disparity in electricity reliability that is especially bad during the
monsoon season, when high demand and poorly planned load-shedding
increase power outages (Alam, 2014; Sharma et al., 2018; Conevska
and Urpelainen, 2020). Moreover, once we account for the non-linear
pattern of reporting observed in Sitapur, these disparities become even
more severe.

On balance, the results are encouraging insofar as they show that
crowdsourcing can be used to detect general variation in reliability of
electricity service. While not perfect, we managed to collect reasonably
useful data on the reliability of electricity service over an entire year in
ten districts at a very low cost. While respondents were able to assess
the difference between high and low daily hours, they had difficulty
gauging exact values when supply was low. Conversely, the results
are discouraging insofar as they suggest that the reliability of rural
electrification may lag even further behind urban supply than previous
surveys indicate.

More broadly, the results offer insights into the potential that
crowdsourcing has in data collection. Our results suggest that, even for
something that is imperfectly observed, crowdsourcing can be used as
an economical method for estimating the general outlines of the policy
challenge, while they also show the utility of having ground truth data
against which to develop models of crowdsourcing biases.

This study proceeds in four parts. First, we will discuss the im-
portance of and some of the challenges in measuring reliability. Next
we will present the design of this research, including a description
of the sampling and analysis methods for both our crowdsourcing
exercise and our attempt to generalize those results. Third, we will
interpret the outcomes of both analyses. Finally, we will conclude with
a discussion about the opportunities and challenges of extending the
methods analyzed herein, as well as the policy implications.

2. Measuring the reliability of electricity service

As global efforts to eliminate energy poverty have expanded, policy-
makers have begun to recognize that energy access is multidimensional.

The Multi-Tier Framework (MTF) for monitoring and evaluating en-
ergy access, defines energy access as ‘‘the ability to obtain energy
that is adequate, available when needed, reliable, of good quality,
convenient, affordable, legal, healthy, and safe for all required energy
services’’ (Bhatia and Angelou, 2014, 3).

This presents a challenge for scholars and policy-makers attempting
to track expanding energy access. It is quite easy to measure the preva-
lence of household electricity connections (Aklin et al., 2016b). Surveys
using representative samples can give an accurate understanding of the
percentage of rural and urban households that have electricity con-
nections, be it through the electric grid or using decentralized energy.
Similarly, government statistics on connections are more likely to be
accurate, since the incentives of governments and electricity companies
are relatively aligned when it comes to reporting. Governments are
interested in showing expanding access and companies are interested
in tracking their consumers.

Measuring the reliability of electricity service is far more diffi-
cult. Most measurements of electricity reliability come in the form of
surveys. Some surveys ask about the number of blackouts within a
particular timeframe (Gibson and Olivia, 2010). Others ask respondents
to recall approximately how many hours a day they usually have elec-
tricity or how much is available during nighttime hours (Kennedy et al.,
2019). Such survey measurements are difficult to take at face value. The
limits of human memory are well-known, and more recent information
tends to cloud the general memory of events (‘‘recency bias’’). This
makes asking about general reliability difficult, as transitory events are
likely to drive results. Not surprisingly, for example, simply surveying
customers on their planned usage has proven to be a relatively inac-
curate method for predicting customer behavior compared to drawing
inferences from the behavior of existing customers (Blodgett et al.,
2017).

Government and company data is also more difficult to find and
may not be accurate. Governments are less inclined to report relia-
bility issues, especially when the expansion of connections has been
a key political promise of an incumbent. Politicians often ignore, or
even encourage, practices that undermine reliability, like electricity
theft, to improve their near-term electoral prospects (Min and Golden,
2014; Baskaran et al., 2015). Companies also have few incentives to
publicize problems in electricity delivery, especially poorly planned
load-shedding, which might lead to more coordinated demands for
greater investment in poorer, less profitable areas. For example, in
2017, large disparities were noted between official government statis-
tics in Uttar Pradesh, India and the information collected by Prayas
Energy Group, an NGO that had set up Electricity Supply Monitors
(ESMs) throughout the region. While government data showed nearly
no power cuts in the region, the Prayas monitors indicated regular
power cuts that lasted between two to nine hours a day.2 More recent
data from Prayas similarly suggests that rural households in Uttar
Pradesh had just over 14 h of daily service on average.3

And yet, reliability of electricity service is critically important.
Existing scholarship suggests that poor reliability can negatively impact
demand for electricity (Kemmler, 2007), household satisfaction with
electricity (Aklin et al., 2016b), gains in non-agricultural income from
electrification (Chakravorty et al., 2014), and willingness to pay for
electricity (Kennedy et al., 2019).

2 Debjoy Sengupta, 23 February 2017, ‘‘Wide power deficit discrepancy
between NGO and govt data in Uttar Pradesh’’, The Economic Times,
https://economictimes.indiatimes.com/industry/energy/power/wide-power-
deficit-discrepancy-between-ngo-and-govt-data-in-uttar-pradesh/articleshow/
57311992.cms?from=mdr.

3 Daily average hours of supply in Uttar Pradesh, Electricity Supply Mon-
itoring Initiative, Prayas Energy Group, https://www.watchyourpower.org/
analysis_dashboard.php (accessed June 29, 2019).

https://economictimes.indiatimes.com/industry/energy/power/wide-power-deficit-discrepancy-between-ngo-and-govt-data-in-uttar-pradesh/articleshow/57311992.cms?from=mdr
https://economictimes.indiatimes.com/industry/energy/power/wide-power-deficit-discrepancy-between-ngo-and-govt-data-in-uttar-pradesh/articleshow/57311992.cms?from=mdr
https://economictimes.indiatimes.com/industry/energy/power/wide-power-deficit-discrepancy-between-ngo-and-govt-data-in-uttar-pradesh/articleshow/57311992.cms?from=mdr
https://www.watchyourpower.org/analysis_dashboard.php
https://www.watchyourpower.org/analysis_dashboard.php
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In this study, we explore the feasibility of using crowdsourcing for
measuring reliability. While crowdsourcing has not been used exten-
sively in studying electricity service reliability, it has been applied to
a variety of other domains, and all of us have likely interacted with
a crowdsourcing application. Online question answering forums, like
Quora and StackOverflow rely on crowdsourcing to answer questions
on general knowledge and computer programming respectively. The
commercial driving application, Waze, uses crowdsourcing to track
traffic speeds and report accidents. Perhaps the best-known application
of crowdsourcing for tracking issues of public concern is the ‘‘Flu Near
You’’ project, where people can report their symptoms in real time
using a simple weekly survey to track flu outbreaks.4 This work has
been extensively studied (Smolinski et al., 2015; Baltrusaitis et al.,
2017), and is used by the U.S. Centers for Disease Control (CDC),
among others, to more quickly respond to illness outbreaks. Similar
efforts have been made to label fake news on the internet (Warkentin
et al., 2010; Tschiatschek et al., 2018) and track outbreaks of civil
violence and unrest (Van der Windt and Humphreys, 2016), among
other applications. In developing countries, Post et al. (2018) show how
crowdsourced data can be utilized to better understand the politics of
urban water delivery.

In this article, we contribute to the study of crowdsourcing methods
by exploring how they can be applied in the case of electricity service
reliability. We utilize economical cell-phone based surveys to track
power reliability over time. Allowing for responses to be collected
on a daily basis dramatically reduces the reliance on recollection of
respondents. We then compare this against ground truth data collected
by electricity monitors. These results allow for a cheap and detailed
overview of the state of energy reliability. This data, if it proves to be
even moderately accurate, would provide a method for public policy
advocates and governments to discover where issues of reliability re-
main problematic and when such issues are most severe. If measuring
a problem is the first step to addressing it, this could provide the
necessary information for ensuring that the reliability requirements of
the MTF are being met.

3. Research design

We conduct this research in two parts. First, we attempt to build a
model that links self-reported energy reliability to actual reliability. To
do this, we conduct an intensive survey of residents in 12 villages in
the Sitapur district of Uttar Pradesh. This involved conducting weekly
surveys over an extended period of time, along with a baseline study of
the respondents’ characteristics. By comparing the results of the surveys
against monitoring data, we create a strong over-time comparison set
on which we can test the correspondence between reported and actual
reliability. We can also test for heterogeneity based on time and user
characteristics.

Second, starting from these models, we leverage a much larger, but
less information-rich, survey conducted by the International Institute
for Sustainable Development (IISD), with assistance from Columbia
University’s Center for Global Energy Policy (CGEP). Applying the mod-
els developed in Sitapur, we are able to produce reliability estimates
across 96 villages and 96 urban wards in 24 districts of Uttar Pradesh.

While the exact cost of technical monitoring and crowdsourcing
depends on context, in this project the difference was substantial.
Installing each monitor cost us approximately USD 250 that included
the technology, data server, and fieldwork. In addition, maintenance
of the monitors for the 12 villages cost over USD 1000 for a year.
In contrast, the entire crowdsourcing exercise for 1280 households
across 12 districts of Uttar Pradesh cost us only about USD 3000 for 12
months. Although average monitoring costs would decrease with scale,
the difference would be measured in orders of magnitude.

4 https://flunearyou.org/.

3.1. Comparing self-reported reliability data to technical measures

We begin this analysis by looking at the validity of crowdsourcing
measures of electricity reliability in a relatively small subset of villages
over time. To measure the actual reliability of electricity supply in
each village, we rely on monitors installed by the Prayas Energy Group
(Prayas), a non-governmental and non-profit organization operating
out of Pune, India. Through ESMI, Prayas installed ESM plug-in devices
that record voltages on an hourly basis. To compare participants’ self-
reported assessments of the reliability of electricity supply to actual
reliability in Uttar Pradesh’s Sitapur district, shown in Fig. 1, we focus
on 12 villages covered by ESMI.5

Between September 29 and October 6, 2017, enumerators from
Morsel India, an Uttar Pradesh-based survey company, recruited a
random sample of 10 households with grid electricity from each village.
Each of the 120 households was given INR 100 (approximately USD
1.50) for participating in a 15-minute in-person baseline survey, which
collected respondents’ mobile phone numbers, socioeconomic and de-
mographic information, and data on households’ sources of electricity,
lighting and their reliability.

To assign the dates on which households would receive calls to
administer the mobile phone survey, we first randomly assigned each
of the 120 households into two groups, with one receiving calls in
odd weeks and the other in even weeks. With data collected over 48
weeks, each group comprised 60 × 24 household-week combinations.
To balance out the days of the week when each household would
participate, which would likely affect their responses, we stratified the
sample by households and then randomly assigned each day of the
week, between Monday and Saturday, to four sets of the 24 weeks in
which the household would be surveyed. The assignment of dates to
households is illustrated in Fig. 2.

Between October 30, 2017 and September 29, 2018, enumerators
administered a six-question survey to assigned households collecting
data on hours of grid electricity used, hours available, voltage levels,
voltage fluctuations, and household satisfaction over the 24 h prior
to the call. To increase the likelihood of reaching a member of the
household, enumerators placed calls at night after working hours, or
in the early morning following the date of the assigned treatment.

Once the survey data and the Prayas data are combined, we have
1673 complete observations.6 These observations are nested within 122
surveyed households. Because we expect households to demonstrate
heterogeneity in their estimates of electricity reliability, we model this
as a hierarchical (multilevel) process, with the actual number of hours
available being a function of the reported hours available, along with a
random component by household (Gelman and Hill, 2006).7 Put more
formally, we model this process as

𝑦𝑖𝑗 = 𝛽1𝑗 + 𝛽2(𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐻𝑜𝑢𝑟𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)𝑖 + 𝜁𝑗 (1)

where 𝑦𝑖𝑗 is the actual hours available according to the Prayas monitors
and 𝜁𝑗 is the random intercept based on the household 𝑗. By assump-
tion, 𝜁𝑗 ∼ 𝑁(0, 𝜙). Our interest is in the fixed component, which is
the general relationship between the reported hours and the monitored
hours, once the random household heterogeneity is accounted for.

We recognize, however, that the main threat to valid inference
between reported hours and actual hours available, may be systematic,
rather than random by household. There may be systematic nonlin-
earities that make the linear estimates from the hierarchical model

5 The 12 villages were Dharampur, Inchauli, Jhauwa Khurd, Jyotishah
Alampur, Kahmria Kathura, Kankari, Khindaura, Manwan, Mukimpur,
Muradpur, Tedwa Deeh, and Thangaon.

6 In some cases, monitor data from Prayas was not available because of
monitor failure.

7 We also tested a random component for the village, but this did not
capture significant variance, and, thus, was excluded from our final model.

https://flunearyou.org/
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Fig. 1. Uttar Pradesh’s Sitapur district. This is the area in which households’ self-reported assessment of electricity reliability was compared to data collected from Prayas ESMs,
installed in 12 villages.

Fig. 2. Illustration of randomized block design assigning dates to households in Sitapur, with household as a blocking factor.
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inaccurate. To test for this, we also test a local regression model
(LOESS) (Cleveland and Devlin, 1988), where the linear model is
estimated locally over a fraction of the dataset determined by the
smoothing parameter 𝛼. We experimented with several different levels
of 𝛼, settling on a value of 𝛼 = 0.75.8

Combining these two analyses allows us to compare assumptions
about the data generating process from our surveys, i.e. whether re-
spondents are accurate across the range of reliability, with inaccuracies
primarily being randomly derived across households, or whether there
are systematic nonlinearities in the relationship between respondents’
forecasts and the actual hours available.

3.2. Extending the model to a broader sample

We extend the insights drawn from the survey conducted in Sitapur
to a larger and more representative sample of households across Uttar
Pradesh. Our sampling frame is a set of households surveyed by the
IISD, with assistance from Columbia University’s CGEP, as part of a
study on electricity sector reform in Uttar Pradesh (Sharma et al.,
2018).

To obtain a representative set of households, the 75 districts in
Uttar Pradesh were separated into four groups of approximately equal
population corresponding to the north, south, east, and west of the
state. Three districts were then randomly selected from each group for
a total of 12 districts, shown in Fig. 3. The villages in each district
were then classified as ‘‘small’’ or ‘‘large’’ and then divided into two
groups of approximately equal total population, with the ‘‘small’’ group
composed of many small villages and the large group composed of
fewer but larger ones. From each of the two groups within the 12
districts, four villages were randomly selected producing a sample of 96
rural villages (4×3×2×4). From each of the 96 villages, the enumerators
surveyed 10 households for a total of 960 rural households.

Urban villages were sampled from the 12 chosen districts. Within
each district, 120 wards were randomly selected from urban areas in
proportion to the size of the urban areas. Within each urban area, 96
wards were then selected, with the probability of inclusion determined
by the in-town population of the ward population over the total town-
wide population. Within each sampled ward, enumerators selected
households using systematic random sampling.9 In total, 957 urban
households were selected across the 96 urban wards.

Of the 1917 households in the sampling frame, we eliminated those
that did not provide phone numbers in the original survey, reducing the
sampling frame to 1280 households. Dividing households on the basis
of their districts and their classification as urban or rural (e.g., District
133 — Rural) produced 24 district-type blocks, summarized in Table 1,
of which nine included districts with fewer than 40 households. All
households in each of these district-type blocks were included in the
sample, resulting in 210 urban households and 25 rural households.

From each of the 11 rural and four urban district-type blocks with
at least 40 households, a random sample of 40 was drawn, increasing
the total to 440+ 25 = 465 rural and 160+ 210 = 370 urban households.
Then, from the 11 districts with more than 40 households and the four
with more than 40 urban households, 15 additional rural households
and 110 additional urban ones were selected.10 The final distribution
of rural and urban households by district-type blocks is given in Table 2
and Fig. 4 summarizes the sampling procedure.

8 As the reader will see below, there is one main area of nonlinearity in
the results, which makes the LOESS relatively invariant to settings of 𝛼. This
process is not, however, well-represented by a simple quadratic regression, as
it tends to underestimate the degree of inflection.

9 In some cases, the enumerators chose the sixth household from a random
starting point, and in others, they sought permission to survey odd households.

10 One rural household was chosen from each of seven districts and two
were chosen from the remaining four districts; and 27 urban households were
selected from each of two districts and 27 from the remaining two districts.

Table 1
Summary of total households and sampled households from district-type blocks.
Total indicates the number of urban and rural households with phone numbers and
grid electricity in each district and Within indicates the number of households sampled
from within the district. In cases where district-type blocks were composed of fewer
than 40 households (italicized in Total), all households in the block were included and
additional households were drawn from corresponding urban/rural district-type blocks
with more than 40 households to ensure a total sample size of 480 rural households
and 480 urban households. The number of households drawn from outside a given
district to reach the requisite sample side is given in the column Outside.

District Rural Urban

Total Within Outside Total Within Outside

133 61 40 0 143 40 0
142 48 40 0 93 40 0
144 48 40 0 39 39 1
148 55 40 0 21 21 19
166 53 40 0 80 40 0
175 42 40 0 155 40 0
177 55 40 0 33 33 7
180 25 25 15 26 26 14
184 50 40 0 10 10 30
191 61 40 0 32 32 8
195 57 40 0 29 29 11
200 44 40 0 20 20 20

599 465 15 681 370 110

Table 2
Distribution of urban and rural households by district.

District Rural Urban

133 41 68
142 41 68
144 42 39
148 41 21
166 41 67
175 41 67
177 42 33
180 25 26
184 42 10
191 42 32
195 41 29
200 41 20

The set of unsampled households – 119 rural ones and 201 urban
ones – were employed as alternates in cases where responses from sam-
pled households were missing (e.g., cases where the sampled household
was unavailable or chose not to participate in the survey). Missing
observations from a given district-type block were first replaced with
those obtained from alternates in the same district-type block. Upon
using all alternates from a given urban or rural district, alternates were
chosen from the urban or rural district with the greatest number of re-
maining alternates available. Alternate households were then contacted
in all subsequent weeks over the duration of the survey.

To assign the dates on which households would be called, house-
holds in each of the 24 district-type blocks were first randomly assigned
to one of the eight weeks over which the first calls would be made.
Because households were contacted every eight weeks, the week of
their first assigned call determined the weeks of their subsequent five
calls. Then, blocking by week and type, households were assigned days,
ranging between Monday and Saturday, for each of their given weeks
over the period between Monday, October 30, 2017 and Saturday
September 29, 2018. Using the weeks as blocking factors to assign days
allowed for calls to be evenly distributed across days over each week.

Our sampling strategy for the broader sample has several advan-
tages. First, because it begins with a statistically representative sample
of both rural and urban households from a previous project, we can
have confidence in any state-level inferences drawn from the analysis.
Second, even though we have phone numbers for only 1280 house-
holds, we can easily verify that these are spread across the districts
under study, so that the geographic scope of the sample remains
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Fig. 3. Map of 12 districts from which households rural and urban households were sampled for participation in the survey. The sampling frame is a subset of 1280
households, chosen from 1917 that Sharma et al. (2018) sampled from the 12 districts.

Fig. 4. Illustration of sampling procedure for broader sample. This procedure was used to select 480 urban households and 480 rural households from the sampling frame
of 1280 households that provided phone numbers as part of the survey conducted by Sharma et al. (2018), who relied on a sample of 1917 households. Groups of sampled
households are shown in the gray-shaded boxes. District-type blocks (DTB) are used to describe urban or rural households in a particular district. Because the sampling frame
included households across 12 districts, households are sampled from 24 DTB (urban or rural households, dispersed across 12 districts).

unaffected. As the number of households remains relatively large and
we survey them multiple times, our statistical estimates are reasonably
precise. The primary challenge we face is that households may not
answer the phone calls. Evaluating the implications of such missing
data is an important part of our study design, and we pay careful
attention to the confidence intervals of our estimates.

4. Results

The results reveal two main patterns. We note a substantial amount
of nonlinearity in the relationship between reported and observed
voltage reliability over a 24-hour period, and very little that conditions
this relationship. Extending this to the broader sample, we note a
substantial gap in reliability between urban and rural areas, which

becomes even more clear when we take into account the nonlinearity
of the relationship between reported and actual reliability.

4.1. Comparing self-reported reliability data to technical measures

We begin by analyzing the comparison between our crowdsourced
observations in Sitapur and the Prayas monitor observations. The left-
hand portion of Fig. 5 shows the fixed element of the hierarchical
model, plotted against a scatterplot of the reported versus observed
hours of normal voltage, with 95% confidence intervals, based on 100
simulations from the posterior distribution of the model, in blue. The
45 degree line shows where the observations would be if respondents
reported voltage with perfect accuracy.
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Fig. 5. Comparison of monitor reporting to crowd-sourced estimates. Left-hand plot shows the hours of normal voltage electricity available according to Prayas monitors,
plotted against the hours reported by survey participants. The 45 degree line shows the expected relationship if the reports were equivalent. The red line shows the estimated
regression relationship (see equation 1) and the blue lines show the ranges from 100 simulations from the posterior distribution of the model. The intercept shows that, on average,
the monitors detect 5 more hours of normal voltage than what is reported, while the slope indicates that, for each additional hour of normal voltage detected by the monitors,
the number of hours reported by our respondents increases by about 12 minutes. The right-hand plot shows the residuals from the model plotted against the predicted values.
This chart demonstrates the issues of limited prediction range and large errors.

Fig. 6. Non-linear comparison of monitor reporting to crowd-sourced estimates. The left-hand plot shows the hours of normal voltage electricity available according to Prayas
monitors, plotted against the hours reported by survey participants. The blue line shows a LOESS smoothed estimate for the relationship between reported and monitored hours.
The results suggest that respondents were able to distinguish very low and very high levels of normal voltage relatively well, but had greater difficulty distinguishing the middle
levels of availability, about 7 to 15 h of availability. The right-hand plot shows the residuals plotted against the predicted values. These results show that the prediction range is
now much broader and the errors begin to decrease in predictions at the low and high end of the scale.

It is easy to see that individual recall is not very accurate. Specifi-
cally, after a certain point, respondents seem to substantially underes-
timate the amount of normal voltage that they receive. This can also be
seen in the right-hand portion of the chart, which shows the residuals
of the model plotted against the predicted values. The results show
that forecasts were made over a relatively narrow range of values, with
substantial error in both directions. In other words, the linear model is

not very good at capturing differences between users with relatively
high levels of electricity versus those with low levels because of the
systematic underestimation in the middle-range of the distribution.

We check for a range of conditioning factors, looking at whether
some respondents are better at estimating the number of hours without
electricity or low voltage. The results in the SI indicate that this is not
the case. We also check in the SI whether some of our respondents
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Fig. 7. Between-district comparison of linear predictions of monitored hours of normal voltage electricity over time. Using a linear estimate of the relationship between
hours reported in the Prayas survey and those monitored by Prayas, households’ hours of normal voltage electricity are predicted based on their self-reported hours in the CGEP
survey. Predicted hours for each household are aggregated by households’ districts and their classification as urban or rural. Aggregated averages are then plotted against each
of the 12 months over which the study was conducted. The dotted vertical line at January 2018 demarcates predictions made using self-reported data in 2017 from those made
using that in 2018.

might be particularly good or bad at reporting the reliability of their
electricity based on demographic characteristics like education, owner-
ship of alternative energy sources, income, and reported hours utilized.
Again, we do not find that these characteristics interacted with reported
hours available in a manner that improves the accuracy of reports.

Looking closer at Fig. 5, it is clear that the results are being driven
by a mass of observations in the middle-range of observed voltage. Re-
spondents in this area consistently under-report the amount of voltage
that they are receiving. This seems to reveal a particular pattern of
voltage observation that is quite understandable. For those whose elec-
tricity is irregular, there is a tendency to simply understand that their
reliability is poor. Trying to distinguish levels of moderate reliability, it
appears, is quite difficult for most respondents. Meanwhile, the model
is missing those at the very high end, who seem to be closer to the 45
degree line.

To more directly model this, we turn to the LOESS model in Fig. 6.
As anticipated, the left-hand panel shows that there is a substantial
discontinuity toward the middle of the reported hours. The results
demonstrate that those who report high levels of normal voltage, do
seem to actually have high levels, while those in the middle range are
likely to underestimate their access. The right-hand panel, again plots
the residuals, and, while it still has difficulty in the middle-range of

the distribution, the predicted values now cover nearly the full range
of access and the errors tend to decrease as access becomes more
reliable.

Overall, these results suggest that crowdsourcing reports about
reliability does provide some signal about actual reliability, but the
relationship is highly nonlinear — those who have moderate reliability
tend to underestimate the amount of time in which they have normal
voltage, which causes a problem for linear models. Armed with this
information, we now move into a broader examination of electricity
reliability in several areas of Uttar Pradesh.

4.2. Extending the model to a broader sample

Having fitted a prediction model to the sample of crowdsourced
responses in Sitapur and the Prayas monitor observations, we then
draw predictions of monitored hours using crowdsourced data collected
from a broader and more representative sample. Self-reported average
daily hours of electricity among rural households in our representative
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Fig. 8. Urban-rural comparison of linear predictions of monitored hours of normal voltage electricity over time. Using a linear estimate of the relationship between hours
reported in the Prayas survey and those monitored by Prayas, households’ hours of normal voltage electricity are predicted based on their self-reported hours in the CGEP survey.
Predicted hours for each household are aggregated based on their classification as urban or rural. Aggregated averages are then plotted against each of the 12 months over which
the study was conducted. The dotted vertical line at January 2018 demarcates predictions made using self-reported data in 2017 from those made using that in 2018.

sample were similar to those reported in other surveys conducted
around the same time across the state (Jain et al., 2018).11

Fig. 7 compares predicted daily hours of electricity available across
districts, segmented on the basis of rural and urban households. Across
all districts, predicted daily hours among rural households lag behind
their urban counterparts. This finding comports with existing research
on the challenges of rural electrification (Joseph, 2010; Phadke et al.,
2019; Aklin and Urpelainen, 2020). Fig. 8, which compares urban
and rural predicted hours aggregated across all districts, further rein-
forces these observations. Fig. 7 also illustrates a precipitous decline,
in rural districts’ predicted hours between June and September. This
corresponds to India’s monsoon season, when high electricity demand
and poorly planned load-shedding can increase the incidence of power
outages (Alam, 2014; Sharma et al., 2018; Conevska and Urpelainen,
2020). Given the negligible decline in predicted hours among urban
households, rural shortages may be attributable to poor electricity
infrastructure and management and to comparably high agricultural
demand for electricity, which is heavily subsidized by the federal
government (Tongia, 2007; Badiani-Magnusson and Jessoe, 2019).

11 The average of district-aggregated self-reported responses in our rep-
resentative sample was 13.00 h. In a 2018 survey by Jain et al. (2018)
of rural households across 18 districts in Uttar Pradesh, the average daily
hours of electricity, aggregated by district was 12.75 h (Jain et al., 2018). A
previous version of the survey conducted in 2015 finds a self-reported district-
aggregated average hours of 8.80 (Aklin et al., 2016a). In comparison to these
figures, the average of district-aggregated daily hours, using the linear and
LOESS models, were 8.50 and 7.98 respectively.

Figs. 9 and 10 replicate Figs. 7 and 8, using predictions generated
from the LOESS model. In Fig. 9, predicted daily hours exhibit greater
temporal and geographic variability that those in Fig. 7. Additionally,
the difference between urban and rural electricity access is greater
in Fig. 10 than in Fig. 8. Both observations are attributable to non-
linearities in the relationship between crowdsourced and monitored
hours. As discussed in Section 4.1, subjects with moderate access to
electricity systematically underestimate their daily hours compared to
subjects with poor access. In capturing this pattern and correcting for
the bias in moderate households’ access, predictions from the non-
linear model draw a starker contrast – over time, across districts, and
across urban and rural areas — between moderate and poor access to
electricity.

5. Conclusion and policy implications

Crowdsourcing holds promise as a low-cost way to collect data in
challenging settings. We have found that very short telephone surveys
can offer useful insights into the reliability of electricity service over
time at a low cost. While the correlation between the reported and
actual reliability of electricity is not perfect, it does function well at ob-
taining key aspects of energy reliability (i.e., whether access is reliable
or not). Moreover, they seem to generalize relatively well over a variety
of areas in Uttar Pradesh, demonstrating that there is a substantial
difference in reliability between urban and rural areas, and showing
that this reliability gap increases during the high demand monsoon
season. These findings, in themselves, provide important input for
policy-makers, as they reveal that broad gains in electricity access, in
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Fig. 9. Between-district comparison of LOESS predictions of monitored hours of normal voltage electricity over time. Using a LOESS smoothed estimate for the relationship
between hours reported in the Prayas survey and those monitored by Prayas, households’ hours of normal voltage electricity are predicted based on their self-reported hours in
the CGEP survey. Predicted hours are aggregated on the basis of households’ districts and their classification as urban or rural households. Aggregated averages are then plotted
against each of the 12 months over which the study was conducted. The dotted vertical line at January 2018 demarcates predictions made using self-reported data in 2017 from
those made using that in 2018.

terms of having a connection, still fall well short of the requirements
of the MTF. While the average self-reported hours of electricity in our
representative sample are similar to those reported in other recent
surveys of Uttar Pradesh (Jain et al., 2018), the district-aggregated
average hours predicted by the linear and LOESS models are substan-
tially lower.12 Increases in self-reported hours between 2015 and 2018
may overstate the impact of government electrification programs,13

12 The average of district-aggregated self-reported responses in our rep-
resentative sample was 13.00 h. In a 2018 survey by Jain et al. (2018)
of rural households across 18 districts in Uttar Pradesh, the average daily
hours of electricity, aggregated by district was 12.75 h (Jain et al., 2018). A
previous version of the survey conducted in 2015 finds a self-reported district-
aggregated average hours of 8.80 (Aklin et al., 2016a). In comparison to these
figures, the average of district-aggregated daily hours, using the linear and
LOESS models, were 8.50 and 7.98 respectively.

13 In April, 2018, the Government of India announced that its Pradhan Mantri
Gramodaya Yojana initiative had achieved 100% village electrification. Numer-
ous surveys and experiments seeking to measure the impacts of the program
on electricity access and reliability rely on self-reported data (Kennedy et al.,
2019; Blankenship et al., 2019).

with upward bias increasing with the hours of electricity available to
households.

Pending the creation of nationwide monitoring systems, short tele-
phone surveys can help government, private sector, and civil society
agents assess the reliability of electricity service. From the results
above, we argue that this will be an improvement over baseline meth-
ods that rely on individuals self-reporting reliability problems, as these
have well-established biases toward wealthier and better-connected
communities, who are more likely to notice and report issues (O’Brien
et al., 2015), or on estimates from cross-sectional surveys. As long as
these agents have access to phone numbers, they can either make phone
calls, use even cheaper interactive voice response surveys, or collect
responses through text messages. This is a critical tool for advocates
and policy-makers as we move the discussion from simple connections
to reliable electricity access.

While further research will be necessary to determine the spatial
and temporal limitations of this approach, other research suggests that
this approach can be maintained over the long-term and be generalized
to the rest of India. In terms of long-term prospects, citizen science
programs have demonstrated that lose networks of individuals can pro-
duce large-scale crowdsourcing data that lasts for decades (e.g. Butcher
et al., 1990), but the longevity of these programs depends on continued
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Fig. 10. Urban-rural comparison of LOESS predictions of monitored hours of normal voltage electricity over time. Using a LOESS smoothed estimate for the relationship
between hours reported in the Prayas survey and those monitored by Prayas, households’ hours of normal voltage electricity are predicted based on their self-reported hours in
the CGEP survey. Predicted hours for each household are aggregated based on their classification as urban or rural. Aggregated averages are then plotted against each of the 12
months over which the study was conducted. The dotted vertical line at January 2018 demarcates predictions made using self-reported data in 2017 from those made using that
in 2018.

publicity and the development of strong social networks (Lowry et al.,
2019). Alternatively, continued monitoring by government agencies or
NGOs can provide incentives to participants, as we did, at a relatively
low cost, but this relies on continuing interest of the organization to
produce this data.

In terms of generalizability, access to cell phones is widespread in
India, with an estimated 60% of individuals owning a mobile phone
and 30% of the population owning smartphones in 2020.14 Our results
suggest that the characteristics of the household make no significant
difference in the accuracy of their reporting. Perhaps the biggest chal-
lenge to expansion is developing a representative sample for larger
geographies in India, but there are good models for this from previous
surveys of energy access (e.g. Aklin et al., 2015).

The strength of crowdsourced data lies not only in its low cost, but
also in its ability to record fluctuation over time. While crowdsourcing
cannot replace technical measurements as a planning tool, it can high-
light clear reductions or improvements in the reliability of service. For
example, crowdsourcing can alert the government, media, and public
to sudden changes in the reliability of electricity service and motivate
further investigation with technical monitoring. Crowdsourcing also
need not depend on government, so it can be used to hold electric
utilities accountable for their performance and verify claims about said
performance.

To be sure, our approach is but a small step toward fully exploiting
crowdsourcing in this area. Future research should look at the process

14 Projected numbers from www.statista.com.

of automating these types of push surveys, encouraging online partici-
pation, and using other methods to collect this crowdsourced data. We
will likely need a myriad of methods for tracking and understanding
energy behaviors, of which this is only a start.
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