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1. Introduction

The standard Bowen model of political competition with single-peaked preferences under major-

ity rule (Bowen, 1943; Black, 1948; Downs, 1957) generally predicts party convergence to the

ideal policy supported by the median voter. This fundamental result assumes majority rule and a

unidimensional policy space. We extend this model to a spatial model of political competition be-

tween an incumbent policy and an alternative under two different decision-making environments,

one static and the other dynamic. For adoption, the alternative must obtain the support of a

supermajority of voters who, by assumption, hold single-peaked preferences over a totally ordered

policy space. In the static setup, we focus on the set of equilibrium policies in the core (Black,

1948; Gillies, 1959). Equilibrium policies are those which, if already the status quo, are never

defeated in a pairwise supermajoritarian election against alternatives in the policy space.1 In the

dynamic setup, agents make amendments sequentially, and the game can go on indefinitely. In

this setting, we focus on the set of equilibrium policies in the largest consistent set (Chwe,

1994). This solution concept assumes farsightedness. To our knowledge, our study is novel in

examining the issue of the number of equilibrium in a dynamic political setting where agents

are farsighted. In both cases, our main finding is to determine the number of equilibria and

show how it depends on the supermajority’s size. We discuss implications for the depth of policy

diversity and divergence across structurally identical political economies and develop illustrations

of immigration policies, efficiency in providing public goods, and political compromise.

We consider a voting body, N = {1, 2, ..., n}, composed of a finite number of agents and endowed

with a supermajority rule, Lα, and a non-empty totally ordered policy space, Z. The policy space

Z represents the set of possible policies—the number of points or ideological approaches—to a

given policy problem. We assume that Z is totally ordered by a binary relation denoted ≥Z (i.e.,

≥Z is reflexive, transitive, antisymmetric, and complete), and we denote by >Z the strict part

1The core, like the Nash equilibrium, is regarded as a pioneer solution concept. It is the equilibrium concept
used in the pioneering works of Bowen (1943), Black (1948), and Downs (1957), although it is not called such
in these studies. Note, however, that all our results are highly robust to alternative solution concepts such as
the top cycle (Schwartz, 1976), the uncovered set (Miller, 1980), and the Banks set (Banks, 1985). Proofs are
available upon request.
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of this relation. We assume that agents’ preferences are single-peaked with respect to the strict

order >Z on Z. The supermajority rule Lα is a function which maps each coalition C ⊆ N into

1 or 0. Given a threshold α ∈ [1
2
, 1], Lα(C) = 1 when either the coalition C consists of more

than αn members if α < 1, or C consists consists of n members if α = 1; we say such C is

a winning coalition, and it holds power to amend a policy under consideration in the decision-

making process. Coalitions for which Lα(C) = 0 are losing coalitions, and they do not hold the

right to amend policies.

Several studies have analyzed different properties of supermajority rules. Requiring sufficiently

large supermajorities to modify the status-quo may restrict policy change to Pareto improve-

ments (Buchanan and Tullock, 1962, Ch. 12) and protect citizens with imperfect information

from unrepresentative legislators (Graham and Bernhardt, 2015). Whether the supermajority

strengthens or weakens majority hold-up against minorities remains unsettled. Buchanan and

Tullock (1962, Ch. 7, 12) argues that supermajority rules increase minority bargaining power,

affording them protection from a majority seeking to expropriate their resources.2 Writing on the

representation of racial minorities in electoral systems, Guinier (1994, Ch.4) similarly argues that

supermajority systems empower minorities and may encourage cross-racial coalition-building. In

contrast, McGinnis and Rappaport (1998) argues that supermajority rules may prevent minorities

from overturning inequitable policies. The added “inertia” from supermajority rules may also

lend stability to electoral systems: Caplin and Nalebuff (1988) illustrate how a 64% majority rule

can prevent electoral cycling, and Barbera and Jackson (2004) demonstrate how using qualified

supermajorities to amend constitutions expands the set of self-stable constitutions for a society

with fixed preferences. In addition to stabilizing policies, supermajority rules may serve as com-

mitment devices against dynamic inconsistency problems (Messner and Polborn, 2004, 2012).

Recent literature has considered supermajority rules in designing optimal voting mechanisms to

foster voting incentives, participation, and utilitarian welfare (Krishna and Morgan, 2015; Ger-

shkov et al., 2017; Faravelli and Man, 2021), and in facilitating deliberative democracy following

a structured dialogical design methodology (Laouris and Romm, 2022). An emerging literature is

2Distributive concerns raised by Buchanan and Tullock (1962) are reflected in a large literature evaluating
supermajority rules and the provision of public goods (Tullock, 1959; Buchanan and Tullock, 1962; McGinnis and
Rappaport, 1998; Knight, 2000; Lee et al., 2014; Lee, 2015, 2016).
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evaluating the properties of voting rules using tools from machine learning and neural networks;

see, e.g., Burka et al. (2022) and the references therein.

These articles focus on a particular rationale for supermajority rules, and each adopts a specific

framework highlighting the theory of interest. In line with these previous works, we analyze the

connection between supermajoritarian political competition models and the cardinality of the set

of their predicted outcomes.

Precisely, we examine the minimum and the maximum number of equilibrium policies under a

pairwise supermajoritarian election between a status quo policy, z0, chosen by Nature, a lottery

or an agent, and an alternative policy z1 chosen by an agent from the set Z \ {z0}. Agents have

equal probabilities of being selected, by Nature or a lottery, to make proposals against the status

quo z0. If z0 wins, meaning that no winning coalition under Lα chooses z1 over z0, then it remains

in place, and the contest ends. If z0 loses (z1 wins), then z1 replaces z0, and the contest ends. An

equilibrium policy is never defeated in the election process. We find that the minimum number

of equilibrium policies is a constant function of the supermajority’s size. However, the maximum

number of equilibria is an increasing function of the supermajority needed to pass legislation and

is a function of the way the incumbent policy is selected. This number represents the depth of

policy diversity across structurally identical political economies under supermajority rules. More

precisely, Theorem 1 shows that if Nature randomly selects a legislator to propose a policy such

that only the peaks of agents in Z are considered in the political contest, the maximum number

of policies is finite, and it is a non-decreasing function of the supermajority’s size α.3. It follows

that the number of equilibrium policies is a non-decreasing correspondence of the supermajority’s

size needed to pass a policy; see Figure 1. As a byproduct of Theorem 1, Corollary 1 provides

the existence of a unique equilibrium under majority rule (α = 1
2
) when there is an odd number

of voters and the existence of, at most, two equilibria when there are an even number of voters.

The familiar Median Voter Theorem (MVT) (Black, 1948; Downs, 1957) is a particular case of

our result, extending it to a more general setting. Although we generalize the Median Voter

3The idea of selecting legislators and policymakers by a lottery system, also called “sortition”, is old; it dates
to the fourth century BC and is still practiced today; see, e.g., Manin (1997), Wantchekon and Neeman (2002),
Procaccia (2019), and Landemore (2022)
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Theorem as a particular case of our result, this is not our main finding. Our main goal is to

count the number of equilibria as a function of the supermajority rule and discuss its empirical

implications. Theorem 2 also proves that if Nature randomly selects the incumbent policy such

that the whole policy space Z is considered in the political contest, the set of equilibrium policies

becomes a continuum—a convex and compact subset of the policy space—and we determine its

exact bounds. Theorem 3 shows that these findings are robust in that they continue to hold

when legislators display farsighted behavior in the dynamic setting.

We also address the question of which rules maximize utilitarian welfare when Nature randomly

selects the status quo policy in the decision-making process. Proposition 1 determines the range

of supermajority size that maximizes the expected utilitarian welfare. This proposition implies

that the majority rule is the unique rule that maximizes expected utilitarian welfare in large

populations.

A practical implication of our analysis is that economies that are identical in terms of their policy

spaces, voters’ preferences, and voting rules may end up diverging in terms of their policy choice;

see, e.g., an illustration on immigration policies in Section 4.1. Theorems 1, 2, and 3 provide

the possibility to quantify the extent of this divergence. In particular, under the majority rule,

no divergence is possible unless the number of voters is even. Under a (pure) supermajority rule,

policies can diverge, and the policy gap is an increasing function of the supermajority’s size. Our

results can also determine the number of “competing” political parties in a given election under

supermajority rules.

Duverger (1963) was among the first scholars to examine the relationship between electoral

systems and party structures in national elections. Duverger focused primarily on the plurality rule

and proportional representation electoral systems under strategic voting, whereas our focus is on

supermajority rules.4 Duverger proposed what are known today as Duverger’s law and Duverger’s

hypothesis. Duverger’s law predicts that two major parties will form under the plurality rule

(Duverger, 1963, p. 217), and Duverger’s hypothesis states that “the simple-majority system

4Generally, strategic voting in single-member districts in national elections refers to a voter deserting a more
preferred candidate with a poor chance of winning a political contest for a less preferred candidate with a better
chance at winning. Although we do not consider strategic voting in our static framework, we assume that voters
are farsighted in the dynamic setting and do not necessarily vote sincerely.
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with the second ballot and proportional representation favors multi-partyism” (Duverger, 1963,

p. 239). Our analysis transposes Duverger’s ideas to supermajority rules in static and dynamic

models of political competition in legislatures. We find, in particular, that the majority rule favors

a two-party system, which offers an analogy to the prediction of Duverger’s law. However, we find

a different prediction under a larger majority requirement: the maximum equilibrium number of

political parties is a non-decreasing function of the supermajority’s size.5, Fujiwara et al. (2011),

and Forand and Maheshri (2015), among others.

In addition to policy diversity, we discuss in Section 4.2 the relationship between the range of

equilibrium policies and the socially optimal provision of public goods. We find that the social

optimum—the policy that maximizes aggregate utilitarian welfare—is generally unstable under

majority rule. Then, we determine the minimal supermajority rule that guarantees its stability. Our

analysis implies that supermajority rules lead to policy diversity and protect the social optimum

from defeat in a pairwise supermajoritarian competition. In Section 4.3, we also illustrate our

findings with the issue of political compromise. If a political party prefers an incumbent policy

to alternatives, how much should it compromise to ensure it does not suffer defeat in a pairwise

supermajoritarian competition? Under majority rule, the MVT suggests convergence toward the

median voter’s ideal point. Parties more ideologically distant from the median voter must make

more significant compromises to avoid defeat. We extend this insight to any supermajority rule

and determine the minimal level of compromise that a political party should accept to become

successful. We find that this minimal level decreases with respect to the size of the supermajority

needed to replace the incumbent policy. In other words, the greater the supermajority needed

to adopt a new policy, the less the original policy’s proposer or supporters must compromise to

ensure that it is reenacted. An implication that follows directly from this analysis is that political

compromise is maximal under majority rule. Therefore, our analysis highlights two new properties

of majority rule: it maximizes expected utilitarian welfare when Nature chooses the incumbent

policy and maximizes political compromise.

5We note that several models of voting, including empirical studies, have formalized and tested Duverger’s
arguments and have found mixed results; see, Riker (1982), Palfrey (1989), Feddersen et al. (1990), Cox (1994,
1997), Fey (1997), Myerson (1999), Gallagher and Mitchell (2005), Benoit (2006), Clough (2007), Callander and
Wilson (2007)
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By focusing on the number of equilibria in a model of spatial political competition, we depart

from the extant literature that has primarily studied the question of equilibrium existence (see,

e.g., Feldman and Serrano (2006) for a thorough overview of these findings), but has completely

overlooked the issue of the number of equilibria. More generally, supermajority rules have been

studied in terms of their equilibrium properties (see, for instance, Fey (2003), Tchantcho et al.

(2010), Peleg (1978), and Freixas and Kurz (2019)) and as basis for generating more complex

voting rules (see, e.g., Taylor and Zwicker (1993), Freixas (2004); Freixas and Puente (2008),

Guemmegne and Pongou (2014), and Kurz et al. (2020)). Our study also contributes to the

literature that uses static and dynamic cooperative game models and their applications in opera-

tional research. For a brief overview of the wealth of knowledge in this growing field of research,

we refer to the studies of Wang and Parlar (1989), Nagarajan and Sošić (2008), Sošić (2011),

Fiestras-Janeiro et al. (2011), Guajardo and Rönnqvist (2015), Adler et al. (2020), Li and Chen

(2020), and Laouris and Romm (2022). Our analysis departs from this literature by focusing

on the number of equilibria instead and deriving implications for the depth of policy diversity

and political compromise across structurally similar supermajoritarian political economies. In so

doing, we also extend classical results to a more general environment.

Although we mainly analyze spatial political games, the issue of the number of equilibria has

also been examined in exchange economies and strategic form games. Starting from the issue of

the uniqueness of equilibria in exchange economies, Debreu (1970) highlights the possibility of

a finite number of equilibria in regular exchange economies. This was followed by a treatment

of uniqueness by Dierker and Dierker (1972). Then, Dierker (1972) refines Debreu’s findings by

showing that the number of equilibria is odd. Also, Varian (1975), in a note on Dierker’s study,

provided an alternative proof of Debreu (1970). Along the same lines, Nishimura (1978) shows

that the previous results are independent of the assumption of preference monotonicity used by

Debreu (1970) and Dierker (1972) and offers an insight which makes the findings more applicable

to economics, international trade theory, and stability theory.

In strategic form games, one primary concern dates back to the works of Wilson (1971a) and

Harsanyi (1973) on the computation of Nash equilibria in N -person games. Wilson (1971a,

Theorem 1, p. 85) demonstrates that, apart from certain degenerate cases, in any game with
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pure finite strategies, the number of mixed strategy Nash equilibria is positive and odd. Harsanyi

provides an alternative proof for Wilson’s result and proves that in “almost all” games with pure

finite strategies, the number of mixed-strategy Nash equilibria is finite and odd. However, we

note that, except for a unique equilibrium solution, the previous studies do not provide a formal

expression of the number of equilibria in a game. Studies that provide formulas for the number

of equilibria (or at least for the lower and upper bounds), as we do in this study, include, among

others, McLennan (1997) who determines the maximal generic number of pure (and mixed)

strategies Nash equilibria, Von Stengel (1999) who determines a lower bound of 2.414d√
d

for the

maximal number of Nash equilibria in d×d bimatrix games, McLennan (2005) who characterizes

the mean (or expected) number of pure (and mixed) strategy Nash equilibria in random strategic

form games6, and Deutsch et al. (2011) who provide explicit and computable expressions for all

possible Nash equilibria in a (bi-linear) inspection game. Closely related to the previous literature

are efforts to develop algorithms to facilitate the search for Nash equilibria in a strategic form

game.7

Our contributions also complement the seminal study by Caplin and Nalebuff (1988) and the

studies inspired by their work (see, e.g., Caplin and Nalebuff (1991), Levin and Nalebuff (1995),

and Barbera and Jackson (2004)), and Kline (2014), but they do not address the questions

we examine in our study. Caplin and Nalebuff formalize the conjectures made by Condorcet

(1785) and Arrow (1951) in “static” electoral systems, showing that voting cycles are impossible

under the 64%-majority rule.8, and the references therein. Kline studies the effects of the status

quo on the existence of the core, and the Banks set (Banks, 1985). Kline provides conditions

6In an n-agent model of random game, the agents’ payoffs are statistically independent, with each agent’s
payoff uniformly distributed on the unit sphere in RS , where S = S1 × ... × Sn, Si a finite pure strategy set,
i = 1, ..., n.

7We can cite, among many others, Echenique (2007) who provides a simple and fast algorithm that finds all
the pure strategy Nash equilibria in games with strategic complementarities (these models have several applications
in operational research; see, e.g., Lippman and McCardle (1997), Cachon (2001), and Bernstein and Federgruen
(2004)), D́ıaz-Báñez et al. (2011) who propose an algorithm to find all possible pure strategy Nash equilibria in
a planar location-price game, and recently Deutsch (2021) who develops a linear-time algorithm to compute all
Nash equilibria solutions for a general two-person nonzero-sum simultaneous inspection game.

8For a review of other studies on voting in social choice theory and additional details on electoral systems,
we refer to the works of Nurmi (1986), Buchanan and Tullock (1962), Brams and Fishburn (2002), Arrow et al.
(2010), Freixas et al. (2014), Polyakovskiy et al. (2016), Menezes et al. (2016), Tideman (2017), Burka et al.
(2022)
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under which the location of the status quo alternative determines the intersection between the

Banks set and the core in supermajoritarian spatial voting games. Our dynamic approach is

inspired by Chwe’s study and the largest consistent set (Chwe, 1994). Moreover, Kline (2014)

studies sophisticated agenda settings. Our framework includes a static and dynamic approach,

and we focus on counting the number of equilibria and their implications for policy-making in

supermajoritarian political games. In that respect, we think that our contribution is original.

The paper proceeds as follows. Section 2 introduces preliminary concepts. Section 3 examines the

number and range of equilibrium policies under static and dynamic political settings. It also studies

the welfare implications of supermajority rules. Section 4 applies our results to explain policy

diversity across identical political economies, provision of public goods, and political compromise.

Section 5 concludes.

2. Preliminary Concepts

We model a political economy as a list P ≡ P(α) = (N,Z, (⪰i),Lα), where: (a) N =

{1, 2, ..., n} is a voting body, composed of a finite number of agents (we assume that n is at

least 2); (b) Z is a non-empty policy space, which is totally ordered by a binary relation ≥Z

that is reflexive, transitive, antisymmetric, and complete (we denote by >Z the strict part of

the binary relation ≥Z); (c) ⪰i denotes agent i’s preference relation over Z and (⪰i) denotes

a preference profile over Z; and (d) Lα is a supermajority rule (or qualified majority) of size α

(α ∈ [1
2
, 1]). A supermajority rule is a distribution of political decision-making power among the

various coalitions of agents eligible to vote (for simplicity, we assume that each agent can vote).

The aggregate function Lα is a family of voting rules that includes from simple majority rule

(α = 1
2
) up to unanimity (α = 1).

For any policies x, y ∈ Z, the intervals [x, y] (and ]x, y[) are subsets of Z defined as: [x, y] =

{z ∈ Z : y ≥Z z ≥Z x} (and ]x, y[= {z ∈ Z : y >Z z >Z x}), respectively. For a given

finite and non-empty set X, we denote by |X|, the cardinality of X (i.e., the number of elements

contained in X), and n the cardinality of N . For x, y ∈ Z, y ⪰i x indicates that agent i weakly

prefers y to x; y ≻i x indicates that agent i prefers y to x; and y ∼i x indicates that agent i is

indifferent between y and x. Moreover, for S ⊆ N , y ≻S x indicates that y ≻i x for each i ∈ S
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(we say S prefers y over x); and y ⪰S x indicates that y ≻i x for some i ∈ S and y ∼j x for

other j ∈ S (we say S weakly prefers y over x).

Following the classical literature on spatial competition (see, e.g., Bowen (1943) and Black

(1948)), we assume that the profile (⪰i) is single-peaked with respect to the strict order >Z

on Z. Each agent has an ideal policy in the policy space Z, and policies further from this ideal

policy are preferred less. Formally, for each agent i ∈ N , there exists a policy zpi ∈ Z such that:

(1) for any other policy z ̸= zpi , z
p
i ≻i z; and (2) for any policy z, z′, if z >Z z′ >Z zpi , then

z′ ≻i z, and, if z
p
i >Z z >Z z′, then z ≻i z

′.

3. Number and Range of Equilibrium Policies

In this section, we examine the existence and the maximum number of equilibrium policies under

one-shot political games (Section 3.1) and dynamic political games (Section 3.2).9 To perform

the analysis in one-shot games, we distinguish two cases: (i) an agent is randomly chosen to

propose a policy in the political contest (Section 3.1.1); or (ii) the status quo policy is chosen

by Nature (Section 3.1.2). We assume that agents have equal probabilities of being selected

by Nature or a lottery as an agenda setter. Controlling for temporal factors that affect agents’

preferences and status-quo policies, what is the relationship between a legislative body’s voting

rule and policy stability? Section 3 answers this question.

3.1. One-shot Political Games

Political contests occur as follows:

1. At time t = 0, a policy z0 is randomly chosen by Nature, a lottery, or an agent from the

policy space Z.

2. At time t = 1, a contest is organized between z0 (the status quo) and an alternative z1,

chosen exogenously by an agent from the set Z \ {z0}.

9The domain of political games that we study is a subclass of games defined by effectivity functions (see,
e.g., Wilson (1971b), Moulin and Peleg (1982), Peleg (1984), Chwe (1994), and Fotso et al. (2017) who provide
a brief survey of such games).

9



a) If z0 wins, meaning that no winning coalition under Lα chooses z1 over z0, then it

remains in place, and the contest ends.

b) If z0 loses (z1 wins), then z1 replaces z0, and the contest ends.

The rational behavior in the one-shot political game above is straightforward. Each agent chooses

between the status quo policy and a political alternative. The incentive driving agents to vote for

an opposition policy is that it is preferable to the status quo. Formalizing this behavior, let ≫i

denote the incentive by which agent i decides to support an opposition policy z1 over the status

quo z0. If agent i prefers z1 over z0 (i.e., z1 ≻i z0), agent i will vote for z1 over z0, denoted

as z1 ≫i z0. The policy z1 wins the pairwise supermajoritarian election if there exists a winning

coalition C that supports z1 over z0 (z1 ≫C z0). We can now introduce the equilibrium set,

defined as follows.10

Definition 1 Let P(α) = (N,Z, (⪰i),Lα) be a political economy and C be a winning coalition.

1. z′ defeats z (or z′ ≫ z) thanks to C (i.e., z′ ≫C z) if C prefers z′ over z (i.e, z′ ≻C z).

2. z is defeated if there exists a policy z′ and a winning coalition C ′ such that z′ defeats z

thanks to C ′.

3. The core or equilibrium set E(P(α)) consists of all undefeated policies. 2

An equilibrium policy is one that, if chosen as the status quo, could not be defeated or replaced

by another policy. In a pairwise contest between two policies, say z and z′, the former receives

votes from agents whose ideal points are closer to z than z′, and vice versa. Each agent’s payoff

depends on the distance between her ideal peak and the winning policy.

3.1.1. Nature Randomly Selects a Proposer

At the time t = 0, an agent is randomly selected, by Nature or a lottery, to propose a policy.

Agents are identical with equal probabilities of being selected. The proposer chooses the status

quo. Given single-peakedness and rational behavior, each agent’s best choice is to propose the

10For a brief review on formalizing and testing rationality concepts in static and dynamic voting games, including
effectivity functions, we refer to the studies of Fotso et al. (2017) and the references therein.
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closest equilibrium policy ideal to their ideal point as the status quo.11 Theorem 1 demonstrates

the existence of a policy that cannot be defeated in a pairwise supermajoritarian election and

provides the maximum number of policies that can be implemented. Before enunciating the result,

we introduce the following notation: for any real number x, the value floor[x], and labeled as

⌊x⌋, is the largest integer less than or equal to x.

Theorem 1 Let P(α) = (N,Z, (⪰i),Lα) be a political economy. Assume that only the peaks

of agents in Z are considered in the political contest. If agents have single-peaked preferences

over Z, then at least one equilibrium exists, and the number of equilibria is finite. Formally:

1 ≤ |E(P(α))| ≤ min{2⌊αn⌋+ 2− n, n}.

The maximum number of equilibria in P(α) is n when α = 1, and 2⌊αn⌋+2−n when α ∈ [1
2
, 1).2

To prove Theorem 1, the following lemmas proved helpful.

Lemma 1 Let P(α) = (N,Z, (⪰i),Lα) be a political economy, with α ∈ [0, 1). There exist two

peaks z∗1(α) and z∗2(α) such that: z∗1(α) minimizes f over Zf , and z∗2(α) minimizes g over Zg.2

Proof (Lemma 1) Let z ∈ Z be a policy and define S(z) as the number of agents for whom

z is the peak. A coalition of agents S has a veto right to amend a given status quo if S is a

winning coalition, i.e., |S| > αn. Consider the functions f and g defined on the policy space Z

as follows: for any policy z′ ∈ Z,

f(z′) =
∑
z≥Zz′

S(z)− αn, and g(z′) =
∑
z′≥Zz

S(z)− αn.

We define the following sets:

Zf = {z′ ∈ Z : f(z′) > 0} , and Zg = {z′ ∈ Z : g(z′) > 0} .

11One can trace a similar argument from the work of Downs (1957) and the seminal essay of Riker (1982) and
the references therein. Even if we assume that the proposer is not rational and he or she proposes his or her ideal
point as the status quo, our findings do not change. Throughout the paper, we assume that agents are rational
in their decisions.
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Notice that neither Zf , nor Zg is empty. In fact, given that zmin and zmax are respectively

the smallest and the greatest peaks of Z, then f(zmin) = n − αn = (1 − α)n > 0 and

g(zmax) = n− αn = (1− α)n > 0, since α < 1, which implies that zmin ∈ Zf and zmax ∈ Zg,

in turn implying that Zf ̸= ∅ and Zg ̸= ∅. Given that Zf is finite and f is a strictly decreasing

function, there exists a unique peak z∗1(α) which minimizes f over Zf . In addition, for any peak

z′ >Z z∗1(α), f(z
′) ≤ 0, which implies that

∑
z≥Zz′

S(z) ≤ αn. Similarly, given that Zg is finite

and g is a strictly increasing function, there exists a unique peak z∗2(α) which minimizes g over

Zg. In addition, for any peak z∗2(α) >
Z z′, g(z′) ≤ 0, which implies that

∑
z′≥Zz

S(z) ≤ αn. ■

Lemma 2 Assume that z∗1(α) = z∗2(α) = z∗(α). Then, E(P(α)) = {z∗(α)}. 2

Proof (Lemma 2) We claim that the Condorcet winner is z∗(α). Indeed, let z ∈ Z be a peak.

If z∗(α) >Z z, by definition of z∗(α),
∑

z≥Zz′
S(z′) ≤ αn and

∑
z′≥Zz∗(α)

S(z′) > αn, which implies

that z∗(α) defeats z in a pairwise supermajoritarian election. Similarly, if z >Z z∗(α), we show

in the same way that z∗(α) defeats z. It follows that z∗(α) defeats any other peak z. Since there

is no other option which defeats z∗(α), then E(P(α)) = {z∗(α)}. ■

Lemma 3 If z∗1(α) ̸= z∗2(α), then z∗2(α) >
Z z∗1(α). 2

Proof (Lemma 3) Assume by contradiction that z∗1(α) >
Z z∗2(α). By definition of z∗1(α) and

z∗2(α), we have
∑

z≥Zz∗1 (α)

S(z) > αn and
∑

z∗2 (α)≥Zz

S(z) > αn, then
∑
z∈Z

S(z) > 2αn. Given that∑
z∈Z

S(z) = n, it follows that n > 2αn, meaning that α < 1
2
, a contradiction, since by assumption

1
2
≤ α < 1. Hence, the only remaining possibility is z∗2(α) >

Z z∗1(α). ■

Lemma 4 There exists z∗ ∈]z∗1(α), z∗2(α)[, with S(z∗) ̸= 0. 2

Proof (Lemma 4) Assume the contrary. By the definition of policies z∗1(α) and z
∗
2(α), we have∑

z≥Zz∗1 (α)

S(z) > αn and
∑

z∗2 (α)≥Zz

S(z) > αn. These imply that
∑

z≥Zz∗1 (α)

S(z) +
∑

z∗2 (α)≥Zz

S(z) >

2αn or
∑
z∈Z

S(z) > 2αn leading to α < 1
2
, which is a contradiction. It follows that there exists

a policy z∗ ∈]z∗1(α), z∗2(α)[, such that S(z∗) ̸= 0. Note that, in this case, z∗1(α) and z∗2(α) are

such that
∑

z∗1 (α)≥Zz

S(z) < αn, and
∑

z≥Zz∗2 (α)

S(z) < αn. ■

Lemma 5 If z ∈ Z \ [z∗1(α), z∗2(α)], then z /∈ E(P(α)). 2

12



Proof (Lemma 5) Consider z ∈ Z distinct to z∗1(α) and z∗2(α). Assume that z is the closest

peak to the left of z∗1(α). In a pairwise supermajoritarian opposition between z and z∗1(α), the for-

mer receives at most
∑

z≥Zz′
S(z′) number of votes, while the latter receives at most

∑
z′≥Zz∗1 (α)

S(z′).

Since,
∑

z≥Zz′
S(z′) ≤

∑
z∗1 (α)≥Zz′

S(z′) < αn, and
∑

z′≥Zz∗1 (α)

S(z′) > αn, then, z∗1(α) wins. We can

also show that z∗2(α) defeats any peak z, with z >Z z∗2(α). ■

Lemma 6 If z ∈ [z∗1(α), z
∗
2(α)], then z ∈ E(P(α)). 2

Proof (Lemma 6) Consider a peak z ∈ [z∗1(α), z
∗
2(α)]. Assume that there exists z′ ∈

]z∗1(α), z
∗
2(α)[ such that z′ defeats z. Without loss of generality, assume that z′ is the clos-

est peak to z with z >Z z′. Policy z′ defeats z implies that
∑

z′≥Zx

S(x) > αn, which is a

contradiction, because by definition of z∗2(α), z
∗
2(α) >

Z z′ implies that
∑

z′≥Zx

S(x) ≤ αn. Thus,

E(P(α)) = [z∗1(α), z
∗
2(α)]. ■

Now, we prove Theorem 1.

Proof (Theorem 1) First, if α = 1, the only winning coalition is the set N . Since individuals

make proposals against the status quo z0, each peak is a predicted game outcome. The maximum

number of votes that an alternative policy z1 (distinct from z0) in a pairwise supermajoritarian

opposition can receive is n − 1. If the supermajority rule requires n votes to win, then no

alternative can be defeated, and the maximum number of predicted outcomes is the cardinality

of N , i.e., n. Second, if n is odd, and α = 1
2
, then the median peak is the unique prediction of

the pairwise supermajoritarian game because it is the Condorcet winner, i.e., it defeats any other

policy in a pairwise supermajoritarian opposition. Third, from Lemmas 2, 5, and 6, we show

that any alternative which is not part of the interval bounded by the peaks z∗1(α) and z∗2(α) can

be directly defeated by either z∗1(α) or z
∗
2(α), and any peak in this interval cannot be defeated.

Therefore, the maximal number of equilibria is equal to the number of agents who have a peak

between z∗1(α) and z
∗
2(α). Given that the proportion of agents required to form a winning coalition

is at least ⌊αn⌋+1
n

, then the upper bound of E(P(α)) is n−2(1− ⌊αn⌋+1
n

)n = 2⌊αn⌋+2−n < n.■

As shown in Figure 1, the minimum number of equilibrium policies is one regardless of the

supermajority rule. The maximum number of equilibrium policies is a non-decreasing function
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of the supermajority needed to replace them. It follows that, for a fixed size n of voters, the

number of equilibrium policies is a non-decreasing correspondence of the supermajority’s size α.

A corollary of Theorem 1 is the following result, which derives the size of the equilibrium set

under the majority rule and thus clarifies the way Theorem 1 extends the MVT when the number

of agents is even.

Corollary 1 Let P(α) = (N,Z, (⪰i),Lα) be a political economy. Assume that only the peaks of

agents in Z are considered in the political contest. If preferences are single-peaked, and policies

are chosen using the majority rule (α = 1
2
), then,

1. There is only one equilibrium if the size of voters is odd.

2. There exists at least one and at most two equilibria if the size of voters is even. 2

Proof (Corollary 1) From Theorem 1, if α = 1
2
, then the size of equilibrium set E(P(1

2
))

depends on the size of n. If n is odd, the number ⌊αn⌋ = n−1
2
, therefore 2⌊αn⌋ + 2 − n =

n − 1 + 2 − n = 1, meaning that a unique equilibrium exists. It is, in fact, the ideal policy for

the median voter. If n is even, there exist at most two equilibria since the number ⌊αn⌋ = n
2
and

2⌊αn⌋+ 2− n = n+ 2− n = 2. ■

3.1.2. Nature Randomly Chooses a Status Quo

Next, suppose that Nature, rather than choosing the proposer in t = 0, instead chooses the

status quo z0 ∈ Z from the set of all policies. Theorem 2 proves the existence of at least one

and possibly an infinite number of equilibrium policies.

Theorem 2 Let P(α) = (N,Z, (⪰i),Lα) be a political economy and assume that the whole

policy space Z is considered in the political contest. Let z∗1(α) and z∗2(α) denote, respectively, the

minimal and the maximal equilibria when Nature randomly selects a proposer. Then, E(P(α)) =

[z∗1(α), z
∗
2(α)]. 2

Proof (Theorem 2) The proof is deduced from the proof of Theorem 1. The status quo,

chosen randomly by Nature, can take any position in spatial space Z. From Theorem 1, any

position between and including z∗1(α) and z∗2(α), is invulnerable to pairwise supermajoritarian

14



0.6 0.7 0.8 0.9 1.0
Supermajority α

20

40

60

80

100

Number of Equilibria |Ε(Ρ(α))|

max |Ε(Ρ(α))| = 2 floor[100 α]-98

min |Ε(Ρ(α))| = 1

Figure 1: Number of equilibria (|E(P(α))|) and the size of supermajority rule (α) in a voting body of 100
agents. Note: For each value of α ∈ [0.5, 1), the cornflower curve represents the maximum number of equi-
libria: max |E(P(α))| = 2⌊100α⌋ − 98, and the orange curve represents the minimum number of equilibria:
min |E(P(α))| = 1.

opposition. In this case, the interval bounded by the peaks z∗1(α) and z∗2(α) is the equilibrium

set, E(P(α)). ■

Under the majority rule, the equilibrium set described in Theorem 2 exhibits an interesting prop-

erty. When the number of voters is odd and α = 1
2
, z∗1(α) = z∗2(α) = zpm, and the set

[z∗1(α), z
∗
2(α)] is the singleton {zpm}, where zpm is the ideal point of the median voter. If the

number of voters is even, however, the set of equilibria may be infinite. In this sense, Theorem 2

offers a complete statement of the MVT compared to Black (1948). Our findings in Theorems 1

and 2 reveal the existence and the number of equilibria in a static spatial political competition.

An equivalent definition of the existence of an equilibrium in our framework is the absence of

voting cycles. As mentioned in the Introduction, several studies have focused on the existence

of equilibria and the possibility of voting cycles. An earlier study by Schofield et al. (1988) and

recent extensions by Owen and Carreras (2022) and Martin et al. (2022) surveyed important

lines of research investigating core existence in spatial voting games. Another appropriate tool in

the domain of simple games without vetoers (voters who belong to all winning coalitions) is the
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so-called Nakamura number (Nakamura, 1979).12 A recent study by Freixas and Kurz (2019) and

the references therein offer an excellent survey of the applications of the Nakamura number in

voting contexts and related problems, including cutting stock problems in operational research.13

As we do in this paper, these previous studies offer optimistic results on the absence of cycles

and the stability of group choice in political competition models.

3.2. Dynamic Political Games

Contrary to one-shot games, agents (or coalitions) may vote indefinitely in dynamic political

games. Assume that a status quo z0 is randomly chosen from the set of policies. If no winning

coalition replaces z0, it remains in place indefinitely, and the political opposition ends. If a winning

coalition S replaces z0, say with z1, then z1 becomes the new status quo, and the process restarts,

continuing until a policy has been reached to which no winning coalition is willing to object. Once

that policy has been reached, each agent earns and consumes his or her payoff, and the political

contest ends. We illustrate the predictions of such a game with the largest consistent set (Chwe,

1994), one of the prominent equilibrium concepts in infinite-horizon political games.14

Chwe (1994) defines the largest consistent set, an equilibrium concept for social environments

where agents, acting in public, can freely form coalitions without binding agreements and are

farsighted. Chwe assumes that agent i holds a strict preference relation ≻i over Z, and coalitions

of agents may be endowed with the power to replace one policy with some other policies. If a

coalition S ⊆ N has the right to replace z ∈ Z by some z′ ∈ Z, we write z −→S z′. Following

Chwe’s notations, a social environment is represented by a list (N,Z, {≻i}i∈N , {−→S}S⊂N,S ̸=∅).

To capture the idea of farsightedness, Chwe formalizes the notion of indirect dominance that

was formally discussed by Harsanyi (1974) in his criticism of the von Neumann and Morgenstern

(1944)’s solution concept which is based on direct dominance. For z, z′ ∈ Z, z′ is said to indirectly

dominate z, or z′ ⋗ z, if there exists a sequence of policies z0, z1, ..., zm ∈ Z (where z0 =

12A simple game is a mapping from the set of coalitions into {0, 1}, where “1” means the coalition is a winning
coalition and “0” means the coalition is not a winning coalition. The Nakamura number of a simple game is
the smallest number k such that there exist k winning coalitions with empty intersections. A recent study by
Molinero et al. (2022) offers additional properties and applications of simple games in operational research.

13See, e.g., Gilmore and Gomory (1961) and Scheithauer and Terno (1995).
14For a brief review on other solution concepts in dynamic farsighted coalitional games, we refer to the studies

of Nagarajan and Sošić (2008), Sošić (2011), Fiestras-Janeiro et al. (2011), Fotso et al. (2017), and Li and Chen
(2020).
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z and zm = z′) and a sequence of winning coalitions S0, S1, ..., Sm−1 such that zi −→Si
zi+1

and z′ ≻Si
zi for i = 0, 1, ...,m−1. The case m = 1 yields the definition of the direct dominance.

Chwe (1994, Proposition 2, P. 305) shows that the largest consistent set is non-empty if Z is

finite or countably infinite, and there are no ⋗-chains, i.e., an infinite sequences of policies z1, z2,

z3,... such that i < j =⇒ zj⋗zi. Xue (1997, Theorem, p. 455) extends Chwe (1994, Proposition

2, p. 305)’s non-emptiness result of the largest consistent set by removing the countability and

by weakening the condition that there is no ⋗-chains. As discussed by Xue (1997, p. 453),

such an extension allows one to apply the largest consistent set to models with a continuum of

alternatives. Note however, that both Chwe (1994, Proposition 2, p. 305) and Xue (1997, p.

453) assume that agents have strict preferences over the policy space Z, a different assumption

that we make in this paper.

In this section, we examine Chwe (1994, Proposition 2, p. 305)’s non-emptiness result of the

largest consistent set when a supermajority rule gives the distribution of veto rights among

coalitions, the policy space Z is totally ordered, and agents have single-peaked preferences over

Z. For z, z′ ∈ Z, z −→S z′ if and only if S is a winning coalition (i.e., |S| > αn). Therefore, a

social environment (N,Z, {≻i}i∈N , {−→S}S⊂N,S ̸=∅) is equivalent to a political economy P(α) =

(N,Z, (⪰i),Lα), where Lα replaces {−→S}S⊂N,S ̸=∅. We recall the definition of the largest

consistent set below.

Definition 2 Let P(α) = (N,Z, (⪰i),Lα) be a political economy, and X be a subset of Z.

1. X is said to be consistent if x ∈ X if and only if ∀y ∈ Z and S ⊂ N such that x −→S y,

there exists z ∈ X, where y = z or z ⋗ y, and not(x ≻S z).

2. The largest consistent set of the political economy P(α), denoted LCS(P(α)), is the

union of all the consistent sets. 2

The largest consistent set formalizes that a coalition that moves from a status quo to an alternative

policy anticipates the possibility that another coalition might react. A third coalition might, in

turn, react, and so on, without limit. It is therefore essential to act in a way that does not lead

a coalition to regret its action ultimately, i.e., coalitions are “fully farsighted” (Chwe, 1994, p.

300). In Theorem 3, we show that the largest consistent set is non-empty, and we derive the
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maximum number of equilibria in the largest consistent set when Nature randomly chooses agents

with equal probabilities to propose a status quo.

Theorem 3 Let P(α) = (N,Z, (⪰i),Lα) be a political economy.

A. Assume that the whole policy space Z is considered in the political contest. Then,

LCS(P(α)) = [z∗1(α), z
∗
2(α)].

B. Assume that only the peaks of agents in Z are considered in the political contest. Then,

1 ≤ |LCS(P(α))| ≤ min{2⌊αn⌋+2− n, n}. Thus, the maximum number of equilibria in

P is n when α = 1, and 2⌊αn⌋+ 2− n when α ∈ [1
2
, 1). 2

Proof (Theorem 3) Let P(α) = (N,Z, (⪰i),Lα) be a political economy.

A. Let z ∈ Z. If z∗1(α) >
Z z, then z∗1(α) indirectly dominates z; If z >Z z∗2(α), then z∗2(α)

indirectly dominates z. The only alternatives that are not indirectly dominated belong to

the interval [z∗1(α), z
∗
2(α)]. A subset X ⊆ Z is consistent if

f(X) =

x ∈ Z : ∀y ∈ Z, ∀S, x −→S y, ∃z ∈ X, where

y = z or z ⋗ y and not(x ≻S z)

 = X.

For each agent i ∈ N , we denote their ideal policy by zpi . By definition of z∗1(α) and

z∗2(α), the sets S = {i ∈ N : zpi ≥Z z∗1(α)} and T = {i ∈ N : z∗2(α) ≥Z zpi } are winning

coalitions. Let z ∈ Z be a proposal: (a) if z∗1(α) >
Z z, then any deviation from z by any

winning coalition to z∗1(α) is not deterred. Similarly; (b) if z >Z z∗2(α), then any deviation

from z by any winning coalition to z∗2(α) is not deterred. Hence, these two cases hold

that z /∈ f(Z). However, if z ∈ [z∗1(α), z
∗
2(α)], any deviation from z is deterred. Indeed,

without loss of generality, assume x = z∗1(α), and consider y ∈ Z and a winning coalition

S ′, such that x −→S′ y. (c) If z∗1(α) >
Z y, then there exists z = z∗1(α), with z∗1(α) ⋗ y

via T , and not(z∗1(α) ≻S z∗1(α)); (d) If y ∈]z∗1(α), z∗2(α)[, then, there exists z = y, such

that not(z ≻S′ z∗1(α)), with |S ′| > αn, because z∗2(α) >Z y; (e) If y >Z z∗2(α), then,

there exists z = z∗2(α), with z∗2(α) ⋗ y via S, and not(z∗2(α) ≻S′ z∗1(α)), with |S ′| > αn.

It follows that f(Z) = [z∗1(α), z
∗
2(α)]. It is straightforward to check that f(f(Z)) = f(Z);

therefore f(Z) is the largest consistent set, and item A. of Theorem 3 is proved.
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B. First, if α = 1, the only winning coalition is the set N . Given that agents propose the

status quo z0, the cardinality of the largest coalition that can propose an alternative policy

z1 against z0 is n−1. If the supermajority rule requires n agents to replace the status quo,

then no alternative can be indirectly dominated, and the maximum number of predicted

outcomes is the cardinality of N , i.e., n. Second, if n is odd, and α = 1
2
, then the median

peak is the unique prediction of the largest consistent set because it is the Condorcet winner,

i.e., it indirectly dominated any other policy in the game. Third, from part A., we show

that LCS(P(α)) = [z∗1(α), z
∗
2(α)]. Therefore, the maximal number of equilibria is the

number of agents who have a peak between z∗1(α) and z∗2(α). Given that the proportion

of agents required to form a winning coalition is at least ⌊αn⌋+1
n

, then the upper bound of

LCS(P(α)) is n− 2(1− ⌊αn⌋+1
n

)n = 2⌊αn⌋+ 2− n < n. The latter concludes the proof

of item B. of Theorem 3. ■

Remark 1 We note that there is an alternative proof of Theorem 3. One can prove that the

direct (≫) and the indirect dominance (⋗) relations are equivalent in the domain of single-peaked

preferences. Under this equivalence, Theorem 3 is a direct consequence of Theorems 1 and 2.15 It

is, however, important to observe that the direct and indirect dominance relations model different

rational behaviors in different decision-making environments. One implication of the fact that

the relations (≫) and (⋗) coincide in single-peaked preference domains is that any final outcome

z of a dynamic political game (as described in Section 3.2) is an element of the core, even if

the status quo policy z0 (z0 ̸= z) in the dynamic game is a defeated policy in the corresponding

one-shot political game. 2

3.3. Utilitarian Social Planner

In previous sections, we derive the bounds of the equilibrium set as a function of the decision

rule used to aggregate agents’ preferences and voting decisions in static and dynamic political

competitions. In this section, we address the question of which decision rule maximizes social

welfare.

15We thank a referee for pointing out this remark.
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Let us consider a political P(α) = (N,Z, (⪰i),Lα), and assume that Nature randomly chooses

the status quo policy in the voting procedure. Then, from Theorems 2 and 3, the equilibrium set

is E(P(α)) = [z∗1(α), z
∗
2(α)]. One might ask how policy diversity, explained by the multiplicity of

equilibria as the supermajority size α increases, affects social welfare from a utilitarian perspective.

To examine this question, we assume that Z ⊂ R, and each agent i’s preference ⪰i over Z can

be represented by a strictly quasi-concave utility function, Vi. We take an ex-ante perspective and

examine the behavior of a utilitarian planner who chooses a supermajority rule Lα to maximize

expected utilitarian welfare given by:

W (α) =

∫
z∈E(P(α))

p(z)W (z)dz,

where W is the usual social welfare function given by the sum of voters’ utilities and defined as:

W (z) :=
∑
i∈N

Vi(z), for z ∈ Z. For simplicity, we assume that n is odd. Under the supermajority

threshold α ∈ [1
2
, n+1

2n
], it holds that z∗1(α) = z∗2(α) = zpm and E(P(α)) = {zpm}, where zpm

is the peak of the median voter, and W (α) = W (zpm). For any supermajority rule α, with

α > n+1
2n

, it is generally the case that z∗1(α) ̸= z∗2(α) ̸= zpm, and p(z) = 1
z∗2 (α)−z∗1 (α)

for each

z ∈ E(P(α)), because policies in E(P(α)) have the same chance to be chosen by Nature.

Therefore, W (α) = 1
z∗2 (α)−z∗1 (α)

∫ z∗2 (α)

z∗1 (α)
W (z)dz. In summary,

W (α) =

W (zpm) if α ∈ [1
2
, n+1

2n
]

1
z∗2 (α)−z∗1 (α)

∫ z∗2 (α)

z∗1 (α)
W (z)dz if α ∈ (n+1

2n
, 1]

. (1)

Assuming that all other elements in P(α) remain the same except the supermajority rule Lα,

which threshold α maximize W (α)? Proposition 1 below answers this question.16

Proposition 1 The expected utilitarian welfare W (α) is maximal for any α ∈ [1
2
, n+1

2n
]. It follows

that for a sufficiently large population, the majority rule is the unique rule that maximizes expected

utilitarian welfare. 2

Proof (Proposition 1) Let ϵ be a small and positive number. The equilibrium set of the

16We thank a referee for directing us to address this question.
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political economy P(α + ϵ) is E(P(α + ϵ)) = [z∗1(α + ϵ), z∗2(α + ϵ)], which contains the set

E(P(α)) = [z∗1(α), z
∗
2(α)] because z∗2(α+ ϵ) ≥ z∗2(α) ≥ z∗1(α) ≥ z∗1(α+ ϵ). Then, we can write

W (α + ϵ) as

W (α + ϵ) =
1

z∗2(α + ϵ)− z∗1(α + ϵ)

∫ z∗2 (α+ϵ)

z∗1 (α+ϵ)

W (z)dz

=
1

z∗2(α + ϵ)− z∗1(α + ϵ)

(∫ z∗1 (α)

z∗1 (α+ϵ)

W (z)dz +

∫ z∗2 (α)

z∗1 (α)

W (z)dz +

∫ z∗2 (α+ϵ)

z∗2 (α)

W (z)dz

)
.

Given that 1
z∗2 (α)−z∗1 (α)

> 1
z∗2 (α+ϵ)−z∗1 (α)+ϵ

, it follows that

W (α + ϵ) <
1

z∗2(α)− z∗1(α)

(∫ z∗1 (α)

z∗1 (α+ϵ)

W (z)dz +

∫ z∗2 (α)

z∗1 (α)

W (z)dz +

∫ z∗2 (α+ϵ)

z∗2 (α)

W (z)dz

)

or

W (α + ϵ)−W (α) <
1

z∗2(α)− z∗1(α)

∫ z∗1 (α)

z∗1 (α+ϵ)

W (z)dz +
1

z∗2(α)− z∗1(α)

∫ z∗2 (α+ϵ)

z∗2 (α)

W (z)dz,

and

W (α + ϵ)−W (α)

ϵ
<

1

ϵ

1

z∗2(α)− z∗1(α)

(∫ z∗1 (α)

z∗1 (α+ϵ)

W (z)dz +

∫ z∗2 (α+ϵ)

z∗2 (α)

W (z)dz

)
. (2)

Consequently, when W (α) ̸= W (α+ ϵ) ̸= W (zpm), we have W
′
(α) = lim

ϵ−→0

W (α+ϵ)−W (α)
ϵ

< 0, be-

cause the right-hand side of equation (2) tends to zero as ϵ −→ 0. Then, if α ∈ [1
2
, n+1

2n
],W

′
(α) =

0, and if α ∈ (n+1
2n

, 1], W
′
(α) < 0, and the function W is a continuous and non-increasing func-

tion. Given that for any α ∈ [1
2
, n+1

2n
], W (α) = W (zpm), and W (zpm) = max

α∈[ 1
2
,1]
W (α), we can

conclude that W (α) is maximal for any α ∈ [1
2
, n+1

2n
]. Therefore, for a sufficiently large n, the

majority rule (α = 1
2
) is the unique rule that maximizes W . ■

The analysis shows that when Nature chooses the status quo randomly, the majority rule maxi-

mizes expected utilitarian welfare. This finding complements studies highlighting other interesting

properties of the majority rule; see, e.g., May (1952), and Dasgupta and Maskin (2008). We find

another interesting property of the majority rule among the illustrations developed in Section 4.
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For instance, in Section 4.3, we show that the majority rule is the unique rule that maximizes

political compromise.

4. Illustrations

Having presented Theorems 1, 2, and 3, we now use the results to illustrate policy diversity

across identical political economies. In Section 4.1, we propose an illustration demonstrating

how two countries with identical political, economic, and cultural preferences over immigration

resettlement could implement different policies.

4.1. Equilibrium Number and Policy Diversity

In this illustration, the political economy P(α) = (N,Z, (⪰i),Lα) represents the government of

a country that is developing a refugee resettlement program to help asylum seekers. We assume

that this decision belongs to the legislators (in N) who represent the country’s citizens, and the

country derives utility from the number of refugees (z ∈ Z) it admits. The utility can be in terms

of the national and international “warm glow” it receives or the skills or cultural diversity brought

by the refugees. We assume that Z =]0,+∞[ and represent a legislator i’s preference, ⪰i, over Z

by a utility function, Vi. In the legislature, the decision is made under the supermajority rule, Lα.

For simplicity, we assume that the net utility received by each legislator i from z refugees being

admitted is Vi(z) = vi ln(z) − z
n
, where 1

n
is the fraction of the total cost of refugee admission

incurred by each constituency (assuming n constituencies) in the country, and vi is legislator i’s

valuation of the number of refugees. Observe that Vi is single-peaked, and so voter i’s peak

is obtained by solving V ′(zi) = 0, leading to the solution zpi = nvi. Suppose nine legislators

(n = 9) collectively choose the number of refugees to be admitted following either the static or

the dynamic voting procedure described in Section 3. We assume that Nature randomly selects a

legislator to propose a policy to the legislature. Using Theorems 1 and 3, the maximum number
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of equilibria is

max |E(P(α))| =



1 if α ∈ [1
2
, 5
9
]

3 if α ∈ (5
9
, 2
3
]

5 if α ∈ (2
3
, 7
9
]

7 if α ∈ (7
9
, 8
9
]

9 if α ∈ (8
9
, 1]

.

We assume that vi = i, where i = 1, 2, ..., 9. Then, the legislators’ peaks are: zp1 = 9, zp2 = 18,

zp3 = 27, zp4 = 36, zp5 = 45, zp6 = 54, zp7 = 63, zp8 = 72, and zp9 = 81. The median voter is

the legislator with valuation vi = 5. The peak zp5 = z∗1(
1
2
) = z∗2(

1
2
) = 45 defeats all other peaks

in a pairwise majoritarian election (α = 1
2
), and becomes the only peak which is not defeated.

Therefore, under majority rule, the country grants permanent residency to 45 refugees.

Now, suppose that the legislators choose the number of refugees using a two-thirds supermajority

rule (α = 2
3
). Any proposal in the set {27, 36, 45, 54, 63} cannot be defeated in a pairwise

supermajoritarian contest because all alternatives will fail to win support from the necessary

supermajoritarian coalition. These proposals are shielded from the possibility of an amendment

on the legislative floor. Moreover, as illustrated in Figure 2, any outcome in the set {9, 18, 72, 81}

can be defeated by either z∗1(
2
3
) = 27 or z∗2(

2
3
) = 63. It follows that two countries that are identical

regarding the number of legislators, legislators’ preferences, and voting rules are likely to diverge

in policy choice under the two-thirds supermajority rule. For example, depending on the random

voter chosen to propose a policy, one country may grant permanent residency to only 27 refugees

while the other may grant this privilege to 54 refugees. Under majority rule, both countries will

converge in their policy and grant permanent residency to 45 refugees.17

17Beyond explaining policy developments in international negotiations, our findings are also validated by Mc-
Grath et al. (2018), who conducted a comparative study across U.S. states. Leveraging cross-country variation in
state legislative override requirements, they find that legislatures with higher override requirements demonstrate
less ability to override an executive veto. Mapping the legislative process to our model, state governors first
propose budgets, and then legislatures pass their own. The budget is then sent to the governor for approval and,
if vetoed, can only be enacted if a legislative supermajority overrides the veto. The supermajority thresholds used
in the study — which, in this case, are the proportions of the legislature needed to override an executive veto —
vary between 1

2 and 2
3 . (Note, however, that three U.S. states with a 3

5 or majority veto override were excluded
from some models because they also had supermajority budgetary requirements (McGrath et al., 2018, p. 165).)
Following our results, budgets passed in U.S. states with higher override requirements were substantially closer to
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Figure 2: Equilibrium Range for refugee resettlement program when α = 2/3. Note: Equilibrium points are those
between z∗1(

2
3 ) = 27 and z∗2(

2
3 ) = 63 inclusive. For all z′, f(z′) + 2

3n =
∑

z≥Zz′
S(z) and g(z′) + 2

3n =
∑

z′≥Zz

S(z).

4.2. Provision of Public Goods: Social Optimum and Equilibrium

In this section, the political economy P(α) = (N,Z, (⪰i),Lα) represents a community, N , in

which agents must decide the level of provision of a public, z ∈ Z, in a pairwise political contest

following the supermajority rule, Lα, and a voting procedure described in Section 3. For simplicity,

we assume that Z is one-dimensional. As in Section 4.1, we represent agent i’s preference ⪰i

over Z by a utility function, Vi. The current level of the public good is z, and agents vote to

increase or decrease it. A voting equilibrium z∗ is any amount of public good that belongs to the

equilibrium set E(P(α)). An outcome ze is a social optimum (or an efficient provision of the

public good) if ze ∈ argmax
z∈Z

W (z), where W (z) =
∑
i∈N

Vi(z) is the social welfare at z.

Does there exist a supermajority rule Lα that guarantees the social optimum ze ∈ E(P(α))?

What is the minimal α among such rules? To address these questions, we first show that the

social optimum outcome belongs to the range [zmin, zmax] (see Figure 3).

By contradiction, assume that zmin > ze. Then, in a pairwise opposition between ze and zmin,

those proposed by the governor, with the most substantial effects in states where executives’ preferences diverged
sharply from those of legislative veto players.
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zmaxzmin z∗1 z∗2

Equilibria

Range which includes ze

Figure 3: The social optimum and voting equilibrium.

the former receives zero share of the votes, meaning that each agent prefers zmin to ze, or

Vi(zmin) > Vi(ze), ∀i ∈ N . The latter expression leads to W (zmin) > W (ze), which is absurd

by the definition of ze. We obtain the same conclusion if we assume that ze > zmax. If the

decision is made by using the unanimity rule (α = 1), then the social optimum ze ∈ E(P(1)),

because there will never be enough agents who can form a winning coalition to defeat ze in a

pairwise political competition. Assuming that Nature chooses the status quo, and the minimum

size of the majority required to pass a decision is less than the size of all voters (unanimity rule),

then the social optimum could be an equilibrium. Moreover, our findings suggest that the size of

the equilibrium set increases as the size of the majority required to pass social decisions increases.

Then, depending on agents’ preferences, there always exists a minimum threshold αmin ∈ [1
2
, 1],

such that ze ∈ E(P(αmin)). However, if Nature randomly chooses a proposer, and the social

optimum does not coincide with any ideal policy closer to the proposer’s peak, then it will not

have a chance to be submitted for a vote, whatever the threshold required by the supermajority

rule. For that reason, there will not exist a majority threshold α under which the social optimum,

ze, is undefeated in our political competition models.

For the sake of illustration and using the numerical example in Section 4.1, suppose that |N | = 5,

and an agent i’s net utility takes the form: Vi(z) = vi ln z− z
5
, where the factor vi represents agent

i’s valuation or taste for the public good. If an outcome z emerges as the voting equilibrium,

each agent will pay a fraction 1
5
of the additional cost. It is straightforward to show that Vi is

single-peaked. Agents’ peaks are the sequence (zpi ) such that: zpi = 5vi, where i = 1, 2, 3, 4, 5.

The social welfare at each alternative z is given by W (z) =
5∑

i=1

vi ln z − z, so that the efficient

level of public good is ze =
5∑

i=1

vi. Arbitrarily taking v1 = 6, v2 = 2, v3 = 3, v4 = 4 and v5 = 8,

agents’ peaks are zp1 = 30, zp2 = 10, zp3 = 15, zp4 = 20 and zp5 = 40, and the social optimum ze

is 23, with W (ze) = 49.11637. The voting equilibrium level of the public good depends on the
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size of the majority required to pass the decision. Using Theorems 2 and 3, and assuming that

Nature randomly chooses the status quo, the equilibrium set is E(P(α)) = [z∗1(α), z
∗
2(α)], where

the bounds z∗1(α) and z∗1(α) depend on the supermajority rule α. Under any supermajority rule

α ∈ [1
2
, 3
5
], for instance, we observe that zp4 = zpm, the median peak, defeats any other agent’s

peak in a pairwise political contest and so the only voting equilibrium is zp4 . However, the social

optimum ze is not a voting equilibrium, because ze ̸= zp4 . Nevertheless, for any supermajority

α ∈ (3
5
, 4
5
], the equilibrium range is given by the interval [zp3 = 15, zp1 = 30], including the social

optimum ze = 23. Similarly, when α ∈ (4
5
, 1], the equilibrium set is [zp2 = 10, zp5 = 40], which

also includes ze. It follows that the minimal supermajority rule that guarantees ze in E(P(αmin))

is αmin = 3
5
. Evaluating expected utilitarian welfare, it holds that

W (α) =


W (zp4) ≊ 48.90184 if α ∈ [1

2
, 3
5
]

1
15

∫ 30

15
(23 ln z − z)dz ≊ 48.6699 if α ∈ (3

5
, 4
5
]

1
30

∫ 40

10
(23 ln z − z)dz ≊ 47.47248 if α ∈ (4

5
, 1]

. (3)

Using the system in (3), we note that for any supermajority α ∈ [1
2
, 3
5
], W (α) is maximal, and

max
α∈[ 1

2
,1]
W (α) = W (zp4).

4.3. Political Compromise

Successful reforms in polarizing policy domains—gun control, abortion, healthcare, and immigration—

require legislators to make mutual sacrifices and willfully compromise their core values, princi-

ples, or interests. Today, growing cleavages between parties in many developed and democratic

countries have hampered political compromise, as those at the opposite ends of the ideologi-

cal spectrum find policy near the median voter’s ideal point increasingly unappealing.18 In this

illustration, we do not seek to provide the sources of political compromise in democratic set-

tings but rather to rationalize the political compromise observed in democratic legislatures. Let

18Gutmann and Thompson (2010) attribute the success of the 2017 Tax Cuts and Jobs Act in the United States
Congress to successful bipartisan compromise and the passage of the 1986 Tax Reform Act and the 2010 Patient
Protection and Affordable Care Act to mutual sacrifice and mutual opposition by Democratic and Republican
leadership. Additionally, a 2019 survey by the Pew Research Center finds that most U.S. adults support more
political compromise and respect toward opposing political views from opposing political parties (Pew Research
Center, 2019).
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P(α) = (N,Z, (⪰i),Lα) be a political economy, and assume that Z is endowed with the order

topology induced by the total order ≥Z , and we denote by d, a distance defined on Z. We

assume that Nature randomly chooses an agent i to propose a policy in the political contest and

let zpi be the ideal policy of i. The level of political compromise of proposer i is the distance

pci defined as: pci(α) = min
z∈E(P(α))

{d(z, zpi )}.

An agent i will propose their ideal point zpi only if it is an equilibrium point; if their ideal point

is not an equilibrium, they will propose the closest equilibrium point to their ideal point; this

is because proposing their ideal point will result in a defeat. Therefore, the level of political

compromise for an agent i is the distance between their ideal point and the closest equilibrium

point.

For principled politicians whose ideological platforms are located either to the left of equilibrium

z∗1(α) or to the right of equilibrium z∗2(α), Figure 4 illustrates the necessary compromise they

must make, as the incumbents, to avoid defeat in all pairwise supermajoritarian political contests.

zmaxzmin z∗1(α) z∗2(α) z′z

Equilibria

compromisecompromise

Figure 4: Political compromise.

A political party with an ideal policy (or fundamental ideological identity) “z” must compromise

by moving toward the closest equilibrium to its political platform to avoid defeat in a pairwise

election against z∗2(α). It is rational, then, for this party to run on platform z∗1(α) if it enters

the race. The same strategy applies to the politician with ideal point z′, who must compromise

by running on z∗2(α). Compromising is rational, as it increases the likelihood of challenging the

status quo in a pairwise supermajoritarian election. Indeed, for a given proposer i, the optimal

amount of compromise is the minimal distance between i’s ideal policy to the equilibrium point

that maximizes i’s preferences. Given that preferences are single-peaked, the minimal distance

is obtained from the closest equilibrium policy to i’s ideal point. Our findings in Theorems 1,

2, and 3 show that the size of the equilibrium set varies increasingly as the size of the majority

α required by the decision rule increases. This reduces the distances of political ideologies to
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possible equilibria and therefore diminishes the level of political compromise, pci(α), for each

proposer i as the size α increases. Therefore, if pc(α) = 1
n

n∑
i=1

pci(α) represents the average level

of political compromise in the political economy P(α), then, we can show that pc is maximal

under majority rule. In other words, only the majority rule maximizes political compromise in a

supermajoritarian political economy.

5. Concluding remarks

In this study, we derive the minimum and the maximum number of equilibrium policies in static

and dynamic political games under supermajority rules when agents have single-peaked preferences

over a totally ordered policy space. Voters’ strategic behavior is captured by the core (Black,

1948; Downs, 1957) in static environments, and by the largest consistent set (Chwe, 1994) in

dynamic environments. We fully characterize the relationship between these numbers and a voting

body’s supermajority rule, showing that the minimum number is one regardless of the rule, and the

maximum number increases in a nontrivial manner in the size of the supermajority coalition needed

to change policy. The well-known Median Voter Theorem, which predicts party convergence to

the median voter’s ideal policy, is a particular case of our results. Our findings explain why highly

divergent policies may persist, even across democracies with identical political preferences and

voting rules. Policy divergence increases as we move further from majority rule. Moreover, in

deriving the minimum and the maximum number of equilibrium policies in a supermajoritarian

setting, our results translate Duverger’s propositions on institutions and political parties. In only

imposing the assumption that voters hold single-peaked preferences over a totally ordered policy

space, our model is quite general and applies to various policies beyond those chosen from a

unidimensional set.

Our theory generalizes voting dynamics in other theoretical work (e.g., Dixit et al. (2000)),

and its implications align with voting behavior in institutions ranging from state legislatures

(e.g., McGrath et al. (2018)) to international institutions (e.g., (Stone, 2009)). Additionally, we

contribute to existing social choice literature. Focusing on supermajority voting rules — a topic

that has, to date, received limited attention — the article raises and answers novel questions.

What is the relationship between supermajority thresholds and the number of equilibrium policies?

And how does this relationship manifest in the diversity of policies across institutions with one
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threshold instead of another? Which rules maximize utilitarian welfare? Which rules maximize

political compromise?

Our model also offers avenues for future empirical and theoretical research. Further extensions

can consider proposal or amendment costs that vary based on legislators’ ideal points or the

location of the proposed policy or amendment. The model is also amenable to accommodating

“decision-costs” from policy gridlock (Buchanan and Tullock, 1962) and introducing uncertainty

in legislators’ policy preferences. The latter extension would draw connections between policy

diversity and the extensive literature examining the Condorcet Jury Theorem.19

Empirically, the model offers several testable predictions. Do reductions in amendment thresholds

— such as revisions to the United States Senate requirements to invoke cloture, decrease policy

diversity, and increase the extent to which proposers (or political parties) compromise? And,

comparing legislative bodies whose members have similar preferences, do those requiring high

supermajoritarian thresholds to amend proposals generate more diverse policies than those with

low thresholds? And how does the distribution of agenda power mediate the relationship between

policy diversity and voting rules? Despite the challenges in finding variation in voting rules across

otherwise comparable legislative bodies (Cameron, 2009), recent research has employed innovative

data to discern such relationships, both globally and domestically; see, e.g., Blake and Payton

(2015), McGrath et al. (2018), and Brutger and Li (2019).
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