# Modelling Time as a Circular Scale



# HARVARD School of Public Health

# Department of Epidemiology Miguel Angel Luque Fernandez,

Bizu Gelaye, Tyler Vander Weele, Hernandez-Diaz S, Michelle A. Williams,

#### **Collaborators:**

Ananth C.V, Qui C, Sanchez S.E, Cynthia Ferre, Anna Maria Siega-Riz, Claudia Holzman, Daniel Enquobahrie, Nancy Dole

January 29, 2014





### Table of contents

- Chronobiology
  - Definition
  - Time
  - Circular Time: Sine and Cosine Functions
  - Circular Time: Sine and Cosine Functions
- Assessing a circular pattern
  - The examples used in this presentation: Work in progress
  - Time plot
  - Periodogram
- 3 Describing Circadian and Seasonal Patterns
  - Grouping Data
- Modelling Stationary Circadian an Seasonal Patterns
  - GLMs
  - Cosionor Model
  - Cubic Splines
- References



# 1 Chronobiology: Circular Time and Trigonometric Functions

Circular Time: Sine and Cosine Function Circular Time: Sine and Cosine Function



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

#### Time

 Biological time may be linear (chronological time) and cyclical (period time).



Definition Time

Circular Time: Sine and Cosine Functio Circular Time: Sine and Cosine Functio



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

Time
Circular Time: Sine and Cosine Functio
Circular Time: Sine and Cosine Functio

Definition



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

#### Time

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

24 hours (Circadian),



Definition
Time
Circular Time: Sine and Cosine Functio



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
```

Time
Circular Time: Sine and Cosine Functio
Circular Time: Sine and Cosine Functio

Definition



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
Seasons (Seasonality)
```

Time
Circular Time: Sine and Cosine Functio
Circular Time: Sine and Cosine Functio

Definition



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
Seasons (Seasonality),
365 days (Annual), etc.
```



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

#### Time

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
Seasons (Seasonality),
365 days (Annual), etc.
```

Cyclical events could be modeled as a time circular scale.



# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

#### Time

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
Seasons (Seasonality),
365 days (Annual), etc.
```

Cyclical events could be modeled as a time circular scale.





# Chronobiology Definition and Time

#### Definition

Chronobiology is a discipline whose principles consider **time** as an essential dimension of biological phenomena.

#### Time

- Biological time may be linear (chronological time) and cyclical (period time).
- Cyclical time could have several kinds of periodicities (biological rhythms).

```
24 hours (Circadian),
30 days (Monthly),
Seasons (Seasonality),
365 days (Annual), etc.
```

Cyclical events could be modeled as a time circular scale.







- Classical minimum squares regression modeling: Trend analysis.
- GLM: Rates, persons time at risk (Family Poisson, offset: time at risk and link log).





- Classical minimum squares regression modeling: Trend analysis.
- GLM: Rates, persons time at risk (Family Poisson, offset: time at risk and link log).
- Non functional shape assumption: Kaplan-Meier and Cox regression.







- Classical minimum squares regression modeling: Trend analysis.
- GLM: Rates, persons time at risk (Family Poisson, offset: time at risk and link log).
- Non functional shape assumption: Kaplan-Meier and Cox regression.







- Classical minimum squares regression modeling: Trend analysis.
- GLM: Rates, persons time at risk (Family Poisson, offset: time at risk and link log).
- Non functional shape assumption: Kaplan-Meier and Cox regression.



Definition
Time
Circular Time: Sine and Cosine Function
Circular Time: Sine and Cosine Function



### Circular Time



#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.





#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.
- Modeling periodicity:
   Trigonometric predictors with sine and cosine terms
   (Trigonometric regression or cosinor model).





#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.
- Modeling periodicity:
   Trigonometric predictors with sine and cosine terms
   (Trigonometric regression or cosinor model).

Circular time modeling assumptions

Sinusoidal patterr





#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.
- Modeling periodicity:
   Trigonometric predictors with sine and cosine terms
   (Trigonometric regression or cosinor model).

### Circular time modeling assumptions

Sinusoidal pattern

Stationary time series





#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.
- Modeling periodicity:
   Trigonometric predictors with sine and cosine terms
   (Trigonometric regression or cosinor model).

Circular time modeling assumptions

Sinusoidal pattern

Stationary time series





#### Circular time

- Assessing periodicity: Fourier Series (Periodogram).
- Describing periodicity: Data reduction.
- Modeling periodicity:
   Trigonometric predictors with sine and cosine terms
   (Trigonometric regression or cosinor model).

Circular time modeling assumptions

Sinusoidal pattern

Stationary time series



#### Sine and Cosine functions

- The steady rise-and-fall of the cosine and sine functions makes them ideal for modeling seasonality or circadian patterns.
- This rise-and-fall pattern is repeat.



#### Sine and Cosine functions

- The steady rise-and-fall of the cosine and sine functions makes them ideal for modeling seasonality or circadian patterns.
- This rise-and-fall pattern is repeat.
- This repeating property of the sine and cosine functions means that we only need to consider times from 0 to  $\leq 2\pi$ .



#### Sine and Cosine functions

- The steady rise-and-fall of the cosine and sine functions makes them ideal for modeling seasonality or circadian patterns.
- This rise-and-fall pattern is repeat.
- This repeating property of the sine and cosine functions means that we only need to consider times from 0 to  $\leq 2\pi$ .

#### Circular Time

The value of  $2\pi$  is a key constant because it is the circumference of circle with radius 1.



#### Sine and Cosine functions

- The steady rise-and-fall of the cosine and sine functions makes them ideal for modeling seasonality or circadian patterns.
- This rise-and-fall pattern is repeat.
- This repeating property of the sine and cosine functions means that we only need to consider times from 0 to  $\leq 2\pi$ .

#### Circular Time

The value of  $2\pi$  is a key constant because it is the circumference of circle with radius 1.



# The trigonometric circle



Definition
Time
Circular Time: Sine and Cosine Functions
Circular Time: Sine and Cosine Functions



#### Trigonometric Functions

#### Link: Sum of Sine and Cosine

- Together the cosine and sine functions can represent any point on the curve and the circle.
- They are called *Trigonometric Functions*
- The rate of change in cos(x) is given by sin(x) and vice versa.
- $\bullet$   $\frac{d}{dx}sin(x) = cos(x)$



Time Circular Time: Sine and Cosine Functions Circular Time: Sine and Cosine Functions



### Sine and Cosine Functions







### Sine and Cosine Functions



Two cycles per  $2\pi$  units of time

Definition
Time
Circular Time: Sine and Cosine Functions
Circular Time: Sine and Cosine Functions

# 2 Assessing a circular pattern

Time
Circular Time: Sine and Cosine Functions
Circular Time: Sine and Cosine Functions



### Table of contents

- Chronobiology
  - Definition
  - Time
  - Circular Time: Sine and Cosine Functions
  - Circular Time: Sine and Cosine Functions
- Assessing a circular pattern
  - The examples used in this presentation: Work in progress
  - Time plot
  - Periodogram
- 3 Describing Circadian and Seasonal Patterns
  - Grouping Data
- Modelling Stationary Circadian an Seasonal Patterns
  - GLMs
  - Cosionor Model
  - Cubic Splines
- References





# The examples used in this presentation: Work in progress

# Modeling Vitamin D Serum Concentrations in a population of pregnant women.

- Data were drawn from an observational multicentric nested case-control study of 2,583 pregnant women using existing data and banked serum samples in the USA.
- Objective: To test the presence of a seasonal variation of 25OHD serum concentrations.
- We model maternal individual measurements of 25OHD serum concentrations (not repeat measurement within individuals).

#### Modeling the time of onset of Pretern Delivery

- Data were drawn from 476 women who delivered live births at three Hospitals in Lima, Peru, from January 2009 through July 2010.
- Objective: To model the time of onset of delivery in a sample of women who delivered a preterm infant.
- We model maternal self-reported time of onset of delivery.



# The examples used in this presentation: Work in progress

# Modeling Vitamin D Serum Concentrations in a population of pregnant women.

- Data were drawn from an observational multicentric nested case-control study of 2,583 pregnant women using existing data and banked serum samples in the USA.
- Objective: To test the presence of a seasonal variation of 25OHD serum concentrations.
- We model maternal individual measurements of 25OHD serum concentrations (not repeat measurement within individuals).

# Modeling the time of onset of Preterm Delivery

- Data were drawn from 476 women who delivered live births at three Hospitals in Lima, Peru, from January 2009 through July 2010.
- Objective: To model the time of onset of delivery in a sample of women who delivered a preterm infant.
- We model maternal self-reported time of onset of delivery.



# Assessing Seasonality

#### 25OHD serum concentrations over 1996-2008: Lowess Smoothing, n=2,583.



©MA Luque-Fernandez et al.Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy Cohorts. Pediatrics and Perinatal Epidemiology 2013

#### Assumptions

Assessing seasonality: First, Stationarity Time Series and Second a Sinusoidal or cyclic pattern (if modelled with a cosinor approach, it has to be symetric)



# Fourier Time Series: Periodogram

#### Number of cycles in $2\pi$ time

- The periodogram I(w<sub>j</sub>) is always positive, and it will be larger at frequencies that are strongly represented in the data.
- Therefore the number of time points needed to complete a cycle of  $2\pi$  could be computed as the inverse of the Fourier frequency using:

$$1/f_j = \frac{2\pi}{w_i}$$

#### Formulae

$$I(w_j) = \frac{2}{n}(\hat{C}^2 + \hat{S}^2) \quad j = 1, ...n/2$$
$$\hat{C}^2 = 2 \sum_{j=1}^{n} y_t \cos(w_j t)/n,$$

$$\hat{S}^2 = 2 \sum_{t=1}^n y_t \sin(w_j t) / n,$$



# Fourier Time Series: Periodogram

#### Number of cycles in $2\pi$ time

- The periodogram I(w<sub>j</sub>) is always positive, and it will be larger at frequencies that are strongly represented in the data.
- Therefore the number of time points needed to complete a cycle of  $2\pi$  could be computed as the inverse of the Fourier frequency using:

$$1/f_j = \frac{2\pi}{w_i}$$

#### Formulae

$$I(w_j) = \frac{2}{n}(\hat{C}^2 + \hat{S}^2)$$
  $j = 1, ...n/2$ 

$$\hat{C}^2 = 2 \sum_{t=1}^n y_t \cos(w_j t) / n,$$

$$\hat{S}^2 = 2 \sum_{t=1}^n y_t \sin(w_j t)/n,$$



# Example



©MA Luque-Fernandez et al. Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy Cohorts. Pediatrics and Perinatal Epidemiology 2013



# 3 Describing Circadian and Seasonal Patterns



## Table of contents

- Chronobiology
  - Definition
  - Time
  - Circular Time: Sine and Cosine Functions
  - Circular Time: Sine and Cosine Functions
- Assessing a circular pattern
  - The examples used in this presentation: Work in progress
  - Time plot
  - Periodogram
- 3 Describing Circadian and Seasonal Patterns
  - Grouping Data
- Modelling Stationary Circadian an Seasonal Patterns
  - GLMs
  - Cosionor Model
  - Cubic Splines
- References



#### Data reduction

- Data reduction is one of the simplest methods for investigating a circadian, seasonal or annual pattern.
- A common method of data reduction is to group the data into 24 hours, 12 months, seasons, etc.
- Care needs to be taken when interpreting estimates, as they represent the average rates in each stratum.

# Example:Circular Plot 250HD serum concentrations



#### Data reduction

- Data reduction is one of the simplest methods for investigating a circadian, seasonal or annual pattern.
- A common method of data reduction is to group the data into 24 hours. 12 months, seasons, etc.
- Care needs to be taken when interpreting estimates, as they represent the average rates in each stratum.

#### Example: Circular Plot 250HD serum concentrations





# Grouping Data example

#### Grouping: tabular data

Mean and standard deviation of 25OHD serum concentrations by seasons, site and race, (n= 2,583).

|        | Bla         | ick $\mu(\sigma^2)$ ,(n=6 | 549)         | White $\mu(\sigma^2)$ , (n=1934) |            |              |  |
|--------|-------------|---------------------------|--------------|----------------------------------|------------|--------------|--|
|        | Omega(n=27) | Pin(n=350)                | Pouch(n=272) | Omega(n=727)                     | Pin(n=642) | Pouch(n=565) |  |
| Winter | 24.6(6.9)   | 17.5(8.6)                 | 17.7(9.2)    | 29.7(8.4)                        | 29.4(9.9)  | 34.6(10.9)   |  |
| Spring | 27.6(6.7)   | 18.0(8.8)                 | 18.5(8.2)    | 29.4(8.9)                        | 30.8(9.4)  | 33.5(10.3)   |  |
| Summer | 36.5(4.5)   | 21.6(8.5)                 | 24.8(10.4)   | 33.4(8.6)                        | 35.0(10.8) | 39.3(9.5)    |  |
| Fall   | 22.5(6.6)   | 19.4(9.8)                 | 22.5(8.9)    | 31.9(7.7)                        | 33.0(8.8)  | 36.7(10.6)   |  |
| Annual | 26.8(7.3)   | 19.0(9.0)                 | 20.9(9.6)    | 31.2(8.6)                        | 31.9(9.9)  | 36.1(10.5)   |  |

#### Grouping: Figur

Observed monthly means of 25OHD2 and D3 serum concentrations by site, (n= 2,583)





# Grouping Data example

#### Grouping: tabular data

Mean and standard deviation of 25OHD serum concentrations by seasons, site and race, (n= 2,583).

|        | Bla         | $\mu(\sigma^2)$ , $n=6$ | 549)         | White μ(σ²),(n=1934) |            |              |  |
|--------|-------------|-------------------------|--------------|----------------------|------------|--------------|--|
|        | Omega(n=27) | Pin(n=350)              | Pouch(n=272) | Omega(n=727)         | Pin(n=642) | Pouch(n=565) |  |
| Winter | 24.6(6.9)   | 17.5(8.6)               | 17.7(9.2)    | 29.7(8.4)            | 29.4(9.9)  | 34.6(10.9)   |  |
| Spring | 27.6(6.7)   | 18.0(8.8)               | 18.5(8.2)    | 29.4(8.9)            | 30.8(9.4)  | 33.5(10.3)   |  |
| Summer | 36.5(4.5)   | 21.6(8.5)               | 24.8(10.4)   | 33.4(8.6)            | 35.0(10.8) | 39.3(9.5)    |  |
| Fall   | 22.5(6.6)   | 19.4(9.8)               | 22.5(8.9)    | 31.9(7.7)            | 33.0(8.8)  | 36.7(10.6)   |  |
| Annual | 26.8(7.3)   | 19.0(9.0)               | 20.9(9.6)    | 31.2(8.6)            | 31.9(9.9)  | 36.1(10.5)   |  |

#### Grouping: Figure

Observed monthly means of 25OHD2 and D3 serum concentrations by site, (n= 2,583)



©MA Luque-Fernandez et al.Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US
Pregnancy Cohorts. Pediatrics and Perinatal Epidemiology 2013

9 Q

# 3 Modelling Stationary Circadian an Seasonal Patterns



## Table of contents

- Chronobiology
  - Definition
  - Time
  - Circular Time: Sine and Cosine Functions
  - Circular Time: Sine and Cosine Functions
- Assessing a circular pattern
  - The examples used in this presentation: Work in progress
  - Time plot
  - Periodogram
- 3 Describing Circadian and Seasonal Patterns
  - Grouping Data
- Modelling Stationary Circadian an Seasonal Patterns
  - GLMs
  - Cosionor Model
  - Cubic Splines
- References





#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

#### GLM

• Time (months) is fitted as a categorical independent variable  $(x_i)$ .



#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.



#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.
- A disadvantage is that it assumes complete independence between months.



#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = X eta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.
- A disadvantage is that it assumes complete independence between months.
- For many seasonal patterns this is unlikely to be true, as neighboring unit
  of time (months) are likely to be positively correlated.





#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.
- A disadvantage is that it assumes complete independence between months.
- For many seasonal patterns this is unlikely to be true, as neighboring unit
  of time (months) are likely to be positively correlated.
- Although we can use Generalized Linear Mixed Models or a random intercept model.





#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.
- A disadvantage is that it assumes complete independence between months.
- For many seasonal patterns this is unlikely to be true, as neighboring unit
  of time (months) are likely to be positively correlated.
- Although we can use Generalized Linear Mixed Models or a random intercept model.





#### **GLM** specification

$$y_i = eta_0 + eta_1 x_i$$
 where  $E(y) = \mu$  and  $\mu = Xeta$   $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 

- Time (months) is fitted as a categorical independent variable  $(x_i)$ .
- Usually we will use a Gaussian or a Poisson family with a link log.
- A disadvantage is that it assumes complete independence between months.
- For many seasonal patterns this is unlikely to be true, as neighboring unit
  of time (months) are likely to be positively correlated.
- Although we can use Generalized Linear Mixed Models or a random intercept model.





## **GLM** Example

| rved monthly me | ans, standard deviation | and difference | es of 25OHD | serum concentrations, ( $n=2$ | .583).              |
|-----------------|-------------------------|----------------|-------------|-------------------------------|---------------------|
|                 | Number                  | 25(OH)D        | 25(OH)D     | Absolute                      | Relative difference |
| Month           | of women tested         | Mean           | Std. Dev.   | difference and 95%CI          | in percentage (%)   |
| January         | 221                     | 29.6           | 11.0        | Ref.                          | Ref.                |
| February        | 202                     | 26.9           | 11.5        | -2.68[(-4.83) to (-0.54)]     | -9.1                |
| March           | 233                     | 25.5           | 10.8        | -4.17[(-6.17) to (-2.16)]     | -14.1               |
| April           | 270                     | 27.5           | 11.1        | -2.11[(-4.07) to (-0.14)]     | -7.1                |
| May             | 241                     | 28.8           | 10.7        | -0.80[(-2.79) to 1.18]        | -2.7                |
| June            | 207                     | 30.8           | 11.3        | 1.14 [(-0.97) to 3.25]        | 3.9                 |
| July            | 191                     | 33.6           | 10.9        | 4.01 (1.89 to 6.13)           | 13.5                |
| August          | 215                     | 34.4           | 11.1        | 4.76 (2.68 to 6.84)           | 16.1                |
| September       | 197                     | 31.0           | 10.2        | 1.40 [(-0.63) to 3.44]        | 4.7                 |
| October         | 232                     | 31.1           | 11.3        | 1.49 [(-0.57) to 3.54]        | 5.0                 |
| November        | 202                     | 29.6           | 10.4        | -0.04[(-2.08) to 1.99]        | -0.1                |
| December        | 172                     | 28.2           | 11.0        | -1.41[(-3.60) to 0.77]        | -4.8                |





©MA Luque-Fernandez et al. Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy
Cohorts. Pediatrics and Perinatal Epidemiology 2013



## Cosinor Model

#### Cosinor

The Cosinor model:

$$Y_t = c \cos(w_t) + s \sin(w_t)$$
  
 $t=1....n$ 

If we are interested in an annual seasonal cycle based on monthly data, then we would compute  $w_t$  as follow:

$$w_t = 2\pi f_t$$
 where  $f_t = \frac{month_t - 1}{12}$ 

#### Amplitude and Phase

Where the Amplitude is:

$$A = \sqrt{c^2 + s^2}, (A \ge 0)$$

and the Phase  $[P(\phi)]$ :

$$P = \begin{cases} arctan(s/c) \,, \ c \ge 0, \\ arctan(s/c) \,+\, \pi \,, \ c < 0 \,, s \ge 0, \\ arctan(s/c) \,-\, \pi \,, \ c < 0 \,, s > 0. \end{cases}$$

To interpret the phase  $[P(\phi)]$ , it is preferable to transform this to a time scale using  $P'=12(P/2\pi)+1$  for monthly data.



## Cosinor Model

#### Cosinor

The Cosinor model:

$$Y_t = c \cos(w_t) + s \sin(w_t)$$
  
 $t=1....n$ 

If we are interested in an annual seasonal cycle based on monthly data, then we would compute  $w_t$  as follow:

$$w_t = 2\pi f_t$$
 where  $f_t = \frac{month_t - 1}{12}$ 

#### Amplitude and Phase

Where the Amplitude is:

$$A = \sqrt{c^2 + s^2}, (A \ge 0)$$

and the Phase  $[P(\phi)]$ :

$$P = \begin{cases} arctan(s/c)\,,\; c \geq 0, \\ arctan(s/c)\,+\,\pi\,,\; c < 0\,, s \geq 0, \\ arctan(s/c)\,-\,\pi\,,\; c < 0\,, s > 0. \end{cases}$$

To interpret the phase  $[P(\phi)]$ , it is preferable to transform this to a time scale using  $P'=12(P/2\pi)+1$  for monthly data.



# Cosinor Modelling Example



©MA Luque-Fernandez et al. Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy Cohorts. Pediatrics and Perinatal Epidemiology 2013





# Cosinor Inference Example

Crude and Adjusted Annual Means of 25OHD and Mean Peak-Trough Difference in 25OHD (n= 2,583)

|                                        |                      | Crude              |            | Adjusted                        |            | 25(OH)D           |          |
|----------------------------------------|----------------------|--------------------|------------|---------------------------------|------------|-------------------|----------|
|                                        |                      | 25(OH)D            |            | 25(OH)D                         |            | Mean Peak-Trough  |          |
| Variables                              |                      | Annual Mean, ng/mL | 95%CI      | Annual Mean, ng/mL <sup>b</sup> | 95%CI      | difference, ng/mL | 95%C     |
| Maternal Age                           |                      |                    |            |                                 |            |                   |          |
|                                        | 15-24                | 27.7               | 27.1, 28.4 | 28.2                            | 27.4, 28.9 | 5.9               | 4.9, 7.  |
|                                        | 25-34                | 29.9               | 29.4, 30.3 | 30.4                            | 29.9, 30.9 | 8.2               | 6.8, 9.  |
|                                        | ≥35                  | 31.9               | 31.2, 32.8 | 29.7                            | 28.9, 30.5 | 7.5               | 5.9, 9.  |
|                                        | P for difference     | < 0.001            |            | 0.003                           |            | 0.005             |          |
| Race                                   |                      |                    |            |                                 |            |                   |          |
|                                        | Black                | 20.2               | 19.5, 21.0 | 19.6                            | 18.9, 20.4 | 5.9               | 4.9, 7.  |
|                                        | White                | 32.8               | 32.4, 33,2 | 33.0                            | 32.6, 33.5 | 7.1               | 5.6, 8.  |
|                                        | P for difference     | < 0.001            |            | < 0.001                         |            | < 0.001           |          |
| Site                                   |                      |                    |            |                                 |            |                   |          |
|                                        | Omega (Seattle)      | 30.8               | 30.0, 31.6 | 30.9                            | 30.3, 31.5 | 5.7               | 4.7, 6.  |
|                                        | Pin (North Carolina) | 27.5               | 26.8. 28.2 | 27.5                            | 26.8. 28.1 | 2.3               | 0.9, 3.  |
|                                        | Pouch (Michigan)     | 31.2               | 30.4, 31.9 | 31.2                            | 30.5. 31.8 | 6.0               | 4.6, 7.  |
|                                        | P for difference     | 0.372              |            | 0.236                           | ,          | 0.001             | -,-      |
| Gestational week                       |                      |                    |            |                                 |            | *****             |          |
|                                        | 1 Trimester          | 27.3               | 25.7, 28.8 | 26.8                            | 28.8, 27.9 | 5.9               | 4.9, 7.  |
|                                        | II Trimester         | 29.8               | 29.4. 30.3 | 29.8                            | 29.5. 30.3 | 8.9               | 7.4, 10. |
|                                        | P for difference     | 0.002              | 23.1, 30.3 | < 0.001                         | 25.5, 50.5 | 0.001             | 1.1, 10. |
| Maternal Education                     | i ioi diliciciice    | 0.002              |            | V0.001                          |            | 0.001             |          |
| material Education                     | Highschool or less   | 26.7               | 26.0, 27.5 | 28.0                            | 27.2, 28.8 | 5.9               | 4.9, 7.  |
|                                        | Post Highschool      | 30.9               | 30.4, 31.5 | 30.4                            | 29.9, 30.9 | 8.3               | 6.9, 9.  |
|                                        | P for difference     | < 0.001            | 30.4, 31.3 | < 0.001                         | 29.9, 30.9 | 0.001             | 0.9, 9.  |
| D BMI :- 1/2                           | r for difference     | <0.001             |            | <0.001                          |            | 0.001             |          |
| Pre-pregnancy BMI in kg/m <sup>2</sup> | <25                  | 31.4               | 30.8, 31.9 | 30.9                            | 30.4, 31.4 | 5.9               | 4.9, 7.  |
|                                        |                      |                    |            |                                 |            |                   |          |
|                                        | 25-30                | 29.4               | 28.5, 30.3 | 29.4                            | 28.6, 30.3 | 4.5               | 3.1, 6   |
|                                        | >30                  | 25.1               | 24.2, 26.0 | 26.5                            | 25.6, 27.3 | 1.6               | 0.1, 3.  |
|                                        | P for difference     | < 0.001            |            | < 0.001                         |            | < 0.001           |          |

a Models were adjusted for the main effect of maternal age, gestational weeks, race and study site.

b Annual means were centered to reflect study population values for maternal age, gestational weeks, race and study site. (C)MA Luque-Fernandez et al. Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy Cohorts. Pediatrics and Perinatal







# Cosinor Modelling Example

#### Fitted Means: Bivariate example

Distribution of 25OHD serum concentrations modelled with a bivariate Stationary Cosinor Model by race (n=2,583)



©MA Luque-Fernandez et al. Seasonal Variation of 25-Hydroxyvitamin D among non-Hispanic Black and White Pregnant Women from Three US Pregnancy Cohorts. Pediatrics and Perinatal Epidemiology 2013





# **Cubic Splines**

#### A cubic spline function with K knots is given by:

$$f(x) = \sum_{j=0}^{3} \beta_{0j} x^{j} + \sum_{l=1}^{k} \beta_{i} (x - t_{l})^{3} +,$$

where  $t_l$ , l = 1, ..., k are the k knots. And x is related with the outcome as:

$$y_i = f(x_i) + \epsilon_i$$



- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.



- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.
- It is better to choose a number of knots that represents the curvature you believe to be present in the data.



- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.
- It is better to choose a number of knots that represents the curvature you believe to be present in the data.
- Also the knots could be placed at points in the data where you expect significant changes in the relationship between the predictor and the outcome to occur.





- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.
- It is better to choose a number of knots that represents the curvature you believe to be present in the data.
- Also the knots could be placed at points in the data where you expect significant changes in the relationship between the predictor and the outcome to occur.





- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.
- It is better to choose a number of knots that represents the curvature you believe to be present in the data.
- Also the knots could be placed at points in the data where you expect significant changes in the relationship between the predictor and the outcome to occur.





# Cubic Spline Example





#### References

#### Some important references

- A. G. Barnett, A. J. Dobson, E. Library., Analysing seasonal health data, Springer, 2010.
- N. I. Fisher, Statistical analysis of circular data, Cambridge University Press, Cambridge, 1993.
- P. Bloomfield, Fourier analysis of time series: an introduction, 2nd Edition, Wiley series in probability and statistics Applied probability and statistics, Wiley, New York; Chichester, 2000.
- T. W. Korner, Fourier analysis, Cambridge University Press, Cambridge, 1988
- J. W. Hardin, J. Hilbe, Generalized linear models and extensions, 3rd Edition, Stata Press, College Station, Tex., 2012.