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Summary In this study, we aimed to describe the evolution of three cholera epidemics that
occurred in Lusaka, Zambia, between 2003 and 2006 and to analyse the association between the
increase in number of cases and climatic factors. A Poisson autoregressive model controlling for
seasonality and trend was built to estimate the association between the increase in the weekly
number of cases and weekly means of daily maximum temperature and rainfall. All epidemics
showed a seasonal trend coinciding with the rainy season (November to March). A 1 ◦C rise in
temperature 6 weeks before the onset of the outbreak explained 5.2% [relative risk (RR) 1.05,
95% CI 1.04—1.06] of the increase in the number of cholera cases (2003—2006). In addition,
a 50 mm increase in rainfall 3 weeks before explained an increase of 2.5% (RR 1.02, 95% CI
1.01—1.04). The attributable risks were 4.9% for temperature and 2.4% for rainfall. If 6 weeks
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prior to the beginning of the rainy season an increase in temperature is observed followed by an
increase in rainfall 3 weeks later, both exceeding expected levels, an increase in the number of
cases of cholera within the following 3 weeks could be expected. Our explicative model could
contribute to developing a warni
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ng signal to reduce the impact of a presumed cholera epidemic.
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. Introduction

he turn of the century has been marked by a worri-
ome emergence and re-emergence of infectious diseases
orldwide. In fact, the number of cholera cases reported

o the WHO between 2003 and 2006 has dramatically
ncreased, reaching its highest values in more than a
ecade. In 2006, a total rise of 79% was observed compared
ith the previous year; 87% of cholera cases occurred in
frica.1

It is well established that environmental factors, through
easonal variations or as a consequence of global climate
hange, play an important role in the resurgence and
ynamics of infectious diseases.2—6 On the other hand, in
ddition to being linked to climate7, cholera is closely
elated to poor environmental status and lack of basic
nfrastructure in developing countries. In this manner,
igh population densities as well as poor access to safe
ater and proper sanitation along with other environ-
ental conditions contribute to the spread of cholera in
frica.8,9

Vibrio cholerae requires optimal temperature and
hysicochemical conditions (salinity, pH, humidity etc.)
o survive. Nevertheless, it has also been shown to
esist suboptimal conditions through specific associations
f the bacterium with aquatic plants10 or animals such
s oysters, crabs and copepods.11—14 As a result, the
athogen can persist for longer periods in aquatic habitats.
eather conditions such as an increase in environmen-

al or sea surface temperatures favour plankton bloom.
his link with temperature could explain the surge of
holera in endemic zones in cycles of 3—6 years, its
xpansion and its re-emergence after an absence of
everal years. In line with this observation, theoretical
odels were developed that included environmental vari-

bles as causal factors for cholera re-emergence in an
ttempt to describe its dynamics.15 In real-life condi-
ions, positive correlations were shown to exist between
n upsurge in the number of cholera cases during an
utbreak and the increase in sea surface temperature 8
eeks earlier.16,17 Hence, upon describing epidemiologi-
al variables of outbreaks and analysing related climate
ariables, mathematical models can be built providing nec-
ssary information to predict the evolution of cholera
pidemics.18

In Zambia, cholera is endemic and cases appear all year
ound. Certain regions of the country are more prone to
pidemics, among which is Lusaka, the capital of Zam-
ia. For 2003 it was estimated that 36% of the total
ountry population lived in urban areas and only 55% had
ccess to drinking water.19 The last outbreak recorded
ccurred in 1999 and affected 7569 individuals. From 2003,
pidemics re-emerged repeatedly, occurring during 3 con-
ecutive years.1

The objectives of this study were to describe the evolu-
ion of the three cholera epidemics that took place in Lusaka
uring the period 2003—2006 and to explain the associa-
Please cite this article in press as: Luque Fernández MÁ, et
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ion between the increase in the number of cholera cases
n the one hand and daily maximum temperature and rain-
all recorded during the period under consideration on the
ther.

c
p
t
l

 PRESS
Luque fernandez M.A et al.

. Methods

.1. Study design

descriptive and ecological study was carried out. The evo-
ution and the impact of the three epidemics that occurred
n Lusaka between 2003 and 2006 are described. Through an
xplicative model using time series analysis, an analytical
omponent examined the influence of environmental fac-
ors, namely rainfall and temperature, on the appearance
nd increase in the number of cases of cholera.

.2. Data source and collection

pidemiological data were collected by the non-
overnmental organisation Médecins Sans Frontières,
hich intervened in all three outbreaks in Lusaka. The
ain data source was medical registries at cholera isolation

entres that the organisation put in place in collaboration
ith the Zambian Ministry of Health. Environmental data
ere taken at the meteorological station of the interna-

ional airport of Lusaka (FLLS-676650), whose geographical
oordinates are —15.31◦ latitude, 28.45◦ longitude and
152 m altitude. Data were available through the website
uTiempo.net (http://www.tutiempo.net), which compiles
nd stores data from meteorological stations around the
orld.

Sociodemographic data regarding the inhabitants of
usaka (capital of Zambia) were obtained from the UNFPA.19

.3. Variables considered

he WHO case definition for cholera was used.20 Cases were
ggregated by epidemiological week. Deaths attributable
o cholera and recorded at the isolation centres were also
rouped by epidemiological week. Weekly arithmetic means
f maximum temperature were calculated for the epi-
emiological weeks based on daily maximum temperature
maximum value in 24 h) and were expressed in ◦C. Rainfall
in mm) was the total daily precipitation recorded, summed
p weekly in the same manner as for temperature. The
eriod considered for analysis extended from the eighth
pidemiological week of 2003 until the eighth week of 2006.

.4. Statistical analysis

descriptive analysis of the variables under study was per-
ormed using time plots. The outbreaks were described
resenting epidemic curves, the total weekly number of
ases, weekly incidence rate, attack rate, case fatality rate
CFR), duration of outbreak and strains isolated along with
heir serotype. A spectral analysis was then performed with
Fast Fourier transform procedure for detecting significant

rend and periodicity in the univariate analysis of the weekly
umber of cholera cases. Then, to examine the associa-
ion between the increase in the weekly number of cholera
al. Influence of temperature and rainfall on the evolu-
lysis of a time series. Trans R Soc Trop Med Hyg (2008),

ases (the dependent variable) and climate factors (inde-
endent variables), a Poisson autoregressive model was used
hrough a generalised linear model with family Poisson and
ink log controlling for seasonality. Akaike’s information cri-

dx.doi.org/10.1016/j.trstmh.2008.07.017
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terion (AIC) was used to find the best model. The variables
were entered and omitted manually from the model in a
stepwise manner, with the criterion for elimination being
a P-value >0.05. In the case of overdispersion of the data,
adjusted standard errors of coefficients were presented. Sin
and cos functions were used in the model for building the
independent variables that explain the seasonal component
of the series. An autoregressive term at order 1 was incor-
porated into the model to control for the autocorrelation of
cases of cholera of a current week with a previous week.21

Based on our review of the literature, lags of up to 8 weeks
for temperature were introduced to analyse the associa-
tion between the occurrence and increase in the number of
cholera cases and the mean maximum temperature 6 weeks
before the onset of the outbreak.

Goodness of fit was assessed through the standard Poisson
regression models by looking for the model that minimised
the residual autocorrelation, graphically through examining
the simple autocorrelation function (ACF) plot and the par-
tial autocorrelation function (PACF) plot. In addition, the
plot of standardised deviance residuals against the observed
cases of cholera from the final model and the simulation
approach for evaluating the goodness of fit of sparse data
by Boyle et al.22 was used.

Relative risks (RR) were derived from the determination
coefficients and were presented with their 95% CI. Assuming
that the whole population was exposed to the environmental
factors, the attributable risk (AR) was calculated using the
formula AR = RR—1/RR, applicable when RR is derived from
Poisson regression models.23 Analysis was performed using
Stata v.10 (StataCorp., College Station, TX, USA).

3. Results

Outbreaks were confirmed and V. cholerae was isolated in all
Please cite this article in press as: Luque Fernández MÁ, et
tion of cholera epidemics in Lusaka, Zambia, 2003—2006: ana
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three situations; the strain identified was O1 El Tor Ogawa.
Epidemiological descriptions of the three outbreaks

revealed many similarities. All three took place during the
rainy season coinciding with epidemiological Weeks 47—15
and were of similar duration. Table 1 gives the attack rates l

Table 1 Characterisation of three cholera outbreaks in Lusaka,
data)

2003—2004

Population 1 234 600
Isolated strain Ogawa
Year of last epidemic 1999
Years without epidemics 4
Epidemiological weeks affected 47—15
Duration in weeks 23
Total no. of cases 6471
Maximum no. of cases per week 911
Absolute no. of deaths 205
Case fatality rate (%) 3.2
Attack rate (epidemic) (%) 0.5
Duration (weeks) of the peak 3
Epidemiological week of 1st peak 14

ND: no data available.
 PRESS
3

nd other characteristics. The epidemic curves show a high
FR at the beginning of the outbreak of 2003, which then
rops and remains stable for 21 weeks. No mortality data
ere available for 2004. During the outbreak of 2005, the
FR was smaller in magnitude and duration. The number
f cases was significantly lower in the second epidemic
Figures 1—3).

The Poisson distribution of the number of cholera cases
s the dependent variable was verified. The weekly numbers
f cases for the period 2003—2006 varied between a mini-
um of 2 and a maximum of 911 cases, with a median of 89

nd an interquartile range of 304 weekly cases. The weekly
aily maximum temperature per epidemiological week had
minimum of 21.9 ◦C and a maximum of 36 ◦C. Rainfall

ad a minimum of 0 mm and a maximum of 307.1 mm. In
he time plots, an increase in temperature and rainfall was
bserved in the weeks prior to the appearance of the epi-
emics (Figures 4 and 5). Univariate analysis of cholera cases
or the 3 years showed a seasonal pattern that corresponded
o the months from December through April, confirmed
sing spectral analysis and periodograms (Supplementary
igure 1), but no trend. Analysis of the association between
he weekly number of cases and climate factors using
Poisson autoregressive model controlling for seasonality

howed a statistically significant association between the
ncrease in the number of cases and the increase in temper-
ture 6 weeks earlier and the increase in rainfall 3 weeks
arlier.

The final model was overdispersed. To compensate for
verdispersion, standard errors were scaled using the square
oot of the Pearson �2 dispersion. The final model was
djusted for sin and cos variables to control for seasonality
sin 365◦, 120◦, 60◦ and cos 365◦, 180◦), and autoregressive
erm at order 1 of cholera cases for controlling autocor-
elation. Among all models examined, the following model
al. Influence of temperature and rainfall on the evolu-
lysis of a time series. Trans R Soc Trop Med Hyg (2008),

Weekly number of cholera cases=ˇ0 + ˇ1 seasonality + ˇ2
autoregressive component order at 1+ˇ◦

3Temp 6 weeks ear-
ier + ˇ4 rainfall 3 weeks earlier

Zambia, 2003—2006 (Médecins Sans Frontières, unpublished

2004—2005 2005—2006

1 283 984 1 335 343
Ogawa Ogawa
2003 2004
0 0
43—14 46—14
24 21
888 5710
92 581
ND 87
ND 1.5
0.1 0.4
6 2
10 11

dx.doi.org/10.1016/j.trstmh.2008.07.017
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Figure 1 Distribution of cholera cases, deaths and case fatality rate (CFR) per epidemiological week (n = 6471 cases and 205
deaths) in the 2003—2004 outbreak in Lusaka, Zambia (Médecins Sans Frontières, unpublished data).

Figure 2 Distribution of cholera cases per epidemiological week (n = 888 cases) in the 2004—2005 outbreak in Lusaka, Zambia
(Médecins Sans Frontières, unpublished data).

F y rat
i ronti

a
a
r

igure 3 Distribution of cholera cases, deaths and case fatalit
n the 2005—2006 outbreak in Lusaka, Zambia (Médecins Sans F
Please cite this article in press as: Luque Fernández MÁ, et
tion of cholera epidemics in Lusaka, Zambia, 2003—2006: ana
doi:10.1016/j.trstmh.2008.07.017

Examining the functions of PACF and ACF of residu-
ls confirmed their random distribution, indicating proper
djustment of the model. The plot of standardised deviance
esiduals against expected cases of cholera from the model

a
p
c
(

e (CFR) per epidemiological week (n = 5710 cases and 87 deaths)
ères, unpublished data).
al. Influence of temperature and rainfall on the evolu-
lysis of a time series. Trans R Soc Trop Med Hyg (2008),

lso showed a good fit of the data. The line plot of the
redicted cases of cholera from the model and observed
ases showed a good fit with a correlation coefficient of 0.9
P < 0.001) (Supplementary Figure 2). As the overdispersion

dx.doi.org/10.1016/j.trstmh.2008.07.017
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Figure 4 Time plots of number of cholera cases per month and monthly mean temperature (◦C) in Lusaka, Zambia, 2003—2006
(Médecins Sans Frontières, unpublished data).

and

4
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Figure 5 Time plots of number of cholera cases per month
(Médecins Sans Frontières, unpublished data).

of the data is due to the high number of null values, the
interpretation of the deviance �2 is unreliable. Thus, using
the simulation approach for evaluating the goodness of fit
of sparse data by Boyle et al.22, the deviance was 5.3 with
142 d.f., the test of goodness of fit of deviance >0.05 and
AIC 3.4.

Hence, an ambient temperature increase of 1 ◦C 6 weeks
before the beginning of the outbreaks explained 5.2% of
Please cite this article in press as: Luque Fernández MÁ, et
tion of cholera epidemics in Lusaka, Zambia, 2003—2006: ana
doi:10.1016/j.trstmh.2008.07.017

the weekly augmentation of cholera cases observed, and
an increase of 50 mm in rainfall 3 weeks earlier explained
another 2.5% (Table 2).

C

t
w

Table 2 Association between the number of cholera cases and cl
lags of weekly mean temperature and rainfall (Médecins Sans Fron

Coefficient (SE)b RR (

Temperature (6 weeks earlier) 0.05 (0.006) 1.05
Rainfall (3 weeks earlier) 0.02 (0.01) 1.02

RR: relative risk; AR: attributable risk.
a Adjusted for seasonality.
b Standard errors (SE) scaled using square root of Pearson �2 based dis
c Percent change in expected count for 1 ◦C increase in temperature a
monthly mean rainfall (mm) in Lusaka, Zambia, 2003—2006

. Discussion

recent review of WHO cholera incidence and mor-
ality data (1960—2005) raised the question of Africa
s a ‘new homeland’ for cholera.24 Our results showed
ecurrent cholera outbreaks in Lusaka, Zambia, within a
eriod of 3 years and characterised by high incidence and
al. Influence of temperature and rainfall on the evolu-
lysis of a time series. Trans R Soc Trop Med Hyg (2008),

FRs.
The seasonal trend for cholera incidence observed in our

ime series and coinciding with the rainy season is consistent
ith what is known for the region.25,26

imate variables: final autoregressive Poisson model including
tières, unpublished data)a

95% CI) % changec AR (%) P-value

(1.04—1.06) 5.2 4.7 <0.001
(1.01—1.04) 2.5 1.9 0.011

persion.
nd 50 mm in rainfall.

dx.doi.org/10.1016/j.trstmh.2008.07.017
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In recent years, numerous studies have demonstrated
he association between the re-emergence and dynamics
f infectious diseases and environmental factors.7,27 We
dentified such an association between temperature and
ainfall and the increase in the number of cholera cases in
hree outbreaks occurring in Lusaka (2003—2006), which is
n concordance with suggested environmental theories for
e-emergence of infectious diseases. It is worth noting that
ost studies relating climate to cholera describe coastal

egions.
In the model presented, a 1 ◦C rise in temperature 6

eeks before the beginning of the outbreaks explained
.2% of the increase in cholera cases. It could be that in
ontinental zones, the increase in environmental temper-
ture affects water temperature and salinity and favours
rowth of copepods, zooplankton, phytoplankton16,17,28 or
lgal blooms, to which V. cholerae attaches and gains sur-
ival advantages.10 Thus, the disease cholera can no longer
e considered a simple equation of bacteria and human
ost, but represents a complex network that includes global
eather patterns, aquatic reservoirs, phages, zooplank-

on and collective behaviour of surface-attached cells.29

rise of 50 mm in rainfall 3 weeks earlier explained 2.5%
f case augmentation. For proper comparison, we would
deally refer to studies from the same region with compa-
able parameters of population, environment etc., but such
esults are not available.

To our knowledge, this is the first study reporting an asso-
iation between cholera and climate factors in sub-Saharan
frica. In Peru, an association was found between environ-
ental temperature and an increase in diarrhoea cases. A
◦C increase in temperature corresponded to an 8% increase

n hospital admissions due to diarrhoea in Lima.30

In Bangladesh, positive correlations existed between the
ncrease in cholera cases during an outbreak and rising sea
urface temperature 8 weeks before. A recent study car-
ied out in South Africa reports the association between
holera incidence and increased sea surface temperature
nd precipitation.31

One of the limitations of our study was the unavail-
bility of data on cholera cases between epidemics, which
id not allow for analysis using autoregressive integrated
oving average (ARIMA) predictive models that would have

epresented a valuable tool for forecasting future cholera
utbreaks in Lusaka.

Regarding the magnitude of cholera outbreaks, cases
ncluded in the study were patients in isolation centres
hus probably presenting more severe symptoms, which sug-
ests the overall number of affected individuals might have
een underestimated. Nevertheless, this selection bias does
ot discredit our chronological analysis since all centres
ecruited and operated comparably throughout the three
utbreaks.

Furthermore, ecological fallacy cannot be excluded when
xtrapolating results to individual risks through presenting
ttributable risks.

We recognise that in our analysis only temperature
Please cite this article in press as: Luque Fernández MÁ, et
tion of cholera epidemics in Lusaka, Zambia, 2003—2006: ana
doi:10.1016/j.trstmh.2008.07.017

nd precipitation as explicative variables intervened whilst
ther factors not targeted here play an important role in the
ise in the incidence of cholera.

Examining the evolution of the outbreaks permitted a
lear seasonal pattern associated with the beginning of the

t
a
p

F
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ainy season and specific prior increases in temperature and
ainfall to be established. These observations could be use-
ul for developing a warning signal aiming to facilitate public
ealth authority interventions in the region with the arrival
f the rainy season. In fact, the second outbreak had a lower
urden and attack rate, possibly due to acquired immunity
s is often observed following large outbreaks whereby the
ollowing ones are shorter and less severe.18 Moreover, inter-
ention teams were present long after the first outbreak and
ubstantial efforts were put into implementing prevention
nd control measures. Therefore, public sensitisation to the
roblem, resource mobilisation and lessons learned from the
revious outbreak could have played a role.

Our results suggest that towards the end of August and
eginning of September, an increase in the average max-
mum temperature above expected (pre-established based
n historical data) followed by an increase in rainfall 3 weeks
ater could be indicators of a potential increase in cholera
ases during October to November.

As pointed out by Pascual et al.18, climate factors are
ot enough to understand the size and timing of cholera
utbreaks. To improve our insight into cholera epidemics,
mmunity levels of the population in the region should be
aken into account.

According to experts, global warming is likely to increase
he severity and frequency of extreme weather events in the
uture. Considering this threat and the cholera burden in
ub-Saharan Africa, we recommend characterising cholera
utbreaks further, linking their occurrence to factors other
han rises in temperature or precipitation. To develop an
arly warning system for outbreaks, forecasting methods
ould be interesting, although a comprehensive understand-

ng of the disease dynamics and all parameters involved is
ecessary. The model for environmental cholera transmis-
ion proposed in the literature15 would be helpful.

In conclusion, our results show an association between
n increase in the number of cholera cases and climate vari-
bles. If 6 weeks prior to the beginning of the rainy season an
ncrease in temperature is observed followed by an increase
n rainfall 3 weeks later, both exceeding expected levels,
e may be confronted with an increase in the number of
ases of cholera within the following 3 weeks. Our explica-
ive model could contribute to developing a warning signal
o reduce the impact of a presumed cholera epidemic.

ppendix A. Supplementary data

upplementary data associated with this article can be
ound, in the online version, at doi:10.1016/j.trstmh.
008.07.017.
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