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Notation and definitions

Observed Data

Treatment A.

Often, A = 1 for treated and A = 0 for control.

Confounders W.

Outcome Y.

Potential Outcomes

For patient i Yi (1) and Yi (0) set to A = a Y(a), namely A = 1 and A = 0.

Causal Effects

Average Treatment Effect: E[Y(1) - Y(0)].
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Background: Potential Outcomes framework

Rubin and Heckman
This framework was developed first by statisticians (Rubin, 1983) and
econometricians (Heckman, 1978) as a new approach for the estimation of
causal effects from observational data.

We will keep separate the causal framework (a conceptual issue briefly
introduce here) and the ”how to estimate causal effects” (an statistical
issue also introduced here)
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Causal effects with OBSERVATIONAL data

ASSUMPTIONS for Identification
Rosebaum & Rubin, 1983: The Ignorable Treatment
Assignment (A.K.A Ignorability, Unconfoundeness or
Conditional Mean Independence).

POSITIVITY.

SUTVA.
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Causal effect with OBSERVATIONAL data

IGNORABILITY

(Yi(1),Yi(0))⊥Ai |Wi

POSITIVITY
POSITIVITY: P(A = a |W) > 0 for all a, W

SUTVA
We have assumed that there is only on version of the treatment
(consistency) Y(1) if A = 1 and Y(0) if A = 0.
The assignment to the treatment to one unit doesn’t affect the outcome of
another unit (no interference) or IID random variables.
The model used to estimate the assignment probability has to be correctly
specified.
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Causal effect

Potential Outcomes
We only observe:

Yi (1) = Yi (A = 1) and Yi (0) = Yi (A = 0)

However we would like to know what would have happened if:

Treated Yi (1) would have been non-treated Yi (A = 0) = Yi (0).

Controls Yi (0) would have been treated Yi(A = 1) = Yi(1).

Identifiability

How we can identify the effect of the potential outcomes Ya if they are not
observed?

How we can estimate the expected difference between the potential
outcomes E[Y(1) - Y(0)], namely the ATE or risk difference.
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G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE (Estimand) with
observational data

E(Y a) =
∑

y

E(Y a |W = w)P(W = w)

=
∑

y

E(Y a | A = a,W = w)P(W = w) by consistency

=
∑

y

E(Y = y | A = a,W = w)P(W = w) by ignorability

The ATE=

∑
w

[∑
y

P(Y = y | A = 1,W = w) −
∑

y

P(Y = y | A = 0,W = w)

]
P(W = w)

P(W = w) =
∑
y,a

P(W = w ,A = a,Y = y)
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G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE (Estimand) with
observational data
The ATE=

∑
w

[∑
y

P(Y = y | A = 1,W = w) −
∑

y

P(Y = y | A = 0,W = w)

]
P(W = w)

P(W = w) =
∑
y,a

P(W = w ,A = a,Y = y)

G-Formula
The sums is generic notation. In reality, likely involves sums and integrals (we are
just integrating out the W’s).

The g-formula is a generalization of standardization and allow to estimate
unbiased treatment effect estimates.
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ATE estimators

Nonparametric
G-formula plug-in estimator (generalization of standardization).

Parametric
Regression adjustment (RA).

Inverse probability treatment weighting (IPTW).

Inverse-probability treatment weighting with regression adjustment
(IPTW-RA) (Kang and Schafer, 2007).

Semi-parametric Double robust (DR) methods
Augmented inverse-probability treatment weighting (Estimation Equations)
(AIPTW) (Robins, 1994).
Targeted maximum likelihood estimation (TMLE) (van der Laan, 2006).
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ESTIMATORS: G-Computation

G-Computation: Regression adjustment (RA)

ATE =
1
n

n∑
i=1

(E(Yi | Ai = 1,W i ) − E(Yi | Ai = 0,W i ))︸ ︷︷ ︸
G−computation−Regression−Adjustment
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ESTIMATORS: IPTW

IPTW (Inverse probability treatment weighting)
Survey theory (Horvitz-Thompson)

ATE =
1
n

n∑
i=1

(
Ai

P(Ai = 1 |W i )
− 1 − Ai

(1 − P(Ai = 1 |W i ))

)
Yi .

IPTW standardized weights

ATE =

∑(
AY

P(A=1|W )

)
∑(

A
P(A=1|W )

) − ∑(
(1−A)Y

1−P(A=1|W )

)
∑(

(1−A)
1−P(A=1|W )

) .
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ESTIMATORS: Double Robust type AIPTW

AIPTW
ATE =

1
n

n∑
i=1

(E(Yi | Ai = 1,W i ) − E(Yi | Ai = 0,W i ))︸ ︷︷ ︸
G−computation−Regression−Adjustment

+
1
n

n∑
i=1

(
Ai [Yi − E(Yi | Ai = 1,Wi )]

g(Ai = 1 |W i )
− (1− Ai )[Yi − E(Yi | Ai = 1,Wi )]

g(Ai = 0 |W i )

)
,︸ ︷︷ ︸

Zero−expectation
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Equivalence between IPTW and G-computation

Equivalence
By repeated use of the law of total expectation, the IPTW and the G-computation
regression adjustment estimators for the ATE are equivalent as given by

E

(
I(a = 1)

P(A = 1 | W )
Y

)
︸ ︷︷ ︸

IPTW

=

By definition of expectations...

=
∑

w,a,y

I(a = 1)

P(A = 1|W = w)
y P(Y = y, A = a, W = w)

By the law of total probability...

=
∑

w,a,y

I(a = 1)

P(A = 1 | W = w)
y P(Y = y | A = a, W = w) P(A = a | W = w) P(W = w)
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Equivalence between IPTW and G-computation

Equivalence
By repeated use of the law of total expectation, the IPTW and the G-computation
regression adjustment estimators for the ATE are equivalent as given by

Cancellation by evaluating at A=1...

=
∑
w,y

y P(Y = y |A = 1,W = w)P(w = w)

By definition of expectations...

=
∑

w

E(Y |A = 1,W = w)P(W = w)

Finally, again by definition of expectations...

= E [E(Y |A = 1,W )]︸ ︷︷ ︸
G−computation
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ATE estimators: drawbacks

Nonparametric
Course of dimensionality (sparsity: zero empty cell)

Parametric
Parametric models are misspecified (all models are wrong but some are
useful, Box, 1976), and break down for high-dimensional data.

(RA) Issue: extrapolation and biased if misspecification, no information
about treatment mechanism.

(IPTW) Issue: sensitive to course of dimensionality, inefficient in case of
extreme weights and biased if misspecification. Non information about the
outcome.
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Double-robust (DR) estimators

Pros: Semi-parametric Double-Robust Methods
DR methods give two chances at consistency if any of two nuisance
parameters is consistently estimated.

DR methods are less sensitive to course of dimensionality.

Cons: Semi-parametric Double-Robust Methods
DR methods are unstable and inefficient if the propensity score (PS) is
small (violation of positivity assumption) (vand der Laan, 2007).

AIPTW and IPTW-RA do not respect the limits of the boundary space of
Y.

Poor performance if dual misspecification (Benkeser, 2016).
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Targeted learning
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Targeted Maximum Likelihood Estimation (TMLE)

Pros: TMLE
(TMLE) is a general algorithm for the construction of double-robust,
semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)

Better performance than competitors has been largely documented (Porter, et.
al.,2011).

(TMLE) Respect bounds on Y, less sensitive to misspecification and to
near-positivity violations (Benkeser, 2016).

(TMLE) Reduces bias through ensemble learning if misspecification, even dual
misspecification.

For the ATE, Inference is based on the Efficient Influence Curve. Hence, the
CLT applies, making inference easier.

Cons: TMLE
The procedure is only available in R: tmle package (Gruber, 2011).
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Why Targeted learning?

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and
experimental data. Springer Series in Statistics, 2011.
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Statistics: The two cultures
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Statistics: The two cultures
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TMLE ROAD MAP

TMLE steps
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TMLE ROAD MAP

MC simulations: Luque-Fernandez et al, 2017 (in press, American
Journal of Epidemiology)

ATE BIAS (%) RMSE 95%CI coverage (%)
N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000

First scenario* (correctly specified models)
True ATE -0.1813
Naı̈ve -0.2234 -0.2218 23.2 22.3 0.0575 0.0423 77 89
AIPTW -0.1843 -0.1848 1.6 1.9 0.0534 0.0180 93 94
IPTW-RA -0.1831 -0.1838 1.0 1.4 0.0500 0.0174 91 95
TMLE -0.1832 -0.1821 1.0 0.4 0.0482 0.0158 95 95
Second scenario ** (misspecified models)
True ATE -0.1172
Naı̈ve -0.0127 -0.0121 89.2 89.7 0.1470 0.1100 0 0
BFit AIPTW -0.1155 -0.0920 1.5 11.7 0.0928 0.0773 65 65
BFit IPTW-RA -0.1268 -0.1192 8.2 1.7 0.0442 0.0305 52 73
TMLE -0.1181 -0.1177 0.8 0.4 0.0281 0.0107 93 95
*First scenario : correctly specified models and near-positivity violation
**Second scenario: misspecification, near-positivity violation and adaptive model selection
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TMLE STEPS

Substitution estimation: Ê(Y | A,W )

First compute the outcome regression E(Y | A,W) using the
Super-Learner to then derive the Potential Outcomes and compute
Ψ(0) = E(Y (1) | A = 1,W ) − E(Y (0) | A = 0,W ).

Estimate the exposure mechanism P(A=1|,W) using the Super-Learner to
predict the values of the propensity score.

Compute HAW =
(

I(Ai=1)
P(Ai=1|Wi )

− I(Ai=0)
P(Ai=0|Wi )

)
for each individual, named the

clever covariate H.
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Fluctuation step: Epsilon

Fluctuation step (ε̂0 , ε̂1)

Update Ψ(0) through a fluctuation step incorporating the information from
the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error (MSE)
for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ε̂0 , ε̂1) are estimated using maximum likelihood
procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ε = e[1,1],
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Targeted estimate of the ATE (Ψ̂)

Ψ(0) update using ε (epsilon)

E∗(Y | A = 1,W ) = expit [logit [E(Y | A = 1,W )] + ε̂1H1(1,W )]

E∗(Y | A = 0,W ) = expit [logit [E(Y | A = 0,W )] + ε̂0H0(0,W )]

Targeted estimate of the ATE from Ψ(0) to Ψ(1): (Ψ̂)

Ψ(1) : Ψ̂ = [E∗(Y (1) | A = 1,W ) − E∗(Y (0) | A = 0,W )]

expit(x) = 1/(1+exp(-x)); logit(x) = log(x/1-x)
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Targeted learning

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal
inference for observational and experimental data. Springer Series in Statistics,
2011. Reference NNLS: Breiman L. Stacked regressions. Mach Learn
1996;24:49–64.
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Super-Learner: Ensemble learning

To apply the EIC we need data-adaptive estimation for both, the model of the
outcome, and the model of the treatment.
Asymptotically, the final weighted combination of algorithms (Super Learner)
performs as well as or better than the best-fitting algorithm (van der Laan, 2007).

Non Negative Less Square and negative log-likelihood algorithms to get predictions
from the ensemble learning (Breiman, Van der Laan)
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TMLE inference: INFLUENCE FUNCTION

M-ESTIMATORS: Semi-parametric and Empirical processes theory
An estimator is asymptotically linear with influence function ϕ (IC) if the estimator can

be approximate by an empirical average in the sense that

(θ̂ − θ0) =
1
n

n∑
i=1

(IC) + Op(1/
√

n)

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011);
Kennedy (2016)

The IC estimation is a more general approach than M-estimation.
The Efficient IC has mean zero E(ICψ̂(yi , ψ0)) = 0 and finite variance.

By the Weak Law of the Large Numbers, the Op converges to zero in a rate 1/
√

n as
n→∞ (Bickel, 1993).
The Efficient IC requires asymptotically linear estimators.
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Influence Function for the ATE

TMLE statistical inference for the ATE

IFATE =φ′(θ)(θ̂ − θ) =

1×
[
ψ −

(
(Ai = 1)

P(Ai = 1 |Wi )
− (Ai = 0)

P(Ai = 0 |Wi )

)
[Yi − E1(Y | Ai ,Wi )] +

[E1(Y (1) | Ai = 1,Wi ) − E1(Y (0) | Ai = 0,Wi )]]

Type Wald Confidence Intervals

Standard Error : σ (ψ0) =
SD(IFn)√

n
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Functional Delta Method: Tutorial
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Recall that the derivative, ∂vφ(θ), represents the slope of the line tangent to the function.
Intuitively, if θ̂ is close to θ, the tangent line at θ̂ should provide an adequate approximation of
φ(θ). This is stated in the Taylor first order approximation of φ(θ̂) around φ(θ) as follows:

φ(θ̂n) ≈ φ(θ) + ∂vφ(θ) (1)

with v = θ̂ − θ and the sign ≈ is interpreted as approximately equal. This can be rewritten as
the more classical approach:

φ(θ̂)− φ(θ) ≈ ∂vφ(θ) with v = θ̂ − θ. (2)

Readers might be familiar with the theorem in the classical notation of univariate calculus
which states the approximation:

φ(θ̂) ≈ φ(θ) + φ′(θ) (θ̂ − θ)︸ ︷︷ ︸
v

. (3)

In this case, the Hadamard derivative coincides with the classical one multiplied by v = θ̂ − θ:

∂vφ(θ) = φ′(θ)(θ̂ − θ).

The justification for this connection is given by Fréchet’s derivative which represents the slope
of the tangent plane. Intuitively, if the Hadamard (one-sided directional) derivatives ∂vφ(θ) exist
for all directions v we can talk about the tangent plane to φ at θ. The tangent plane is “made
up” of all the individual (infinite) tangent lines. The slope of the tangent plane is the Fréchet
derivative ∇φ. For univariate functions in φ : R→ R the Fréchet derivative is φ′; for functions of
a multivariate θ returning one value, φ : Rn → R, this derivative is called the gradient and
corresponds to the derivative of the function by each entry:

∇φ =
( ∂φ
∂θ1

,
∂φ

∂θ2
, . . . ,

∂φ

∂θn

)
.

For multivariate functions, φ : Rn → Rm, the Fréchet derivative is an m × n matrix called the
Jacobian (matrix):

∇φ =


∂φ1
∂θ1

∂φ1
∂θ2

. . . ∂φ1
∂θn

∂φ2
∂θ1

∂φ2
∂θ2

. . . ∂φ2
∂θn

...
...

. . .
...

∂φm
∂θ1

∂φm
∂θ2

. . . ∂φm
∂θn

 . (4)
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Stata ELTMLE

Ensemble Learning Targeted Maximum Likelihood Estimation
eltmle is a Stata program implementing R-TMLE for the ATE for a binary or
continuous outcome and binary treatment.
eltmle includes the use of a super-learner(Polley E., et al. 2011).
I used the default Super-Learner algorithms implemented in the base
installation of the tmle-R package v.1.2.0-5 (Susan G. and Van der Laan M.,
2007).
i) stepwise selection, ii) GLM, iii) a GLM interaction.
Additionally, eltmle users will have the option to include Bayes GLM and
GAM.
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Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, slapiw slaipwbgam tmle tmlebgam]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.
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Stata Implementation: overall structure
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Stata Implementation: R code for calling the SL
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Stata Implementation: Batch file executing R
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Output for continuous outcome
.use http://www.stata-press.com/data/r14/cattaneo2.dta
.eltmle bweight mbsmoke mage medu prenatal mmarried, tmle

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------

POM1 | 4,642 2832.384 74.56757 2580.186 2957.627
POM0 | 4,642 3063.015 89.53935 2868.071 3167.264
WT | 4,642 -.0409955 2.830591 -6.644464 21.43709
PS | 4,642 .1861267 .110755 .0372202 .8494988

ACE:
Additive Effect: -230.63; Estimated Variance: 600.93; p-value: 0.0000;
95%CI:(-278.68, -182.58)

Risk Differences:-0.0447; SE: 0.0047; p-value: 0.0000;
95%CI:(-0.05, -0.04)
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Simulations comparing Stata ELTMLE vs R-TMLE
. mean psi aipw slaipw tmle

Mean estimation
Number of obs = 1,000
-------------------------

| Mean
-------------+-----------

True | .173
aipw | .170

slaipw | .170
Stata-tmle | .170

-------------------------
R-TMLE | .170

-------------------------
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ONLINE open free tutorial

Link to the tutorial
https://migariane.github.io/TMLE.nb.html

Stata Implementation: source code
https://github.com/migariane/meltmle for MAC users

https://github.com/migariane/weltmle for Windows users

Stata installation and step by step commented syntax
github install migariane/meltmle (For MAC users)

github install migariane/weltmle (For Windows users)
which eltmle

viewsource eltmle.ado
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eltmle

One sample simulation: TMLE reduces bias
https://github.com/migariane/SUGML
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TUTORIAL in SIM
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Tutorials Causal Inference

TMLE R-markdown 2019
https://migariane.github.io/TMLE.nb.html

TMLE Statistics in Medicine 2018
https://www.ncbi.nlm.nih.gov/pubmed/29687470

SIM-2018. CODE in R and STATA
https://github.com/migariane/SIM-TMLE-tutorial
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TUTORIAL in SIM
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TUTORIAL in SIM
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CI crash short course
Causal Inference Crash Course
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CI crash short course

LABs 1-2: G-Comp. and IPTW
https://ccci.netlify.app/ G-Comp. and IPTW using R (RStudio
cloud)

RStudio Cloud link
https://rstudio.cloud/spaces/19488/project/434105
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Next steps for ELTMLE

Next steps
Stata Journal manuscript.

SIM manuscritp running simulations comparing elmtle and cveltmle.

Improving the user interface for eltmle.

Include positivity and near positivity violations diagnostic tools (tbalance
table and figure).

Implementation of Ensemble Learning calling Python 3.

Cross-validate TMLE. Recently, we have implemented the cross-validated
AUC: https://github.com/migariane/cvAUROC. Also available at ssc: ssc
install cvAUROC
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cvauroc
Cross-validation in Stata
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