
Cross-validation

Miguel Angel Luque Fernandez
Faculty of Epidemiology and Population Health

Department of Non-communicable Disease.

August 25, 2015

Cancer Survival Group (LSH&TM) Cross-validation August 25, 2015 1 / 33



Contents

1 Cross-validation

2 Cross-validation justification

3 Cross-validation methods

4 Examples: Model selection

5 References

Cancer Survival Group (LSH&TM) Cross-validation August 25, 2015 2 / 33



Cross-validation

Definition
Cross-validation is a model validation technique for assessing
how the results of a statistical analysis will generalize to an
independent data set.

It is mainly used in settings where the goal is prediction, and one
wants to estimate how accurately a predictive model will perform
in practice (note: performance = model assessment).
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Cross-validation

Applications
However, cross-validation can be used to compare the
performance of different modeling specifications (i.e. models with
and without interactions, inclusion of exclusion of polynomial
terms, number of knots with restricted cubic splines, etc).

Furthermore, cross-validation can be used in variable selection
and select the suitable level of flexibility in the model (note:
flexibility = model selection).
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Cross-validation

Applications
MODEL ASSESSMENT: To compare the performance of different
modeling specifications.

MODEL SELECTION: To select the suitable level of flexibility in
the model.
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MSE

Regression Model

f (x) = f (x1 + x2 + x3)

Y = βx1 + βx2 + βx3 + ε

Y = f (x) + ε
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MSE

Expectation

E(Y |X1 = x1,X2 = x2,X3 = x3)

MSE

E [(Y − f̂ (X ))2|X = x ]
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Bias-Variance Trade-off

Error descomposition

MSE = E [(Y − f̂ (X ))2|X = x ] = Var(f̂ (x0)) + [Bias(f̂ (x0))]
2 + Var(ε)

Trade-off

As flexibility of f̂ increases, its variance increases, and its bias
decreases.
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BIAS-VARIANCE-TRADE-OFF

Bias-variance trade-off
Chossing the model flexibility based on average test error

Average Test Error

E [(Y − f̂ (X ))2|X = x ]

And thus, this amounts to a bias-variance trade-off.

Rule
More flexibility increases variance but decreases bias.
Less flexibility decreases variance but increases error.
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Bias-Variance trade-off
Regression Function
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Overparameterization

George E.P.Box,(1919-2013)
All models are wrong but some are useful

Quote, 1976
Since all models are wrong the scientist cannot obtain a "correct" one
by excessive elaboration (...). Just as the ability to devise simple but
evocative models is the signature of the great scientist so
overelaboration and overparameterization is often the mark of
mediocrity.
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Justification

AIC and BIC
AIC and BIC are both maximum likelihood estimate driven and
penalize free parameters in an effort to combat overfitting, they do
so in ways that result in significantly different behavior.

AIC = -2*ln(likelihood) + 2*k, k = model degrees of freedom

BIC = -2*ln(likelihood) + ln(N)*k, k = model degrees of freedom
and N = number of observations.

There is some disagreement over the use of AIC and BIC with
non-nested models.
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Justification

Fewer assumptions

Cross-validation compared with AIC, BIC and adjusted R2

provides a direct estimate of the ERROR.

Cross-validation makes fewer assumptions about the true
underlying model.

Cross-validation can be used in a wider range of model selections
tasks, even in cases where it is hard to pinpoint the number of
predictors in the model.
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Cross-validation strategies

Cross-validation options
Leave-one-out cross-validation (LOOCV).
k-fold cross validation.

Bootstraping.
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K-fold Cross-validation

K-fold
Technique widely used for estimating the test error.

Estimates can be used to select the best model, and to give an
idea of the test error of the final chosen model.

The idea is to randmoly divide the data into k equal-sized parts.
We leave out part k, fit the model to the other k-1 parts
(combined), and then obtain predictions for the left-out kth part.
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K-fold Cross-validation

K-fold

CV =
k∑

k−1

nk

n
MSEk

MSEk =
∑
i∈Ck

(yi − (ŷi))/nk

Seeting K = n yields n-fold or leave-one-out cross-validation (LOOCV)
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Particular case

Linear regression and polynomials

LOOCV(n) =
1
n

n∑
i=1

(
yi − ŷi

1− hi

)2

hi is the leverage coming from the geometrical interpretation of the
residuals in the hat matrix. Where hi,j =

cov(ŷi ,yj )
var(yj )

Correlation when K = n
Which is equal to the ordinary MSE, except the ith residual is divided
by 1-hi . However, with LOOCV the estimates from each fold are highly
correlated and hence their average can have high variance. A better
choice is a K-fold Cross-Validation with K = 5 or 10.
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Motivation

Motivation
To investigate the functional form of a continuous variable.
In linear regression, and generalized linear models, partial
residuals are used to assess whether continuous covariates are in
the model in their correct form, or whether a transformation is
needed.

In survival models we have to assess is whether the log-hazard is
linear in x. We use a scatter plot of martingale residuals againts
the variable in assesment. If the scatterplot is linear, this indicates
that the log-hazard is linear in x otherwise a transformation of the
variable is suitable.

Hosmer, D. W., Lemeshow S., and May, S. (2008). Applied Survival Analysis:
Regression Modeling of Time to Event Data. Wiley, 2nd edition, 392 pages.
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Motivation

Martingale residuals
Given the ln h(t) = ln h0(t) + xβ;
The martingale residuals are defined as:

M̂i = ci − Ĥ
(

ti , xi , β̂
)

Hosmer, D. W., Lemeshow S., and May, S. (2008). Applied Survival Analysis:
Regression Modeling of Time to Event Data. Wiley, 2nd edition, 392 pages.
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The Data
[fontsize=\small]
variable name type format
–––––––––––––––-
sex str1 %9s labels: F(1), M(2)
age byte %8.0g
tt float %9.0g
site str5 %9s labels:Ear, Face, Neck, Scalp
censor byte %8.0g
survival float %9.0g
–––––––––––––––-
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The Data
–––––––––––––––––––––––––––––––––––––––-

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
–––––––+––––––––––––––––––––––––––––––––

tt | 1.15688 .0477728 3.53 0.000 1.066936 1.254406
_Isex_2 | .0707031 .0600307 -3.12 0.002 .0133882 .3733826

_Isite_2 | .1051597 .0869398 -2.72 0.006 .020803 .5315848
_Isite_3 | .1203827 .1145662 -2.22 0.026 .0186419 .7773897
_Isite_4 | .4360958 .3629804 -1.00 0.319 .0853281 2.228804

_IsexXsit_2_2 | 13.54933 12.82601 2.75 0.006 2.11913 86.632
_IsexXsit_2_3 | 15.7232 16.72104 2.59 0.010 1.955778 126.4044
_IsexXsit_2_4 | 3.322081 3.126073 1.28 0.202 .5253284 21.00823
–––––––––––––––––––––––––––––––––––––––-
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Male vs Female
lincom _Isite_2 + _IsexXsit_2_2
( 1) _Isite_2 + _IsexXsit_2_2 = 0

–––––––––––––––––––––––––––––––––––––––
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

––––––-+––––––––––––––––––––––––––––––––
(1) | 1.424844 .647053 0.78 0.436 .5850838 3.469898

–––––––––––––––––––––––––––––––––––––––
Males with face melanomas do not have significantly different death rates
to females with face melanomas, of the same thickness.

. lincom _Isite_3 + _IsexXsit_2_3, hr
( 1) _Isite_3 + _IsexXsit_2_3 = 0

–––––––––––––––––––––––––––––––––––––––
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

––––––-+––––––––––––––––––––––––––––––––
(1) | 1.892801 .8879783 1.36 0.174 .7547045 4.74715

–––––––––––––––––––––––––––––––––––––––
Males with scalp melanomas do not have significantly different death rates
to females with scalp melanomas, of the same thickness.
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Model assessment
––––––––––––––––––––––––––-

Variable | a b c
––––––-+–––––––––––––––––––-

tt | 1.1568797
_Isex_2 | .07070305 .07496949 .07373205

_Isite_2 | .10515972 .10639845 .10642456
_Isite_3 | .12038267 .11606331 .11908885
_Isite_4 | .43609584 .42994272 .43798124

_IsexXsit_~2 | 13.549333 13.858472 13.546268
_IsexXsit_~3 | 15.723202 16.500689 15.947097
_IsexXsit_~4 | 3.3220807 3.2716299 3.2410989

lntt | 1.5596707
sqtt | 1.7353908

––––––-+–––––––––––––––––––-
AIC | 699.66119 700.98922 700.37545
BIC | 724.00859 725.33662 724.72285

––––––––––––––––––––––––––-
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K-fold cross-validation Stata; K=10
crossfold: xi: streg tt i.sex*i.site, dist(exp) mae k(10)
matrix list r(est)
matrix a = r(est)
matrix list a
svmat double a, name(modela)
mean modela1
gen modela = modela1

crossfold: xi: streg lntt i.sex*i.site, dist(exp) mae k(10)
matrix list r(est)
matrix b = r(est)
matrix list b
svmat double b, name(modelb)
mean modelb1
gen modelb = modelb1

crossfold: xi: streg sqtt i.sex*i.site, dist(exp) mae k(10)
matrix list r(est)
matrix c = r(est)
matrix list c
svmat double b, name(modelc)
mean modelc1
gen modelc = modelc1

mean modela modelb modelc
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K-fold cross-validation k=10
–––––––––––––––––––––––––––––––

| Mean Std. Err. [95% Conf. Interval]
––––––-+––––––––––––––––––––––––

modela | 3.411219 .2175402 2.919109 3.903329
modelb | 3.497022 .2103749 3.005649 3.927495
modelc | 3.497522 .2121749 3.017549 3.977495

–––––––––––––––––––––––––––––––
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Models
#fit first degree polynomial equation:
fit <- lm(mpg~horsepower,data=Auto)
#Polynomial degrees
fit2 <- lm(mpg~poly(horsepower,2,raw=TRUE), data=Auto)
fit3 <- lm(mpg~poly(horsepower,3,raw=TRUE), data=Auto)
fit4 <- lm(mpg~poly(horsepower,4,raw=TRUE), data=Auto)
fit5 <- lm(mpg~poly(horsepower,5,raw=TRUE), data=Auto)
#generate range of 50 numbers starting from 30 and ending at 160
plot(mpg~horsepower,data=Auto, bty="l")
xx <- seq(10,250, length=50)
lines(xx, predict(fit, data.frame(horsepower=xx)), col="red")
lines(xx, predict(fit2, data.frame(horsepower=xx)), col="green")
lines(xx, predict(fit3, data.frame(horsepower=xx)), col="blue")
lines(xx, predict(fit4, data.frame(horsepower=xx)), col="black")
lines(xx, predict(fit5, data.frame(horsepower=xx)), col="purple")
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Gareth James: R Dataset Auto
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10-fold CV
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Thank you

THANK YOU FOR YOUR TIME
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