Collider Effects and Paradoxical Results in the Analysis of Observational Studies: A Reproducible Illustration and Educational Shiny Application

Miguel Ángel Luque Fernández, Michael Schomaker, Daniel Redondo Sánchez, María José Sánchez Pérez, Anand Vaidya, Mireille E. Schnitzer

> XXXVII SEE 2019 (Oviedo) https://maluque.netlify.com/ http://watzilei.com/shiny/collider/

International Journal of **Epidemiology**

Issues

Advance articles

Submit ▼

Purchase

Alerts

About ▼

All International Jo₁ ▼

Volume 48, Issue 2 April 2019

Article Contents

Abstract

Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web application •

Miguel Angel Luque-Fernandez ™, Michael Schomaker,

Daniel Redondo-Sanchez, Maria Jose Sanchez Perez, Anand Vaidya,

Mireille E Schnitzer

International Journal of Epidemiology, Volume 48, Issue 2, April 2019, Pages 640–653, https://doi.org/10.1093/ije/dyy275

Published: 14 December 2018 Article history ▼

International Journal of Epidemiology

Colliders

 Classical epidemiology has focused on explicative modelling Causal Inference but it is only recently that epidemiologists have started to integrate predictive modelling Machine Learning in their causal models ("Two worlds").

Colliders

- Classical epidemiology has focused on explicative modelling Causal Inference but it is only recently that epidemiologists have started to integrate predictive modelling Machine Learning in their causal models ("Two worlds").
- Therefore, classical epidemiology has focused on the control of confounding but it is only recently that epidemiologists have started to focus on the bias produced by other structures such as colliders.

Colliders

- Classical epidemiology has focused on explicative modelling Causal Inference but it is only recently that epidemiologists have started to integrate predictive modelling Machine Learning in their causal models ("Two worlds").
- Therefore, classical epidemiology has focused on the control of confounding but it is only recently that epidemiologists have started to focus on the bias produced by other structures such as colliders.

Colliders

• A collider for a certain pair of variables (e.g., an outcome Y and an exposure A) is a third variable (C) that is caused by both.

Colliders

• A collider for a certain pair of variables (e.g., an outcome Y and an exposure A) is a third variable (C) that is caused by both.

 In a directed acyclic graph (DAG), a collider is the variable in the middle of an inverted fork (i.e., the variable C in A → C ← Y).

Colliders

• A collider for a certain pair of variables (e.g., an outcome Y and an exposure A) is a third variable (C) that is caused by both.

 In a directed acyclic graph (DAG), a collider is the variable in the middle of an inverted fork (i.e., the variable C in A → C ← Y).

Colliders

 Controlling for, or conditioning an analysis on a collider (i.e., through stratification or regression) can introduce a spurious association between its causes.

Colliders

 Controlling for, or conditioning an analysis on a collider (i.e., through stratification or regression) can introduce a spurious association between its causes.

 This potentially explains many paradoxical findings in the medical literature, where established risk factors for a particular outcome appear protective.

Colliders

- Controlling for, or conditioning an analysis on a collider (i.e., through stratification or regression) can introduce a spurious association between its causes.
- This potentially explains many paradoxical findings in the medical literature, where established risk factors for a particular outcome appear protective.
- Desconstructing paradoxical effects in medical litterature: Luque-Fernandez MA et al. Deconstructing the smoking-preeclampsia paradox through a counterfactual framework. Eur J Epidemiol. 2016;31:613-623 (https://www.ncbi.nlm.nih.gov/pubmed/26975379).

Simple linear simulation

Confounder structure

Collider structure

Collider and confounding effects

	Dependent variable (Y)					
	W (confounder)			C (collider)		
	Unadjusted β	Adjusted β		Unadjusted β	Adjusted β	
	(SE)	(SE)		(SE)	(SE)	
	(Fit 1)	(Fit 2)		(Fit 3)	(Fit 4)	
Α	0.471	0.289	Α	0.326	-0.416	
	(-0.030)	(-0.032)		(-0.031)	(-0.035)	
W		0.425	C		0.491	
		(-0.035)			(-0.018)	
Intercept	-0.061	-0.06		0.01	0.035	
	(-0.033)	(-0.031)		(-0.031)	(-0.023)	
AIC	100.42	-31.992		-55.369	-626.824	

Note: Lower AIC is better

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019. https://doi.org/10.1093/ije/dyy275

Display Linear Fit: models (fit2) and (fit4)

Collider Effect

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019. https://doi.org/10.1093/ije/dyv275

Shiny web application

Colliders in Epidemiology: an educational interactive Shiny web application

Directed Acyclic Graph

Directed acyclic graph depicting the structural causal relationship of the exposure and outcome, confounding and collider effects. Exposure: 24-hour sodium dietary intake in gr (SOD), outcome: systolic blood pressure in mmHg (SBP), confounder: age in years (AGE), collider: 24-hour urinary protein excretion, proteinuria (PRO).

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019. https://doi.org/10.1093/ije/dyy275

Seeting Monte Carlo simulations

Data Generation

```
generateData <- function(n, seed){
set.seed(seed)
Age_years <- rnorm(n, 65, 5)
Sodium_gr <- Age_years / 18 + rnorm(n)
sbp_in_mmHg <- 1.05 * Sodium_gr + 2.00 * Age_years + rnorm(n)
hypertension <- ifelse(sbp_in_mmHg>140,1,0)
Proteinuria_in_mg <- 2.00*sbp_in_mmHg + 2.80*Sodium_gr + rnorm(n)
data.frame(sbp_in_mmHg, hypertension, Sodium_gr, Age_years,
Proteinuria_in_mg)
}
ObsData <- generateData(n = 1000, seed = 777)</pre>
```

Monte Carlo simulations

MC simulations

```
R<-1000
true <- rep(NA, R)
collider <- rep(NA.R)
se <- rep(NA,R)
set.seed(050472)
for(r in 1:R) {
if (r\%10 == 0) cat(paste("This is simulation run number", r, "\n"))
ObsData <- generateData(n=10000)
# True effect
true[r] <- summary(lm(sbp in mmHg ~ Sodium gr + Age years, data = ObsData))$coef[2.1]
# Collider effect
collider[r] <- summary(lm(sbp in mmHg ~ Sodium gr + Age years + Proteinuria in mg,
               data = ObsData))$coef[2.1]
se[r] <- summary(lm(sbp in mmHg ~ Sodium gr + Age years + Proteinuria in mg, data = ObsData))$coef[2,2]
# Estimate of sodium true effect
mean(true)
# Estimate of sodium biased effect in the model including the collider
mean(collider)
# simulated standard error/confidence interval of outcome regression
lci <- (mean(collider) - 1.96*mean(se)): mean(lci)</pre>
uci <- (mean(collider) + 1.96*mean(se)): mean(uci)
# Rias
Bias <- (true - abs(collider)); mean(Bias)
# % Bias
relBias <- ((true - abs(collider)) / true); mean(relBias) * 100
# Plot bias
plot(relBias)
```

One sample MC simulations

Visualization of the multivariate structure of the data generation, n=1,000.

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019, https://doi.org/10.1093/ije/dyv275

Models specifications

Unadjusted model

SBP in mmHg =
$$\beta_0$$
 + β_1 × Sodium in gr + ε

Adjusted model (confounder)

SBP in mmHg = β_0 + β_1 × Sodium in gr + β_2 × Age in years + ε

Adjusted model (confounder and collider)

 $\mathsf{SBP} = \beta_0 \, + \, \beta_1 \, \times \, \mathsf{Sodium} \, + \, \beta_2 \, \times \, \mathsf{Age} \, + \, \beta_3 \, \times \, \mathsf{Proteinuria} \, + \, \varepsilon$

Models fit visualization

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019. https://doi.org/10.1093/ije/dyy275

Collider and confounding effects

	Dependent variable: SBP in mmHg			
	Univariate	Bivariate Multivariat		
	(SE)	(SE)	(SE)	
True effect of Sodium in gr: 1.05				
Sodium in gr	3.960	1.039	-0.902	
	(0.298)	(0.032)	(0.036)	
Age in years		2.004	0.416	
		(0.007)	(0.027)	
Proteinuria in mg			0.396	
			(0.007)	
Intercept	119.420	-0.311	-0.091	
	(1.122)	(0.407)	(0.192)	
AIC	7363.45	2807.89	1302.66	

Note: Lower AIC is better

Luque-Fernandez et al. Educational Note: Paradoxical Collider Effect in the Analysis of Non-Communicable Disease Epidemiological Data: a reproducible illustration and web application. International Journal of Epidemiology, Volume 48, Issue 2, April 2019. https://doi.org/10.1093/ije/dyy275

Tutorial Causal Inference

Introduction to Causal Inference (short course)

https://ccci.netlify.com/

Collider Shiny App

http://watzilei.com/shiny/collider/

GitHub Open source Collider files

https://github.com/migariane/ColliderApp

Causal Inference tutorial: TMLE

https://www.ncbi.nlm.nih.gov/pubmed/29687470

¡Gracias por vuestra atención!

Miguel Ángel Luque-Fernández

miguel.luque.easp@juntadeandalucia.es

@watzilei

Carlos III Institute of Health, Grant/Award Number: CP17/00206 Andalusian Department of Health, Grant Number: PI-0152/2017

Background Causal Modelling: Potential Outcomes

Rubin and Heckman

- This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of causal effects from observational data.
- We will keep separate the causal framework (a conceptual issue briefly introduce here) and the "how to estimate causal effects" (an statistical issue also introduced here)

Notation and definitions

Observed Data

- Treatment A.
 - Often, A = 1 for treated and A = 0 for control.
- Confounders W.
- Outcome Y.

Potential Outcomes

• For patient i $Y_i(1)$ and $Y_i(0)$ set to $A = a Y^{(a)}$, namely A = 1 and A = 0.

Causal Effects

• Average Treatment Effect: **E[Y(1)** - **Y(0)**].

Background: Causal effects with observational data

Potential Outcomes

Treatment (A) effect on outcome (Y) in real world:

$$Y_i(1) = Y_i(A = 1)$$
 and $Y_i(0) = Y_i(A = 0)$

However we would like to know what would have happened if:

Treated $Y_i(1)$ would have been non-treated $Y_i(A = 0) = Y_i(0)$.

Controls $Y_i(0)$ would have been treated $Y_i(A = 1) = Y_i(1)$.

Identifiability

- How we can identify the effect of the potential outcomes Y^a if they are not observed?
- How we can estimate the expected difference between the potential outcomes E[Y(1) - Y(0)], namely the ATE.

Background: Causal Inference Assumptions

IGNORABILITY

$$(Y_i(1),Y_i(0))\bot A_i\mid W_i$$

POSITIVITY

POSITIVITY: $P(A = a \mid W) > 0$ for all a, W

SUTVA

- We have assumed that there is only on version of the treatment (consistency) Y(1) if A = 1 and Y(0) if A = 0.
- The assignment to the treatment to one unit doesn't affect the outcome of another unit (no interference) or IID random variables.
- The model used to estimate the assignment probability has to be Correctly Specified.

G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE with observational data

$$E(Y^{a}) = \sum_{y} E(Y^{a} \mid W = w)P(W = w)$$

$$= \sum_{y} E(Y^{a} \mid A = a, W = w)P(W = w) \text{ by consistency}$$

$$= \sum_{y} E(Y = y \mid A = a, W = w)P(W = w) \text{ by ignorability}$$

The **ATE**=

$$\sum_{\mathbf{w}} \left[\sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = 1, \mathbf{W} = \mathbf{w}) - \sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = 0, \mathbf{W} = \mathbf{w}) \right] \mathbf{P}(\mathbf{W} = \mathbf{w})$$

$$P(W = w) = \sum_{\mathbf{y}} P(W = w, A = a, Y = y)$$

G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE with observational data

The **ATE**=

$$\sum_{\mathbf{w}} \left[\sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{1}, \mathbf{W} = \mathbf{w}) - \sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{0}, \mathbf{W} = \mathbf{w}) \right] \mathbf{P}(\mathbf{W} = \mathbf{w})$$

$$P(W = w) = \sum_{\mathbf{y}} P(W = w, A = a, Y = y)$$

G-Formula

- The sums is generic notation. In reality, likely involves sums and integrals (we are just integrating out the W's).
- The g-formula is a generalization of standardization and allow to estimate unbiased treatment effect estimates.

Regression-adjustment

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} [E(Y_i \mid A = 1, W_i) - E(Y_i \mid A = 0, W_i)]$$

$$m_A(w_i) = E(Y_i \mid A_i = A, W_i)$$

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} [\hat{m}_1(w_i) - \hat{m}_0(w_i)]$$