
ARE OUTPUT FLUCTUATIONS TRANSITORY ?* 
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According to the conventional view of the business cycle, fluctuations in output 
represent temporary deviations from trend. The purpose of this paper is to question 
this conventional view. If fluctuations in output are dominated by temporary 
deviations from the natural rate of output, then an unexpected change in output 
today should not substantially change one's forecast of output in, say, five or ten 
years. Our examination of quarterly postwar United States data leads us to be 
skeptical about this implication. The data suggest that an unexpected change in real 
GNP of 1 percent should change one's forecast by over 1 percent over a long 
horizon. 

Robert Lucas begins his classic article, "Understanding Busi- 
ness Cycles" [1977], with the question, "Why is it that, in capitalist 
economies, aggregate variables undergo repeated fluctuations about 
trend, all of essentially the same character?" Many textbooks 
introduce macroeconomics with a graph of real GNP together with a 
trend line, implying that the purpose of macroeconomic theory is to 
explain the deviations of production from the trend. Implicit both 
in Lucas's question and in such a picture is the notion that output 
fluctuations are transitory. Certainly this view is implicit in the 
standard explanation of the business cycle: the natural rate of 
output grows at a more or less constant rate, while output fluctua- 
tions represent temporary deviations. 

The purpose of this paper is to question this conventional view. 
In particular, we examine one simple implication for the univariate 
properties of economic time series. If fluctuations in output are 
dominated by temporary deviations from the natural rate, then an 
innovation in output should not substantially change one's fqrecast 
of output in, say, five or ten years. Over a long horizon, the economy 
should return to its natural rate; the time series for output should 
be trend-reverting. 

Our examination of quarterly postwar United States data leads 
us to be skeptical about this implication. In particular, we estimate 
a number of models in which a 1percent innovation to real GNP 
should change one's forecast of GNP over a long horizon by over 1 
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percent. While we find some evidence of short-run dynamics that 
makes GNP different from a random walk with drift, the long-run 
implications of our estimates suggest that shocks to GNP are 
largely permanent. 

Our goal here is to establish a stylized fact against which 
macroeconomic theories can be measured. I t  is obviously imprudent 
to make definitive judgments regarding theories on the basis of one 
stylized fact alone. Nonetheless, we believe that the substantial 
persistence of output shocks is an important and often neglected 
feature of the postwar data that should be used more widely for 
evaluating theories of economic fluctuations. Most of this paper is 
aimed at establishing the high degree of persistence. In the last 
section we briefly discuss the extent to which prominent theories of 
the business cycle are consistent with our finding. 

The research presented here builds on the work of Nelson and 
Plosser [1982]. These authors show that for a number of macroeco- 
nomic time series, measured annually over periods of 60 to 120 
years, one cannot reject the existence of a unit root in the series' 
autoregressive representation. That is, one cannot reject that some 
fraction of an innovation in the series is permanent. Nelson and 
Plosser also argue for a simple MA(1) representation of real output 
growth. Our work extends theirs in four ways. 

First, we estimate general ARIMA models for real GNP 
growth. Pure autoregressive and pure moving average models are 
highly restrictive.' More general ARIMA models with relatively few 
parameters may be better able to capture the dynamics that 
characterize economic time series. 

Second, we show how to test the null hypothesis that a time 
series is stationary around a deterministic trend. In contrast, 
Nelson and Plosser test and fail to reject the null hypothesis of 
nonstationarity. Our test thus provides a natural complement to 
standard tests of nonstationarity. 

Third, we present a nonparametric estimate of persistence, 
proposed recently by Cochrane [1986]. When applied to postwar 
quarterly data, this nonparametric procedure confirms the conclu- 
sion from the ARIMA models that innovations to real GNP are 
highly persistent. 

Fourth, we try to direct attention away from the question of 
the existence of a unit root in real GNP, and toward the question of 

1. Schwert [I9851 demonstrates that omitted moving average components can 
have serious effects on tests for the presence of unit roots in time series, and often are 
not well proxied by extra autoregressive terms. 
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its quantitative importance for GNP behavior.' As we show below, a 
time series can contain a unit root, while an innovation today has 
only little effect on one's long-run forecast. Our results suggest not 
only that a unit root is present, but also that it is essential to 
understanding economic dynamics. 

The organization of the paper is as follows. In Section I1 we 
discuss our method for studying persistence by computing the 
long-run impact of innovations to univariate ARMA models. In 
Section I11 we apply the method to quarterly postwar data and, for 
comparison, to annual postwar data and annual data 1869-1984. 
Section IV discusses econometric issues that arise in estimating 
ARMA models. Section V presents nonparametric estimates of 
persistence, and Section VI concludes. An Appendix gives technical 
details on maximum likelihood estimation of ARMA models. 

Suppose that real GNP falls 1percent lower than one would 
have expected from its past history. How much should one change 
one's forecast of GNP for five or ten years ahead? 

In this section we address some methodological issues that 
arise in formulating a convincing answer to this question. 

Detrending and Differencing 

The first feature of GNP or similar economic data that 
becomes apparent to any user is that it has historically drifted 
upward. GNP was higher in 1960 than in 1950, still higher in 1970, 
and higher again in 1980. The macroeconometrician must deal with 
this upward drift in some way. Perhaps the most standard approach 
(e.g., Blanchard [1981]) is to detrend the data before analysis. 

I t  may be obvious that detrending the data is not well suited 
for our purposes. Detrending forces the resulting series to be 
trend-reverting, so that today's innovation has no ultimate effect on 
output. Thus, detrending presupposes the answer to our question at 
an infinite horizon. 

Of course, it could still be the case that at  a large but finite 
horizon of five or ten years, the detrended series displays a consider- 
able effect of today's innovation. However, in samples of typical 

2. It  has been pointed out to us that most economists would probably be more 
uncertain about their forecast of GNP at a 100year horizon than their forecast a t  a 
50 year horizon. It  follows that most economists implicitly believe that log GNP is 
not stationary around a trend, and perhaps that it has a unit root. But the presence of 
a unit root does not determine the answer to our question. 
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size, detrending gives a seriously biased answer to our question, 
even at  a finite horizon, when the time series actually has a unit 
root. A simple example illustrates this pitfall. Suppose that Yt, such 
as the log of GNP, followed a random walk with drift: 

where a is the drift term, representing long-run growth. If one 
detrends the Yt series and then estimates an AR(1) process, the 
coefficient is severely biased toward zero [Nelson and Kang, 19811. 
With 100 observations, as might be the case with postwar quarterly 
data, Mankiw and Shapiro [I9851 show in a Monte Carlo study that 
the median value of the autoregressive term is 0.91. If one used this 
biased estimate to answer our question, one would note that 
(0.91)~'= 0.02 is a small number and erroneously conclude that 
innovations in Y, have little information on Y,,,,. 

The same problem arises when using time as an explanatory 
variable in a regression. As first noted by Frisch and Waugh [1933], 
including a time trend in a regression is numerically identical to 
detrending all the variables. Hence, because of the above argument, 
we avoid the use of time trends throughout this paper. 

A second response to the upward drift in log GNP is to 
difference the series. The differenced series, the growth rate of real 
GNP, appears stationary, allowing one to invoke asymptotic distri- 
bution theory. We therefore begin with the differenced series as the 
primary data. 

Two issues arise, however, in using differenced data. First, does 
differencing the data presuppose the answer to our question? The 
answer is no, as the following example illustrates. Suppose that Yt 
follows an IMA(1,l) process: 

Then a unit impulse in Y, changes one's forecast of Yt+, by (1- 8 )  
regardless of n. Hence, depending on the value of 9, news about 
current GNP could have a large or small effect on one's forecast of 
GNP in ten years. Assuming a unit root is therefore consistent with 
both great and little long-run persistence. 

Second, if Y in fact does not have a unit root but is stationary 
around a trend, does differencing the data bias our conclusions 
toward finding excessive persistence? The answer is again, no. This 
result is discussed below. 
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Impulse Response Functions 

We model the change in log GNP as a stationary ARMA 
process. That is, 

(1) @(L) AYt = o(L) ~ t ,  

where 

and 

This equation can be rearranged to arrive at the moving average 
representation (or impulse response function) for AY,: 

If the change in log GNP is stationary, then Z;, A: is finite, 
implying that the limit of Ai as i approaches infinity is zero. In other 
words, stationarity of the differenced series implies that an innova- 
tion does not change one's forecast of growth over a long horizon. 

We can derive the moving average representation for the level 
of Yt by inverting the difference operator 1- L: 

where 

Of course, Y, need not be stationary, and thus Bi need not approach 
zero as i approaches infinity. Instead, the limit of Bi is the infinite 
sum of Aj coefficients, which can also be written as A(1). The value 
of Bi for large i is exactly what we wish to estimate, since it measures 
the response of Y,+;to an innovation at time t. 

The above representation keeps open the possibility that the 
level of log GNP is stationary around a deterministic linear trend. 
In this case, the moving average representation of the difference has 
a unit root, that is, B(L) = (1- L ) ~ ( L ) ,where 8 ( ~ )is the moving 
average component of the process in levels. Thus, if the level 
process is ARMA(p,q), then the differenced process will be 
ARMA(p,q+l). (This implies that allowing for stationarity 
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requires a t  least one moving average ~a r ame te r .~ )  Direct computa- 
tion shows that B(L) = $(L)-' $(L), as expected. Hence, modeling 
AY, as a stationary ARMA process leaves open the question of 
whether Y, is stationary. 

Parameterization 

To estimate the ARMA process, we must choose the parame- 
terization, that is, the number of AR and MA parameters. One 
approach, suggested by classical statistical methods, is to include as 
many parameters as are significant at  standard levels of inference. 
We report below the likelihood values for a variety of parameteriza- 
t ion~;  simple likelihood ratio tests can be used to compare any 
specification with any more general specification. 

Another approach is to choose the optimal parameterization 
using either the Schwarz [I9871 criterion or the Akaike [1974,1976] 
~r i ter ion.~Both rules involve choosing the parameterization with 
the maximum likelihood after imposing a penalty for the number of 
parameters. The two rules differ in the size of the penalty. In 
particular, the Akaike criterion tells us to maximize 

where L is the likelihood, and k = p + q is the number of 
parameters. The Schwarz criterion tells us to maximize 

where T is the number of observations. Since our sample includes 
155 observations and ln(155) is about five, the Schwarz criterion 
penalizes extra parameters much more heavily. 

Note that both criteria are based on the principle that for any 
given number of parameters (p + q), a higher likelihood indicates a 
better model. A robust strategy, therefore, is to prefer, given the 
total number of parameters, the ARMA model with the greatest 
likelihood. 

While we report the values of both the Schwarz and the Akaike 
criteria, we do not rely exclusively on this strategy. First, there is no 
general agreement about which criterion is best. Second, it is not 
clear whether these criteria will perform well for our purposes, since 

3. The autoregressive representation for the model includes an infinite number 
of parameters that do not die out to zero. Schwert [I9851 shows that even if the 
moving average component does not contain a unit root, long autoregressive 
representations need not provide good approximations. 

4. See Neftci [I9821for a discussion of these criteria. 
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they were not designed with our question in mind. We therefore 
report results for a variety of parameterizations to gauge to what 
extent our conclusions are robust. 

Estimation 

A key problem in estimating a time series model with moving 
average parameters is that innovations in the series are not identifi- 
able, even if the parameters of the model are known. Because the 
autoregressive representation of the model is infinite, in any finite 
sample the innovation sequence depends on pre-sample informa- 
tion. When the moving average roots are strictly less than unity, the 
process is called invertible. In this case the dependence on pre- 
sample information decreases through the sample and can be 
ignored altogether in large samples. Simple approximate estimators 
for ARMA models are available which exploit this fact, for example, 
by assuming that all pre-sample innovations are zero. 

Unfortunately, these simple methods do not work well for 
ARMA processes with moving average roots equal or close to unity. 
I t  is known that they tend to produce estimates of the MA 
parameters whose roots are seriously biased away from unity (see, 
for example, Plosser and Schwert [1977], Davidson [1981], and 
Harvey [1981]). 

Accordingly, we use an exact maximum likelihood estimation 
method which explicitly recognizes that the innovation sequence is 
unobservable. We use a Kalman filter to build up the log likelihood 
function of the model as a sum of conditional log likelihoods. Full 
details are given in Harvey [1981]; we summarize the approach in 
the Appendix. 

We estimate the ARMA process (1)for the differenced series 
and calculate the implied impulse response function for the level of 
the series (Bi's) using real GNP data for the United States. We use 
1982 base year, seasonally adjusted, quarterly data from 1947:l to 
1985:4.5 We consider all ARMA models for the difference of log real 
GNP with up to three AR parameters and three MA parameters. 
There are thus 16 models under consideration for GNP growth, the 
simplest being white noise, the most complex the ARMA(3,3). 

5. These data are identical to those used by Clark [1987]. An earlier version of 
the present paper [Campbell and Mankiw, 19861 used 1972 base year data, with 
fairly similar results. 
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TABLE I 

MODEL SELECTION Aln REALGNP
CRITERIA, 

Number of Number of MA parameters (q )  
AR parameters (p) 0 1 2 

0 952.558 968.034 979.983 
(952.558) (966.034) (975.983) 
(952.558) (962.991) (969.896) 

[523.322] [691.069] 

For each model, we report 2 In L (Akaike Criterion = 2 In L - 2 k ) , (Schwarz Criterion = 2 In L - k In T ) ,  
[2 In L of model restricted to have a unit moving average root]. 

Table I reports the selection criteria for the 16 models. Three 
models stand out as particularly worthy of attention. The MA(2) is 
not rejected at the 5 percent level by any more general model and is 
selected by both the Akaike and Schwarz criteria. The AR(1) has 
almost as high a Finally, the value of the Schwarz ~r i ter ion.~ 
ARMA(2,2) has almost as high a value of the Akaike criterion and 
nests the other two models; the MA(2) can be rejected against it at 
the 15.2 percent level, and the AR(1) at the 2.8 percent level. If we 
adopt the robust strategy of choosing the model with the highest 
likelihood given the number of parameters k, we are led to adopt the 
AR(1) for k = 1, the MA(2) for k = 2, the AR(3) for k = 3, and the 
ARMA(2,2) fork = 4. 

Our main interest is not in selecting one particular model for 
real GNP growth but in reaching a conclusion about the persistence 
of GNP fluctuations. We use several devices for doing this. First, we 

6. Interestingly, this is the process that Deaton [I9851 suggests for labor income 
growth and Watson [I9861 for GNP growth. Watson goes on to argue for an 
unobservable components model that implies a restricted ARMA(2,2) representa-
tion. Clark [I9871 estimates a similar model. 
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present in Table I the maximum likelihood obtainable for each 
model, under the constraint that the moving average parameters 
sum to minus one, or equivalently that the limit of the impulse 
response function in levels is zero. The table shows that this 
constraint causes a very large drop in likelihood when it is imposed 
on the most parsimonious models we consider, with up to one 
autoregressive parameter and two moving average parameters. The 
drop in the likelihood is smaller when we impose the constraint on 
higher order models (for example, a standard likelihood ratio test 
would reject the constrained ARMA(2,2) at the 4.6 percent level 

TABLE I1 

MODELPARAMETER Aln REALGNP
ESTIMATES, 

Model p, q 

091 

0 2  

0 3  

120 

1,1 

12 

123 

2,o 

221 

2 2  

2,3 

3,O 

3,l 

3,3 

Standard errors are in parentheses. An asterisk indicates significance at the 5 percent level. 

3 2  
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against the general ARMA(2,2)); and in the ARMA(1,3), 
ARMA(2,3), and ARMA(3,3) models, our unconstrained estimates 
obey the constraint exactly. 

Tables 11,111, and IV present the estimated parameters, roots, 
and impulse response functions for the unconstrained models. The 
parameters in Table I1 appear to be somewhat unstable across 
models, particularly when one compares the models that have a unit 
moving average root with those that do not. In Table 111, however, 
the reason for this becomes clear. The models with a unit moving 
average root also have an autoregressive root that is very close to 
unity, and that almost cancels the moving average root. The 
remaining roots are similar to those of the lower-order models. 

This phenomenon of near cancellation of roots is also apparent 
in the shape of the likelihood function for the ARMA(1,3), 
ARMA(2,3), and ARMA(3,3) models. These models have a second 
peak in the likelihood function with no unit moving average root 
and almost the same likelihood (the difference in twice the log 
likelihood is only 0.118 for the ARMA(2,3)). The impulse response 
function for the second peak is similar to that for the lower-order 
models. 

The impulse response functions in Table IV are of two types. 
For the models with no unit moving average root, the impulse 
response increases above one and settles between 1.3 and 1.9 at  
about the eighth quarter, remaining there even at  ten or twenty 

TABLE 111 

ROOTSOF ESTIMATED Aln REALGNP
MODELS, 

Model p,q AR roots MA roots 
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TABLE IV 
MODELIMPULSERESPONSES, In REALGNP 

Model D,U 1 2 4 8 16 20 40 80 

Standard errors are in parentheses. 

years. That is, a 1 percent innovation in real GNP increases the 
univariate forecast of GNP by over 1percent over any foreseeable 
horizon. 

The impulse response functions for the ARMA(1,3), 
ARMA(2,3), and ARMA(3,3) of course behave differently. They die 
out to zero, but very slowly; after five years 40 percent to 60 percent 
of a shock is still present in GNP. The standard error on the impulse 
response for these models is very large. This reflects the near 
cancellation of roots discussed above. 

The evidence of persistence in the quarterly postwar GNP data 
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is robust to change in the sample, within the postwar period, and to 
change in the frequency of the data. If we end our sample in 1972, 
prior to OPEC and to the productivity slowdown, we continue to 
find impulse response functions above one. When we examine 
postwar annual data, we cannot reject the hypothesis that the log of 
real GNP is a random walk with drift. In this case, the impulse 
response is unity at all horizons. 

Cochrane [I9861 has recently challenged the view that output 
fluctuations are highly persistent. He studies a long time series of 
annual per capita real GNP numbers for the period 1869-1984, 
constructed by splicing data from Friedman and Schwartz [I9821 to 
the standard postwar series. 

When we apply our methods to annual real GNP 1869-1984; 
we find much less persistence than in postwar data. Low-order pure 
AR and MA models have impulse response functions whose limits 
are above one, but only just: the AR(1) limit is 1.158 (standard error 
0.102), the AR(2) limit is 1.077 (standard error 0.101), and so forth. 
Higher-order pure models have impulse response limits somewhat 
below one: the AR(3) limit is 0.962 (0.125), and the MA(3) limit is 
0.852 (0.126). Higher-order mixed models have limits well below 
one: the ARMA(2,l) limit is 0.144 (0.258), and the ARMA(2,2) limit 
is 0.161 (0.247). The mixed models with low limits have consider- 
ably higher likelihoods than the models with limits close to one; the 
white noise, AR(l), AR(2), and MA(1) models are all rejected in 
favor of the ARMA(2,l) model at  about the 1 percent level, and the 
Akaike criterion also selects the ARMA(2,l) over these models. 

The low persistence of the annual series, 1869-1984, is due 
largely to the pre-1929 data. In the pre-1929 data, even the AR(1) 
model has a negative coefficient of -0.166, implying a long-run 
impulse response of 0.858. Recently the conventional measures of 
GNP before 1929 have been challenged [Romer, 19861, and we 
believe that results based largely on these data should be treated 
with caution. 

IV. ECONOMETRICISSUESIN ESTIMATINGARMA MODELS 

In recent years economists have become more aware of various 
pitfalls in applied time-series econometrics. Even apparently 
straightforward procedures can suffer from severe problems of bias 

7. We do not deflate by population, in order to maintain comparability with our 
postwar data. In fact, real GNP and per capita real GNP seem to have very similar 
time series properties. 
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in samples of typical size.8 In this section, therefore, we review the 
literature on the asymptotic and finite-sample properties of our 
estimator, and present a very small Monte Carlo study with 20 
simulations of a process with a unit root in the moving average 
component. 

There is a small recent literature analyzing the properties of 
maximum likelihood estimates of ARMA model parameters 
[Plosser and Schwert, 1977; Ansley and Newbold, 1980; Davidson, 
1981; Harvey, 1981; Pesaran, 1981; Sargan and Bhargava, 19831. 
When the moving average roots are strictly less than unity, the 
maximum likelihood estimator is consistent and asymptotically 
normal. When there are unit moving average roots, however, these 
results break down. 

The reason for this can be understood most easily by consider- 
ing the first-order moving average (MA(1)) case. An MA(1) model 
with a parameter value of %*is observationally equivalent to a 
model with a parameter value of 1/8*, because these two models 
imply the same autocovariances for the series they describe. This 
"fundamental identification problem" [Plosser and Schwert, 19771 
is handled by restricting attention to models with parameter values 
less than or equal to unity. A parameter equal to unity is on the 
boundary of the restricted parameter space, and for this reason 
maximum likelihood estimates of a model with unit parameter do 
not have the usual asymptotic distribution [Chernoff, 19541. A 
similar problem occurs in higher-order models when a moving 
average root is unity. 

Other authors have conducted Monte Carlo simulations to 
characterize the properties of maximum likelihood estimates of a 
first-order moving average parameter in finite samples. Ansley and 
Newbold [1980], Harvey [1981], and Davidson [I9811 all report 
finding a probability mass at  exactly unity, particularly large when 
the true root is unity but also present when it is considerably less 
than unity. This occurs because the observational equivalence of %* 
and 118" discussed above causes the sample likelihood function to 
be flat at  8 = 1. In finite samples this local maximum or minimum 
will often be the global maximum of the sample likelihood function, 
even if the true root is less than unity. I t  follows that, in Davidson's 
words, "the occurrence of boundary estimates in empirical work 
with the exact maximum likelihood estimator is very weak evidence 
of over-differencing." The rest of the distribution of the estimator is 

8. See, for example, Flavin [I9831and Mankiw and Shapiro [1986]. 
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roughly bell-shaped and centered on the true value when this is less 
than unity. 

These results lead one to expect that a standard likelihood 
ratio test of the hypothesis that a moving average root is unity will 
tend to reject the hypothesis at the 5 percent level less than 5 
percent of the time when the hypothesis is true. Davidson reports 
some Monte Carlo results that confirm this expectation. He finds 
that the test rejects only four times out of 200 when the 5 percent 
critical value of the Chi-squared distribution with one degree of 
freedom is used. This suggests that a rejection using this test, of the 
kind we report for the ARMA(2,2) model of output growth, is 
legitimate evidence against the hypothesis of a unit moving average 
root. 

Finally, Ansley and Newbold report Monte Carlo results for 
the computed standard errors of the maximum likelihood parame- 
ter estimates. They find that, in samples of size 50 and 100, 
standard errors are often too small, particularly when the true 
parameter values display near parameter redundancy (that is, when 
an autoregressive root almost cancels with a moving average root). 

Our interest in this paper is in precisely the difficult case where 
there may be a unit moving average root, and the time series may 
display near parameter redundancy. To get a sense of the behavior 
of our estimator under the hypothesis that log GNP is in fact 
stationary, we ran a small Monte Carlo experiment and applied our 
estimator to the first differences of 20 randomly generated series, 
each with 155 observations, which follow an AR(2) in levels. The 
first AR parameter was 1.34, and the second was -0.42-the values 
estimated by Blanchard [1981]. We estimated an ARMA(2,2) in 
first differences, an overparameterized model. For each series we 
conducted a likelihood ratio test of the hypothesis that the moving 
average terms have a unit root (sum to -I), and we estimated the 
impulse response at horizon 80 with standard errors. The results are 
reported in Table V. 

The number of runs is of course too small to draw any strong 
conclusions from the table. However, the results are in line with 
those reported in the literature. The likelihood ratio test of the unit 
root restriction does not reject more often than it should under the 
null hypothesis. Furthermore, for 14 out of the 20 runs, the 
unrestricted estimate of the root is exactly unity (to two decimal 
places). The unrestricted estimator has a probability mass at this 
value for the root. When the moving average root is estimated equal 
to unity, the impulse responses have extremely large standard 
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TABLE V 
MONTECARLO OF MAXIMUM ESTIMATORSTUDY LIKELIHOOD 

Likelihood 
Unrestricted Restricted ratio test Impulse Standard 

Run -2*(log L )  -2*(logL)  statistic response error 

1 460.24 460.24 0.00 0.00 
2 424.76 424.76 0.00 0.00 
3 403.92 403.92 0.00 0.00 
4 440.20 440.20 0.00 0.00 
5 432.18 432.79 0.61 0.28 
6 461.26 461.26 0.00 0.00 
7 453.53 454.16 0.63 0.27 
8 446.67 446.67 0.00 0.00 
9 446.22 446.22 0.00 0.00 

10 438.06 438.08 0.02 0.11 
11 447.24 447.46 0.22 1.36 
12 441.50 441.50 0.00 0.00 
13 443.17 443.17 0.00 0.00 
14 448.29 448.29 0.00 0.00 
15 453.56 453.56 0.00 0.00 
16 472.68 474.45 1.77 0.39 
17 414.30 414.89 0.59 0.22 
18 450.96 451.27 0.31 0.68 
19 421.72 421.72 0.00 0.00 
20 431.75 431.75 0.00 0.00 

Notes. This table reports the results of estimating an ARMA(2,2) in first differences for 20 randomly 
generated series, each with 150 observations, which are AR(2) in levels with parameters 1.34 and -0.42. The 
impulse responses are at a horizon of 80 periods. 

errors. When it is estimated away from unity, they typically have 
rather small standard errors; in two cases the implied 95 percent 
confidence intervals do not include the true value. This result is 
consistent with Ansley and Newbold's findings. 

We conclude from our literature review and our small Monte 
Carlo study that while there are some statistical difficulties with 
our estimator, there is no reason to think that these bias us toward 
rejecting ~tationarity.~ In fact, they offer an explanation for the 
exact unit root found in the ARMA(1,3), ARMA(2,3), and 
ARMA(3,3) models for GNP growth. The major caveat from the 
statistical literature, and our own small Monte Carlo study, is that 

9. There would be a bias against finding stationarity if we had used an 
approximate estimator that sets pre-sample innovations to zero; see, for example, 
Plosser and Schwert [1977]. 
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standard errors on parameters and impulse response functions may 
be too small when there is near parameter redundancy. 

Clearly it would be desirable to have some results on the 
distribution of the likelihood ratio test statistic for a unit moving 
average root; this is a topic that we hope to pursue in future 
research. 

Cochrane [I9861 has recently proposed an alternative measure 
of persistence that can be estimated nonparametrically. In this 
section we show how Cochrane's measure is related to ours; we state 
a simple formula for its asymptotic standard error; and we present 
estimates for our quarterly postwar data and for annual data since 
1869. The results are consistent with our findings from univariate 
ARMA models. 

Recall that our measure of persistence at  an infinite horizon is 
A(l), the infinite sum of moving average coefficients for the 
differenced process. Cochrane starts, not from moving average 
coefficients, but from autocovariances of the differenced process. 
Writing the jth autocovariance as Cj, and defining C(z) = 
Z;==_, Cjz', a well-known result relates autocovariances to moving 
average coefficients as C(z) = A(z)A(z-')a:. Here, as before, a: is 
the variance of univariate innovations to the differenced process. 
The variance of the differenced process itself, a2, can also be written 
as Co. Finally, it will be convenient to write the jth autocorrelation 
of the differenced process as pj = Cj/C,. 

Cochrane's measure of persistence, which we shall write as V, is 
just V = p(1) = C(l)/Co, the two-sided infinite sum of autocorrela- 
tions. I t  is straightforward to show that this is related to our 
measure by 

V = ((~:/a~)[A(l)]~.  

Defining R2 = 1 - a~ / a2 ,the fraction of the variance that is 
predictable from knowledge of the past history of the process, we 
have 

Equation (5) shows that the square root of Cochrane's persistence 
measure is a lower bound on our measure. The more highly 
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predictable is the differenced process, the greater is the difference 
between our measure and the square root of Cochrane's measure. 

Cochrane proposes an estimator of V which we shall write as 
vk.The estimator uses sample autocorrelations: 

The first k of these are used, weighted according to the following 
scheme: 

This "triangular" pattern gives higher-order autocorrelations 
linearly declining weights, out to the hth autocorrelation. vkis a 
consistent estimate of V, provided that h increases with the sample 
size.1° 

vkcan be interpreted in various ways. Cochrane points out 
that it is the ratio of the variance of (h + 1)-period differences of 
the process, to the variance of one-period differences. I t  is also 
closely related to the autocorrelation-consistent covariance matrix 
estimator of Newey and West [1985]. Finally, it can be interpreted 
in terms of the frequency domain, as an estimate of the normalized 
spectral density at  frequency zero which uses a "Bartlett window."" 
A result in spectral analysis (see, e.g., Priestley [1982, p. 4631) gives 
the asymptotic standard error of vkas 

where T is the sample size. The usefulness of this standard error in 
samples of typical size, however, is unclear. 

As an estimator of V, vkhas a number of advantages. Notably, 
it has a smaller asymptotic standard error than some other simple 
estimators, for example, the one which weights all autocorrelations 
equally to lag k. However, one must be careful not to misinterpret 
the behavior of Tikas k increases to the point where it approaches T: 

10. k must not increase too rapidly, however; see Newey and West [1986]. 
11. As written, (6) can have a negative sample value; this possibility would be 

ruled out if f i j  were multiplied by (T - j)/T. For small values of k relative to T , the 
correction is negligible. 
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for k = T - 1, vkis identically equal to zero when the sample mean 
has been subtracted from the data. Intuitively this is because 
demeaning forces the observations to sum to zero, creating a large 
number of small negative sample autocorrelations. 

In Campbell and Mankiw [I9871 we report the results of a 
Monte Carlo study of the behavior of vkin a sample of size 130. We 
compare the estimates of vkwith k = 10 to 100, for a random walk 
and a stationary AR(2) with coefficients 1.34 and -0.42. Our main 
results are three. First, the window size k must be at  least 30, and 
preferably 40 or 50, if one is to be able to discriminate between these 
two processes. Second, there is severe downward bias in vk; for the 
random walk, the mean of vkis approximately ( T  - k)lT rather 
than unity. And finally, there is a great deal of sample variation in 
vkSO one must be cautious in making inferences based on this 
estimator. 

In Table VI we report values of vkfor the postwar quarterly 
real GNP data, along with asymptotic standard errors, using win- 
dow sizes from 10 to 75. We also report dk(l),the values of A(1) that 
correspond to these estimates of V, using the square of the first 
sample autocorrelation, $:, as a conservative estimate of R2. 

The vkvalues in Table VI start out well above unity but fall 
gradually and are below unity for window sizes of 40 and above. Yet 
vkfor the real GNP data are consistently above ( T  - k)lT, so the 

TABLE VI 
NONPARAMETRIC OF PERSISTENCEESTIMATES 

Window size ( k )  

Standard errors are in parentheses. 
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TABLE VII 

NONPARAMETRIC OF PERSISTENCE: DATA
ESTIMATES ANNUAL 

Sample period 

1869-1984 1869-1929 1930-1984 
Window 
Size (k) V k  d k  V k  A V k  d k  

values are larger than one would expect to find for a random walk in 
a sample of this size. The implied values of Ak(l)  are also close to 
unity at all window sizes. The nonparametric estimates thus con- 
firm our finding that postwar quarterly real GNP appears to be 
more persistent than a random walk. 

Finally, we note that one obtains much less persistence if one 
calculates Qk for annual real GNP 1869-1984 (Table VII). In this 
series, Qk is well below unity at  0.588, even for h = 10, and falls to 
0.081 for h = 60.12 Fluctuations appear particularly transitory 
before 1929. For the first half of the sample (1869-1929), Qk is 0.293 
for h = 10; while for the second half (1930-1984), it is 0.705 for 
h = 10. At larger window sizes there is less difference across the two 
halves of the sample, but the persistence estimates remain larger in 
the second half. Hence, the low level of persistence reported by 
Cochrane is partly attributable to his use of pre-1929 data. 

VI. CONCLUSION 

We have estimated standard ARIMA processes for the log of 
United States real GNP using the standard post-war quarterly time 

12. In Table VII we report persistence estimates only for window sizes up to 
about half the sample size, since small-sample bias dominates the results for larger 
window sizes. 
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series. Yet the estimates have a surprising implication: a 1percent 
innovation in real GNP should change one's forecast of real GNP by 
over 1percent over a long horizon.13 

This finding should be interpreted with caution, since work on 
the small sample properties of ARIMA estimation, especially in the 
presence of unit roots, is only in its infancy. Moreover, the likeli- 
hood function is sufficiently flat that it appears impossible to reject 
the view that output reverts to trend after twenty years. This may 
explain why imposing prior restrictions, such as those of Clark 
[1987], can substantially change one's estimate of persistence. Yet 
we are encouraged by the fact that a nonparametric approach also 
suggests high persistence, a result we also find for most other major 
countries [Campbell and Mankiw, 1987bl. 

Many traditional theories of the business cycle maintain two 
fundamental premises. First, fluctuations in output are assumed to 
be driven primarily by shocks to aggregate demand, such as mone- 
tary policy, fiscal policy, or animal spirits. Second, shocks to 
aggregate demand are assumed to have only a temporary effect on 
output; in the long run the economy returns to the natural rate. 
These two premises underlie many monetarist and neo-Keynesian 
theories. 

If output fluctuations are highly persistent, both of these 
premises cannot be maintained. I t  is not clear, however, which of 
these two premises should be called into question. 

Nelson and Plosser argue that the first premise, that fluctua- 
tions are driven by aggregate demand (in particular, monetary 
disturbances) should be abandoned. They advocate models in 
which fluctuations are attributable to changes in aggregate supply, 
such as shifts in the available production technology. Certainly the 
evidence of persistence presented by Nelson and Plosser and in this 
paper is consistent with such real business cycle models. 

Even if one concludes with Nelson and Plosser that real shocks 
dominate as a source of output fluctuations, these shocks need not 
work through the mechanisms highlighted in real business cycle 
models. The real business cycle model of Kydland and Prescott 
[1982], for example, is an intertemporal Walrasian model, so that 
the allocation of resources is always Pareto efficient. I t  is possible 
that economic fluctuations are driven by real shocks but that these 
real shocks affect the economy through some Keynesian channel. 

A conclusion as extreme as that of Nelson and Plosser is of 

13. We are told that commercial forecasters have long known this result: when 
forecasts are updated on the basis of new information, real GNP is increased (or 
decreased) approximately proportionately at  all horizons. 
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course not necessary. One can attribute a major role to supply 
shocks without completely abandoning a role for demand shocks. 
For example, suppose that output Y is the sum of two components, 
supply-driven "trend" YTand demand-driven "cycle" YC, that are 
uncorrelated at  all leads and lags. Suppose further that aYT is a 
first-order autoregressive process with parameter p and that Yc is 
some stationary process. Then one can show that the persistence 
measure V equals [(I  + p)/( l  - +p ) ] v a r ( ~ Y T ) / [ v a r ( ~ ~ T )  
var(aYc)]. The finding that V 2 1therefore implies that var(aYC)/ 
var(AYT)5 2pl(l - p). If trend output is approximately a random 
walk, so that p is small, then the finding of great persistence implies 
that fluctuations in the cycle are small relative to fluctuations in the 
trend. If the change in trend is highly serially correlated, however, 
the finding of persistence is consistent with a substantial cyclical 
component. 

The second way to interpret the finding of persistence is to 
abandon the second premise, the natural rate hypothesis. There are 
a variety of possible mechanisms through which aggregate demand 
shocks might have permanent or near permanent effects of the level 
of output. Models of multiple equilibria (e.g., Diamond [1984]) 
might explain a long-lasting effect of aggregate demand if shocks to 
aggregate demand can move the economy between equilibria. 
Shocks to aggregate demand could have permanent effects if 
technological innovation is affected by the business cycle. Perhaps 
models of temporary nominal rigidities (e.g., Fischer [1977]) or 
misperceptions (e.g., Lucas [19731) could be reconciled with find- 
ings of persistence by abandoning the natural rate hypothesis in 
favor of some highly potent propagation mechanism. 

APPENDIX:MAXIMUM ESTIMATIONLIKELIHOOD 
OF ARMA MODELS 

If the change in log GNP, AY,, follows an ARMA(p,q) process, 
it can be written as one element of a vector Markov process a,, 
where a, obeys 
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Here the 6 are the AR parameters and the I9 are the MA parameters. 
m = max(p,q + 1) and 0; = 0 for i > q, +i= 0 for i > p. The 
innovation process 7, is assumed to be normal white noise with 
variance a2. AY, is the first element of a,, so we have AY, = z'a,, 
where z' = [ l o  . . .0]. 

The steady-state distribution of a is normal with mean a, and 
variance a2Po. In our application we subtract the sample mean from 
the data and set a, = 0. Pois given by 

(-42) vec (Po) = [I- T e TI-' vec (RR'). 

Given a, and Po,one can compute, for t = 1,.. .,T, the following 
quantities. First, the one-step-ahead prediction of a,, conditional on 
time t - 1information, is a,,,-, = Tat-,. Then AY,,,-, = z1at,,-,. The 
conditional variance-covariance matrix of the errors in the one-
step-ahead prediction of a, is PtI,-,= TP,-,T' + RR', and the 
conditional variance of the error in the one-step-ahead prediction of 
AY, is f, = z1Ptlt-,z. 

Using the observation of AY,, one can compute the prediction 
error itself, v, = AY, - AYtl,-,. Finally, one updates for the next round, 
setting a, = atl,-, + Ptlt-l~utlft = - Ptlt-lzz'Ptlt-lIft.and P, PtIt-, 

Once one has computed v, and f, for the whole sample t = 

1 , .  . . , T, one can form the log likelihood function for the sample 
as 

(-43) -(i)log ( 2 ~ )- (g)log (a2) - (i)5 log ft - ($ a2) 

We maximize this likelihood function using a method of scoring 
with modified step size [Berndt et al., 19741. We compute an 
asymptotic variance-covariance matrix for the parameters, J?, as the 
inverse of the moment matrix of the numerical derivatives of the 
conditional log likelihoods with respect to the parameters. A model 
with parameter restrictions can be estimated in a similar manner, 
and the likelihood ratio computed. 

Since the process a, is Markov, it is straightforward to obtain 
the impulse response function of the AY, process from equation (1) 
in the text given the parameters. The impulse response at horizon k, 
A,, is just 

(A41 A~ = Z'T~R. 

To compute the impulse response a t  horizon k in levels, B,, one 
simply uses equation (4) in the text and sums Ai for i = 0, . . . ,k. 
This estimate of the impulse response is a nonlinear function of the 

:. 
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parameters, whose limit as h increases is 

Its asymptotic standard error can be estimated as dm,where d 
is the vector of derivatives of the function with respect to the 
parameters. We computed d numerically. 
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