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1 Result (3)

The Ramsey model’s Euler equation can be derived as follows. This derivation
follows Barro & Sala-i-Martin (1999), chapter 2. For a derivation that avoids
dynamic optimization, we recommend Romer (2001), chapter 2.
Assume there are H households of size N

H , each of which is infinitely-lived
and representative of the economy. In this paper, we will assume population
growth is zero to simplify the analysis. Each household derives utility from
consumption Ct = cte

gt per member, according to an instantaneous utility
function u(·), that we assume to be CRRA. The discount rate is ρ. The
present value of lifetime utility at time 0 is thus:

Utility =

∫ ∞
t=0

e−ρtu(Ct)dt

applying CRRA utility, =

∫ ∞
t=0

e−ρt
(Ct)

1−γ

1− γ dt

Each household has income from its labor input and from its initial capital
holdings, since the households are assumed to own the capital of the economy,
and households recieve their share T of transfers from the government. The
level of the household’s labor input is normalized to one and its per capita
capital stock is K = kegt. The household receives wage w per unit of labor and
a constant rate of return r on capital, but pays taxes of τk on capital income
and τn on labor income. We can write the dynamic budget constraint of the
household as

K̇ = (1− τn)w + (1− τk)rK − C − gK + T

To allow temporary indebtedness, the credit markets will require that the present
value of household assets must be non-negative. That is:

lim
t→∞

K(t)e−rt ≥ 0

Maximization of utility subject to this budget constraint is a dynamic optimiza-
tion problem. We set up a present-value Hamiltonian function and find first
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order conditions. After substitutions and simplifications, we derive equation
(3), the so-called Euler equation, mentioned in the main text, which uses the
after-tax rate of return r̃ = (1− τk)r.

H = e−ρt
(Ct)

1−γ

1− γ + ϕ(t) [(1− τn)w + (1− τk)rK − C + T ]

FOCK : (1− τk)rϕ(t) = −ϕ̇(t)

FOCC : e−ρtC−γt = ϕ(t)

dFOCC
dt

: ϕ̇(t) = −ρe−ρtC−γt − γe−ρtC−γ−1
t Ċt

−(1− τk)re−ρtC−γt = −ρe−ρtC−γt − γe−ρtC−γ−1
t Ċt

−(1− τk)r = −ρ− γ Ċt
Ct

(1− τk)r = γ
ċ(t)

c(t)
+ ρ+ γg

r̃ = γ
ċ

c
+ ρ+ γg

In the steady state, this simplifies to r̃ = ρ+ γg (3)

which is result (3).

2 Results (5) and (6)

Here we derive the results for a change in either tax rate.
To proceed with our analysis, we totally differentiate (4) to obtain, suppress-

ing arguments:

dR = kf ′dτk + τk (kf ′′ + f ′) dk + (f − kf ′)dτn + τn(−kf ′′)dk

We can use this result to determine the effect of a change in capital income tax
τk or in labor income tax τn on total revenue.
First, divide by dτk, and recognize that dτndτk

= 0,since both are exogenously
set, to get:

dR

dτk
= kf ′ + [τk (kf ′′ + f ′) + τn(−kf ′′)] dk

dτk

Performing some algebra, we can put this into a more easily interpreted form.

dR

dτk
= kf ′ +

[τk(kf ′′ + f ′)− τn(kf ′′)] f ′

(1− τk)f ′′

dR

dτk
= kf ′

(
1 +

(τk − τn)f ′′

(1− τk)f ′′

)
+

τk (f ′)
2

(1− τk)f ′′

dR

dτk
= kf ′

(1− τn)

(1− τk)
+

τk
(1− τk)

(f ′)
2

f ′′
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Assuming Cobb-Douglas, we can simplify this result to obtain result (5):

dR

dτk
=

[
(1− τn)

(1− τk)
+

τk
(1− τk)(α− 1)

]
αf(k).

dR

dτk
=

[
(1− τn)(α− 1) + τk

(1− τk) (α− 1)

]
αf(k).

dR

dτk
=

[
α− 1− τnα+ τn + τk

(1− τk) (α− 1)

]
αf(k).

dR

dτk
=

[
(1− τk) (α− 1)− τnα+ τn + τk + τk(α− 1)

(1− τk) (α− 1)

]
αf(k).

dR

dτk
=

[
1− ατk + (1− α)τn

(1− τk) (1− α)

]
αf(k) (5)

Next, we find the analogous expression for a change in the tax on labor
income, τn. Recall that dτkdτn

= 0,since both are exogenously set. Use equations
(1) and (3) to note that

dk

dτn
= 0

Then,

dR

dτn
= (f − kf ′) + [τk (kf ′′ + f ′) + τn(−kf ′′)] dk

dτn
dR

dτn
= (f − kf ′) (6)

If we assume Cobb-Douglas, this simplifies to result (6):

dR

dτn
= (1− α)kα

3 Results (10)-(11)

To derive the Euler equation of our more general model, we again solve a dy-
namic optimization problem, using expressions for utility and the dynamic bud-
get constraint found in the paper’s main text.

H =

[
e−ρtt

(ctegt)
1−γ

e(1−γ)v(N)−1

1−γ +

ϕ(t) [(1− τn)wN + (1− τk)rk − c− gk + T ]

]
FOCk : ((1− τk)r − g)ϕ = −ϕ̇
FOCc : e−ρte(1−γ)gte(1−γ)v(N)c(t)−γ = ϕ

FOCN : e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N) = −(1− τn)w(t)ϕ(t)
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dFOCc
dt

: ϕ̇ =


−ρe−ρtegt(1−γ)e(1−γ)v(N)c−γ+

(1− γ)ge−ρte(1−γ)gte(1−γ)v(N)c−γ+

v′(N)Ṅe−ρte(1−γ)gte(1−γ)v(N)c−γ−
γe−ρte(1−γ)gte(1−γ)v(N)c−γ−1ċ



−((1− τk)r − g)e−ρte(1−γ)gte(1−γ)v(N)c−γ =


−ρe−ρtegt(1−γ)e(1−γ)v(N)c−γ+

(1− γ)ge−ρte(1−γ)gte(1−γ)v(N)c−γ+

(1− γ)v′(N)Ṅe−ρte(1−γ)gte(1−γ)v(N)c−γ−
γe−ρte(1−γ)gte(1−γ)v(N)c−γ−1ċ


−((1− τk)r − g) = −ρ+ (1− γ)g + (1− γ)v′(N)Ṅ − γc−1ċ

−(1− τk)r + g = −ρ+ (1− γ)g + (1− γ)v′(N)N
Ṅ

N
− γ ċ

c

(1− τk)r = ρ+ γg + γ
ċ

c
+ (1− γ)v′(N)N

Ṅ

N
r̃ = ρ+ γg (11)

The final step recognizes that ċ
c and

Ṅ
N will be zero in the steady state, as

consumption per effi ciency unit (we assume no population growth for simplicity)
and labor supply are constant in the steady state. This is result (11).
Combining FOCc with FOCn, we derive result (10):

e−ρte(1−γ)gte(1−γ)v(N)c−γ

e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)
=

ϕ

−(1− τn)wϕ

v′(N) =
−(1− τn)w

c
(10)

4 Result (12)

To derive (12), we note the dynamic budget constraint.

k̇ = (1− τn)wN + (1− τk)rk − c− gk + T

In the steady state, k̇ is equal to zero. We know that T is equal to the sum of
tax revenue: T = τnwN + τkrk. Thus, we can rewrite the budget constraint as

c = f(k,N)− gk
This is result (12) in the main text.

5 Results (14-15), General Production Technol-
ogy

Now we analyze the main model with non-Cobb-Douglas production. Again,
some of the steady-state equations change:

f (k, n) = f (k, n) . (7)
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r = fk. (8)

w = fn. (9)

v′(n) =
− (1− τn)w

c
. (10)

r =
ρ+ γg

1− τk
. (11)

c = f − gk (12)

R = τkrk + τnwn. (13)

From CRS, we know that

α =
kfk
f

(A11)

(1− α) =
f − kfk

f
=
nfn
f

(1)

But note that α is no longer fixed and, thus, cannot be treated as a parameter
in our derivations. The elasticity of substitution is (as in Hicks 1932)

ξ =
fnfk
ffkn

For future reference, we collect expressions:

ξ =
fnfk
ffkn

(A11)

α =
kfk
f

(2)

1− α = 1− kfk
f

=
f − kfk

f
=
nfn
f

(3)

We also know that

fkk = −fkn
n

k

fnn = −fnk
k

n
fkn = fnk

5.0.1 Capital Tax Cut

To derive these results, we use the system of two equations that simplifies (7-12):

(1− τk)fk − (ρ+ γg) = 0.

v′(N) · (f − gk) + (1− τn) fn = 0.
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From the first, we can write

fk =
ρ+ γg

1− τk
For dk

dτk
, take the total derivative of the first of these:

dτk [−fk] + dτn [0] + dN [(1− τk)fkN ] + dk [(1− τk)fkk] = 0

dk

dτk
=
fk − (1− τk)fkN

dN
dτk

(1− τk)fkk
.

For dN
dτk
, again apply the implicit function theorem, this time to the second

of these.
v′(N) · (f − gk) + (1− τn) fn = 0.

Nv′(N) +
(1− τn)Nfn

(f − gk)
= 0

Take the total derivative of this,
dN

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
+dk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
+dτn

[
−Nfn
f−gk

]
+ dτk [0]

 = 0.

Dividing by dτk,
dN
dτk

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
= − dk

dτk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

] 
which combines with:

dk

dτk
=
fk − (1− τk)fkN

dN
dτk

(1− τk)fkk
.

to give:
dN
dτk

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
= −

fk−(1−τk)fkN
dN
dτk

(1−τk)fkk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]


Collecting terms
dN
dτk

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

− (1−τk)fkN
(1−τk)fkk

(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)
(f−gk)2

]
= − fk

(1−τk)fkk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
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Use
fkk = −fkn

n

k

and

ξ =
fnfk
ffkn

= −Nfnfk
ffkkk

= − (1− α)
fk
kfkk

To rewrite this as
dN
dτk

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

+k(f−gk)(1−τn)fnk−k(1−τn)fn(fk−g)
(f−gk)2

]
= k

(1−τk)
ξ

(1−α)

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]


Simplify
dN
dτk

[
Nv′′(N) + v′(N)

+ (f−gk)(1−τn)(Nfnn+fn+kfnk)−(1−τn)fn(Nfn+k(fk−g))
(f−gk)2

]
= k

(1−τk)
ξ

(1−α)

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]


Note that Nfnn + kfnk = 0, so
dN
dτk

[
Nv′′(N) + v′(N)

+ (f−gk)(1−τn)fn−(1−τn)fn(Nfn+k(fk−g))
(f−gk)2

]
= k

(1−τk)
ξ

(1−α)

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]


Combining terms,
dN
dτk

[
Nv′′(N) + v′(N)

+ (1−τn)fn[(f−gk)−Nfn−k(fk−g)]
(f−gk)2

]
= k

(1−τk)
ξ

(1−α)

[
(1−τn)N((f−gk)fnk−fn(fk−g))

(f−gk)2

]


Simplify 
dN
dτk

[
Nv′′(N) + v′(N)

+ (1−τn)fn[f−Nfn−kfk]

(f−gk)2

]
= k

(1−τk)
ξ

(1−α)

[
(1−τn)N((f−gk)fnk−fn(fk−g))

(f−gk)2

]


Note that [f −Nfn − kfk] = 0, so this becomes{
dN
dτk

[Nv′′(N) + v′(N)]

= k
(1−τk)

ξ
(1−α)

[
(1−τn)N((f−gk)fnk−fn(fk−g))

(f−gk)2

] }

or, rearranging,{
dN

dτk
=

(1− τn)

(1− τk)

ξkN

(1− α)

[
fnk

(f − gk)
− fn (fk − g)

(f − gk)
2

]
1

[Nv′′(N) + v′(N)]

}
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From our results for the elasticity of labor supply, we know that

Nv′′(N) + v′(N) = v′(N)N

(
1 + σ

Nσ

)
.

thus, using our result from above that

Nv′(N) +
(1− τn)Nfn

(f − gk)
= 0

we know that

Nv′′(N) + v′(N) =
− (1− τn)Nfn

(f − gk)

(
1 + σ

Nσ

)
Plugging in this expression,{
dN

dτk
=

(1− τn)

(1− τk)

ξkN

(1− α)

[
fnk

(f − gk)
− fn (fk − g)

(f − gk)
2

]
(f − gk)

− (1− τn)Nfn

(
Nσ

1 + σ

)}

Simplifying,{
dN

dτk
= − 1

(1− τk)

ξkN

(1− α)

[
fnk
fn
− (fk − g)

(f − gk)

](
σ

1 + σ

)}
or, {

dN

dτk
=

−1

(1− τk) (1− α)
ξk

[
fnk
fn
− (fk − g)

(f − gk)

](
Nσ

1 + σ

)}
We use this in our expression for dk

dτk

dk

dτk
=
fk − (1− τk)fkN

dN
dτk

(1− τk)fkk
.

to obtain

dk

dτk
=
fk − (1− τk)fkN

−1
(1−τk)(1−α)ξk

[
fnk
fn
− (fk−g)

(f−gk)

] (
Nσ
1+σ

)
(1− τk)fkk

.

Simplifying,

dk

dτk
=
fk + fkN

(1−α)ξk
[
fnk
fn
− (fk−g)

(f−gk)

] (
Nσ
1+σ

)
(1− τk)fkk

.

Separating terms, this is

dk

dτk
=

fk
(1− τk)fkk

+

fkN
(1−α)ξk

[
fnk
fn
− (fk−g)

(f−gk)

]
(1− τk)fkk

Nσ

1 + σ
.

Use
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ξ =
fnfk
ffkn

= −Nfnfk
ffkkk

= − (1− α)
fk
kfkk

To simplify this expression

dk

dτk
=

fk
(1− τk)fkk

+
− fkN

(1−α) (1− α) fk
fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
(1− τk)fkk

Nσ

1 + σ
.

dk

dτk
=

fk
(1− τk)fkk

+
−fkN

(
fk
kfkk

)
k
[
fnk
fn
− (fk−g)

(f−gk)

]
(1− τk)fkk

Nσ

1 + σ
.

Then use
fkk = −fkn

n

k

to derive

dk

dτk
=

fk
(1− τk)fkk

+
fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
(1− τk)fkk

σ

1 + σ
.

Rearranging,

dk

dτk
=

fk
(1− τk)fkk

+
fk

(1− τk)fkk
k

[
fnk
fn
− (fk − g)

(f − gk)

]
σ

1 + σ
.

Simplifying,

dk

dτk
=

fk
(1− τk)fkk

[
1 + k

[
fnk
fn
− (fk − g)

(f − gk)

]
σ

1 + σ

]
.

Now, we need an expression for dR
dτk

R = τkrk + τnwN

R = τkfkk + τnfnN

dR

dτk

∣∣∣∣
dynamic

=


fkk

+ dk
dτk

[τk(fkkk + fk) + τnfnkN ]

+ dN
dτk

[τkfknk + τn(fnnN + fn]


From CRS, we know that:

fkk = −fkn
n

k

fnn = −fnk
k

n
fkn = fnk

So this expression becomes

dR

dτk

∣∣∣∣
dynamic

=


fkk

+ dk
dτk

[τk (−fknN + fk) + τnfnkN ]

+ dN
dτk

[τkfknk + τn (−fnkk + fn)]
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Rearranging,

dR

dτk

∣∣∣∣
dynamic

=


fkk + dk

dτk
fkτk + dN

dτk
fnτn

+ dk
dτk

N [(τn − τk) fnk]

+ dN
dτk

k [(τk − τn) fkn]


Or simply

dR

dτk

∣∣∣∣
dynamic

=

{
fkk + dk

dτk
fkτk + dN

dτk
fnτn

+
(
dk
dτk

N − dN
dτk

k
)

[(τn − τk) fnk]

}

Now, using our expressions for dk
dτk

and dN
dτk
,

dk

dτk
=

fk
(1− τk)fkk

[
1 + k

[
fnk
fn
− (fk − g)

(f − gk)

]
σ

1 + σ

]
.

{
dN

dτk
=

−1

(1− τk) (1− α)
ξk

[
fnk
fn
− (fk − g)

(f − gk)

](
Nσ

1 + σ

)}
we can show:. 

(
dk
dτk

N − dN
dτk

k
)

={
fk

(1−τk)fkk

[
1 + k

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

]}
N

−
{

−1
(1−τk)(1−α)ξk

[
fnk
fn
− (fk−g)

(f−gk)

] (
Nσ
1+σ

)}
k


simplifies to: 

(
dk
dτk

N − dN
dτk

k
)

={
fk

(1−τk)fkk

[
1 + k

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

]}
N

−
{

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
Nσ
1+σ

}
k


thus, 

(
dk
dτk

N − dN
dτk

k
)

={
fk

(1−τk)fkk

[
N + k

[
fnk
fn
− (fk−g)

(f−gk)

]
Nσ
1+σ

]}
−
{

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
Nσ
1+σ

}
k


Rearranging, 

(
dk
dτk

N − dN
dτk

k
)

=
fk

(1−τk)fkk
N

+ fk
(1−τk)fkk

k
[
fnk
fn
− (fk−g)

(f−gk)

]
Nσ
1+σ

− fk
(1−τk)fkk

k
[
fnk
fn
− (fk−g)

(f−gk)

]
Nσ
1+σ
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Or, cancelling terms, (
dk

dτk
N − dN

dτk
k

)
=

fk
(1− τk)fkk

N

So,

dR

dτk

∣∣∣∣
dynamic

=

{
fkk + dk

dτk
fkτk + dN

dτk
fnτn

+
(
dk
dτk

N − dN
dτk

k
)

[(τn − τk) fnk]

}
becomes

dR

dτk

∣∣∣∣
dynamic

=

{
fkk + dk

dτk
fkτk + dN

dτk
fnτn

+ fk
(1−τk)fkk

N [(τn − τk) fnk]

}
or, rearranging,

dR

dτk

∣∣∣∣
dynamic

=

{
fkk + dk

dτk
fkτk + dN

dτk
fnτn

+ 1
(1−τk)

nfkfnk
fkk

[(τn − τk)]

}

using
fkk = −fkn

n

k

this is,
dR

dτk

∣∣∣∣
dynamic

=

{
fkk + dk

dτk
fkτk + dN

dτk
fnτn

− kfk
(1−τk) [(τn − τk)]

}
Then, substitute in our expressions for dk

dτk
and dN

dτk

dk

dτk
=

fk
(1− τk)fkk

[
1 + k

[
fnk
fn
− (fk − g)

(f − gk)

]
σ

1 + σ

]
.

dN

dτk
=

−1

(1− τk) (1− α)
ξk

[
fnk
fn
− (fk − g)

(f − gk)

](
Nσ

1 + σ

)
to obtain

dR

dτk

∣∣∣∣
dynamic

=


fkk

+
(

fk
(1−τk)fkk

[
1 + k

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

])
fkτk

+ −1
(1−τk)(1−α)ξk

[
fnk
fn
− (fk−g)

(f−gk)

] (
Nσ
1+σ

)
fnτn

− fk
(1−τk)k [(τn − τk)]


Simplifying,

dR

dτk

∣∣∣∣
dynamic

=



fkk + fk
(1−τk)fkk

fkτk

+
(

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

)
kfkτk

+ −1
(1−τk)(1−α)ξk

[
fnk
fn
− (fk−g)

(f−gk)

] (
σ

1+σ

)
Nfnτn

− fk
(1−τk)k [(τn − τk)]
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or,

dR

dτk

∣∣∣∣
dynamic

=



fkk + fk
(1−τk)fkk

fkτk

+
(

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

)
kfkτk

+
(

fk
(1−τk)fkk

) [
fnk
fn
− (fk−g)

(f−gk)

] (
σ

1+σ

)
Nfnτn

− fk
(1−τk)k [(τn − τk)]


and thus, collecting terms and using our expressions for α and (1− α),

dR

dτk

∣∣∣∣
dynamic

=


fkk + fk

(1−τk)fkk
fkτk

+
(

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

)
(αfτk + (1− α) fτn)

− fk
(1−τk)k [(τn − τk)]


rearranging,

dR

dτk

∣∣∣∣
dynamic

=

{
fkk + fk

(1−τk)fkk
fkτk − fk

(1−τk)k [(τn − τk)]

+
(

fk
(1−τk)fkk

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

)
f (ατk + (1− α) τn)

}

Pull out fkk

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1 + fk

(1−τk)kfkk
τk − (τn−τk)

(1−τk)

+
(

f
(1−τk)kfkk

[
fnk
fn
− (fk−g)

(f−gk)

]
σ

1+σ

)
(ατk + (1− α) τn)

}

Now, recall that
−1

(1− α)
ξ =

fk
kfkk

and simplify

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− 1

(1−α)(1−τk)ξτk −
(1−α)(τn−τk)
(1−α)(1−τk)

+
(

1
(1−τk)

[
f

kfkk

fnk
fn
− f

kfkk

(fk−g)
(f−gk)

]
σ

1+σ

)
(ατk + (1− α) τn)

}

And, using
fkk = −fkn

n

k

derive

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− 1

(1−α)(1−τk)ξτk −
(1−α)(τn−τk)
(1−α)(1−τk)

+
(

1
(1−τk)

[
−f
N

1
fn
− f

kfkk

f
f
fk
fk

(fk−g)
(f−gk)

]
σ

1+σ

)
(ατk + (1− α) τn)

}

simplifying,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− 1

(1−α)(1−τk)ξτk −
(1−α)(τn−τk)
(1−α)(1−τk)

+
(

1
(1−τk)

[
−1

(1−α) −
fk
kfkk

f
(f−gk)

(fk−g)
fk

]
σ

1+σ

)
(ατk + (1− α) τn)

}
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or

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− 1

(1−α)(1−τk)ξτk −
(1−α)(τn−τk)
(1−α)(1−τk)

−
(

1
(1−τk)(1−α)

[
1 + (1− α) fk

kfkk

f
(f−gk)

(fk−g)
fk

]
σ

1+σ

)
(ατk + (1− α) τn)

}

Again, using
−1

(1− α)
ξ =

fk
kfkk

derive

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− 1

(1−α)(1−τk)ξτk −
(1−α)(τn−τk)
(1−α)(1−τk)

−
(

1
(1−τk)(1−α)

[
1− ξ f

f−gk
fk−g
fk

]
σ

1+σ

)
(ατk + (1− α) τn)

}

Rearranging,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ f

f−gk
fk−g
fk

]
σ

1+σ

) }

simplifying,

dR

dτk

∣∣∣∣
dynamic

= fkk

 1− (α+ξ−1)τk+(1−α)τn
(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ 1

1−g kf

(
1− g

fk

)]
σ

1+σ

) 
or, using our expression for α,

dR

dτk

∣∣∣∣
dynamic

= fkk

 1− (α+ξ−1)τk+(1−α)τn
(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ

1− g
fk

1−αgfk

]
σ

1+σ

) 
simplifying

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ fk−g

fk−αg

]
σ

1+σ

) }

We know that
fk =

ρ+ γg

1− τk
So, this becomes

dR

dτk

∣∣∣∣
dynamic

= fkk

 1− (α+ξ−1)τk+(1−α)τn
(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ

ρ+γg
1−τk

−g
ρ+γg
1−τk

−αg

]
σ

1+σ

) 
or,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α)

[
1− ξ ρ+γg−g(1−τk)

ρ+γg−αg(1−τk)

]
σ

1+σ

) }
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Rearranging,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

+
(

ατk+(1−α)τn
αg(1−τk)−(ρ+γg)

(ρ+γg)(1−ξ)+g(1−τk)(ξ−α)
(1−τk)(1−α)

σ
1+σ

) }
Rearranging,

dR

dτk

∣∣∣∣
dynamic

= fkk


1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

− ατk+(1−α)τn
(ρ+γg)−αg(1−τk)

· (ρ+γg)(1−ξ)+(1−τk)(ξ−α)g
(1−α)(1−τk)

σ
1+σ


If g = 0, this is

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

−
(
ατk+(1−α)τn
(1−τk)(1−α) (1− ξ) σ

1+σ

) }
Note that if we are in the Cobb-Douglas model, where ξ = 1, then,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− ατk+(1−α)τn

(1−α)(1−τk)

+
(

ατk+(1−α)τn
αg(1−τk)−(ρ+γg)

σ
1+σ g

) }
Our result from before.

5.0.2 Labor Tax Cut

To derive these results, we use the system of two equations that simplifies (7-12):

(1− τk)fk − (ρ+ γg) = 0.

v′(N) · (f − gk) + (1− τn) fn = 0.

From the first, we can write

fk =
ρ+ γg

1− τk
For dk

dτn
, take the total derivative of the first of these:

dτk [−fk] + dτn [0] + dN [(1− τk)fkN ] + dk [(1− τk)fkk] = 0

which yields
dk

dτn
= − dN

dτn

fkN
fkk

or take the derivative of the whole thing with respect to τk:

(1− τk) fkk
dk

dτn
+ (1− τk) fkn

dn

dτn
= 0

(1− τk) fkk
dk

dτn
= − (1− τk) fkn

dn

dτn
dk

dτn
= −fkn

fkk

dn

dτn
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For dN
dτn
, again apply the implicit function theorem, this time to the second

of these.
v′(N) · (f − gk) + (1− τn) fn = 0.

Nv′(N) +
(1− τn)Nfn

(f − gk)
= 0

Take the total derivative of this,
dN

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
+dk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
+dτn

[
−Nfn
f−gk

]
+ dτk [0]

 = 0.

Dividing by dτn,

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
= − dk

dτn

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
+ Nfn

f−gk

Combine with
dk

dτn
= − dN

dτn

fkN
fkk

to yield

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

]
= dN

dτn

fkN
fkk

[
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
+ Nfn

f−gk

Collecting terms,

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

− fkNfkk
(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)

(f−gk)2

]
= Nfn

f−gk

Use
fkk = −fkn

n

k

to rewrite this as

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(Nfnn+fn)−(1−τn)Nfnfn

(f−gk)2

+ k
N

(f−gk)(1−τn)Nfnk−(1−τn)Nfn(fk−g)
(f−gk)2

]
= Nfn

f−gk

or, rearranging and using

fnn = −fnk
k

n
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we can derive,

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(−kfnk+fn)−(1−τn)Nfnfn

(f−gk)2

+ (f−gk)(1−τn)kfnk−(1−τn)fnk(fk−g)
(f−gk)2

]
= Nfn

f−gk

which simplifies to:

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(−kfnk+fn)−(1−τn)Nfnfn+(f−gk)(1−τn)kfnk−(1−τn)fnk(fk−g)

(f−gk)2

]
= Nfn

f−gk

Cancelling,

dN
dτn

[
Nv′′(N) + v′(N) + (f−gk)(1−τn)(fn)−(1−τn)Nfnfn−(1−τn)fnk(fk−g)

(f−gk)2

]
= Nfn

f−gk

which simplifies to

dN
dτn

[
Nv′′(N) + v′(N) + (1−τn)fn[(f−gk)−k(fk−g)−Nfn]

(f−gk)2

]
= Nfn

f−gk

Cancelling,

dN
dτn

[
Nv′′(N) + v′(N) + (1−τn)fn(f−kfk−Nfn)

(f−gk)2

]
= Nfn

f−gk

But we know that (f − kfk −Nfn) = 0, so this becomes simply

dN

dτn
=

Nfn
f − gk

1

[Nv′′(N) + v′(N)]

From our results for the elasticity of labor supply, we know that

Nv′′(N) + v′(N) = v′(N)N

(
1 + σ

Nσ

)
.

thus, using our result from above that

Nv′(N) +
(1− τn)Nfn

(f − gk)
= 0

we know that

Nv′′(N) + v′(N) =
− (1− τn)Nfn

(f − gk)

(
1 + σ

Nσ

)
So plugging this into our results, we obtain

dN

dτn
=

Nfn
f − gk

(f − gk)

− (1− τn)Nfn

(
Nσ

1 + σ

)
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or simply
dN

dτn
=

−N
(1− τn)

(
σ

1 + σ

)
Substituting this expression into that for dk

dτn

dk

dτn
= − dN

dτn

fkN
fkk

gives
dk

dτn
= − −N

(1− τn)

(
σ

1 + σ

)
fkN
fkk

or, using
fkk = −fkn

n

k

this is:
dk

dτn
=

−k
(1− τn)

(
σ

1 + σ

)
Now, we need an expression for dR

dτn

R = τkrk + τnwN

R = τkfkk + τnfnN

dR

dτn

∣∣∣∣
dynamic

=


fnN+

dk
dτn

[τk(fkkk + fk) + τnfnkN ]

+ dN
dτn

[τkfknk + τn(fnnN + fn]


using

fkk = −fkn
n

k

fnn = −fnk
k

n

obtain

dR

dτn

∣∣∣∣
dynamic

=


fnN+

dk
dτn

[τk(−fknN + fk) + τnfnkN ]

+ dN
dτn

[τkfnkk + τn(−fnkk + fn]


rearranging,

dR

dτn

∣∣∣∣
dynamic

=


fnN + dk

dτn
τkfk + dN

dτn
τnfn

dk
dτn

[τk(−fknN) + τnfnkN ]

+ dN
dτn

[τkfnkk + τn(−fnkk]


or simply

dR

dτn

∣∣∣∣
dynamic

=

{
fnN + dk

dτn
τkfk + dN

dτn
τnfn+(

dk
dτn

N − dN
dτn

k
)

[(τn − τk) fnk]

}
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Now, we had from before the results that:

dN

dτn
=

−N
(1− τn)

σ

(1 + σ)
.

dk

dτn
=

−k
(1− τn)

(
σ

1 + σ

)
so, we can show(

dk

dτn
N − dN

dτn
k

)
=

(
−k

(1− τn)

(
σ

1 + σ

)
N − −N

(1− τn)

σ

(1 + σ)
k

)
or (

dk

dτn
N − dN

dτn
k

)
=

(
−kN

(1− τn)

(
σ

1 + σ

)
+

kN

(1− τn)

σ

(1 + σ)

)
= 0

so
dR

dτn

∣∣∣∣
dynamic

=

{
fnN +

dk

dτn
τkfk +

dN

dτn
τnfn

}
plugging in our results for dN

dτn
and dk

dτn
, this becomes

dR

dτn

∣∣∣∣
dynamic

=

{
fnN +

−k
(1− τn)

(
σ

1 + σ

)
τkfk +

−N
(1− τn)

σ

(1 + σ)
τnfn

}
or simply

dR

dτn

∣∣∣∣
dynamic

=

{
fnN −

σ

(1− τn) (1 + σ)
(τkkfk + τnNfn)

}
Pull out fnN

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− σ

(1− τn) (1 + σ)

(
τk

kfk
fnN

+ τn

)}
using our expressions for α and (1− α), this becomes

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− σ

(1− τn) (1− α) (1 + σ)
(ατk + (1− α) τn)

}
or simply

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− ατk + (1− α) τn

(1− α) (1− τn)

σ

1 + σ

}
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5.1 Gross and Net capital share and el. of sub.

Now, here

α =
kfk
f

while we define the gross capital share ψ:

ψ =
k (fk + δ)

f + δk

So,

ψ

α
=

f

f + δk

fk + δ

fk

ψ

α
=

(
1

1 + δk
f

)(
1 +

δ

fk

)
Now,

fk =
ρ+ γg

(1− τk)

fk + δ =
ρ+ γg + δ (1− τk)

(1− τk)

δk

f
=

δα

fk
=
δα (1− τk)

ρ+ γg

So,

ψ =

(
1

1 + δα(1−τk)
ρ+γg

)(
1 +

δ (1− τk)

ρ+ γg

)
α

ψ =

(
ρ+ γg + δ (1− τk)

ρ+ γg + αδ (1− τk)

)
α

ψ (ρ+ γg + αδ (1− τk)) = (ρ+ γg + δ (1− τk))α

ψ (ρ+ γg) = (ρ+ γg + δ (1− τk)− δψ (1− τk))α

α =
ψ (ρ+ γg)

(ρ+ γg) + δ (1− τk)− δψ (1− τk)

α =
ψ (ρ+ γg)

(ρ+ γg) + δ (1− τk) (1− ψ)

Say δ = .03

α =
ψ (0.07)

(0.07) + 0.03 (0.75) (1− ψ)

So if ψ = 0.33, α = 0.27
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Also,

ξ =
fnfk
ffkn

while we define the gross elasticity ε

ε =
fn (fk + δ)

(f + δk) fkn

So,
ξ

ε
=
f + δk

f

fk
fk + δ

fk =
ρ+ γg

(1− τk)

fk + δ =
ρ+ γg + δ (1− τk)

(1− τk)

δk

f
=

δα

fk
=
δα (1− τk)

ρ+ γg

so

ξ

ε
=

ρ+ γg + αδ (1− τk)

ρ+ γg

ρ+ γg

ρ+ γg + δ (1− τk)

ξ =

(
ρ+ γg + αδ (1− τk)

ρ+ γg + δ (1− τk)

)
ε

Say δ = .03. If ε = 1, then α = 0.2745 and we can calculate that ξ = 0.82.

ξ =

(
0.07 + (0.2745) (0.03) (0.75)

0.07 + (0.03) (0.75)

)
ε

If f = kψn1−ψ − δk, then
ξ =

fnfk
ffkn

ξ =
(1− ψ) kψn−ψ

(
ψkψ−1n1−ψ − δ

)
(kψn1−ψ − δk)ψ (1− ψ) kψ−1n−ψ

ξ =
ψkψ−1n1−ψ − δ
ψkψ−1n1−ψ − ψδ

ξ =
ψ k
n

ψ−1 − δ
ψ k
n

ψ−1 − ψδ
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5.2 Showing that capital tax cut has bigger feedback

Take the two results from above,

dR

dτk

∣∣∣∣
dynamic

= fkk


1− (α+ξ−1)τk+(1−α)τn

(1−α)(1−τk)

− ατk+(1−α)τn
(ρ+γg)−αg(1−τk)

· (ρ+γg)(1−ξ)+(1−τk)(ξ−α)g
(1−α)(1−τk)

σ
1+σ


dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− ατk + (1− α) τn

(1− α) (1− τn)

σ

1 + σ

}
Now, let both tax rates equal τ , and obtain

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− (α+ξ−1)τ+(1−α)τ

(1−α)(1−τ)

− ατ+(1−α)τ
(ρ+γg)−αg(1−τ)

(ρ+γg)(1−ξ)+(1−τ)(ξ−α)g
(1−α)(1−τ)

σ
1+σ

}

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− ατ + (1− α) τ

(1− α) (1− τ)

σ

1 + σ

}
Simplifying,

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− ξτ

(1−α)(1−τ)

− τ
(1−α)(1−τ)

(ρ+γg)(1−ξ)+(1−τ)(ξ−α)g
(ρ+γg)−αg(1−τ)

σ
1+σ

}

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− τ

(1− α) (1− τ)

σ

1 + σ

}
or

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− ξτ

(1−α)(1−τ)

− τ
(1−α)(1−τ)

(ρ+γg)−αg(1−τ)+(1−τ)ξg−ξ(ρ+γg)
(ρ+γg)−αg(1−τ)

σ
1+σ

}

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− τ

(1− α) (1− τ)

σ

1 + σ

}
or

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− ξτ

(1−α)(1−τ)

− τ
(1−α)(1−τ)

(
1 + ξ (1−τ)g−(ρ+γg)

(ρ+γg)−αg(1−τ)

)
σ

1+σ

}
dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− τ

(1− α) (1− τ)

σ

1 + σ

}
or, rearranging

dR

dτk

∣∣∣∣
dynamic

= fkk

{
1− τ

(1−α)(1−τ)
σ

1+σ

−ξ τ
(1−α)(1−τ)

(
1− (ρ+γg)−g(1−τ)

(ρ+γg)−αg(1−τ)
σ

1+σ

) }

dR

dτn

∣∣∣∣
dynamic

= fnN

{
1− τ

(1− α) (1− τ)

σ

1 + σ

}
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so the claim is that

dR
dτk

∣∣∣
dynamic

fkk
<

dR
dτn

∣∣∣
dynamic

fnN

1− τ
(1−α)(1−τ)

σ
1+σ

−ξ τ
(1−α)(1−τ)

(
1− (ρ+γg)−g(1−τ)

(ρ+γg)−αg(1−τ)
σ

1+σ

) < 1− τ

(1− α) (1− τ)

σ

1 + σ

which holds if:

−ξ τ

(1− α) (1− τ)

(
1− (ρ+ γg)− g (1− τ)

(ρ+ γg)− αg (1− τ)

σ

1 + σ

)
< 0

or

1− (ρ+ γg)− g (1− τ)

(ρ+ γg)− αg (1− τ)

σ

1 + σ
> 0

or

1− (1− τ)

(1− τ)

(ρ+γg)
(1−τ) − g

(ρ+γg)
(1−τ) − αg

σ

1 + σ
> 0

or

1−
(ρ+γg)
(1−τ) − g

(ρ+γg)
(1−τ) − αg

σ

1 + σ
> 0

now
r = fk =

ρ+ γg

1− τk
so this condition is that

1− r − g
r − αg

σ

1 + σ
> 0

which holds whenever
r > g

or, in words, whenever the interest rate (the net marginal product of capital)
is greater than the growth rate in the economy. This always holds by the
transversality condition.

5.3 General production for Results 5-6

A more general form of production function is (and implies):

f (k) = φ(k)

r = fk

w = f − kfk
w

r
=

f

fk
− k, or k =

f

fk
− w

r
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Then, taking the derivative of both sides with respect to the ratio w
r ,

dk

dwr
=

(fkfk − ffkk) dk
dwr

fkfk
− 1

dk

dwr

(
1− (fkfk − ffkk)

fkfk

)
= −1

dk

dwr
= − fkfk

ffkk

With constant RTS, we know that:

α =
kfk
f

(A11)

(1− α) = f − kfk
f

(4)

Then, the elasticity of substitution between k and inelastic n = 1 is:

ξ =
dk

dwr

w
r

k

ξ = − fkfk
ffkk

(
f

kfk
− 1

)

ξ = − fkfk
ffkk

f − kfk
kfk

ξ =
kfkfk − ffk

kffkk
=
fkfk
ffkk

− fk
kfkk

Rearranging these, we can also show that:

ξ =
fkfk
ffkk

− fk
kfkk

(5)

ξ =
fkfk
ffkk

(
1− f

kfk

)
(Greg’s BPEA result) (6)

ξ =
fkfk
ffkk

(
1− 1

α

)
=
fkfk
ffkk

(
α− 1

α

)
=
fkfk
ffkk

(
α− 1
kfk
f

)
(7)

ξ =
fkfkf

kfkffkk
(α− 1) =

fk
kfkk

(α− 1) (A13)

so,

ξ =
fk
kfkk

(α− 1)

f(k)

fk

fkk
fk

=
1

ξ

(α− 1)

α

(α− 1)

α

1

ξ
=

ffkk
fkfk

23



Substituting these into the general form of result (5):

dR

dτk
= kfk

(1− τn)

(1− τk)
+

τk
(1− τk)

(fk)
2

fkk

We can simplify this result to obtain:

dR

dτk
=

[
(1− τn)

(1− τk)
+

τkξ

(1− τk)(α− 1)

]
αf(k)

dR

dτk
=

[
(1− τn)(α− 1) + τkξ

(1− τk)(α− 1)

]
αf(k) (8)

dR

dτk
=

[
α− 1− τnα+ τn + τkξ

(1− τk)(α− 1)

]
αf(k)

dR

dτk
=

[
(1− τk) (α− 1)− τnα+ τn + τkξ + τk (α− 1)

(1− τk)(α− 1)

]
αf(k)

dR

dτk
=

[
1− τnα− τn − τkξ − τk (α− 1)

(1− τk)(α− 1)

]
αf(k) (9)

dR

dτk
=

[
1− ατk + (1− α)τn + τk (ξ − 1)

(1− τk)(1− α)

]
αf (k) (5)

dR

dτk
=

[
1− 18

24

]
αf (k) (10)

not the result from the NBER working paper draft, though the numerical esti-
mate is the same, since the starting tax rates were assumed to be the same.

6 Constant-consumption labor supply elasticity

Here, we derive σ, the constant-consumption elasticity of labor supply with
respect to the real wage. First, we apply the implicit function theorem to (15)

v′(N) =
−(1− τn)w

c
cv′(N) + (1− τn)w = 0

dN

dw
=

(1− τn)

cv′′(N)
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Then we derive the constant consumption labor elasticity expression from the
main text, using result (15) again:

σ =
dN

dw

w

N

σ =
(1− τn)

cv′′(N)

v′c
(1−τn)

N

σ =
v′(N)

v′′(N) ·N

This is the result from the main text. Also note that:

Nv′′(N) + v′(N) =
v′(N)

σ
+ v′(N)

Nv′′(N) + v′(N) = v′(N)N

(
1 + σ

Nσ

)
6.1 Feldstein Effect

Feldstein has suggested that if labor income is divided into wage and benefits,
the non-taxed nature of the second will play a role in the response to a tax
change. That is, higher labor income taxes will cause a shift away from wage
income and toward benefit income. This would increase the power of labor tax
cuts to pay for themselves, as a lower labor income tax rate would encourage
workers to move toward wage income, which is taxed. Below, we show that the
model from Section 1, with inelastic labor supply, can be modified to divide labor
income into taxed wage income and nontaxed benefit income. The technique
follows that of the model of Section 2.
The steady state conditions will be

y = kα

r = αkα

w = (1− α)kα − b
Note that this wage equation is different, in that the total labor income per

unit of labor is still the MPL, but now benefits are subtracted from the MPL
to give wage income.
To find the equation corresponding to the labor-supply condition (10) in

Section 2, we need to set up the household’s maximization in our new setting.
We will assume that the household’s felicity function takes a CES form with an
elasticity of substitution between consumption and benefits of −ε. That is,

u =
(
βc

1+ε
ε + (1− β)b

1+ε
ε

) ε
1+ε
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The household’s dynamic budget constraint also reflects the availability of ben-
efits as consumption:

k̇ = (1− τn)w + (1− τk)rk + b− c− b+ T

Note that, unlike in the basic model of Section 1 and the elastic labor supply
model of Section 2, w is no longer taken as given by the household, since they
choose how much of the marginal product of labor to receive in wage income
rather than in the form of benefits. The maximization problem is:

H = e−ρt
(
βc

1+ε
ε + (1− β)b

1+ε
ε

) ε
1+ε

+ϕ((1− τn)w+ (1− τk)rk+ b− c− b+T )

First order conditions:

FOCk : −ϕ̇ = (1− τk)ϕ

FOCc : e−ρtβc
1
ε

(
βc

1+ε
ε + (1− β)b

1+ε
ε

) ε
1+ε−1

= ϕ

FOCb : e−ρt(1− β)b
1
ε

(
βc

1+ε
ε + (1− β)b

1+ε
ε

) ε
1+ε−1

= (1− τn)ϕ

The final FOC reflects that the derivative of w with respect to benefits is −1,
since for each dollar of benefts that the worker receives, the employer reduces
his wage receipts by one dollar.
Combining the last two FOCs yields:

b =

(
β(1− τn)

1− β

)ε
c

Taking the derivative of FOCc allows us to derive the steady state condition
that parallels equation (11):

dFOCc
dt

: −ρϕ+
1

ε

ċ

c
ϕ+

−1
1+ε

(
β 1+ε

ε
ċ
c + (1− β) 1+ε

ε
ḃ
b

)
ϕ

βc
1+ε
ε + (1− β)b

1+ε
ε

= −(1− τk)rϕ

given that c and b are constant in the steady state,

−ρ = −(1− τk)r

r =
ρ

1− τk

Finally, in the steady state total income is used either for consumption or
"consumption" of benefits, so

c = kα − b
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Tax revenue, as before is

R = τkrk + τnw

Combining these steady state conditions, we can solve for the steady state
levels of k and b. Specifically,

k∗ =

(
ρ

α(1− τk)

) 1
α−1

b∗ =
β̃

1 + β̃
k∗

α

where

β̃ =

(
β(1− τn)

1− β

)ε
Then, we can solve for the dynamic effect of a labor tax change on revenue:

dR

dτn
= (1− α)kα − b+

dk∗

dτn
(·) +

db∗

dτn
(−τn)

Now, dk
dτn

= 0 in the steady state, as is clear by the expression for k∗ above,
which excludes τn. But, from the expression for b in the steady state,

db∗

dτn
=

(1 + β̃)
(
−εβ
1−β

)(
β(1−τn)

1−β

)ε−1

− β̃
(
−εβ
1−β

)(
β(1−τn)

1−β

)ε−1

(1 + β̃)2

db∗

dτn
=
−ε
(

β
1−β

)ε
(1− τn)ε−1

(1 + β̃)2

Thus, we can write the change in tax revenue as

dR

dτn
= (1− α)kα − b+

ε
(

β
1−β

)ε
τn(1− τn)ε−1

(1 + β̃)2

Recall that the elasticity of substitution between b and c is −ε. We want
to derive the elasticity of taxable income with respect to (1− τn), the elasticity
Feldstein highlights.
Taxable income is kα − b

d(kα − b)
d(1− τn)

(1− τn)

(kα − b) =
d

d(1− τn)

{
kα

[
1−− β̃

1 + β̃

]}
(1− τn)

kα
[
1− β̃

1+β̃

]
this works out to ∆ =

−ε
(

β
1−β

)ε
(1− τn)ε

(1 + β̃)
=
−β̃

1 + β̃
ε
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Thus, we can write,

dR

dτn
= kα

(
(1− α)− β̃

1 + β̃

)1 +
τnβ̃ε

(1 + β̃)2

1

(1− α)− β̃

1+β̃


dR

dτn
= kα

(
(1− α)− β̃

1 + β̃

)1 +
τnβ̃ε

(1 + β̃)2

1 + β̃[
(1 + β̃)(1− α)− β̃

]


dR

dτn
=

dR

dτn

∣∣∣∣
static

1 +
τn

(1− τn)

1[
(1 + β̃)(1− α)− β̃

]∆


7 Finite Horizons: Rule of Thumb Generaliza-

tion

Consider the two groups of households. For the portion (1− λ) that maximize
as infinite-horizon households, result (3) from the main text will apply:

r = γ
ċ

c
+ ρ+ γg

Now let C represent aggregate consumption per effi ciency unit ("aggregate"
in the sense that it includes both infinite-horizon and rule-of-thumb house-
holds"). Then, ĊC will be the weighted sum of the growth rates of consumption
for the two groups of households. We have (1− λ) households increasing con-
sumption as above, and λ households increasing consumption one-for-one with
wage income.

Ċ

C
= λ

ẇ

w
+ (1− λ)

(
r − ρ− γg

γ

)
r =

γ

1− λ

(
ċ

c
− λẇ

w

)
+ ρ+ γg

In the steady state, ċc will be constant. Additionally, using our equation (2)
from the model of Section I, we can show
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w = f(k)− kf ′(k)

ẇ

w
=

k̇f ′(k)− k̇f ′(k)− k̇kf ′′(k)

f(k)− kf ′(k)

ẇ

w
=

− k̇kf ′′(k)

f(k)− kf ′(k)

ẇ

w
=

− k̇kf ′′(k)
f(k)

1− α
ẇ

w
=

− vkf ′′(k)

f(k)(1− α)
=
− k̇kf ′f ′′

ff ′(1− α)

ẇ

w
=

−α k̇f ′′
f ′(1− α)

=
−α k̇(α− 1)f ′

(1− α)fασ

ẇ

w
=

k̇f ′

fσ
=
α

σ

k̇

k

ẇ

w
=

1

σ

ẏ

y
=

1

σ

ċ

c

Assuming Cobb-Douglas production, σ = 1.

ẇ

w
=

˙̂
ty

yt
=
ċ

c

Thus, we can derive:

r =
γ

1− λ

(
ċ

c
(1− λ)

)
+ ρ+ γg

r = γ

(
ċ

c

)
+ ρ+ γg

which is identical to the Euler equation without rule of thumb consumers
(result (3)).
In the non-Cobb-Douglas case, this result is

r = γ

(
ċ

c

)
1− λ

σ

1− λ + ρ+ γg

8 Finite Horizons: Derivation of results (16)-
(17)

We provide a brief review of the Blanchard model here, as well as deriving the
key results of the main text.
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Production in the Blanchard model is identical to the Ramsey model, so we
simply restate the key relationships from Section 1 for reference.

y = f(k)

r̃ = (1− τ)f ′(k)

w = f(k)− kf ′(k)

The derivation of the Blanchard model’s Euler equation follows Ramsey
except for his infinite-horizon assumption. Let the probability that a household
ends be p per period. Therefore, following the procedure of Section 1, we can
write the present value of the household i’s utility as:

Utility =

∫ ∞
0

e−(ρ+p)tu(ci(t))dt

assuming CRRA, =

∫ ∞
0

e−(ρ+p)t ci(t)
1−γ

1− γ dt

The after-tax dynamic budget constraint is now:

k̇i = (1− τn)w + ((1− τk)r + p) ki − ci
Note the extra rate of return that the household obtains on ki. This is due to
Blanchard’s assumption that assets are annuitized in the economy to prevent
accidental bequests. We will discuss this assumption and the impact of relaxing
it later in the paper and in this Appendix. To allow temporary indebtedness,
the credit markets will require that the present value of household assets, using
the augmented discount rate, must be non-negative. That is:

lim
t→∞

ki(t)e
−(r+p)t ≥ 0

Proceeding as in the Ramsey model, we can set up a Hamiltonian function
and find the expression for the household’s optimal growth rate of consumption.

H = e−(ρ+p)t ci(t)
1−γ

1− γ + ϕ(t) [(1− τn)w + ((1− τk)r + p) ki − ci + T ]

FOCk : ((1− τk)r + p)ϕ(t) = −ϕ̇(t)

FOCci : e−(ρ+p)tci(t)
−γ = ϕ(t)

dFOCci
dt

: ϕ̇(t) = −(ρ+ p)e−(ρ+p)tci(t)
−γ − γe−(ρ+p)tci(t)

−γ−1ċ(t)

− ((1− τk)r + p) e−(ρ+p)tci(t)
−γ = −(ρ+ p)e−(ρ+p)tci(t)

−γ − γe−(ρ+p)tci(t)
−γ−1ċ(t)

− ((1− τk)r + p) = −(ρ+ p)− γ ċi(t)
ci(t)

((1− τk)r + p) = γ
ċi(t)

ci(t)
+ (ρ+ p)

r̃ = γ
ċi
ci

+ ρ.
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This gives the individual household’s change over time in consumption. In
the Ramsey model, where all households were infinitely-lived and identical to
the aggregate, this would also have described the evolution of aggregate con-
sumption.
However, to derive aggregate consumption dynamics for the Blanchard model,

it is not suffi cient to use an individual household’s plan, since households termi-
nate while society does not. The aggregate consumption dynamics are derived
in Barro & Sala-i-Martin (1995, pp 110ff) and result in the following, for a
CRRA instantaneous utility function:

ċt
ct

=
1

γ

[
(r̃ − ρ)− (p+ n)

k(t)

c(t)
(ρ+ γp− (1− γ)r̃)

]

In the steady state, ċtct = g. Denoting steady state values with a ∗, we have

(r̃ − ρ) = (p+ n)
k(t)∗

c(t)∗
(ρ+ γp− (1− γ)r̃) + γg

r̃ =
(p+ n)k(t)∗(ρ+ γp) + (ρ)c(t)∗ + γgc(t)

(p+ n)k(t)∗(1− γ) + c(t)∗

We also note the expression for the change in the capital stock, k

k̇ = f(k)− c

In the steady state, k̇k = g, so

c(t)∗ = f(k∗)− gk(t)∗

We substitute to derive the Euler steady state condition

r̃ =
(p+ n)k(t)∗(ρ+ γp) + (ρ) (f(k∗)− gk(t)∗) + γg(f − gk)

(p+ n)k(t)∗(1− γ) + f(k∗)− gk(t)∗

r̃ =
pk(t)∗(ρ+ γp) + (ρ+ γg)(f(k∗)− gk)

pk(t)∗(1− γ) + f(k∗)− gk(t)∗

r̃ =
ρf(k) + k(t)(p)(ρ+ γp) + g(γ(f(k)− gk)− ρk)

f(k) + k(t)(p)(1− γ)− gk .

For simplicity, we will assume that g = 0.

r̃ =
ρf(k) + k(t)(p)(ρ+ γp)

f(k) + k(t)(p)(1− γ)
.

Assuming γ = 1, this simplifies to result (16) from the main text

r =
1

1− τk

(
ρ+ p(ρ+ p)

k(t)

f(k)

)
. (16)
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Tax revenue can be expressed as before:

R = τkkf
′(k) + τn(f − kf ′(k))

The derivative of revenue with respect to a change in the capital tax is thus:

dR

dτk
= kf ′ + [τk (kf ′′ + f ′) + τn(−kf ′′)] dk

dτk

As with the Ramsey model, we have two conditions on steady state r̃. Set-
ting them equal, continuing to assume g = 0 for simplicity, we get

(1− τk)ff ′ = ρf + p(ρ+ p)k

With this result and assuming Cobb-Douglas production, we can solve for
dk
dτk

.,

(1− τk)kααkα−1 = ρkα + p(ρ+ p)k

α(1− τk) = ρk1−α + p(ρ+ p)k2−2α

0 = p(ρ+ p)k2−2α + ρk1−α − α(1− τk)

With depreciation,

(1− τk) (kα − δk)
(
αkα−1 − δ

)
= ρ (kα − δk) + p(ρ+ p)k

(1− τk) (kα − δk)
(
αkα−1 − δ

)
= ρ (kα − δk) + p(ρ+ p)k

(1− τk)
(
αk2α−1 − δkα − αδkα + δ2k

)
= ρkα − ρδk + p(ρ+ p)k

(p(ρ+ p)− δ [ρ+ δ(1− τk)]) k2−2α + [ρ+ δ (1 + α) (1− τk)] k1−α − α(1− τk) = 0

which is a quadratic equation in β where

β = k1−α

Solving the quadratic yields:

β =
−ρ+

√
ρ2 + 4p(ρ+ p)α(1− τk)

2p(ρ+ p)

so that

k =

(
−ρ+

√
ρ2 + 4p(ρ+ p)α(1− τk)

2p(ρ+ p)

) 1
1−α

with depreciation,

β =
− [ρ+ δ (1 + α) (1− τk)] +

√
[ρ+ δ (1 + α) (1− τk)]

2
+ 4 (p(ρ+ p)− δ [ρ+ δ(1− τk)])α(1− τk)

2 (p(ρ+ p)− δ [ρ+ δ(1− τk)])
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so that

k =

− [ρ+ δ (1 + α) (1− τk)] +

√
[ρ+ δ (1 + α) (1− τk)]

2
+ 4 (p(ρ+ p)− δ [ρ+ δ(1− τk)])α(1− τk)

2 (p(ρ+ p)− δ [ρ+ δ(1− τk)])


1

1−α

and

dk

dτk
=

1

1− α
−2p(ρ+ p) 1

24p(ρ+ p)α
[
ρ2 + 4p(ρ+ p)α(1− τk)

]−1
2

2p(ρ+ p)2p(ρ+ p)

(
−ρ+

√
ρ2 + 4p(ρ+ p)α(1− τk)

2p(ρ+ p)

) α
1−α

dk

dτk
=

−α
1− α

1

[ρ2 + 4p(ρ+ p)α(1− τk)]
1
2

−ρ+
[
ρ2 + 4p(ρ+ p)α(1− τk)

] 1
2

2p(ρ+ p)

 α
1−α

Substituting this result into dR
dτk

yields the result in the text:

dR

dτk
= kf ′+[τk (kf ′′ + f ′) + τn(−kf ′′)] −α

1− α
1

[ρ2 + 4p(ρ+ p)α(1− τk)]
1
2

−ρ+
[
ρ2 + 4p(ρ+ p)α(1− τk)

] 1
2

2p(ρ+ p)

 α
1−α

Simplify with Cobb-Douglas

dR

dτk
=


kαkα−1 +

[
τk
(
kα (α− 1) kα−2 + αkα−1

)
+τn(−kα (α− 1) kα−2)

]
−α
1−α

1

[ρ2+4p(ρ+p)α(1−τk)]
1
2

(
−ρ+[ρ2+4p(ρ+p)α(1−τk)]

1
2

2p(ρ+p)

) α
1−α


dR

dτk
=


kαkα−1 − α

1−ααk
α−1 [ατk + (1− α) τn]

1

[ρ2+4p(ρ+p)α(1−τk)]
1
2

(
−ρ+[ρ2+4p(ρ+p)α(1−τk)]

1
2

2p(ρ+p)

) α
1−α


Now, note that

kα =

(
−ρ+

√
ρ2 + 4p(ρ+ p)α(1− τk)

2p(ρ+ p)

) α
1−α

so,

dR

dτk
=

{
kαkα−1 − α

1− ααk
α−1 [ατk + (1− α) τn]

1

[ρ2 + 4p(ρ+ p)α(1− τk)]
1
2

kα

}

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
1

[ρ2 + 4p(ρ+ p)α(1− τk)]
1
2

kα−1

}
Now, note that

kα−1 =

(
2p(ρ+ p)

−ρ+
√
ρ2 + 4p(ρ+ p)α(1− τk)

)
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so

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
1

[ρ2 + 4p(ρ+ p)α(1− τk)]
1
2

(
2p(ρ+ p)

−ρ+
√
ρ2 + 4p(ρ+ p)α(1− τk)

)}

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
2p(ρ+ p)

−ρ [ρ2 + 4p(ρ+ p)α(1− τk)]
1
2 + [ρ2 + 4p(ρ+ p)α(1− τk)]

}
which is the result in the main text.
We call the reader’s attention to the fact that, if we allow p = 0, as in the

Ramsey model, which implies r̃ = ρ in this case, (21) reduces to our result (6)
from the Ramsey model. You’d need to apply L’hopital’s rule to the expression,
though, as follows:

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
2(ρ+ p) + 2p

− 1
2ρ (4p+ 4 (ρ+ p))α(1− τk) [ρ2 + 4p(ρ+ p)α(1− τk)]

− 1
2 + (4p+ 4 (ρ+ p))α(1− τk)

}

limp→0 is

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
2ρ

− 1
2ρ4ρα(1− τk) [ρ2]

− 1
2 + 4ρα(1− τk)

}

dR

dτk
= αkα

{
1− α

1− α [ατk + (1− α) τn]
1

α(1− τk)

}
dR

dτk
= αkα

{
1− [ατk + (1− α) τn]

(1− α) (1− τk)

}
the Ramsey result.

8.1 Sidebar on Aggregate Euler

In the original appendix, we used the result in Barro & Sala-i-Martin to shortcut
to the aggregate Euler equation. Here, we derive it ourselves. The analysis
will work off the inelastic labor supply model of Section 1, and we will assume
g = n = 0 and γ = 1 for simplicity.
Therefore, the utility function of the household is

U =

∫
e−(ρ+p)(v−t) c

1−γ − 1

1− γ dv (1)

subject to the dynamic budget constraint

k̇i = (1− τn)w + ((1− τk)r + p)ki − ci + Ti (2)

where Ti is transfers given to household i. Equations (1) and (2) imply the
individual Euler equation:
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ċ

c
= (1− τk)r − ρ (3)

and the tranversality condition is

lim
v→∞

e−((1−τk)r+p)(v−t)kjv = 0 (4)

where j indexes the cohort born in period j.
We can integrate the individual dynamic budget constraint to get the indi-

vidual’s lifetime budget constraint:∫
cjve

−((1−τk)r+p)(v−t)dv = kjt + (1− τn)w̃t + T̃jt (5)

where a tilde over a variable indicates that it is the present value of the stream
of that variable over time, i.e.,

w̃t =

∫ ∞
t

wve
−((1−τk)r+p)(v−t)dv (6)

From the Euler equation, note that

cv = cte
−((1−τk)r−ρ)(v−t) (7)

Using this and solving the integral in (5), we obtain

ct = (ρ+ p)(kjt + (1− τn)w̃t + T̃jt) (8)

which states that an individual’s marginal propensity to consume out of the
present value of wealth is (ρ+ p).

Aggregating across cohorts j,

Ct =

∫ t

−∞
cjt(p+ n)enje−p(t−j)dj (9)

Kt =

∫ t

−∞
kjt(p+ n)enje−p(t−j)dj (10)

(1− τn)W̃t = (1− τn)w̃ent = ent(1− τn)

∫ ∞
t

wve
−((1−τk)r+p)(v−t)dv (11)

T̃t = T̃jte
nt (12)

since transfers and wages are independent of age (since the Blanchard probabil-
ity doesn’t depend on age).
Since (ρ+ p) is constant, we can simply write

Ct = (ρ+ p)(Kjt + (1− τn)W̃t + T̃t) (13)
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so the time derivative is

Ċt = (ρ+ p)(K̇jt + (1− τn)
dW̃t

dt
+
dT̃t
dt

) (14)

where

K̇t =
d

dt

∫ t

−∞
kjt(p+ n)enje−p(t−j)dj (15)

Applying Leibniz’s rule to (15), we obtain

K̇t = k(t, t) +

∫ t

−∞
[k̇jt(p+ n)enje−p(t−j) − pkj(p+ n)enje−p(t−j)]dj

= 0 + [k̇jte
nje−p(t−j)]t∞ − [pkje

nje−p(t−j)]t∞

= k̇jte
nt − pktent

= ((1− τk)r + p)Kt + (1− τn)Wt − Ct + Tt − pKt

K̇t = (1− τk)rKt + (1− τn)Wt − Ct + Tt (16)

Also,

(1− τn)
dW̃t

dt
=

d

dt
ent
∫ ∞
t

(1− τn)wve
−((1−τk)r+p)(v−t)dv

(1− τn)
dW̃t

dt
= nent

∫ ∞
t

(1− τn)wte
−((1−τk)r+p)(v−t)dv

+ent[(1− τn)wte
−((1−τk)r+p)(∞) − (1− τn)wte

−((1−τk)r+p)(0)

+

∫ ∞
t

(1− τn)wv((1− τk)r + p)e−((1−τk)r+p)(v−t)dv]

(1− τn)
dW̃t

dt
= (1− τn)nW̃t − (1− τn)wte

nt + (1− τn)((1− τk) + p)W̃t

(1− τn)
dW̃t

dt
= ((1− τk)r + p+ n)(1− τn)W̃t − (1− τn)wte

nt (17)

And, finally,

dT̃t
dt

=
d

dt
ent
∫ ∞
t

Tve
((1−τk)r+p)(v−t)dv

where
Tv = τkrkv + τnw

In parallel to the derivation of (1− τn)dW̃t

dt , we immediately obtain

dT̃t
dt

= ((1− τk)r + p+ n)T̃t − Ttent

dT̃t
dt

= ((1− τk)r + p+ n)T̃t − τkrKt + τnwe
nt (18)
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Thus, we can substitute (16)-(18) into the aggregate Euler equation and obtain:

Ċt = (ρ+ p)

(
K̇jt + (1− τn)

dW̃t

dt
+
dT̃t
dt

)
(14)

= (ρ+ p)

 (1− τk)rKt + (1− τn)Wt − Ct + Tv+

((1− τk)r + p+ n)(1− τn)W̃t − (1− τn)wte
nt

+((1− τk)r + p+ n)T̃t − τkrKt − τnwent


= (ρ+ p)

 (1− τk)rKt + (1− τn)Wt − Ct + τkrKt + τnwe
nt+

((1− τk)r + p+ n)(1− τn)W̃t − (1− τn)wte
nt

+((1− τk)r + p+ n)T̃t − τkrKt − τnwent

 (11)

= (ρ+ p)

 (1− τk)rKt − Ct+
((1− τk)r + p+ n)(1− τn)W̃t

+((1− τk)r + p+ n)T̃t


Now we must substitute in for C.

Ct = (ρ+ p)(Kjt + (1− τn)W̃t + T̃t) (13)

so,

Ċt = (ρ+ p)

(
(1− τk)rKt − (ρ+ p)(Kjt + (1− τn)W̃t + T̃t)+

((1− τk)r + p+ n)
[
(1− τn)W̃t + T̃t

] )
Ċt = (ρ+ p)

[
((1− τk)r − ρ) (Kjt + (1− τn)W̃t + T̃t)− pK + n

(
(1− τn)W̃t + T̃t

)]
therefore,

Ċt
Ct

=
(ρ+ p)

[
((1− τk)r − ρ) (Kjt + (1− τn)W̃t + T̃t)− pK + n

(
(1− τn)W̃t + T̃t

)]
(ρ+ p)(Kjt + (1− τn)W̃t + T̃t)

Ċt
Ct

= ((1− τk)r − ρ)− (ρ+ p)pK

Ct
+
n
(

(1− τn)W̃t + T̃t

)
Ct

Ċt
Ct

= ((1− τk)r − ρ)− (ρ+ p) (p+ n)K

Ct
+ n (19)

as in Barro & Sala-i-Martin.
This analysis was completed by noting that consumption equalled output in

the steady-state. That is,

C∗ = f(K∗) (20)

8.2 Aside on Incomplete Annuitization in Blanchard model

As Blanchard (1985) and Yaari (1965) argued, agents in a finite-horizon world
with probabilistic death face an uncertain time of death, and if optimizing,
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would seek to enter into annuity contracts in which an annuity issuer would
pay them a per-period premium in exchange for a claim on their assets at the
time of death.1 If the annuity market is competitive, those premia, when paid
to a large population, will equal the expected assets assumed by the insurance
companies. If the probability of death is p, each agent receives a premium per
period of p for each unit of the consumption good that the annuity issuer will
assume upon the agent’s death. If the annuity market is not complete, there
will be unintended bequests by agents who die ”early”.
If annuitization is incomplete, there will be unintended bequests. We will

assume for simplicity that these are transferred in lump-sum fashion to new
entrants to the population. An existing household’s flow budget constraint can
be written as follows. Note tht the rate of return on capital is now simply r, as
the lack of annuity markets means that the household no longer enjoys return
r + ρ.

k̇(t) = rk(t) + w(t)− c(t)
The household’s utility function is the same as before, though we assume log

utility in this section for convenience:

U =

∫ ∞
0

e−(ρ+p)t ln c(t)dt

Setting up the Hamiltonian and maximizing, as above, we obtain:

lim
t→∞

e−rtk(t) = k(0)e−r·0 +

∫ ∞
0

e−rt(w(t)− c(t))dt

by the transversality condition, lim
t→∞

e−rtk(t) = 0, so∫ ∞
0

e(−r+r−ρ−p)tc(0) = k(0) + w̃∫ ∞
0

e−(ρ+p)tc(0) = k(0) + w̃

c(0) = (ρ+ p) [k(0) + w̃(0)]

where we denote the present value of wages w̃.
We will continue to assume n = 0 for simplicity, so new households enter the

population at rate p to hold population constant. Our aggregate consumption,
capital, wealth, and bequests can be written:

C(t) =

∫ t

−∞
c(j, t)pe−p(t−j)dj

K(t) =

∫ t

−∞
k(j, t)pe−p(t−j)dj

1This structure can alternatively be thought of as the existence of insurance markets, in
which the agents pay insurers a per-period premium in exchange for which the insurers cover
the agents’debts at the time of death.
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where each c(j, t) is multiplied by p, the size of the cohort, and raised to
e−p(t−j) to scale by the number of cohort members alive at time t ≥ j. The
present value of aggregate wages at time t can be written as follows, where the
discount rate is r because the rate of return is r, not r + p, due to the lack of
annuitization.

W̃ (t) =

∫ ∞
t

w(v)e−rvdv

Solving the aggregate consumption equation by substituting in our equation,
simplifying, and applying the transversality condition, we get

C(t) =

∫ t

−∞
c(j, t)pe−p(t−j)dj

C(t) =

∫ t

−∞
(ρ+ p) [k(j) + w̃(j)] pe−p(t−j)dj

C(t) = (ρ+ p)

[
K(t) + W̃ (t)

p
pe−p(t−t) − K(t) + W̃ (t)

p
pe−p(t+∞)

]
C(t) = (ρ+ p)

[
K(t) + W̃ (t)

]
To derive the aggregate consumption dynamics, we note that

Ċ(t) = (ρ+ p)

[
K(t) +

dW̃ (t)

dt

]

We can determine K̇ with the following process, which utilizes Leibniz’s rule
for the derivative of an integral:

K̇(t) =
d

dt

[∫ t

−∞
k(j, t)pe−p(t−j)dj

]
K̇(t) = k(t, t)pe−p(t−t) +

∫ t

−∞

[
k̇(j, t)pe−p(t−j) − pk(j, t)pe−p(t−j)

]
dj

In traditional Blanchard analysis, k(t, t) = 0, since new households enter
with no assets. In this model, they immediately receive the per capita bequest
transfer upon entering, so k(t, t) = b(t) = pk(t)

p = k(t). Thus, using this result
and k(t) from before, and calculating the integral above, we get:

K̇(t) = pk(t) +
p

p
[rk(t) + w(t)− c(t)]− pk(t)

K̇(t) = rK(t) +W (t)−C(t)

K̇(t) = rK(t) +W (t)−C(t)
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We can determine dW̃ (t)
dt as follows. Note that ent = 1, since n = 0 by

assumption:

dW̃ (t)

dt
=

d

dt

∫ ∞
t

w(v)e−r(v−t)dv

= −w(t) +

∫
rw(v)e−r(v−t)dv

= −w(t) +

∫
rw̃(v)dv

= −w(t) + rw̃(t)

= −W (t) + rW̃ (t)

dW̃ (t)

dt
= rW̃ (t)−W (t)

Inserting results into our equation for Ċ(t), we get:

Ċ(t) = (ρ+ p)

[
K̇(t) +

dW̃ (t)

dt

]
Ċ(t) = (ρ+ p)

[
rK(t) +W (t)−C(t) + rW̃ (t)−W (t)

]
Ċ(t) = (ρ+ p)

[
rK(t)−C(t) + rW̃ (t)

]
Dividing by C(t) to obtain the growth rate of per capita aggregate consump-

tion, and simplifying,

Ċ(t)

C(t)
=

(ρ+ p)
[
rK(t)−C(t) + rW̃ (t)

]
(ρ+ p)

[
K(t) + W̃ (t)

]
Ċ(t)

C(t)
=

rK(t)−C(t) + rW̃ (t)

K(t) + W̃ (t)

substituting in C(t) to the numerator

Ċ(t)

C(t)
=

rK(t)− (ρ+ p)
[
K(t) + W̃ (t)

]
+ rW̃ (t)

K(t) + W̃ (t)

Ċ(t)

C(t)
=

(r − ρ− p)K(t) + (r − ρ− p) W̃ (t)

K(t) + W̃ (t)

Ċ(t)

C(t)
=

(r − ρ− p)
[
K(t) + W̃ (t)

]
K(t) + W̃ (t)

Ċ(t)

C(t)
= r − ρ− p

We point out the similarity between this result and the result for the growth
rate of consumption in the Ramsey model, r − ρ.
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9 Externalities to Capital

The equations are:
κ = kβ . (22)

y = κkαn1−α. (23)

r = ακkα−1n1−α. (24)

w = (1− α)κkαn−α. (25)

v′(n) =
− (1− τn)w

c
. (26)

r =
ρ+ γg

1− τk
. (27)

c = κkαn1−α − gk. (28)

Otherwise, the analysis is exactly as in the main model. To derive these results,
we use the system of two equations that simplifies (22-28):In Cobb-Douglas,

(1− τk)αkα+β−1N1−α − (γg + ρ) = 0.

v′(N) ·
(
kα+βN1−α − gk

)
+ (1− τn) (1− α)kα+βn−α = 0.

9.1 Capital Tax Cut

For dk
dτk
, take the total derivative of the first of these:

dτk
[
−αkα+β−1N1−α]+dτn [0]+dN

[
(1− τk)α (1− α) kα+β−1N−α

]
+dk

[
(1− τk)α (α+ β − 1) kα+β−2N1−α] = 0

dk

dτk
=
αkα+β−1N1−α − dN

dτk

[
(1− τk)α (1− α) kα+β−1N−α

]
(1− τk)α (α+ β − 1) kα+β−2N1−α

For dN
dτk
, again apply the implicit function theorem, this time to the second

of these

v′(N) · (f(k,N)− gk) + (1− τn) fn(k,N) = 0

We switch to Cobb-Douglas, where f(k,N) = kα+βN1−α

v′(N)
[
kα+βN1−α − gk

]
+ (1− τn)(1− α)kα+βN−α = 0

From the first, we can write

αkα+β−1N1−α =
ρ+ γg

1− τk

z =
k

n
=

(
ρ+ γg

ακ (1− τk)

) 1
α−1
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We can rewrite the second with z.

v′(N) =
−(1− τn)(1− α)κzα

κzαN − gzN

v′(N)N =
−(1− τn)(1− α)κ

κ− gz1−α

v′(N)N =
−(1− τn)(1− α)κ

κ− ακ(1−τk)g
ρ+γg

v′(N)N =
−(1− τn)(1− α)

1− α(1−τk)g
ρ+γg

v′(N)N =
−(1− τn)(1− α) (ρ+ γg)

ρ+ g(γ − α(1− τk))

Rewriting,

v′(N)N +
(1− τn)(1− α) (ρ+ γg)

ρ+ g(γ − α(1− τk))
= 0

We take the total derivative of this expression to find our result.
dN [Nv′′(N) + v′(N)] +

dτn

[
[ρ+g(γ−α(1−τk))](−)[(1−α)(ρ+γg)]

[ρ+g(γ−α(1−τk))]2

]
+

dτk

[
−(1−τn)(1−α)(ρ+γg)αg

[ρ+g(γ−α(1−τk))]2

]
 = 0.

Dividing through by dτk, we obtain

dN

dτk
[Nv′′(N) + v′(N)] =

(1− τn)(1− α)(ρ+ γg)αg

[ρ+ g(γ − α(1− τk))]
2 .

From our results for the elasticity of labor supply, we know that

Nv′′(N) + v′(N) = v′(N)

(
1 + σ

σ

)
Nv′′(N) + v′(N) =

−(1− τn)(1− α) (ρ+ γg)

ρ+ g(γ − α(1− τk))

(
1 + σ

Nσ

)
.

Thus,

dN

dτk
=

(1− τn)(1− α)(ρ+ γg)αg

[ρ+ g(γ − α(1− τk))]
2

ρ+ g(γ − α(1− τk))

−(1− τn)(1− α) (ρ+ γg)

(
Nσ

1 + σ

)
dN

dτk
=

−αg
ρ+ g(γ − α(1− τk))

(
Nσ

1 + σ

)
dN

dτk
=

αgN

αg(1− τk)− (ρ+ γg)

(
σ

1 + σ

)
.
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We use this in our expression for dk
dτk

to obtain, assuming Cobb-Douglas.

dk

dτk
=
αkα+β−1N1−α − dN

dτk

[
(1− τk)α (1− α) kα+β−1N−α

]
(1− τk)α (α+ β − 1) kα+β−2N1−α

dk

dτk
=
αkα+β−1N1−α − αgN

αg(1−τk)−(ρ+γg)

(
σ

1+σ

) [
(1− τk)α (1− α) kα+β−1N−α

]
(1− τk)α (α+ β − 1) kα+β−2N1−α

Cancelling terms in the numerator and denominator,

dk

dτk
=

1− (1− τk) (1− α) αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1− τk) (α+ β − 1) k−1

dk

dτk
=

1− (1− τk) (1− α) αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1− τk) (α+ β − 1) k−1

dk

dτk
=

[αg(1− τk)− (ρ+ γg)] (1 + σ)− (1− τk) (1− α)αgσ

[αg(1− τk)− (ρ+ γg)] (1 + σ) (1− τk) (α+ β − 1) k−1

dk

dτk
=

[αg(1− τk)− (ρ+ γg)] (1 + σ)− (1− τk) (1− α)αgσ

−(1− τk) (1− α− β) k−1 [αg(1− τk)− (ρ+ γg)] (1 + σ)

dk

dτk
=

k {α (1− α) (1− τk)gσ − [αg(1− τk)− (ρ+ γg)] (1 + σ)}
(1− α− β) (1− τk) [αg(1− τk)− (ρ+ γg)] (1 + σ)

Though this is not a particularly simple expression, it reduces well in our
overall result. That is, insert this result for dk

dτk
and our result for dN

dτk
into our

result for dR
dτk

from the main text to obtain, assuming Cobb-Douglas,

R = τkrk + τnwN

R = (ατk + (1− α) τn) kα+βN1−α

dR

dτk

∣∣∣∣
dynamic

=


αkα+βN1−α

+ dk
dτk

(α+ β) kα+β−1N1−α (ατk + (1− α) τn)

+ dN
dτk

(1− α) kα+βN−α (ατk + (1− α) τn)


simplifying, and pulling out kfk, we obtain

dR

dτk

∣∣∣∣
dynamic

=


αkα+βN1−α+

(ατk + (1− α) τn)

[ dk
dτk

(α+ β) kα+β−1N1−α

+ dN
dτk

(1− α) kα+βN−α

] 
dR

dτk

∣∣∣∣
dynamic

=


αkα+βN1−α

(ατk + (1− α) τn)

 1−(1−τk)(1−α) αg
αg(1−τk)−(ρ+γg) (

σ
1+σ )

(1−τk)(α+β−1)k−1 (α+ β) kα+β−1N1−α

+ αgN
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1− α) kα+βN−α
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dR

dτk

∣∣∣∣
dynamic

=


αkα+βN1−α+

(ατk + (1− α) τn)αkα+βN1−α

 1−(1−τk)(1−α) αg
αg(1−τk)−(ρ+γg) (

σ
1+σ )

(1−τk)(α+β−1)
(α+β)
α

+ αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1−α)
α




dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α


1+

(ατk + (1− α) τn)

 1−(1−τk)(1−α) αg
αg(1−τk)−(ρ+γg) (

σ
1+σ )

(1−τk)(α+β−1)
(α+β)
α

+ αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1−α)
α




dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α


1+

(ατk + (1− α) τn)

 1
(1−τk)(α+β−1)

(α+β)
α −

(1−α) αg
αg(1−τk)−(ρ+γg) (

σ
1+σ )

(α+β−1)
(α+β)
α

+ αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1−α)
α




dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α


1+

(ατk + (1− α) τn)

 1
(1−τk)(α+β−1)

(α+β)
α + αg

αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(α+β)
α

(1−α)
(1−α−β)

+ αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

)
(1−α)
α




dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α


1+

(ατk + (1− α) τn)

[
1

(1−τk)(α+β−1)
(α+β)
α

+ αg
αg(1−τk)−(ρ+γg)

(
σ

1+σ

) [
(α+β)
α

(1−α)
(1−α−β) + (1−α)

α

] ]


dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α

{
1+

(ατk + (1− α) τn)
[

1
(1−τk)(α+β−1)

(α+β)
α + 1

αg(1−τk)−(ρ+γg)
σ

1+σ g
(

(1−α)
(1−α−β)

)] }

dR

dτk

∣∣∣∣
dynamic

= αkα+βN1−α

{
1−

(ατk+(1−α)τn)
(1−τk)(1−α−β)

α+β
α − (ατk+(1−α)τn)

(ρ+γg)−α(1−τk)g
(1−α)

(1−α−β)
σ

1+σ g

}

9.2 Labor Tax Cut

For dN
dτn
, we refer to the total derivative of the second. Dividing through by

dτn, we obtain
dN [Nv′′(N) + v′(N)] +

dτn

[
[ρ+g(γ−α(1−τk))](−)[(1−α)(ρ+γg)]

[ρ+g(γ−α(1−τk))]2

]
+

dτk

[
−(1−τn)(1−α)(ρ+γg)αg

[ρ+g(γ−α(1−τk))]2

]
 = 0.

Dividing through by dτk, we obtain

dN

dτn
[Nv′′(N) + v′(N)] =

[(1− α)(ρ+ γg)]

[ρ+ g(γ − α(1− τk))]
.

From our results for the elasticity of labor supply, we know that
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Nv′′(N) + v′(N) = v′(N)

(
1 + σ

σ

)
Nv′′(N) + v′(N) =

−(1− τn)(1− α) (ρ+ γg)

ρ+ g(γ − α(1− τk))

(
1 + σ

Nσ

)
.

Thus,

dN

dτn
[Nv′′(N) + v′(N)] =

ρ+ g(γ − α(1− τk))

−(1− τn)(1− α) (ρ+ γg)

[(1− α)(ρ+ γg)]

[ρ+ g(γ − α(1− τk))]

Nσ

(1 + σ)
.

dN

dτn
=

N

−(1− τn)

σ

(1 + σ)
.

Substituting this expression into that for dk
dτn

gives

dτk
[
−αkα+β−1N1−α]+dτn [0]+dN

[
(1− τk)α (1− α) kα+β−1N−α

]
+dk

[
(1− τk)α (α+ β − 1) kα+β−2N1−α] = 0

dk

dτn
=
dN

dτn

(1− α) k

(1− α− β)N

dk

dτn
=

−k
(1− τn)

σ

(1 + σ)

(1− α)

(1− α− β)

Returning to our expression for dR
dτn
, we obtain

R = τkrk + τnwN

R = (ατk + (1− α) τn) kα+βN1−α

dR

dτn

∣∣∣∣
dynamic

=


(1− α) kα+βN1−α

+ dk
dτn

(α+ β) kα+β−1N1−α (ατk + (1− α) τn)

+ dN
dτn

(1− α) kα+βN−α (ατk + (1− α) τn)


dR

dτn

∣∣∣∣
dynamic

=


(1− α) kα+βN1−α

+ −k
(1−τn)

σ
(1+σ)

(1−α)
(1−α−β) (α+ β) kα+β−1N1−α (ατk + (1− α) τn)

+ N
−(1−τn)

σ
(1+σ) (1− α) kα+βN−α (ατk + (1− α) τn)


dR

dτn

∣∣∣∣
dynamic

=

{
(1− α) kα+βN1−α

−
[

1
(1−τn)

(1−α)
(1−α−β)

(α+β)
(1−α) + 1

(1−τn)

]
σ

(1+σ) (1− α) kα+βN1−α (ατk + (1− α) τn)

}

dR

dτn

∣∣∣∣
dynamic

=

{
(1− α) kα+βN1−α

−
[

1
(1−τn)

1
(1−α−β)

]
σ

(1+σ) (1− α) kα+βN1−α (ατk + (1− α) τn)

}
dR

dτn

∣∣∣∣
dynamic

= (1− α) kα+βN1−α
{

1− ατk + (1− α) τn
(1− α− β)(1− τn)

σ

(1 + σ)

}
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10 Imperfect Competition—Results (18)-(23)

On the production side, note that

f (k, n) = kαn1−α − δk. (1)

However, due to imperfect competition, factor returns are distorted away from
their marginal products, so that:

r =
fk
µ

(2)

w =
fn
µ

(3)

The household’s Hamiltonian is:

H : e−ρt
c1−γe(1−γ)v(n)

1− γ + λ [(1− τk) rk + (1− τn)wn+ (1− τπ)π − c+ T ]

where π is pre-tax profit for the firms, equal to the fraction θ of operating profit
that is not dissipated by costs of entry. Households take their share of this profit
as exogenous to their actions; that is, they consider investment of another unit
of capital as yielding the after tax rate of return (1− τk) r. Taking first-order
conditions of H, we get:

FOCc : e−ρtc−γe(1−γ)v(n) = λ

FOCn : e−ρtv′(n)c1−γe(1−γ)v(n) = −λ (1− τn)w

FOCk : −λ̇ = λ (1− τk) r

Combining the first two FOCs gives result (4);

v′ (n) c = − (1− τn)w (4)

Take the time derivative of the first of these results:

dFOCc
dt

: −ρλ− γ ċ
c
λ = λ̇

In the steady state, this yields result (5):

(1− τk) r = ρ+ γg (5)

In the steady state, total consumption is equal to final output in terms of
final goods consumption, non-dissipated profits, less investment. We can use
the dynamic budget constraint and set k̇ = gk and T equal to total tax revenue
to derive (6):

46



c =
f (k, n)

µ
+ π − gk (6)

Total tax revenue is:

R = τkrk + τnwn+ τππ (7)

and finally, non-dissipated profit (pure rents) is:

π = θ

(
f − f

µ

)
π = θ

µ− 1

µ
f (k, n) (8)

These equations (1)-(8) give our full model. We can proceed by first simplifying
them to four key results:

(1− τk) fk = µ (ρ+ γg) (9)

v′ (n)

(
f (k, n)

µ
+ θ

µ− 1

µ
f (k, n)− gk

)
= − (1− τn)

fn
µ

v′ (n) [(1 + θ (µ− 1)) f (k, n)− µgk] = − (1− τn) fn (10)

R =
1

µ
[τkfkk + τnfnn+ τπθ (µ− 1) f (k, n)] (11)

and,
f (k, n) = kαn1−α − δk. (12)

10.0.1 Capital tax results

Now, take the total derivative of (11)

dR =
1

µ

 dτk (fkk) + dτn (fnn) + dτπ (θ (µ− 1) f (k, n))
+dk [τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]
+dn [τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


dR

dτk
=

1

µ

 fkk
+ dk
dτk

[τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]

+ dn
dτk

[τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


Using Cobb-Douglas and simplifying,

dR

dτk
=

1

µ

 αkαn1−α

+αkαn1−α [τk (α) + τn (1− α) + τπ (θ (µ− 1))] 1
k
dk
dτk

+αkαn1−α [τk (α) + τn (−α+ 1) + τπ (θ (µ− 1))] 1−α
α

1
n
dn
dτk
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dR

dτk
=
αkαn1−α

µ

{
1 + [ατk + (1− α) τn + θ (µ− 1) τπ]

[
1

k

dk

dτk
+

1− α
α

1

n

dn

dτk

]}
Note that the static scoring estimate would be:

dR

dτk

∣∣∣∣
static

=
αkαn1−α

µ

So, now we need to know dk
dτk

and dn
dτk
. Use (9):

(1− τk) fk − µ (ρ+ γg) = 0

Then,

dk

dτk
=
fk − (1− τk) fkn

dn
dτk

(1− τk) fkk

Use (10) for dn
dτk
:

v′ (n) =
− (1− τn) fn

(1 + θ (µ− 1)) f (k, n)− µgk

v′ (n) =
− (1− τn) (1− α) kαn−α

(1 + θ (µ− 1)) kαn1−α − µgk

Now, let z = k
n , which by (9) is

z =

(
α (1− τk)

µ (ρ+ γg)

) 1
1−α

Then,

v′ (n) =
− (1− τn) (1− α) zα

(1 + θ (µ− 1)) zαn− µgzn

nv′ (n) =
− (1− τn) (1− α)

(1 + θ (µ− 1))− µgz1−α

nv′ (n) =
− (1− τn) (1− α)

(1 + θ (µ− 1))− µgα(1−τk)
µ(ρ+γg)

nv′ (n) =
− (1− τn) (1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

Thus,
dn

dτk
=

(1− τn) (1− α) (ρ+ γg) (αg)

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]
2

1

nv′′ + v′

Now, note that, from (10),

v′ (n) c+ (1− τn)w = 0
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so
dn

dw

∣∣∣∣
c̄

w

n
=
− (1− τn)

cv′′
−v′ (n) c

(1− τn)n
=
v′ (n)

nv′′
= σ

where σ is the constant-consumption elasticity of labor supply. Then,

1

nv′′ + v′
=

1

v′
σ

1 + σ
=

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]n

− (1− τn) (1− α) (ρ+ γg)

σ

1 + σ

so,

dn

dτk
=

[
(1−τn)(1−α)(ρ+γg)(αg)

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)]2

· [(1+θ(µ−1))(ρ+γg)−αg(1−τk)]n
−(1−τn)(1−α)(ρ+γg)

σ
1+σ

]
dn

dτk
=

−αgnσ
[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ)

Thus,

dk

dτk
=

αkα−1n1−α − α (1− α) (1− τk) kα−1n−α dn
dτk

−α (1− α) (1− τk) kα−2n1−α

dk

dτk
=
−k
[
1− (1− α) (1− τk) 1

n
dn
dτk

]
(1− α) (1− τk)

dk

dτk
=
−k
[
1− (1− α) (1− τk) −αgσ

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

]
(1− α) (1− τk)

dk

dτk
= −k [(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ) + (1− α) (1− τk)αgσ

(1− α) (1− τk) [(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ)

This is ugly, but plugging it into our equation for the dynamic change in revenue:

dR

dτk
=
αkαn1−α

µ


1− [ατk + (1− α) τn + θ (µ− 1) τπ][

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)αgσ
(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

+ 1−α
α

αgσ
[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] 
dR

dτk
=
αkαn1−α

µ

{
1− [ατk + (1− α) τn + θ (µ− 1) τπ][

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)αgσ+(1−α)(1−α)(1−τk)gσ
(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] }

dR

dτk
=
αkαn1−α

µ

{
1− [ατk + (1− α) τn + θ (µ− 1) τπ][

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)gσ
(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] }
dR

dτk
=
αkαn1−α

µ

{
1− ατk + (1− α) τn + θ (µ− 1) τπ

(1− α) (1− τk)
− ατk + (1− α) τn + θ (µ− 1) τπ

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

σ

1 + σ
g

}

49



Now, this expression is very similar to our expression for a model without
markups. If µ = 1, it collapses to that model, as expected. Note, however, that
it also collapses to the no-markup example if θ = 0, that is if all pure profits
are taken up by entry costs. Calculate the term inside the brackets for our
standard parameter values α = 1

3 , τk = τn = 1
4 , ρ = .05, g = .02, σ = 1

2 , γ = 1
and a few illustrative cases:
For µ = 5

4 , θ = 1, τπ = 1
4

1−
1
3
1
4+(1− 1

3 ) 14+1( 54−1) 14
(1− 1

3 )(1− 1
4 )

−
1
3
1
4+(1− 1

3 ) 14+1( 54−1) 14
(1+1( 54−1))(.05+.02)− 1

3 (.02)(1− 1
4 )

1
2

1+ 1
2

(.02) = 0.349 75

For µ = 1, θ = 1, , τπ = 1
4 , no-markup case

1−
1
3
1
4+(1− 1

3 ) 14+1(1−1) 14

(1− 1
3 )(1− 1

4 )
−

1
3
1
4+(1− 1

3 ) 14+1(1−1) 14

(1+1(1−1))(.05+.02)− 1
3 (.02)(1− 1

4 )

1
2

1+ 1
2

(.02) = 0.474 36

For µ = 5
4 , θ = 0, τπ = 1

4 , fully dissipated rents

1−
1
3
1
4+(1− 1

3 ) 14+0( 54−1) 14
(1− 1

3 )(1− 1
4 )

−
1
3
1
4+(1− 1

3 ) 14+0( 54−1) 14
(1+0( 54−1))(.05+.02)− 1

3 (.02)(1− 1
4 )

1
2

1+ 1
2

(.02) = 0.474 36

For µ = 11
10 , θ = 1, τπ = 1

4 , a smaller markup

1−
1
3
1
4+(1− 1

3 ) 14+1( 1110−1) 14
(1− 1

3 )(1− 1
4 )

−
1
3
1
4+(1− 1

3 ) 14+1( 1110−1) 14
(1+1( 1110−1))(.05+.02)− 1

3 (.02)(1− 1
4 )

1
2

1+ 1
2

(.02) = 0.424 54

For µ = 5
4 , θ = 1

2 , τπ = 1
4 , half dissipation

1−
1
3
1
4+(1− 1

3 ) 14+ 1
2 ( 54−1) 14

(1− 1
3 )(1− 1

4 )
−

1
3
1
4+(1− 1

3 ) 14+ 1
2 ( 54−1) 14

(1+ 1
2 ( 54−1))(.05+.02)− 1

3 (.02)(1− 1
4 )

1
2

1+ 1
2

(.02) = 0.412 08

For µ = 5
4 , θ = 1, τπ = 0, profits untaxed but markups not dissipated

1−
1
3
1
4+(1− 1

3 ) 14+1( 54−1)0

(1− 1
3 )(1− 1

4 )
−

1
3
1
4+(1− 1

3 ) 14+1( 54−1)0

(1+1( 54−1))(.05+.02)− 1
3 (.02)(1− 1

4 )

1
2

1+ 1
2

(.02) = 0.479 80

Note, by the way, that this is the result from our original paper, assuming
profits are not taxed and markups fully non-dissipated: that is, we had

1−ατk+(1−α)τn
(1−α)(1−τk) −

ατk+(1−α)τn
µ(ρ+γg)−αg(1−τk)

σ
1+σ g = 1−ατk+(1−α)τn+θ(µ−1)0

(1−α)(1−τk) − ατk+(1−α)τn+θ(µ−1)0
(1+1(µ−1))(ρ+γg)−αg(1−τk)

σ
1+σ g

But, this is probably an unrealistic assumption. Profits are taxed and are
probably partially dissipated. The case of µ = 5

4 , θ = 1
2 , τπ = 1

4 may provide a
good benchmark, and it indicates that the markup raises the feedback effect to
59% (from 53% in the no-markup case).

10.0.2 Labor tax results

dR =
1

µ

 dτk (fkk) + dτn (fnn) + dτπ (θ (µ− 1) f (k, n))
+dk [τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]
+dn [τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


dR

dτn
=

1

µ

 fnn
+ dk
dτn

[τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]

+ dn
dτn

[τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


For dk

dτn
, use result (9):

(1− τk) fk − µ (ρ+ γg) = 0 (9)
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dk

dτn
= −

(1− τk)fkn
dn
dτn

(1− τk)fkk
dk

dτn
= −fkn

fkk

dn

dτn

dk

dτn
= − α(1− α)kα−1n−α

α(α− 1)kα−2n1−α
dn

dτn
dk

dτn
=

k

n

dn

dτn

For dn
dτn
, use results from the earlier analysis:

nv′ (n) +
(1− τn) (1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)
= 0

dn

dτn
=

(1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

1

nv′′ + v′

dn

dτn
=

(1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]n

− (1− τn) (1− α) (ρ+ γg)

σ

1 + σ

dn

dτn
=

−n
(1− τn)

σ

1 + σ

Therefore,

dk

dτn
=

−k
(1− τn)

σ

1 + σ

So, using Cobb-Douglas and simplifying,

dR

dτn
=

1

µ

 (1− α)kαn1−α

+ (1− α) kαn1−α [τk (α) + τn (1− α) + τπ (θ (µ− 1))] α
1−α

1
k
dk
dτk

+ (1− α) kαn1−α [τk (α) + τn (−α+ 1) + τπ (θ (µ− 1))] 1
n
dn
dτk



dR

dτn
=

(1− α) kαn1−α

µ

{
1 + [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

1− α
1

k

dk

dτk
+

1

n

dn

dτk

]}

dR

dτn
=

(1− α) kαn1−α

µ

{
1 + [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

1− α
1

k

−k
(1− τn)

σ

1 + σ
+

1

n

−n
(1− τn)

σ

1 + σ

]}
dR

dτn
=

(1− α) kαn1−α

µ

{
1− [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

(1− α) (1− τn)

σ

1 + σ
+

1− α
(1− α) (1− τn)

σ

1 + σ

]}
dR

dτn
=

(1− α) kαn1−α

µ

{
1− ατk + (1− α) τn + θ (µ− 1) τπ

(1− α) (1− τn)

σ

1 + σ

}
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10.1 When profits are taxed at same rate as capital

On the production side, note that

f (k, n) = kαn1−α. (1)

However, due to imperfect competition, factor returns are distorted away from
their marginal products, so that:

r =
fk
µ

(2)

w =
fn
µ

(3)

The household’s Hamiltonian is:

H : e−ρt
c1−γe(1−γ)v(n)

1− γ + λ [(1− τk) rk + (1− τn)wn+ (1− τk)π − c+ T ]

where π is pre-tax profit for the firms, equal to the fraction θ of operating profit
that is not dissipated by costs of entry. Households pay the same rate of tax
on profits as they do on capital income, though they take their share of profits
as exogenous and assume that another unit of capital investment will pay back
(1− τk)r. Taking first-order conditions of H, we get:

FOCc : e−ρtc−γe(1−γ)v(n) = λ

FOCn : e−ρtv′(n)c1−γe(1−γ)v(n) = −λ (1− τn)w

FOCk : −λ̇ = λ (1− τk) r

Combining the first two FOCs gives result (4);

v′ (n) c = − (1− τn)w (4)

Take the time derivative of the first of these results:

dFOCc
dt

: −ρλ− γ ċ
c
λ = λ̇

In the steady state, this yields result (5):

(1− τk) r = ρ+ γg (5)

In the steady state, total consumption is equal to final output in terms of
final goods consumption, non-dissipated profits, less investment. We can use
the dynamic budget constraint and set k̇ = gk and T equal to total tax revenue
to derive (6):

c =
f (k, n)

µ
+ π − gk (6)
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Total tax revenue is:

R = τk (rk + π) + τnwn (7)

and finally, non-dissipated profit (pure rents) is:

π = θ

(
f − f

µ

)
π = θ

µ− 1

µ
f (k, n) (8)

These equations (1)-(8) give our full model. We can proceed by first simplifying
them to four key results:

(1− τk) fk = µ (ρ+ γg) (9)

v′ (n)

(
f (k, n)

µ
+ θ

µ− 1

µ
f (k, n)− gk

)
= − (1− τn)

fn
µ

v′ (n) [(1 + θ (µ− 1)) f (k, n)− µgk] = − (1− τn) fn (10)

R =
1

µ
[τkfkk + τnfnn+ τkθ (µ− 1) f (k, n)] (11)

and,
f (k, n) = kαn1−α. (12)

10.1.1 Capital tax results

Now, take the total derivative of (11)

dR =
1

µ

 dτk (fkk + θ (µ− 1) f (k, n)) + dτn (fnn)
+dk [τk (fkkk + fk) + τn (fnkn) + τk (θ (µ− 1) fk)]
+dn [τk (fknk) + τn (fnnn+ fn) + τk (θ (µ− 1) fn)]


dR

dτk
=

1

µ

 fkk + θ (µ− 1) f (k, n)
+ dk
dτk

[τk (fkkk + fk) + τn (fnkn) + τk (θ (µ− 1) fk)]

+ dn
dτk

[τk (fknk) + τn (fnnn+ fn) + τk (θ (µ− 1) fn)]


Using Cobb-Douglas and simplifying,

dR

dτk
=

1

µ

 (α+ θ (µ− 1)) kαn1−α

+αkαn1−α [τk (α) + τn (1− α) + τk (θ (µ− 1))] 1
k
dk
dτk

+αkαn1−α [τk (α) + τn (−α+ 1) + τk (θ (µ− 1))] 1−α
α

1
n
dn
dτk


dR

dτk
=

1

µ

 (α+ θ (µ− 1)) kαn1−α

+αkαn1−α [(α+ θ (µ− 1)) τk + τn (1− α)] 1
k
dk
dτk

+αkαn1−α [(α+ θ (µ− 1)) τk + τn (1− α)] 1−α
α

1
n
dn
dτk
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dR

dτk
= (α+ θ (µ− 1))

1

µ
kαn1−α


1

+α
[
τk + τn

(1−α)
(α+θ(µ−1))

]
1
k
dk
dτk

+α
[
τk + τn

(1−α)
(α+θ(µ−1))

]
1−α
α

1
n
dn
dτk



dR

dτk
=

(α+ θ (µ− 1))

µ
kαn1−α

 1
+ α

(α+θ(µ−1)) [(α+ θ (µ− 1)) τk + (1− α) τn] 1
k
dk
dτk

+ α
(α+θ(µ−1)) [(α+ θ (µ− 1)) τk + (1− α) τn] 1−α

α
1
n
dn
dτk


Call α̃ ≡ (α+ θ (µ− 1)), the adjusted capital share in this model with markups.
Then,

dR

dτk
=
α̃

µ
kαn1−α

[
1 +

α

α̃
[α̃τk + (1− α) τn]

1

k

dk

dτk
+
α

α̃
[α̃τk + (1− α) τn]

1− α
α

1

n

dn

dτk

]
dR

dτk
=
α̃

µ
kαn1−α

[
1 +

α

α̃
[α̃τk + (1− α) τn]

[
1

k

dk

dτk
+

1− α
α

1

n

dn

dτk

]]
Note that the static scoring estimate would be:

dR

dτk

∣∣∣∣
static

=

(
rk + θ

µ− 1

µ
f (k, n)

)
(7)

dR

dτk

∣∣∣∣
static

=

(
fk
µ
k + θ

µ− 1

µ
f (k, n)

)
(12)

dR

dτk

∣∣∣∣
static

=
1

µ

(
αkαn1−α + θ (µ− 1) kαn1−α) (13)

dR

dτk

∣∣∣∣
static

=
α̃

µ
kαn1−α

So, now we need to know dk
dτk

and dn
dτk
. Use (9):

(1− τk) fk − µ (ρ+ γg) = 0

Then,

dk

dτk
=
fk − (1− τk) fkn

dn
dτk

(1− τk) fkk

Use (10) for dn
dτk
:

v′ (n) =
− (1− τn) fn

(1 + θ (µ− 1)) f (k, n)− µgk

v′ (n) =
− (1− τn) (1− α) kαn−α

(1 + θ (µ− 1)) kαn1−α − µgk
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Now, let z = k
n , which by (9) is

z =

(
α (1− τk)

µ (ρ+ γg)

) 1
1−α

Then,

v′ (n) =
− (1− τn) (1− α) zα

(1 + θ (µ− 1)) zαn− µgzn

nv′ (n) =
− (1− τn) (1− α)

(1 + θ (µ− 1))− µgz1−α

nv′ (n) =
− (1− τn) (1− α)

(1 + θ (µ− 1))− µgα(1−τk)
µ(ρ+γg)

nv′ (n) =
− (1− τn) (1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

Thus,
dn

dτk
=

(1− τn) (1− α) (ρ+ γg) (αg)

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]
2

1

nv′′ + v′

Now, note that, from (10),

v′ (n) c+ (1− τn)w = 0

so
dn

dw

∣∣∣∣
c̄

w

n
=
− (1− τn)

cv′′
−v′ (n) c

(1− τn)n
=
v′ (n)

nv′′
= σ

where σ is the constant-consumption elasticity of labor supply. Then,

1

nv′′ + v′
=

1

v′
σ

1 + σ
=

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]n

− (1− τn) (1− α) (ρ+ γg)

σ

1 + σ

so,

dn

dτk
=

[
(1−τn)(1−α)(ρ+γg)(αg)

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)]2

· [(1+θ(µ−1))(ρ+γg)−αg(1−τk)]n
−(1−τn)(1−α)(ρ+γg)

σ
1+σ

]
dn

dτk
=

−αgnσ
[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ)
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Thus,

dk

dτk
=

αkα−1n1−α − α (1− α) (1− τk) kα−1n−α dn
dτk

−α (1− α) (1− τk) kα−2n1−α

dk

dτk
=
−k
[
1− (1− α) (1− τk) 1

n
dn
dτk

]
(1− α) (1− τk)

dk

dτk
=
−k
[
1− (1− α) (1− τk) −αgσ

[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

]
(1− α) (1− τk)

dk

dτk
= −k [(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ) + (1− α) (1− τk)αgσ

(1− α) (1− τk) [(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ)

This is ugly, but plugging it into our equation for the dynamic change in revenue:

dR

dτk
=
α̃

µ
kαn1−α

{
1 +

α

α̃
[α̃τk + (1− α) τn]

[
1

k

dk

dτk
+

1− α
α

1

n

dn

dτk

]}

dR

dτk
=
α̃

µ
kαn1−α


1− α

α̃ [α̃τk + (1− α) τn] ·[
[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)αgσ

(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

+ 1−α
α

αgσ
[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] 
dR

dτk
=
α̃

µ
kαn1−α

{
1− α

α̃ [α̃τk + (1− α) τn] ·[
[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)αgσ+(1−α)(1−α)(1−τk)gσ

(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] }

dR

dτk
=
α̃

µ
kαn1−α

{
1− α

α̃ [α̃τk + (1− α) τn] ·[
[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)+(1−α)(1−τk)gσ

(1−α)(1−τk)[(1+θ(µ−1))(ρ+γg)−αg(1−τk)](1+σ)

] }
dR

dτk
=
α̃

µ
kαn1−α

{
1− α

α̃
[α̃τk + (1− α) τn]

[
1

(1− α) (1− τk)
+

gσ

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)] (1 + σ)

]}
dR

dτk
=
α̃

µ
kαn1−α

{
1− α

α̃

[
α̃τk + (1− α) τn
(1− α) (1− τk)

+
α̃τk + (1− α) τn

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

σ

1 + σ
g

]}
Now, this expression is somewhat different from our expression when profits
were taxed at a different rate. That expression was derived in the previous
section. To see how taxing profits at the same rate as capital affects dynamic
scoring, remember that the static scoring estimate of a capital tax cut would be

dR

dτk
=
α̃

µ
kαn1−α.

So, we calculate the term inside the brackets for our standard parameter values
α = 1

3 , τk = τn = 1
4 , ρ = .05, g = (.02) , σ = 1

2 , γ = 1 and a few illustrative
cases:
For µ = 5

4 , θ = 1, τπ =
(

1
4

)
, we first calculate α̃ ≡ α + θ (µ− 1) = 1

3 +(
5
4 − 1

)
= 0.583 33
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1−
1
3

0.583 33

(
0.583 33( 14 )+(1− 1

3 )( 14 )
(1− 1

3 )(1−( 14 ))
+

0.583 33( 14 )+(1− 1
3 )( 14 )

(1+1( 54−1))((.05)+1(.02))− 1
3 (.02)(1−( 14 ))

1
2

1+ 1
2

(.02)

)
=

0.628 43
So the feedback effect has fallen to only 37 percent, rather than 53 percent,

when profits are taxed at the same rate as capital.

10.1.2 Labor tax results

dR =
1

µ

 dτk (fkk) + dτn (fnn) + dτπ (θ (µ− 1) f (k, n))
+dk [τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]
+dn [τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


dR

dτn
=

1

µ

 fnn
+ dk
dτn

[τk (fkkk + fk) + τn (fnkn) + τπ (θ (µ− 1) fk)]

+ dn
dτn

[τk (fknk) + τn (fnnn+ fn) + τπ (θ (µ− 1) fn)]


For dk

dτn
, use result (9):

(1− τk) fk − µ (ρ+ γg) = 0 (9)

dk

dτn
= −

(1− τk)fkn
dn
dτn

(1− τk)fkk
dk

dτn
= −fkn

fkk

dn

dτn

dk

dτn
= − α(1− α)kα−1n−α

α(α− 1)kα−2n1−α
dn

dτn
dk

dτn
=

k

n

dn

dτn

For dn
dτn
, use results from the earlier analysis:

nv′ (n) +
(1− τn) (1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)
= 0

dn

dτn
=

(1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

1

nv′′ + v′

dn

dτn
=

(1− α) (ρ+ γg)

(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)

[(1 + θ (µ− 1)) (ρ+ γg)− αg (1− τk)]n

− (1− τn) (1− α) (ρ+ γg)

σ

1 + σ

dn

dτn
=

−n
(1− τn)

σ

1 + σ

Therefore,

dk

dτn
=

−k
(1− τn)

σ

1 + σ
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So, using Cobb-Douglas and simplifying,

dR

dτn
=

1

µ

 (1− α)kαn1−α

+ (1− α) kαn1−α [τk (α) + τn (1− α) + τπ (θ (µ− 1))] α
1−α

1
k
dk
dτk

+ (1− α) kαn1−α [τk (α) + τn (−α+ 1) + τπ (θ (µ− 1))] 1
n
dn
dτk



dR

dτn
=

(1− α) kαn1−α

µ

{
1 + [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

1− α
1

k

dk

dτk
+

1

n

dn

dτk

]}

dR

dτn
=

(1− α) kαn1−α

µ

{
1 + [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

1− α
1

k

−k
(1− τn)

σ

1 + σ
+

1

n

−n
(1− τn)

σ

1 + σ

]}
dR

dτn
=

(1− α) kαn1−α

µ

{
1− [ατk + (1− α) τn + θ (µ− 1) τπ]

[
α

(1− α) (1− τn)

σ

1 + σ
+

1− α
(1− α) (1− τn)

σ

1 + σ

]}
dR

dτn
=

(1− α) kαn1−α

µ

{
1− ατk + (1− α) τn + θ (µ− 1) τπ

(1− α) (1− τn)

σ

1 + σ

}

11 Transitional Dynamics

For the transitional dynamics, we derive differential equations that describe the
time path of the capital stock, consumption, and the labor supply. Recall
that in our model of Section 2, we assume that labor enters the utility function
inside v(n). We specify the functional form for simplicity, but would not have
to. The equivalent results with no specified functional form are derived at the
end of this section.

v(n) = −θn1+ 1
σ

Note that this form implies:

σ =
v′(N)

v′′(N) ·N

=
−θ
(
1 + 1

σ

)
n

1
σ

−θ
(
1 + 1

σ

)
1
σn

1
σ

σ = σ

So σ is our standard constant consumption elasticity of labor supply.
As mentioned in the main text, the nature of our system is that, when taxes

are changed, consumption and labor supply are free to jump immediately, while
the capital stock is momentarily fixed at its original level. The mathematical
diffi culty is finding these jump values. To be even more specific, we have three
key points in time when we need to know the values of the capital stock, con-
sumption, and labor: before the tax cut, immediately after the tax cut, and the
steady state after the tax cut. We will therefore have nine values of these three
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variables to calculate, which we will denote c0, n0, k0, cε, nε, kε, c
∗, n∗, k∗. The

before-tax values and the steady state values can be derived with the standard
steady-state conditions—the tricky values are the three at t = ε. Fortunately,
the capital stock is momentarily fixed, so k0 = kε. We can derive the remaining
two values, the "jump" values cε and nε, with the differential equations that
describe the transition path to the steady state. The differential equations will
give us a way to calculate c, n at any point in time, and specifically at t = ε
as ε → 0. To find useable expressions of these differential equations, we begin
with the household’s utility function:

H =

 e−ρtt
(ctegt)

1−γ
e(1−γ)(−θ)n

1+ 1
σ −1

1−γ +

ϕ(t) [(1− τn)wN + (1− τk)rk − c− gk + T ]


Performing the household’s maximization, we can derive the following re-

sults:

ċt
ct

=
(1− τk)αkα−1N1−α − (1− γ)θ(1 + 1

σ )ṄN
1
σ − ρ− γg)

γ
(33)

Ṅ

N
=

ρ+ (γ − 1 + τk)αkα−1N1−α + (1− α)γg − αγ ck
( 1
σ + α)γ − θ(1 + 1

σ )(1− γ)N1+ 1
σ

(34)

The firm’s decisions are the same as before, so we have the following results.
We assume Cobb-Douglas from the start for simplicity.

k̇t = (1− τ)kαt − ct + τkαt − gkt

so,
k̇t
kt

= kα−1
t N1−α

t − ct
kt
− g (35)

To derive analytical results, we linearize the system (33)-(35) around the
steady state. This will give results that are particularly applicable for small
tax cuts. To derive a first-order linear approximation of (33)-(35), rewrite they
system in terms of natural logs. We assume that γ = 1, which is equivalent to
log utility, for simplicity.

d ln ct
dt

= α(1− τk)e(α−1)(ln k−lnn) − ρ− g (36)

d lnnt
dt

=
1

α+ 1
σ

[
ατke

(α−1)(ln k−lnn) − αe(ln c−ln k) + ρ+ (1− α)g
]
(37)

d ln kt
dt

= e(α−1)(ln k−lnn) − e(ln c−ln k) − g (38)

Now we use the fact that capital, labor, and consumption per effi ciency unit
are constant in the long run to solve for steady-state expressions in terms of
parameters. We will use these later to simplify our first-order approximation
of (36)-(38)..
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e(α−1)(ln k∗−lnn∗) =
ρ+ g

α(1− τk)

e(ln c∗−ln k∗) =

(
ρ+ g

α(1− τk)
− g
)

Now we take a first-order Taylor approximation of the log-linear system
(36)-(38) around the log deviations of c, n, k from their steady-state values.:

 d ln ct
dt

d lnnt
dt

d ln kt
dt

 =

 0
−αe(ln c−ln k)

α+ 1
σ

−e(ln c−ln k)

−α(α− 1)(1− τk)e(α−1)(ln k−lnn)

−α(α−1)τke
(α−1)(ln k−lnn)

α+ 1
σ

−(α− 1)e(α−1)(ln k−lnn)

α(α− 1)(1− τk)e(α−1)(ln k−lnn)

α(α−1)τke
(α−1)(ln k−lnn)+αe(ln c−ln k)

α+ 1
σ

(α− 1)e(α−1)(ln k−lnn) + e(ln c−ln k)


 ln( ctc∗ )

ln( ntn∗ )

ln( ktk∗ )


 d ln ct

dt
d lnnt
dt

d ln kt
dt

 =


0

−α
(

ρ+g
α(1−τk)

−g
)

α+ 1
σ

−
(

ρ+g
α(1−τk) − g

)
−α(α− 1)(1− τk) ρ+g

α(1−τk)
−α(α−1)τk

ρ+g
α(1−τk)

α+ 1
σ

−(α− 1) ρ+g
α(1−τk)

α(α− 1)(1− τk) ρ+g
α(1−τk)

α(α−1)τk
ρ+g

α(1−τk)
+α

(
ρ+g

α(1−τk)
−g
)

α+ 1
σ

(α− 1) ρ+g
α(1−τk) +

(
ρ+g

α(1−τk) − g
)


 ln( ctc∗ )
ln( ntn∗ )

ln( ktk∗ )


 d ln ct

dt
d lnnt
dt

d ln kt
dt

 =

 0
−(ρ+g)

(α+ 1
σ )(1−τk)

+ αg
α+ 1

σ

− ρ+g
α(1−τk) + g

−(α− 1)ρ+ g
−(α−1)τk(ρ+g)

(1−τk)(α+ 1
σ )

−(α−1)(ρ+g)
α(1−τk)

(α− 1)ρ+ g
(1+ατk−τk)(ρ+g)

(α+ 1
σ )(1−τk)

− αg
α+ 1

σ
ρ+g

1−τk − g


 ln( ctc∗ )

ln( ntn∗ )

ln( ktk∗ )


To simplify going forward, we assume g = 0. We could have done so earlier,
but we have tried to retain generality as long as practical to allow for interested
readers to pursue the more general cases that we do not. We will discuss the
likely effects of our simplifying assumptions later. d ln ct

dt
d lnnt
dt

d ln kt
dt

 =

 0
−ρ

(α+ 1
σ )(1−τk)

− ρ
α(1−τk)

−(α− 1)ρ
−(α−1)τkρ

(1−τk)(α+ 1
σ )

−(α−1)ρ
α(1−τk)

(α− 1)ρ
(1+(α−1)τk)ρ

(α+ 1
σ )(1−τk)
ρ

1−τk


 ln( ctc∗ )

ln( ntn∗ )

ln( ktk∗ )


Call this matrix A. The theory of differential equations tells us that we can

use A to derive the transition paths of our variables to their steady-state levels.
Specifically, we can find the eigenvalues and eigenvectors associated with A. To
do so, we form the characteristic equation of A and find the values of β for which
det[A− βI] = 0. The characteristic equation can be simplified to:[
(α+

1

σ
)(1− τk)2

]
β3 −

[
(α+

1

σ
+ (1− α)τk)(1− τk)ρ

]
β2 −

[
1

α
((1− α)2 + (α+

1

σ
)(1− α))(1− τk)ρ2

]
β = 0[

(α+
1

σ
)(1− τk)2

]
β2 −

[
(α+

1

σ
+ (1− α)τk)(1− τk)ρ

]
β −

[
1

α
((1− α)2 + (α+

1

σ
)(1− α))(1− τk)ρ2

]
= 0

φ, λ =

[
(α+ 1

σ + (1− α)τk)(1− τk)ρ
]
±
( [

(α+ 1
σ + (1− α)τk)(1− τk)ρ

]2
+4
[
(α+ 1

σ )(1− τk)2
] [

1
α ((1− α)2 + (α+ 1

σ )(1− α))(1− τk)ρ2
] ) 1

2

2
[
(α+ 1

σ )(1− τk)2
]
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There are three eigenvalues, or roots to this equation, which we call φ, λ, β.
The expressions for them are:

φ =

[
(α+ 1

σ + (1− α)τk)(1− τk)ρ
]

+

( [
(α+ 1

σ + (1− α)τk)(1− τk)ρ
]2

+4
[
(α+ 1

σ )(1− τk)2
] [

1
α ((1− α)2 + (α+ 1

σ )(1− α))(1− τk)ρ2
] ) 1

2

2
[
(α+ 1

σ )(1− τk)2
]

λ =

[
(α+ 1

σ + (1− α)τk)(1− τk)ρ
]
−
( [

(α+ 1
σ + (1− α)τk)(1− τk)ρ

]2
+4
[
(α+ 1

σ )(1− τk)2
] [

1
α ((1− α)2 + (α+ 1

σ )(1− α))(1− τk)ρ2
] ) 1

2

2
[
(α+ 1

σ )(1− τk)2
]

β = 0

These can be simplified a bit:

φ =

[
(α+ 1

σ + (1− α)τk)ρ
]

+
([

(α+ 1
σ + (1− α)τk)ρ

]2
+ 4(α+ 1

σ )
[

1
α ((1− α)2 + (α+ 1

σ )(1− α))(1− τk)ρ2
]) 1

2

2
[
(α+ 1

σ )(1− τk)
]

λ =

[
(α+ 1

σ + (1− α)τk)ρ
]
−
([

(α+ 1
σ + (1− α)τk)ρ

]2
+ 4(α+ 1

σ )
[

1
α ((1− α)2 + (α+ 1

σ )(1− α))(1− τk)ρ2
]) 1

2

2
[
(α+ 1

σ )(1− τk)
]

β = 0

The first terms in the numerators of φ and λ are positive, as are the denomina-
tors. The absolute values of the second terms in the numerator are necessarily
larger than the first terms’, so φ is positive and λ is negative. The eigenvectors
of the matrix A that correspond to these three eigenvalues can be derived for
a given set of parameter values with standard mathematical software. Call the
matrix of eigenvectors V . Then, we can describe the paths of the log values of
c, n, k with

ln ct = ln c∗ + v11e
φtb1 + v12e

λtb2 + v13e
βtb3

lnnt = lnn∗ + v21e
φtb1 + v22e

λtb2 + v23e
βtb3

ln kt = ln k∗ + v31e
φtb1 + v32e

λtb2 + v33e
βtb3

where vij is the i,jth component of the matrix of eigenvectors, and b1, b2, b3 are
coeffi cients that we must determine with boundary conditions.
For our boundary conditions, consider the case of t → ∞. By assumption

φ > 0, but limt→∞ ct = c∗, so we know that b1 = 0. Similarly, given that β = 0,
if b3 were not equal to zero, the variables would not approach their steady state
values as t→∞ . Thus, b3 = 0. That leaves us with:

ln ct = ln c∗ + v12e
λtb2

lnnt = lnn∗ + v22e
λtb2

ln kt = ln k∗ + v32e
λtb2
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At t = 0, we know that the capital stock is fixed at its initial level, k0. We
also know that k0 = kε, so:

b2 =
(ln k0 − ln k∗)

v32
=

(ln kε − ln k∗)

v32

We can substitute this in to our other conditions to rewrite our system:

ln ct − ln c∗ =
(ln kε − ln k∗)

v32
v12e

λt (39)

lnnt − lnn∗ =
(ln kε − ln k∗)

v32
v22e

λt (40)

ln kt − ln k∗ = (ln kε − ln k∗) eλt (41)

thus, at t = ε,

(lnnε − lnn∗) e−λε =
(ln kε − ln k∗)

v32
v22,

so, lnnt − lnn∗ = (lnnε − lnn∗) eλt−λε

As ε→ 0, this result implies that the rate of transition of the labor supply from
its level instantly after the tax cut approaches λ:

lnnt − lnn∗ = (lnnε − lnn∗) eλt (42)

Thus, results (41) and (42) imply that the rate of transition from the imme-
diately post-tax cut levels of k and n to their post-tax cut steady-state levels is
the rate λ.
As discussed briefly above, the nature of our system is that, when taxes are

changed, consumption and labor supply are free to jump immediately, while the
capital stock is momentarily fixed at its original level. We want to derive the
values of c, n, k at three points in time, t = 0, ε, and the long run (steady state).
We will use our steady state conditions to derive the pre-tax cut levels c0, n0,
and k0 and the steady-state values c∗, n∗, k∗. Because k0 = kε,we can then
plug the steady state values of consumption, labor supply, and capital and the
initial level of capital into this system and calculate cε and nε, the jump values
of consumption and labor supply, at t = ε. The convergence of c and n to their
steady state levels begins at the values to which they jump, cε and nε, and is
at the rate λ.
To find c0, n0, and k0 and the steady-state values c∗, n∗, k∗, the steady state

conditions we need are:
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y = kαn1−α

r = αkα−1n1−α

w = (1− α)kαn−α

n =

(
(1− τn)w

θ(1 + 1
σ )c

) 1
1
σ

r =
ρ

1− τk
c = y

Note that we have continued to set g = 0 and γ = 1 for simplicity. These yield

c∗ =

(
ρ

α(1− τk)

) α
α−1

(
(1− τn)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (43)

n∗ =

(
(1− τn)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (44)

k∗ =

(
ρ

α(1− τk)

) 1
α−1

(
(1− τn)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (45)

c0 =

(
ρ

α(1− τk,0)

) α
α−1

(
(1− τn,0)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (46)

n0 =

(
(1− τn,0)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (47)

k0 = kε =

(
ρ

α(1− τk,0)

) 1
α−1

(
(1− τn,0)(1− α)

θ(1 + 1
σ )

) 1

1+ 1
σ (48)

Note that equations (43)-(45) and (46)-(48) differ only in the tax rates that
apply: τk, τn or τk,0, τn,0,where the latter are pre-tax cut, the former are post-
tax cut.
Now, we plug these values into (40)-(41).

lnnε − lnn∗ =
(ln kε − ln k∗)

v32
v22e

λε

ln kε − ln k∗ = (ln kε − ln k∗) eλε

As ε→ 0, these simplify to:

lnnε = lnn∗ +
(ln kε − ln k∗)

v32
v22 (49)

ln kε = ln k0 (50)
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giving us our "jump" values of n and k.
With our values for n, k before the tax cut from (47) and (48), immediately

after the tax cut from (49) and (50), and in the steady state from equations
(44) and (45), we can calculate the present value of the transition path of tax
revenues. Specifically, let R0, Rε, and R∗ denote the pre-tax cut, jump level,
and steady state tax revenues per period. We can write

R0 = (ατk + (1− α)τn) kα0 n
1−α
0

Rε = (ατk + (1− α)τn) kαε n
1−α
ε

R∗ = (ατk + (1− α)τn) k∗
α

n∗
1−α

11.0.3 General labor disutility function is equivalent to specific

H = e−ρtt

(cte
gt)

1−γ
e(1−γ)v(N) − 1

1− γ +ϕ(t) [(1− τn)wN + (1− τk)rk − c− gk + T ]

Performing the household’s maximization, we can derive the following re-
sults:

FOCc : e−ρte(1−γ)gte(1−γ)v(N)c(t)−γ = ϕ

dFOCc
dt

: ϕ̇ =


−ρe−ρtegt(1−γ)e(1−γ)v(N)c−γ+

(1− γ)ge−ρte(1−γ)gte(1−γ)v(N)c−γ+

(1− γ)v′(N)Ṅe−ρte(1−γ)gte(1−γ)v(N)c−γ−
γe−ρte(1−γ)gte(1−γ)v(N)c−γ−1ċ

(14)

−((1− τk)r − g)e−ρte(1−γ)gte(1−γ)v(N)c−γ =


−ρe−ρtegt(1−γ)e(1−γ)v(N)c−γ+

(1− γ)ge−ρte(1−γ)gte(1−γ)v(N)c−γ+

(1− γ)v′(N)Ṅe−ρte(1−γ)gte(1−γ)v(N)c−γ−
γe−ρte(1−γ)gte(1−γ)v(N)c−γ−1ċ


−((1− τk)r − g) = −ρ+ (1− γ)g + (1− γ)v′(N)Ṅ − γc−1ċ

−(1− τk)r + g = −ρ+ (1− γ)g + (1− γ)v′(N)N
Ṅ

N
− γ ċ

c

(1− τk)r = ρ+ γg + γ
ċ

c
+ (1− γ)v′(N)N

Ṅ

N

ċ

c
=

1

γ

[
(1− τk)αkα−1N1−α − ρ− γg − (1− γ)v′(N)N

Ṅ

N

]
(15)
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FOCN : e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N) = −(1− τn)w(t)ϕ(t)

dFOCN
dt

:


−ρe−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+

(1− γ)ge−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+
(1− γ)ċc−1e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+

(1− γ)v′(N)e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)Ṅ+

v′′(N)Ṅe−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)


= −(1− τn)[ẇ(t)ϕ(t) + w(t)ϕ̇(t)]

:


−ρe−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+

(1− γ)ge−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+
(1− γ)ċc−1e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)+

(1− γ)v′(N)e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)Ṅ+

v′′(N)Ṅe−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)


=

−(1− τn)

 (
(1− α)α

(
k̇
k −

Ṅ
N

)
kαN−α

)
e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)

−(1−τn)((1−α)kαN−α)

− ((1− α)kαN−α)
(
(1− τk)αkα−1N1−α − g

) e−ρtegt(1−γ)c(t)1−γe(1−γ)v(N)v′(N)
−(1−τn)((1−α)kαN−α)



: −ρ+ (1− γ)g +
(1− γ)

γ

[
(1− τk)αkα−1N1−α − ρ− γg − (1− γ)v′(N)N

Ṅ

N

]
+ (1− γ)v′(N)Ṅ +

v′′(N)Ṅ

v′(N)

= α

(
k̇

k
− Ṅ

N

)
−
(
(1− τk)αkα−1N1−α − g

)
:

Ṅ

N

[
α− (1− γ)

γ
(1− γ)v′(N)N + (1− γ)v′(N)N +

v′′(N)Ṅ

v′(N)

]

= ρ− (1− γ)g − (1− γ)

γ

[
(1− τk)αkα−1N1−α − ρ− γg

]
+ α

[
kα−1N1−α − c

k
− g
]
−
(
(1− τk)αkα−1N1−α − g

)
Ṅ

N
=

ρ− (1− γ)g − (1−γ)
γ

[
(1− τk)αkα−1N1−α − ρ− γg

]
+ α

[
kα−1N1−α − c

k − g
]
−
(
(1− τk)αkα−1N1−α − g

)[
α− (1−γ)

γ (1− γ)v′(N)N + (1− γ)v′(N)N + v′′(N)Ṅ
v′(N)

]
if γ = 1, simplify to

Ṅ

N
=
ρ+ τkαk

α−1N1−α + (1− α)g − α ck
α+ v′′(N)Ṅ

v′(N)

Now,
v′(N)

v′′(N) ·N = σ

So,
Ṅ

N
=
ρ+ τkαk

α−1N1−α + (1− α)g − α ck
α+ 1

σ

65



ċt
ct

=
1

γ

[
(1− τk)αkα−1N1−α − ρ− γg − (1− γ)v′(N)N

Ṅ

N

]
(16)

if γ = 1, (17)
ċt
ct

= (1− τk)αkα−1N1−α − ρ− g (18)

Ṅ

N
=

ρ+ τkαk
α−1N1−α + (1− α)g − α ck

α+ 1
σ

(34)

These are identical to when the specific functional form was assumed.
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