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1 Result (3)

The Ramsey model’s Euler equation can be derived as follows. This derivation
follows Barro & Sala-i-Martin (1999), chapter 2. For a derivation that avoids
dynamic optimization, we recommend Romer (2001), chapter 2.

Assume there are H households of size %, each of which is infinitely-lived
and representative of the economy. In this paper, we will assume population
growth is zero to simplify the analysis. Each household derives utility from
consumption C; = c;e9" per member, according to an instantaneous utility
function wu(-), that we assume to be CRRA. The discount rate is p. The
present value of lifetime utility at time 0 is thus:

o
Utility = / e Plu(Cy)dt
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applying CRRA utility, = / e—pt(L dt
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Each household has income from its labor input and from its initial capital
holdings, since the households are assumed to own the capital of the economy,
and households recieve their share 1" of transfers from the government. The
level of the household’s labor input is normalized to one and its per capita
capital stock is K = ke9%. The household receives wage w per unit of labor and
a constant rate of return r on capital, but pays taxes of 7, on capital income
and 7, on labor income. We can write the dynamic budget constraint of the
household as
K=0-1)w+(1-7)rK —C—gK+T

To allow temporary indebtedness, the credit markets will require that the present
value of household assets must be non-negative. That is:

tlim Kt)e ™ >0

Maximization of utility subject to this budget constraint is a dynamic optimiza-
tion problem. We set up a present-value Hamiltonian function and find first



order conditions. After substitutions and simplifications, we derive equation
(3), the so-called Euler equation, mentioned in the main text, which uses the
after-tax rate of return 7 = (1 — 7)r.
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In the steady state, this simplifies to 7 = p+~g

which is result (3).

2 Results (5) and (6)

Here we derive the results for a change in either tax rate.
To proceed with our analysis, we totally differentiate (4) to obtain, suppress-
ing arguments:

dR=kf'dry + 7 (kf" + f')dk + (f — kf')dr, + T (=kf")dk

We can use this result to determine the effect of a change in capital income tax
T}, or in labor income tax 7,, on total revenue.

First, divide by d7, and recognize that ZZZ
set, to get:

= 0,since both are exogenously
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di di

Performing some algebra, we can put this into a more easily interpreted form.
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Assuming Cobb-Douglas, we can simplify this result to obtain result (5):
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Next, we find the analogous expression for a change in the tax on labor
income, 7,. Recall that f}% = 0,since both are exogenously set. Use equations
(1) and (3) to note that

Then,
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If we assume Cobb-Douglas, this simplifies to result (6):
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dr, ( )

3 Results (10)-(11)

To derive the Euler equation of our more general model, we again solve a dy-
namic optimization problem, using expressions for utility and the dynamic bud-
get constraint found in the paper’s main text.
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The final step recognizes that % and % will be zero in the steady state, as
consumption per efficiency unit (we assume no population growth for simplicity)
and labor supply are constant in the steady state. This is result (11).

Combining FOC, with FOC,,, we derive result (10):
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4 Result (12)

To derive (12), we note the dynamic budget constraint.

k=0—-7)wN+ 0 —7)rk—c—gk+T
In the steady state, k is equal to zero. We know that T is equal to the sum of
tax revenue: T' = 7, wN + 7irk. Thus, we can rewrite the budget constraint as

c= f(k,N)— gk

This is result (12) in the main text.

5 Results (14-15), General Production Technol-
ogy

Now we analyze the main model with non-Cobb-Douglas production. Again,
some of the steady-state equations change:

f(k,n) = f(k,n). (7)



r = fk~ (8)

v'(n) = w (10)
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1— Tk
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From CRS, we know that

a = kak (A11)
(-a) = L=tk &

But note that « is no longer fixed and, thus, cannot be treated as a parameter
in our derivations. The elasticity of substitution is (as in Hicks 1932)
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5.0.1 Capital Tax Cut

To derive these results, we use the system of two equations that simplifies (7-12):

(I =71)fr — (p+79) =0.

'U/(N) : (f - gk) + (1 - Tn) fn = 0.



From the first, we can write

+
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For %, take the total derivative of the first of these:
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Take the total derivative of this,
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. N’U”(N)—F?/(N)—F (f=gk)( )( (J;‘—ng;z) ( )N fnf
dry _(1_7'k)ka (f_gk)(l_Tn,)ank_(1_Tn)an(fk_g)
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From our results for the elasticity of labor supply, we know that

Nv"(N) 4+ (N) = v'(N)N <1;UU) .

thus, using our result from above that
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Plugging in this expression,
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or,
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Separating terms, this is
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Rearranging,
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Or, cancelling terms,
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dR B fick-i-%fkm—k%fnrn
dry, dynamic a { + (%N drn k) (Trn = Tk) frk] }
becomes

- — f
dynamic .

dr +(1_Tk)fkkN[(Tn = 7k) fur]
or, rearranging,

ﬁ fkk+ d(%,-kk fk7k+ difnTn
ATy dynamic + (177-;@) nf;k];nk [(TTL - Tk)]
using
n
N
this is,

R
di

T =7r) [(Tn — 7)]

Then, substitute in our expressions for d
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or,
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or
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Again, using
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Rearranging,
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dR _ fkk{ 1 o (1)7(1)(14,9) }
- atr+(1—a)T, o
di dynamic - ( (1k_7—k)(1_a) (1 - E) 1+o’>

Note that if we are in the Cobb-Douglas model, where £ = 1, then,
- sy
l1—a)(1—7g
= fkk{ + a‘rk+(170¢)7'n RL }
dynamic ag(1—71)—(pF+79) 1+gg

Our result from before.

R
di

5.0.2 Labor Tax Cut

To derive these results, we use the system of two equations that simplifies (7-12):

(1 —=7%)fx — (p+7v9) =0.

V(N) - (f — gk) + (1 —7,,) fn = 0.

From the first, we can write
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fr
For %, take the total derivative of the first of these:
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For %, again apply the implicit function theorem, this time to the second
of these.
U/(N) : (f - gk) + (1 - Tn) fn =0.
]- - Tn)an
NV'(N) + (7 =0
) (f —gk)

Take the total derivative of this,
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Dividing by d7.,,
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dk _ dN ka
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Collecting terms,
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N (f—gk)?
_ Nfn
T f-gk
or, rearranging and using
k
fnn = _fnk*
n

15



we can derive,

" / (f=9k) A=Tn) (=Ekfnrtfn) =A=Tn)N fnfn
o [ V) () + Lt
Aty +(f_gk)(1_Tn)kfnk_(1_7n)fnk(fk_g)
(f—gk)?
_ Nfn
T fgk

which simplifies to:

;117—7]\; |:NU"(N)+’U/(N)+ (ffgk)(177'71)(7kfnk/+fn)7(177n)anfn+(f79k)(177-n)kfnk7(177'n)fnk(fk79)]

(f—gk)?
_ Nfn
T f-gk
Cancelling,
:llT]\; {N’UH(N)—F’U/(N)-F (f_gk)(1_Tn,)(fn)_(1_(;zz]]k\f)f2‘nfn_(1_T7z)fnk(fk_g):|
T f-gk

which simplifies to

anN. " ! A=7n) fnl(f—gk)—k(fr—9) =N fn]
9 [NV (N) + 0/ (N) + T ]

f—gk

Cancelling,

A [ NV(N) + 0/ (N) + Umedlnl kN |
Nfn

= gk

But we know that (f — kfx — N f,) = 0, so this becomes simply

AN _ N/, 1
drn = gk [NV'(N) + /()]

From our results for the elasticity of labor supply, we know that

Nv"(N) 4+ (N) = v'(N)N (1];;") .

thus, using our result from above that
(]- - Tn)an

Nv'(N) + F=oh)

=0

we know that

st gz 1)

So plugging this into our results, we obtain

dN  Nf, (f — gk) <N0>
drn,  f—gk—(1—-71,)Nf, \140

16



or simply
dN  —-N o
dr, (1—-7,)\1+0
Substituting this expression into that for %

n

AN i
dry, dry fk'k

gives

N (o \fu
dry (1—7,) \1+0/ fur
or, using
n
frr = _fknE
this is:
k(o
drp, - 1-—7p) \1+0
Now, we need an expression for jT—}i
R = murk+71,wuN
R = kakk' + Tn.an
dR dk SV
. = = Te(frerk 4 fr) + ToforN]
" ldynamic +ﬁ [kaknk + Tn (fnnN + fn]
using
n
fkk - 7fknE
k
fnn - 7fnk7
n
obtain
dR SV
e = % [Tk(_fan + fx) + TnfnkN]
" ldynamic +% [kankk + Tn(_fnkk + fn]
rearranging,
dR PN + FoTkfi+ 5 T
| =1 S N) T fuN]
" ldynamic +§T7]\i [kankk + Tn(ffnk'k}
or simply
dT” dynamic a (d(%l'ian o (lii"'i]\;k) [(Tn o Tk) fnk]

17



Now, we had from before the results that:

w_ N o
dr, (1—7,)(1+0)
@&k (o

dr, (1—-7,)\1+o0

S0, we can show

dk
—N
<d7’n

dk
VN
<d7’n

or

SO

dN —k o —-N o
) ) )

dN N _(_ kN (o BN o N\,
d7—n><(1_7-n) <1+0>+(1_7n)(1+0))

j’rfi dynamic {an + ddk kak * dZ\'r[L Tnfn}

plugging in our results for 4 Tn, and dk , this becomes

dR k N .
drn, B ”N (1—1y) 1 _ nJn
d”@mmf{f +“—>(LF>””+0 )a+@7f}
or simply
dR o
thnwmmc{”N<1—n»a+a)“Wﬁﬂ7mNn@

Pull out f, N
dR

drn

kfx
fnN

)

g
dynamic N an {1 - (1 - T") (1 + J) (Tk

using our expressions for a and (1 — ), this becomes

dR
dry

or simply

dynamic

g

:hN{“wuwmu—

Ol) (1 ¥+ O') (Cka + (]' - OZ) Tn)}

R
dry

atp+(l—a)t, o }

—fN {1 -
dynamic (1 - Oé) (1 - TTL) 1+o

18



5.1 Gross and Net capital share and el. of sub.

Now, here
Lk
/
while we define the gross capital share :
k(fx+9)
v= f+ 5k
So,
W /' fkto
a  fH+k fi
v 1 o
a <1+5}“> (ka)
Now,
_ Pty
fk a (1—7'19)
Pty —T)
fe+dé = a7
o0k da da(l—Ty)
o ety
So,
1 (5(17‘k))
= [———— (1
v <1+5ap(;;’“>>( T v )
_ [ ptyg+td(l—Ty)
Vo= (p+'yg+a5(1—Tk)>a
Yp+trgt+ad(l—7k)) = (p+r9+6(1—71))a
Vip+g9) = (p+ty9+0(1—7k) =Y (1—7k))
N v(p+9)
(p+79) +(1—7k) =69 (1 — %)
_ Y (p+79)
(p+79)+0(1—7k)(1—4)
Say § = .03

¥ (0.07)
~ (0.07) +0.03 (0.75) (1 — 1)

So if 1 = 0.33, @ = 0.27

19



Also,

ffkn
while we define the gross elasticity ¢
_ fn(kar(S)
(f + 0k) fin
So,
§:f+5k fr
€ f o fu+d
_ pty
o = F
0(1—
fors = P9t (1—7k)
(1—Tk)
0k da _ da(l—Tk)
f fr p+9
S0
§ _ ptrgtad(l—my) p+g
€ p+9 p+rg+0(1—r1k)
¢ = (p+vg+a5(1m)>
pt+rg+06(1—1k)

Say § = .03. If e =1, then o = 0.2745 and we can calculate that £ = 0.82.

_(0.07 + (0.2745) (0.03) (0.75)
&= < 0.07 + (0.03) (0.75) >

If f=kYn'=Y — 6k, then
_ fnfk

f_ ffkn

(1 — ) k¥n=% (PkY~1nl =¥ — §)

ST T /5 IV Ty T
PRV —Ipl=v —§

&= VY =Tnl=% — s
YET g

fT Ty

20



5.2 Showing that capital tax cut has bigger feedback
Take the two results from above,

1— (a+&—D)1r+(1—a)Ty,

1— 1—7p
ﬁ = fik —7 O”Ek;‘(al)E‘(Xl)Ti))
+v9)—ag(l—7k
ATk | aynamic (1900 T g o
(1—a)(1—7g) 1+o0
ar _fN{l_aTk—i—(l—a)Tn 1% }
dT” dynamic o (1 - Oé) (1 - TTL) 1+o

Now, let both tax rates equal 7, and obtain

_ (até=Dr+(A—a)7
an . L= i
ar . __art(=a)r  (p+79)(A-E+(1A=-T)((=a)g o
kldynamic (o+v9)—ag(1-7) I-a)(1-7) T+o
dR _iN 17a7'—|—(1—a)7' o
dTn dynamic - (1 o a) (1 N T) l+o
Simplifying,
dR L~ =3
i = fik { e a) o
k \dynamic (1—a)(1—7) (p+vg)—ag(l—7) 1+o
dR N {1 T o }
ATl gymamic (I-a)(l-7)1+0
or
&
an = frk (ot 1)— N r)g-€(otr)
drn 4 _ T ptyg)—ag(l=7 T)E9—E(p+79) o
dynamic (I—a)(1—7) (p+v9)—ag(l—T) 1+o
dR T o
alv — f,N{1—
dr., dynamic , { 1-a)(1—=7)1+ O'}
or
R S
= T —7)g—(pt7g a
ATk | gynamic T (-7 (1 + 5W) 1to

dar
dr,

_f"N{l(l—a)T(l—T)lj-a}

dynamic

or, rearranging

dR _ k{ |- a4 }

g —Jk _ T _ (pt79)=9(=7) o

ATy dynamic é.(1—o¢)(1—7') (]‘ (p+vg)—ag(l—7) 1+a’>
dR T o
E S —
dT"l dynamic (1 - Ot) (1 - T) 1+o
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so the claim is that

dR
dTy

dR

dynamic < dn dynamic

fkk an

L~ s s T e

s (p+79)—9(1-7) o < 1=
s (1 - i %) f—a)-71+0

which holds if:

—qg(1—
i T (1_ (p+v9)—g(1—-71) o )<0
(l1-a)(1—-7) (p+tv9)—ag(l—7)1+0
or
_lptyg)—g-7) o _,
(p+v9) —ag(l—7)1+0
or (s
(1-7) @0 9 o
1= 1 (p+79) 1 >0
( 77)@*0{9 +o
or
e .
now
o _pt+g
r=fr=
1*7k
so this condition is that
r—g o
— >0
r—agl+o
which holds whenever
r>gq

or, in words, whenever the interest rate (the net marginal product of capital)
is greater than the growth rate in the economy. This always holds by the
transversality condition.

5.3 General production for Results 5-6

A more general form of production function is (and implies):

f(k) = o¢(k)

ro=fk

w = f—kfg

wo_ f _f_w
Pl ﬁ—k,or k—fk "
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Y

Then, taking the derivative of both sides with respect to the ratio %,
dk (fkfk—ffkk)%

s Tefx
dk (1 (e — ffkk)) _ 1
di fife
i Sl
dy [ frk
With constant RTS, we know that:
a = kak (A11)
(1-a) = -5 (@
Then, the elasticity of substitution between k and inelastic n = 1 is:
dk %
T
_ ek (O
¢ = I Frn (kfk 1)
£ = Jefw f = Efe
ek kfe
£ = Efife — ffe  frfe fr

kffe [l Efun

Rearranging these, we can also show that:

Jrfr fr

$ = Fhe R (5)
£ = j:l}f: (1_I§J}k> (Greg’s BPEA result) (6)
_ Sefe (XY fefe (a1 _ fafr (a1
£ T (1 a> ffkk( a ) ffzm(’“jfk) Q
 fefef o :LQ,
e N T A TR (A13)
so,
§ = %(a—l)
S S 1(a)
T fr £ «a
(@-11 _ fhn
a ¢ fufr
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Substituting these into the general form of result (5):

dj - (I_TTL) Tk (fk)Q
di _k k(l—’l’k) +(1—Tk) fkk

We can simplify this result to obtain:

el [ e e R
R
TR B
;% - :1—5 af (k) (10)

not the result from the NBER working paper draft, though the numerical esti-
mate is the same, since the starting tax rates were assumed to be the same.
6 Constant-consumption labor supply elasticity

Here, we derive o, the constant-consumption elasticity of labor supply with
respect to the real wage. First, we apply the implicit function theorem to (15)

'UI(N) _ —(1 —CTn)’lU
W' (N)+(1—7)w = 0
dN  (1—1p)
dw — @”(N)
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Then we derive the constant consumption labor elasticity expression from the
main text, using result (15) again:

dN w
c = ——
dw N
c’(N) N
/
W)
v"(N)-N

This is the result from the main text. Also note that:

Nv"(N) +/(N) = ”/(JN ) (V)
Nv"(N)+v'(N) = v’(N)N(1;UU>

6.1 Feldstein Effect

Feldstein has suggested that if labor income is divided into wage and benefits,
the non-taxed nature of the second will play a role in the response to a tax
change. That is, higher labor income taxes will cause a shift away from wage
income and toward benefit income. This would increase the power of labor tax
cuts to pay for themselves, as a lower labor income tax rate would encourage
workers to move toward wage income, which is taxed. Below, we show that the
model from Section 1, with inelastic labor supply, can be modified to divide labor
income into taxed wage income and nontaxed benefit income. The technique
follows that of the model of Section 2.

The steady state conditions will be

y = k"
r = ak®

w=(1—a)k*—>

Note that this wage equation is different, in that the total labor income per
unit of labor is still the MPL, but now benefits are subtracted from the MPL
to give wage income.

To find the equation corresponding to the labor-supply condition (10) in
Section 2, we need to set up the household’s maximization in our new setting.
We will assume that the household’s felicity function takes a CES form with an
elasticity of substitution between consumption and benefits of —¢. That is,

1+e

w= (ﬁc% +(1- ﬂ)b?)ﬁ
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The household’s dynamic budget constraint also reflects the availability of ben-
efits as consumption:

kE=1—-m)w+Q—71e)rk4+b—c—b+T

Note that, unlike in the basic model of Section 1 and the elastic labor supply
model of Section 2, w is no longer taken as given by the household, since they
choose how much of the marginal product of labor to receive in wage income
rather than in the form of benefits. The maximization problem is:

€

)HE +o((I=m)w+ 1 =TK)rk+b—c—b+T)

14e 1+e

F- g

H=¢" (ﬂc

First order conditions:

FOC, : —p=({1—-Tr)p
1 1te 14e\ 7921
FOC, + et (B - g )T =

14 14e

FOC, : e *(1—B)b* (ﬁc EnG] —5)1)?)&71 =(1—7n)p

The final FOC reflects that the derivative of w with respect to benefits is —1,
since for each dollar of benefts that the worker receives, the employer reduces
his wage receipts by one dollar.

Combining the last two FOCs yields:

1—7,)\°
b= L( Tn) c
1-p
Taking the derivative of FFOC, allows us to derive the steady state condition
that parallels equation (11):

dFOC. Lle ZL (B (1-8)ied) g A
CoTpe T oo - 5 =—(1—=7K)re
dt ec Bt 4 (1 B
given that ¢ and b are constant in the steady state,
—p = —(1—=7p)r
ro= p
1-— Tk

Finally, in the steady state total income is used either for consumption or
"consumption" of benefits, so

c=k%—b

26



Tax revenue, as before is
R =rT1krk + Thw

Combining these steady state conditions, we can solve for the steady state
levels of k and b. Specifically,

=

b* — k*a

BZ (5(11:;n)>8

Then, we can solve for the dynamic effect of a labor tax change on revenue:

where

dR dk* db*
—(1— a . _
dry, ( )k b+ d’Tn( )+ dTn( ™)
Now, % = 0 in the steady state, as is clear by the expression for k* above,

which excludes Tpn. But, from the expression for b in the steady state,

w00 () (M=) -8(2) (=)

dry, (1+ )2
db* B —& (%)6 (]. — Tn)eil
drn (1+3)2

Thus, we can write the change in tax revenue as

L)ET (1—7,) !
-8 n n
(14 8)2
Recall that the elasticity of substitution between b and ¢ is —e. We want
to derive the elasticity of taxable income with respect to (1 — 7,,), the elasticity

Feldstein highlights.
Taxable income is k% — b

ar

dr,

:(1—a)k“—b+6(

d(k® —b) (L—70) _ d el B (1—7y)
d(1 —7y) (k* —b) d(l1—7,) 148 pa {1_ 1%}
(N 1-r .
this works out to A = : (1_5) (Nl ) = _'6~ €
(1+5) 1+



Thus, we can write,

dR B TnBE 1
= k% (1- — = 1+ = =
e | W= e 2
dR B B¢ 148
— = k| (1-a)- = 1+ =
= ool CEEREE
dR dR Tn 1

static (=) [(1 +8)(1 —a) — B]

7 Finite Horizons: Rule of Thumb Generaliza-
tion

Consider the two groups of households. For the portion (1 — \) that maximize
as infinite-horizon households, result (3) from the main text will apply:

¢
r=q-+ptag

Now let C represent aggregate consumption per efficiency unit ("aggregate"
in the sense that it includes both infinite-horizon and rule-of-thumb house-
holds"). Then, % will be the weighted sum of the growth rates of consumption
for the two groups of households. We have (1 — \) households increasing con-
sumption as above, and A households increasing consumption one-for-one with
wage income.

C W r—p—19g
Z - 2Zaq- L g )
C Aw+( A)( 5
.

¥ ¢ w
g W
1—/\<c w)-l—p-i—vg

In the steady state, % will be constant. Additionally, using our equation (2)
from the model of Section I, we can show
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w = f(k)—kf'(k)

W kf'(k) = kf(k) = kRS (R)
w f(k) —kf'(k)
b — k)

w  f(k) = kf(k)

. — kkJ" (k)

wo f(k)

wo 11—«

g B _ ka”(k) - kkflf”
w  fk)(1-a) ff(1-a)
W -« kf"  —« l;:(afl)f’
w  f(l—-a) (-a)fac
[ kf! o« k

w  fo ok

w1y 1¢

w oy oc

Assuming Cobb-Douglas production, o = 1.

wo Yy ¢
w oy ¢
Thus, we can derive:
ro= 13/\(2(1/\)>+p+vg
¢
ro= 7(c>+p+vg

which is identical to the Euler equation without rule of thumb consumers
(result (3)).
In the non-Cobb-Douglas case, this result is

¢\ 1-2
r=71; +p+9

1—-A

8 Finite Horizons: Derivation of results (16)-
(17)
We provide a brief review of the Blanchard model here, as well as deriving the

key results of the main text.
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Production in the Blanchard model is identical to the Ramsey model, so we
simply restate the key relationships from Section 1 for reference.

y = f(k)
P (=) ()
w = f(k) —kf'(k)
The derivation of the Blanchard model’s Euler equation follows Ramsey
except for his infinite-horizon assumption. Let the probability that a household

ends be p per period. Therefore, following the procedure of Section 1, we can
write the present value of the household i’s utility as:

/ e (PHP)y ey (t))dt
0

oo 1—
/ e~ (ptp)t cft) 7 dt
0 I—~

Utility

assuming CRRA,

The after-tax dynamic budget constraint is now:

ki=1—1)w4+ (1 —76)r +p) ki — ¢

Note the extra rate of return that the household obtains on k;. This is due to
Blanchard’s assumption that assets are annuitized in the economy to prevent
accidental bequests. We will discuss this assumption and the impact of relaxing
it later in the paper and in this Appendix. To allow temporary indebtedness,
the credit markets will require that the present value of household assets, using
the augmented discount rate, must be non-negative. That is:

lim k;(t)e” Pt >
t—oo

Proceeding as in the Ramsey model, we can set up a Hamiltonian function
and find the expression for the household’s optimal growth rate of consumption.

pei(t) 7
H = e (otp) T +o)[1—Tp)w+ (1 —7k)r+p) ki —c; + T
FOCr + ((L=7i)r+p)p(t) = —¢(t)
FOC,, : e PPle ()™ = (1)
dFOCe, . _ _ _ 1
T ) = —(p e TP e (1)1 e PP e (1))
—((1 = 78)r +p) e*(P+P)tci(t)*V = —(p+ p)e*(P+P)tci(t)*7 _ 76*(p+p)tci &) e(t)

¢i(t)

~—((L=1i)r+p) = —(p+p)—vci(t)
(L=7g)r+p) = W?iggﬂﬁp)
ro= 'yﬁ—&-p.

)
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This gives the individual household’s change over time in consumption. In
the Ramsey model, where all households were infinitely-lived and identical to
the aggregate, this would also have described the evolution of aggregate con-
sumption.

However, to derive aggregate consumption dynamics for the Blanchard model,
it is not sufficient to use an individual household’s plan, since households termi-
nate while society does not. The aggregate consumption dynamics are derived
in Barro & Sala-i-Martin (1995, pp 110ff) and result in the following, for a
CRRA instantaneous utility function:

G 1 k(t)

P (f*p)*(p+n)@(p+vpf(1fv)f)

In the steady state, % = g. Denoting steady state values with a *, we have

g)) (p+p— A =)7)+g

o~

(F=p) = (p+n)

(p+n)k(t)*(p+p) + (p)e(t)” + vgc(t)
(p+n)k(t) (1 —~) +c(t)*

We also note the expression for the change in the capital stock, k

b= f(k)—c

Q

In the steady state, % =g, SO
c(t)” = f(k7) — gk(t)®
We substitute to derive the Euler steady state condition

= — k@) (p+p) + (p) (f(K) — gk(1)") +79(f — gk)
(p+n)k(t)*(1 — ) + f(k*) — gk(t)*
pk(t)*(p +p) + (p +v9)(f (k") — gk)
pk(t)* (L —~) + f(k*) — gk(t)*
pf(k) + k@) (@) (p +vp) + g(v(f(k) — gk) — pk)
f(k) + k() (p)(1 — ) — gk '

For simplicity, we will assume that g = 0.

= PIk) + k(@)(p)(p +7p)
f(k) + E@)(p)(1=7)

Assuming v = 1, this simplifies to result (16) from the main text

0
(4ot ). (16)

<

=<
\

+k
+k

1
177’]C

T =
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Tax revenue can be expressed as before:

R=r1ikf (k) + 1u(f — kf'(k))
The derivative of revenue with respect to a change in the capital tax is thus:

I of bl (6" + )+ (o))

di di
As with the Ramsey model, we have two conditions on steady state 7. Set-

ting them equal, continuing to assume g = 0 for simplicity, we get

(I=7i)ff =pf +plp+p)k

With this result and assuming Cobb-Douglas production, we can solve for
dk
dry

(1 —Tpk%ak®™t = pk® +p(p +p)k
a(l —7x) Pk~ + p(p + p)k® 2
0 p(p+p)k* 72 + k' — (1 — 74)

With depreciation,

p (k* —0k) +p(p+p)k
p (k* —dk) +p(p+p)k
= pk® — pok+p(p+p)k
=0

(1—75) (K* — 6k) (k™" = 6)
(1—75) (k* — 6k) (k™" = 6)
)
)

(1 —75) (k™! — 6k~ — adk™ + 6%k
P(p+p) =8lp+o(1—me)) K>+ [p+ 6 (L+a) (1 —m) k'™ —a(l -7y,

which is a quadratic equation in 8 where
5 _ kl—a

Solving the quadratic yields:

—p+ /P2 +4p(p+ p)a(l — 71

b= 2p(p +p)

so that

1

(PP +Ap(p+p)a(l — i) o
2p(p +p)

with depreciation,

—M+5ﬂ+%0ﬂ—70%+¢M+5ﬂ+aﬂl—mﬂﬁwuﬂp+m—5M+5O—TQDQU—TM
2(p(p+p)—0[p+d(1—74)])
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so that

L (—[p+5(1+0é)(1—m)]+\/[p+5(1+04)(1—m)]2+4(p(p+p)—5[p+5(1—m)])04(1—m)

2(p(p+p) —d[p+d(1—7k)])
and
dk 1 =2p(p+p)34p(p +p)a [p° +4p(p + p)a(l — 7k)] C (e VP2 +4p(p + p)a(l — 1)
AT l-a 2p(p +p)2p(p +p) 2p(p +p)
dk _ —a 1 —p+ [P+ alp+pa -] |
dr L= a2 4 ap(p+ pla(l —71))7 2p(p+p

Substituting this result into 7= ylelds the result in the text:

dR

g = RS R ) (=R )]

di

Simplify with Cobb-Douglas

1

[ +4p(p +p)a(l — 7))

a1 7 (ko (o — 1) k72 4 ak>™1)
dR B kak + I: +T"( kOL( ka 2 1
dry, 1 —p+[p*+4p(p+p)a(1—74)] %
[p2+4p(p+p)a(l—Tk)] 5 2p(p+p)
IR kak®™t — ak®ar, + (1 —a)7,]
drr 1 —p+[p? +4p(p+p)a(1-71)] 2
’ [02+4p(p+p)a(l—71)]2 < 2p(p+p)

Now, note that

o

o — <p+ VP + 4p(p + p)a(l — Tk)) o

2p(p +p)

S0,

R
di

di 1-—

Now, note that

= {k‘ako‘l — %ak"fl a7, + (1 —a) Ty]
-«

AR :ak“{l—a[aTk—i-(l—a)Tn]

1

[N
—
)
=
e
+
3

[0 +4p(p + p)a(1l — 7))

1

g

N

p*+4p(p+p

2p(p + p)

s (—p+ VP +4p(p+pla(l - Tk))
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SO

B _ e a ! 2p(p+p)
— = ok 1— aT 1—a)7m, -
dry { e ) ][p2+4p(p+p)oz(1—m)]§ <—p+ \/p2+4p(p+p)oz(1—m)>}
ijakzo‘{l— 1? [aTi + (1 — o) 7y] 2p(Pl+p) }
T “ —p[p? +4p(p + p)e(l — 7k)]% + [p* + 4p(p + p)a(l — 75)]

which is the result in the main text.

We call the reader’s attention to the fact that, if we allow p = 0, as in the
Ramsey model, which implies 7 = p in this case, (21) reduces to our result (6)
from the Ramsey model. You’d need to apply L’hopital’s rule to the expression,
though, as follows:

dR 2 2
d:ak“{l—la [aTr + (1 — a) 7,] (ptp)+2p —

Tk o —5p(Ap+4(p+p)a(l = 74) [p? +4p(p + p)a(l — T4)] "7 + (4p +
limp_@ is

dR 2

el S p— [aTi + (1 — a)7,] P -

2 o ~Sotpa(l— ) (7] ¥+ 4pa(l - 7)

dR o o) 1
E—Oék {1—1 a[aTk+(1_a)Tn]0[(:l_—m}

T [Tk + (1 — ) 7y
dr, O {1 T }

the Ramsey result.

8.1 Sidebar on Aggregate Euler

In the original appendix, we used the result in Barro & Sala-i-Martin to shortcut
to the aggregate Euler equation. Here, we derive it ourselves. The analysis
will work off the inelastic labor supply model of Section 1, and we will assume
g=mn =0 and v = 1 for simplicity.

Therefore, the utility function of the household is

1—
U= /ef(p+p><vft>gdv 1)
L=~
subject to the dynamic budget constraint
ki = —7m)w~+ (1 —71)r +p)ki — ci + T (2)

where T; is transfers given to household i. Equations (1) and (2) imply the
individual Euler equation:
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C= (s 3

Cc

and the tranversality condition is

lim e~ ((-mrin=0g. — (4)

V—00

where j indexes the cohort born in period j.
We can integrate the individual dynamic budget constraint to get the indi-
vidual’s lifetime budget constraint:

/ijei((li‘rk)ﬂrp)(vit)dv =k + (1 —7p)w + j;jt (5)

where a tilde over a variable indicates that it is the present value of the stream
of that variable over time, i.e.,

By = /°° wye (=T -0 g, ©)
t
From the Euler equation, note that
e, = cpe ((A=TE)r=p)(v=1) (7)
Using this and solving the integral in (5), we obtain
¢t = (p+p)(kje + (1 = 7)Bs + Tjo) (8)
which states that an individual’s marginal propensity to consume out of the

present value of wealth is (p + p).
Aggregating across cohorts 7,

t

C, = / cit(p + n)e™ e P9 gj (9)
t . .

K; = / kit(p+n)eMePt=1)qj (10)

(1= 7)W= (1 — 7,,)we™ = ™ (1 - Tn)/ wye” (=TI P =t gy, (11)
t

Tt = Tjtent (12)

since transfers and wages are independent of age (since the Blanchard probabil-
ity doesn’t depend on age).
Since (p + p) is constant, we can simply write

Ci=(p+p)(Kji + (1 —71,)Ws +Tp) (13)
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so the time derivative is

dw, dT,

Yy = Ki+(1—71p)— +—= 14
Co=(p+p)(Eje + (L =Tn) ==+ —7) (14)
where
. d [ ) .
k=4 / yi(p + n)e™ et (15)
Applying Leibniz’s rule to (15), we obtain
t
K, = k(t,t) + / (kje(p + n)e"je_p(t_j) — pk;(p+ n)e"je_p(t_j)]dj
—o0

= 0+ [kjtenje—p(t—j)}go — [pkjenje—p(t—j)]éo
_ kjtent _ pktent

= (I=mp)r+p) K+ (1 —-7)Wy = Ce + T} — pK;

Kt = 1—7px)rKi+ (1 —7)W, = Ce + T} (16)
Also,
dW, d ., [> o )
1- — = —¢" 1— (1=7)r+p)(v—t)
=) g dt* /t (1= Tn)wye dv
(1- m)% = ne™ /Oo(l — 1 wge (=TT =) g,
t

+e"[(1 = 7p)wpe” (AT FPN) _ (1 7 Yope~ (A=) +p)(0)

+ [ A= ru (= rr + ple 0TIy
t

dw, - B
(1- m)j = (1=71)nW — (1 — mo)wee™ + (1 — 7,)((1 = 73) + p) W,
dw, -
(1- T,L)Wt = (A=7)r4+p+n)1—71)W — (1 — 7)wee™ (17)
And, finally,

aTt _ d /°° T, =0+ (=1 g
dt dt ‘
where
Ty, = Trrky + Tow

In parallel to the derivation of (1 — Tn)d—wt/f, we immediately obtain

dT, N

—dtt = (1=7p)r+p+n)T; — Te™

dT; 5

cTtt = (1 =7e)r+p+n)T; — 77 K; + Towe™ (18)
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Thus, we can substitute (16)-(18) into the aggregate Euler equation and obtain:

C’t:(p+p) <Kjt+(1—7n) (14)

v, i
dt dt

(1 — Tk)?"Kt =+ (1 — T’n)Wt — Ct =+ TU+

=(p+p) | (A=7)r+p+n)1 —71)W; — (1 = 7p)wee™
+((L=71K)r +p+n)Ty — Tpr K — Tywe™

(I—7p)rKe+ (1 — 7)) Wy — C'tNJr Ter K + Thwe™ +
=(p+p) (A =7)r+p+n)(1 = 72)Wy — (1 = 75 )wpe™ (11)
+((1=71r)r +p+n)Ty — Tpr Ky — Twe™
(1 — Tk)’l"Kt — Ct“r B
=(+p) | (L=7)r+p+n)(l—710)W;

+((Q1=71e)r+p+n)T;

Now we must substitute in for C.

Ci=(p+p)(Kji+ (1 =)W, +T) (13)
G = (pip) (1= 7i)rKs = (p+p)(Kje + (1 = 7)) Wi + T1)+
ooy (U= i)+ p+n) [(1 = 7) W + ]
G = (p+p) [(1=70)r = p) (Ko + (L= T Wi+ 1) = pK +n (1= 7)) Wi + T3 )|
therefore,
¢ ) (U =rr—p) Ky + (U= T) Wi+ 1) = pK + 0 (1= )W + T3 )|
G (p+ )G+ (1= 70) Wi + 1)
.t n (1—Tn)Wt+Tt
G (@ - PR ( . )
e R e (19)

as in Barro & Sala-i-Martin.
This analysis was completed by noting that consumption equalled output in
the steady-state. That is,

C* = f(K") (20)

8.2 Aside on Incomplete Annuitization in Blanchard model

As Blanchard (1985) and Yaari (1965) argued, agents in a finite-horizon world
with probabilistic death face an uncertain time of death, and if optimizing,
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would seek to enter into annuity contracts in which an annuity issuer would
pay them a per-period premium in exchange for a claim on their assets at the
time of death.! If the annuity market is competitive, those premia, when paid
to a large population, will equal the expected assets assumed by the insurance
companies. If the probability of death is p, each agent receives a premium per
period of p for each unit of the consumption good that the annuity issuer will
assume upon the agent’s death. If the annuity market is not complete, there
will be unintended bequests by agents who die ”early”.

If annuitization is incomplete, there will be unintended bequests. We will
assume for simplicity that these are transferred in lump-sum fashion to new
entrants to the population. An existing household’s flow budget constraint can
be written as follows. Note tht the rate of return on capital is now simply r, as
the lack of annuity markets means that the household no longer enjoys return
T+ p.

E(t) = rk(t) + w(t) — c(t)

The household’s utility function is the same as before, though we assume log

utility in this section for convenience:

U:/ e~ (PPt In ¢(t)dt
0

Setting up the Hamiltonian and maximizing, as above, we obtain:

tlim e "k(t) = k(0)e "0 —|—/ e "(w(t) — c(t))dt
by the transversality condition, tlim e "k(t) = 0,50
/ (T I(0) = k(0) 4
0 (o)
/ e~ (PHPte(0) = k(0)+w
0

c(0) = (p+p)[k(0)+w(0)]

where we denote the present value of wages w.

We will continue to assume n = 0 for simplicity, so new households enter the
population at rate p to hold population constant. Our aggregate consumption,
capital, wealth, and bequests can be written:

t
C(t) = / c(j, t)pe P dj
. |
K(t) = / k(j, t)pe P dj

IThis structure can alternatively be thought of as the existence of insurance markets, in
which the agents pay insurers a per-period premium in exchange for which the insurers cover
the agents’ debts at the time of death.
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where each ¢(j,t) is multiplied by p, the size of the cohort, and raised to
e P(=9) to scale by the number of cohort members alive at time ¢ > j. The
present value of aggregate wages at time ¢ can be written as follows, where the
discount rate is r because the rate of return is r, not » + p, due to the lack of
annuitization.

W(t) = /too w(v)e”"dv

Solving the aggregate consumption equation by substituting in our equation,
simplifying, and applying the transversality condition, we get

C(t) = [ ; c(j, type "D dj

C(t) = /;(Hp) [k(5) + @ (5)] pe ) dj

c) :(MW)K@+W@mﬂwﬂ_K@;W@WwMM]
Cl) = (p+p) [K®)+ W]

To derive the aggregate consumption dynamics, we note that

dW (t)
dt

C(t) = (p+p) |K(t) +

We can determine K with the following process, which utilizes Leibniz’s rule
for the derivative of an integral:

d [ (=)
il ; —p(t—7) 4;
o [/oo k(j,t)pe dj]

t

K(t) = k(t,t)pe 0 + / [, ope 90 = p(j type 9] dj

— 00

E
~

=
I

In traditional Blanchard analysis, k(¢,t) = 0, since new households enter
with no assets. In this model, they immediately receive the per capita bequest
transfer upon entering, so k(t,t) = b(t) = %ft) = k(t). Thus, using this result
and k(t) from before, and calculating the integral above, we get:

K(t) = pk(t>+§[rk<t>+w<t>—c(t>} — p(t)
K(t) = K@)+ W(t) —C(@)
K(t) = rK(t)+W(t) - C(t)
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dW (t)
dt

We can determine as follows. Note that e®™ = 1, since n = 0 by

assumption:
dW(t) d - —r(v—t
7 = E/t w(v)e " dy
= —w(t) +/Tw(v)e_"(“_t)dv
= —w(t) +/mb(v)dv
= —w(t) + ro(t)
—W(t) +rW ()
aw(t)
7 = rW(t) - W()
Inserting results into our equation for C (t), we get:
6w = (p+p) K+ dVZt(”]
CW) = (p+p) [FK() +W(E) = Ct) +rW (1) - W(1)]
CW) = (p+p) [rK®) - CH)+rW(1)]

Dividing by C(t) to obtain the growth rate of per capita aggregate consump-
tion, and simplifying,

<O (p+p) {TK(t) —C(t) + rW(t)}
) (o) [K(®) + W (1)
G _ rE() - C) +rW()

(*) K(t) + W (t)

substituting in C(t) to the numerator

e KO- (o+p) KO+ W)+ ()
o K(t) + W (1)
St _ (r—p-pKWO+(r—p-p) W)
c®) K(t)+ W(t)
¢y - (r—p-p [K(t) + W(t)}
c@t) K(t) + W(t)
Cit) _
coy ~ "

We point out the similarity between this result and the result for the growth
rate of consumption in the Ramsey model, r — p.
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9 Externalities to Capital

The equations are:

w=kP. (22)

y = kk“n'™e. (23)

r = ark® tntTe (24)

w=(1—a)kk“n~". (25)
—(1-7,

V' (n) = %T)w (26)

pt+g
r= g (27)
c = rk®n'~* — gk. (28)

Otherwise, the analysis is exactly as in the main model. To derive these results,
we use the system of two equations that simplifies (22-28):In Cobb-Douglas,

(1= 71)ak® PN — (yg + p) = 0.

V(N) - (BTN — gk) + (1 — 1) (1 — a)k* PP~ = 0.

9.1 Capital Tax Cut

For %, take the total derivative of the first of these:

dry, [—ak®TPTINT dr,, [0]4+dN [(1 - 7)o (1 — a) kTP INT]+dk [(1 — 7)) (@ + B — 1) kTP 2N

dk  aketATINI—e AN 1) 70 (1 — a) kTATIN Y]

athi— dry
dry, (1-7p)a(a+ B —1)keth2N1-a
For %, again apply the implicit function theorem, this time to the second
of these
”U/(N) ’ (f(kaN) _gk) +(]- _Tn)fn(ka) =0
We switch to Cobb-Douglas, where f(k, N) = k“tANI=@
V'(N) [FTPNT= — gk] + (1= 7)1 — a)k* PN~ = 0

From the first, we can write

akaJrﬁlelfoz 14 + Y9
1—17g
, o= k_(_ptrg T
n ak (1 —7g)
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We can rewrite the second with z.

—(1=71,)1 - a)rz”

vi(N) kz®N — gzN
, —(1=-7n)1—-a)k
v(N)N = P
VN = e
ptv9
/ —1-7m)(A—-0a)
V(NN = [ al-rg
P9
/ _ —(-m)d-a)(p+19)
N = s —ali — )
Rewriting,
UI(N)N+(1_7-")(1_04)(/0_'_79) =0

p+g(y—a(l —1%))

We take the total derivative of this expression to find our result.

AN [No"(N) + o/ (N)] +
dr,, [[p+9(7—a(1—ﬂc))](—)[(1—a)(p+wg)]} +

lp+9(v—a(l—7k))]? =0.
—(1-1n)(1-a)(ptyg)ag
dr, { lre(r—a(l—Ti) }
Dividing through by dr, we obtain
dN 1—7)(1—
7[NU//(N)—|—U/(N)] _ ( Tn)( a)(p—l—vg)gkg.
dry, [0+ g(y — (1l —74))]

From our results for the elasticity of labor supply, we know that

No"(N) +o'(N) = '(N) <1$”>
" / _(I_Tn)(l_a) (p+79) 1+o

NoN) + () p+g(y—a(l—11)) <N0>'
Thus,
AN (-7 -a)ptygleg  ptgly — ol —7k)) < No )
Tk p+g(y—al—71))) —1-7)A-a)(p+v9) \1+0o
dN —ag ( No )
dri, — p+gly—a(l—7,) \1+o
dN agN ( o >
dri, — ag(l—7x)—(p+v9) \1+0)"
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We use this in our expression for % to obtain, assuming Cobb-Douglas.

di okt TPTINTTe — AN (1 — 70 (1 — a) kTP IN 9]

dry (1—7r)a(a+p—1)keth2N1-a

a+p— —a agN @
dk ake AN — ag(lfmg)f(pﬂg) (1+J> a(l—a)ketAIN—]
dri (1—7p)a(a+ 5 —1)keth= 2N1 @

Cancelling terms in the numerator and denominator,

dk _1*(1*7k)(1*0‘)m(1%>

dry, (1-71%)(a+B8—1)k1

a1 0= (- 0) ey (155)

dr (1—71) (@ +B—1)k1

dk Jag(l—7k) —(p+79)](1+0)—(1—7k) (1 —a)ago

dri, — lag(l—7k) = (p+79)] (L +0) (1 = 71) (@ + 5 — 1) k=1

dk_ Jag(l—7) —(p+y9)](1+0) = (1 —7%) (1 — ) ago

dry, — —(—7) 1 —a-p)ktag(l - 1) — (p+79)] (1 +0)

dk - k{a(—a)(d —7r)go —[ag(l —7k) — (p+79)] (1 +0)}

dry (I—a=B)1—7k)leag(l —7k) = (p+79)] (1 +0)

Though this is not a particularly simple expression, it reduces well in our

overall result. That is, insert this result for % and our result for % into our

result for d—R from the main text to obtain, assuming Cobb-Douglas,

R = 7prk+71,wN
R = (amp+(1-a)r,) kNI
aketBNI—a
an = b (ot RTINS (amy 4 (1 - a) )
ATk | gynamic +9N (1 — ) kAN (arg + (1 — a) )

simplifying, and pulling out k fi, we obtain

aka+ﬁN1 oy

= dT (a+6)k°‘+5 I yl-a
dynamic (Osz + (1 - O‘) Tn) _|_de ( )k’oﬁLﬁN o

dTy

R
di

aka«#Blea

1*(17Tk)(1701)m(ﬁ) b f—1 A1l
Y (am+(1—a)m,) T ) (a1 p-Dk T (a+pB)k N

dynamic (e P o ¢ e
+O‘9(1*Tk)*(p+vg) (1+a) (1-a)k N—«

R
di
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aka+[3N1—a+

dR _ , I 1—(1—“)(1(—@)W(1%) (a+B) |
_ — . ot l1—a 1—7k)(a+B—1 @
ATk | gymamie (atk + (1 — @) 7)) ak*TPN . a’; L) (1—a)

L ag(l=7r)—(ptvg) \ 1+o a i

1+
ﬁ — akaJrﬁNl*a 1-(1-7x)(1-a) ag(lf‘r;y)gf(fﬂrvg) (I;La) (a+p8)
AT | gomamic (ati + (1 —a)7y) (=7x)(a+B-1) @
ynamsic + «g _o (1;0‘)
L ag(l—1k)—(p+v9) \ 1+o o ]
1+
dR I (1-o) sy (15) (a
alv - a+B arl—a 1 (a+B) ag(i—7)—(ptr9) \1+o ) (a+)
d . = ak N (aTk + (1 . Oé) Tn) (1—7g)(a+p-1) « (a+B—1) o
ynamic + ag (L (d-a)
L ag(l—7k)—(p+vg) \ 140 a
1+

dR [ 1 (a+8) ag o\ (a+B) (1-a
- = aka+ﬂN1_a 1—7)(a+B-1 @ + ag(l—7r)—(p+v9) (m) a  (1-a-—
ATk | gynamic (ame+ (1 —a)7,) | 77 ) N CZ,( Y pl (1-a)

L ag(l—7k)—(p+vg9) \1+o o

1+

dR r 1 (a+8)
Rt — nga+6N1_a (1—7k)(a+B-1) «@
di dynamic (OéTk + (1 - Oé) TTL) + ag (kL) |:(04+/3) (1-c) + (1704):|

L " ag(l—7k)—(p+vg) \1+o a (I-a—B) a
dR 1+
ik = ak*tANI— 1 (a+B) 1 o (1-a)
ATk | aynamic { (ak +(1—0)7n) [(1,T,€)(a+571) o T ag=rn =g 1159 ((Pa*ﬁ))}
T = ak*PN! { (aTp+(1=a)7s) a+B _ _(aTp+(1=a)7n) (1=a) 2 _g }

Tk dynamic (I-7x)(1=a=p) « (p+v9)—a(l—7k)g (1—a—p) 1+o

9.2 Labor Tax Cut

For jTN, we refer to the total derivative of the second. Dividing through by
dTt,, we obtain

dN [Nv"(N) +v'(N)] +
[etg(y—a(d=T))](=)[(1=a)(p+79)]
drn [ lrr9(r—a(l—ro)2 } +
—(A=1n)(A-a)(ptvg)ag
dr { lor9(v—a(l—71)]? }

=0.

Dividing through by d7j, we obtain

dN
dr,

(1 —a)(p+9)]
lp+g(y—a(l —7k))]

[N0"(N) +'(N)] =

From our results for the elasticity of labor supply, we know that
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N(N)+/(N) = o(N) <1 * ”)

" / —(=m)(d-a)lp+yg) (1+0
NoN) /() = p+g(y—a(l—T14)) ( No > '

Thus,

dN " , +g(y—a(l — 7k 1—a)(p+ No

e L 0 = S ot e~ T3 o)
dN N o
dr,  —( -1, (1 +U)'

Substituting this expression into that for == — gives

dry, [—ak®TPTINT Y dr, [014+dN [(1 - 73)a (1 — ) kTP IN T +dk [(1 - 7)a (e + B — 1

dk _dN (1-ao)k

dr, dr,(l—a—-p)N
k ko (1-a)
drn (1—74) (1+0) (1—a—p)

Returning to our expression for jTR, we obtain
N

R = 7prk+1,wN
R = (arpg+(1—a)7,) ketANI—o
IR (1 —a)ktBNI-«
? | _ d g[\g )]{a+571]\]’717a (aTk + (1 _ a) Tn)
™ ldynamic +ar- (11— Q) kBN~ (arp + (1 — a) 1)

(1 a)kotoNI—o
g 0 o 0
o (110) (1 - ) kPN (g + (1 — @) Tp)

dR { (1—a)ketBNI-«

dR

dT” dynamic

dr,

dynamic (1-74) (1—a=pB) (1-a)

iR (1 - a) ke+B N1~

dry, dynamic a (1—7y) l—a— ﬁ):| (1+(r) (1 - Od) ka+ﬁN1 ¢ (OéTk + (1 - (1) Tn)
ﬁ = (1- )kaJrﬁNl alq_ atp+ (1 —a) T, g

dtn dynamic (1—0&—6)(1—7'”) <1+0)
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10 Imperfect Competition—Results (18)-(23)
On the production side, note that
f(k,n) = k*n~* — §k. (1)

However, due to imperfect competition, factor returns are distorted away from
their marginal products, so that:

r=== (2)

w= == (3)

The household’s Hamiltonian is:

i 61776(177)’”(’"’)

H:e " T +AQ=—7p)rk+ (1 —7p)wn+ (1 —7,)7—c+T]

where 7 is pre-tax profit for the firms, equal to the fraction  of operating profit
that is not dissipated by costs of entry. Households take their share of this profit
as exogenous to their actions; that is, they consider investment of another unit
of capital as yielding the after tax rate of return (1 — 74) 7. Taking first-order
conditions of H, we get:

FOC,. : e Ple7rel=mv(n) = )
FOC, : e P/(n)ct=7e=1v0M) — _X\(1 —7,)w
FOC) : —A=X(1—-1p)7

Combining the first two FOCs gives result (4);

v(n)e=—-(1-71p)w (4)
Take the time derivative of the first of these results:
dFOC, ¢ .
SLopA—y=A= A
dt p ’yc

In the steady state, this yields result (5):

(I=7e)r=p+~g (5)

In the steady state, total consumption is equal to final output in terms of
final goods consumption, non-dissipated profits, less investment. We can use
the dynamic budget constraint and set k= gk and T equal to total tax revenue
to derive (6):
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C:M+W*gk
Iz

Total tax revenue is:
R =7irk 4+ twn + 17,

and finally, non-dissipated profit (pure rents) is:

(-

o= Q“T_lf(k-,n)

(®)

These equations (1)-(8) give our full model. We can proceed by first simplifying

them to four key results:

(1—7r) fo=p(p+~9)

’ f (k,n) p—1 - _(1—~ fi
v(n)( ) gt f(/m)—gk) - —a-mk
o ()[40 (= 1) f (k) — pgh] = —(1—72) f

R— % [Tk fik + Trfan + 70 (u—1) f (k,n)]

and,
f(k,n) = k'~ — k.

10.0.1 Capital tax results
Now, take the total derivative of (11)

1 A7y (fek) + dry (fan) +d7r (0 (0 —1) f (k,n))
dR = — +dk [Tk (fkkk‘ + fk) +Tn (fnkn) + Tr (9 (/A — 1) fk)]
a L +dn [Tk (fenk) + Tn (fann + fo) + 72 (0 (0 = 1) fn)]
[ Jrk
jﬁ;l + 2 (7 (fenk + o) + 7o (fakn) + 72 (0 (0 = 1) fr)]
Tk H i +$_77; [Tk (fenk) +Tn (fann + fo) + 72 (0 (1 — 1) fr)]

Using Cobb-Douglas and simplifying,

iR . akanl—a
= +aknt [y (@) + 70 (1 — @) + 75 (0 (u — 1))] %ﬁ
Tk B Lgkepl-e [Tr (@) + Ty (—a+ 1)+ 7, (0 (1 —1))] 1;“%
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dR - ak®nl—e 1 dk

a m {1+[O¢Tk+(104)7_n+0(y’1)7—ﬂ']

Note that the static scoring estimate would be:

R
di

akanlfa

static K

So, now we need to know ddk and 4 Use (9):
k

(I=71)fk—pn(p+v9) =0

Then,
kb fo— (U= 7k) frn g
dri (1—7&) frr
Use (10) for —"'
/ _ _(1_T7’L) fn
U= TR 1) f (k) — pgh
o (n) = —(l—=7p)(1—a)k*n™@

(L+6(u—1)) k*n'=* — pgk

Now, let z = %, which by (9) is

kdr, ©

Then,
’Ul (n) _ — (1 — Tn) (1 — Oé)
(146 (u—1)) 2% — pgan
n' (n) = —(l=-7p)(1-0a)
(146 (p—1)) — pgzt—
' (n) = —(1—7p) (1 —a)
(500 1) - gt
nv' (n) = —(Q=7) (1) (p+9)
(L+60(p—1)(p+v9) —ag(l—r1y)
Thus,
dn _ (1—7) (1 =) (p+9) (ag) 1

l-aldn

a ndrg

dric (140 (n—1)) (p+79) — ag (1 —74)]* m0" + o'

Now, note that, from (10),

v'(n)e+(1—7p)w=0

48

)



% dn| w —(1—-7,) —v'(n)e V' (n)

= = S =0

dw - n e (I1=71,)n v

where o is the constant-consumption elasticity of labor supply. Then,

11 o [(A40k-1))(p+v9)-—ag(l—1)|n o
n'” +v v 140 —1=-7n)(1—=a)(p+~9) 140

50,

d (1=7n) (A=) (p+v9)(ag)

an o _ [(1+9(u*18)(p+79)*a9(177k)]2

drr, LA+ =1))(ptvg)—ag(l—7k)ln _o

—(1=7n)(1=)(p+79) 1to

dn —agno

dry [(1+6(n=1)(p+79) —ag(l—7x)](1+0)
Thus,
dk ak® Int=* —a(1—a) (1 —7%) ka’ln*add%
dry —a(l—a)(l—7k) ke 2pl-@
" —k [1—(1—a)(1—7k)%%]
dry (1—a)(1—7y)
ke _ F |1 = (1= ) (1 ) =T =)
dry (1—a)(1—Tk)
dk LA+ -D)(ptv9) —ag(l —7)](1+0) + (1 —a)(l —74) ago
dr (1=a)@=7x) [(A4+6(—1)(p+79) —ag(l—7)](1+0)

This is ugly, but plugging it into our equation for the dynamic change in revenue:

o 1w l—Jark+(1—a)Tp+0(p—1)7,]
R _ ak®n [ [(1+6(u=1) (p+79)—ag(L—1p)](1+0)+(1—a) 1—Ti)ags ]

drr ? (11)1(;;m>[<1+9<u71))(%779%@(14@}(1+a>
a [(1+0(up—1))(p+vg)—ag(l—7k)](1+0)
dR  akonl~® L—Jarp+(1—a) 7y +0(pn—1)74]
P [[(1+9(#*1))(p+vg)*ag(lffk)](1+ﬂ)+(1*a)(1*Tk)a90+(1*a)(1*a)(17m)90}
Tk H T—a)(A—7)[(1+0(u—1) (ptrg)—ag(I—7r)[(1+0)
dR akenl—o l—Jarg+(1—a)7n+0(u—1)74]
T a [[(1+9(u*1))(p+79)*a9(1fm)](1+<7)+(1*a)(177k)90]
Tk H (I=a)A—7)[(A+0(u—1) (p+79)—ag(I—7x)](1+0)
dPL_akanl—a{1_a7k+(1—a)7'n+9(,u,—1)7'ﬂ-_ aTk+(1—a)Tn+9(M—1)T7r o
dry, J (1—a)(1—7) A14+0(p—1)(p+v9) —ag(l—7) 1 +0
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Now, this expression is very similar to our expression for a model without
markups. If 4 = 1, it collapses to that model, as expected. Note, however, that
it also collapses to the no-markup example if 8 = 0, that is if all pure profits
are taken up by entry costs. Calculate the term inside the brackets for our
standard parameter values a = %,Tk =Tp = %,p = .05,9 = .02,0 = %,’y =1
and a few illustrative cases:

Foru— ,0=1 Tﬂ—%

e PR NN S ¥ oY cher TG ) S SO
1- ( —é)(l—i) ~ (1+1(5-1))(.05+.02)- 1 (.02)(1- 1) 1+ 2% (:02) = 0.34975
For yy=1,0 =1,,7. = 1, no-markup case

ll+(1 l) +1(1-1)% ll+(1,l)l+1(1,1)l 1 .

1 3i - %)(1_7) - T _%(.02;*(1_%) 27 (:02) = 0.47436
For p :( %, 0= 0,(7'7r = %, fully dissipate)d rer<1ts )

HHO-bivo(iont de-bivGond g
=5 o)) oo -Son) (i=1) 11 (02) = 047436
For p :( %,)9 = 1(,7' 17 a smaller(mar)kup( :

PH-DEaB-0 Be-din@ond
1— R e o) T (.02) = 0.424 54
For p = %, 0= %, Tp = i half dissipation

3i+t(1-3)it+3(5-1)3 3it(1-3)it+s(5-1)3
S oy 5 N )1+1 (.02) = 0.41208

T oslo
D wl=
=

For p = = 1,7, = 0, profits untaxed but markups not dissipated
HHO-PERE-00 33 (-)in(-no _
L (O ) a0 o) T (0%) = 047950

Note, by the way, that this is the result from our original paper, assuming

profits are not taxed and markups fully non-dissipated: that is, we had
1— atp+(1—a)Ty, atp+(1—a)r, o _ atp+(1-a)Th+0(u—1)0  atpg+(1-—a)7,+0(u—1)0 o

T—a)(1-11) _ alptrg)—agl—1) 1+od =+~ (IT—a)(1—71) A+ L(u—1)(ptr9)—ag(i—7%) 1+o 9

But, this is probably an unrealistic assumption. Profits are taxed and are
probably partially dissipated. The case of p = g, 0= %, Tn = i may provide a
good benchmark, and it indicates that the markup raises the feedback effect to

59% (from 53% in the no-markup case).

10.0.2 Labor tax results

L[ dme (k) + dri (fan) +drx (0 (0 — 1) f (k,n))
dR = — | +dk [ty (ferk + f&) + 7o (fakn) + 772 (0 (0 — 1) fx)]
a L +dn [Tr (fenk) + Tn (fann + fo) + 72 (0 (1 — 1) fn)]
[ fnn
Lo +d—[ (k4 J) + T (k) + 7 (0 (1 — 1) fi)]
n s L [ (fkn )+Tn(fnnn+fn) w(e(ufl)fn)]
For T use result (9):
(1=7k) fe —p(p+79) =0 (9)

50



dk (1 = 71) frn g

dr, (1 —7&) fur

Ak fin dn

dr, B .fk'k dry,

dk a(l— )k In= dn
dr, _a(a — ka—2pl-« drn
dk k dn

dr, ~ ndr,

For ddT", use results from the earlier analysis:
n

(1—=7,) (1 —0a)(p+79)

nv' (n) + =0
M 50— 1) (T 79) —ag (1= 72)

dn (I-—a)(p+9) 1
drn, (L+6(n—=1))(p+7v9) —ag(l —7k) " + '
dn (1-a)(p+19) (A+0(p—-1)(p+79) —ag(l—T7)|n o
dry (1+60(p—1)(p+v9) —ag(l—r1k) —(A=7n) A=) (p+79) l+o
o
drn,  (1—-1,) 140
Therefore,

& _ <k o

drn, (Q1—7,)1+0
So, using Cobb-Douglas and simplifying,
AR 1 (1 - a)k*nt=«
= +(1—a)kn' [rp (@) + 7 (1 — ) + 7 (0 (1 — )]ﬁ%djﬁ
oL - kot (@) + T (—a 1) + 7 (0 (n— 1)) 2

dR 1—a)kent- [
- = ()M{1+[a7k+(1—a)Tn+9(ﬂ—1)Tﬂ] _

dR (1 —a)kont=@ [ o 1 —k o 1 -n o
Ot _LTWER Y 1—a)Tn+0(u—1)7n - -
dr,, 1 { o+ ( ) Tn + 0 (u )T}_loék’(lTn)1+O'+TL(1Tn)1+O':|}

dR (1 —a)konl—
kS Sk ZAANCa— 1- —1
. . { [aTi + (1 =) 70 + 0 (n—1) 7]

« o 11—« o
G- (-r)ito (-a)(-rito
dR _ (1—a)k*n'* [ ary+(1-a)r,+0(p—1)71: o

drn o {1 (1-a)(1—7y) 1+U}
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10.1 When profits are taxed at same rate as capital
On the production side, note that
f(k,n) =kt~ (1)

However, due to imperfect competition, factor returns are distorted away from
their marginal products, so that:

h

r=t (2)
o

w=" (3)

+AQ=—7p)rk+ (1 —Tp)wn+ (1 —7K) 7T —c+T]

where 7 is pre-tax profit for the firms, equal to the fraction 8 of operating profit
that is not dissipated by costs of entry. Households pay the same rate of tax
on profits as they do on capital income, though they take their share of profits
as exogenous and assume that another unit of capital investment will pay back
(1 — 7g)r. Taking first-order conditions of H, we get:

FOC, : e Plere=mv(m) — \
FOC, : e P/(n)ct™7et ="M — _ X1 —7,)w
FOCk : —).\:)\(1—7%)’)"

Combining the first two FOCs gives result (4);
v'(n)e=—(1—7,)w (4)
Take the time derivative of the first of these results:

dFOC. ¢ .
T—pA—=-A =)\
dt p 7c

In the steady state, this yields result (5):

(I—me)r=p+g ()

In the steady state, total consumption is equal to final output in terms of

final goods consumption, non-dissipated profits, less investment. We can use

the dynamic budget constraint and set k = gk and T equal to total tax revenue
to derive (6):

c:f(l;n)+7r—gk (6)
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Total tax revenue is:
R=r1y(rk+m) 4+ Town (7)

and finally, non-dissipated profit (pure rents) is:
S
1
—1
o= 0 () (8)

These equations (1)-(8) give our full model. We can proceed by first simplifying
them to four key results:

(I —=7k) fr = p(p+79) )
/ f (ka n) n— 1 fn
v(n)( p +6 . f(k,n)—gk> = —(1—’7'71);
o' () [(1+0(p—1)) f(k,n) —pgk] = —(1—1n)fa (10)
R = [rufik 7o fur+ 740 (1= 1) (k) (11)
and,
f(k,n) = k%', (12)

10.1.1 Capital tax results
Now, take the total derivative of (11)

. dri (fik +0(u—1) f (k,n) + dry (fun) ]
dR = — | +dk[ri (furk + fx) + 7o (faen) + 76 (0 (0 — 1) fi)]
K L +dn [Tr (fenk) + Tn (fann + fo) + 75 (0 (= 1) fr)]
w1l ik 05— 1) f (k)
= + 2 1k (fank + i) + 7o (farn) + 75 (0 (1 = 1) )]
T g (fenk) + T (Fann + Fn) + 75 (0 (1 = 1) £)]

Using Cobb-Douglas and simplifying,

o @G-k -
E:; +ak®n' =¥ [rp () + 7o (1 — @) + 7% (9(u—1))]EH
+ak®n! = [ (o) + T (—a+ 1) + 75 (0 (n — 1))] %%%
iR 1 (40 (p—1) koni=e
= +akn Y [(a+0(u—1)) T + 70 (1 — )] %% ]
B dakent o (a4 0 (n— 1) T+ T (1 — )] L5e L dn

]



dR 1 dk
=(a+0(u—1)) —k*nt~® o [Tk +7Tn a+6 y, 1))} %Tk
dr K (o) Jizeldn
T Tk + Tn (a+0(p—1)) a ndr
dR 0 1 !
F:(M (1) o 1-a + iy e+ 0 (p— 1)) e+ (1 —a) 7] £ 42
k K +m[(a+9(ﬂ—1))Tk+(1—a)7n17a%jf
Call @ = (o« + 6 (p — 1)), the adjusted capital share in this model with markups.
Then,
dR & 1dk  « 1—al dn
Propl=e |1 1—a)r,] - 1-a)r,] —2
ar [ + = [a7k+( Ol)T]kd + = [Osz+( Q) Ty) " ndT;J
dR & e 1dk 1—aldn
= — ko 11—« 1 X 1— al | = —
drn " [ TRl l-ar ]{kdm a ndi”

Note that the static scoring estimate would be:

57}1 o= <7‘k‘ + OHT_lf (k,n)> (7)

57}1 = (J:sz oL r )) (12)

% static N i (akanlia +0(p—1) kanlia) (13)
3772 static B %kanlia

So, now we need to know -2 and 4%, Use (9):
) dry dty

(I=71)fr—p(p+v9) =0

Then,
dk fk—(l—Tk)fkndd%"k
dry, (1 —7%) frr
Use (10) for T’;:
_(1_7-“) fn

(140 (u=1)) f(k,n) = pngk
—1=7pn)(1—a)k*n®
(1+6(p—1)k*n'=* — ugk

o4



Now, let z = £ which by (9) is

Then,
o (n) = —(1—7p) (1 —a)z”
(14+0(p—1))z%0 — pgzn
' (n) = —1-7n)(1-a)
(146 (pn—1)) — pgzt—
' (n) = —1=7pn)(1—-a)
(140 (1= 1)) = ng it
nv' (n) = — Q-7 (1 -a)(p+9)
(140 (u—1))(p+79) —ag(l—7k)
Thus,
dn _ (1-7)(1-a)(p+9)(ag) 1

dri (1460 (n—1)) (p+79) — ag (1 —mp)]* m0" + 0/
Now, note that, from (10),

v'(n)e+(1—7,)w=0

> dn| w_ —(1-7,) —v'(n)e v (n)

dw |, no '  (I—-71p)n

where o is the constant-consumption elasticity of labor supply. Then,

1 1 o [1+0@r-1)(+y9)—ag(l—T4)ln o

' +v  vl+o —(I=7) (=) (p+79) l+o

S0,

(A=7n)(1=a)(p+v9)(ag)

dn - _ (00— 1)) (p+79)—ag(1— )
drr. LA+0u—1))(p+vg)—agd—TK)ln _o
) —(1=7n)(1—a)(p+v9) 140
d7n _ —agno
dry, [(L+6(u—1))(p+79) —ag(l—7k)](1+0)
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Thus,

kaflnfa dn

dk k' —a(l-a)(1-7) A
dri, —a(1—a) (1= 74) ko2pi-a

ax K [1—(1—a)(1—m)%j7’;}

dri (=) (d-7s)

ﬁ B —k {1 —(1—a)(1—7g) [(1+9(M*1))(p+;g)gfaag(177—k)](1+g—):|

dri (1=a) (1 —74)

dk 1A+ =D)(pt+r9) —ag(l—7i)](1+0) + (1 —a) (1 —7) ago
dry, (I—a)(I=7) [(1+0(n—1)(p+79) —ag(l—Tk)] (1 +0)

This is ugly, but plugging it into our equation for the dynamic change in revenue:

dR Q
— papl-a {1 + 3 [aTr + (1 — a) 7y]
&

dr 1 dk 1—a1d7n
dri

%% « ﬁdrk

~ 17%[647'k+(1—04)7n}~
AR 0o 10 l [(1+6(u—1)) (p+79) —ag(1—75)|(1+0) +(1 =) (1—T4)ago 1

dre 4 (1—a)1(_1;m)[(1+9(u—1))(rg—g"ng)—ag(l—m)](1+rf)
T8 0= (r9)—ag(—rn](1F0)

dR &, , . . L—2[ar,+ (1 —a)7y,]-
e —kn [[(1+9(u71))(p+79)fag(lfm)](1+U)+(1fa)(17Tk-)a90+(17a)(1fa)(17m)ga}
Tk H (=) (A=) [(A+0(n=1))(p+79)—ag(1-7x)](1+0)

dR & . 4, 1—2[ar, + (1 —a)7]-

P [[(1+9(/t—1))(P+“/g)—ag(1—fk)](1+0)+(1—a)(1—m)90]

ThH =) (I—70) [ +0(u—1)) (p+9)—ag(1—r)](1+0)
dR a _ a . 1 go
:k“nla{l—NaTk—i— 1—a)T, +
i g o =)l | T ) T [0 D) (p + 79) — g (L= )] (L )
dR &ka 1a{1 a[&rk+(1a)7n+ atg+ (1 —a)7, o ]}
ARk e _a
dr al0-a)d—mp) (+0u-1)(p+79) —ag(l—7x)1+0"

Now, this expression is somewhat different from our expression when profits
were taxed at a different rate. That expression was derived in the previous
section. To see how taxing profits at the same rate as capital affects dynamic
scoring, remember that the static scoring estimate of a capital tax cut would be

R _a
dr,  p

(xnl—a.

So, we calculate the term inside the brackets for our standard parameter values
a = %Jk =7, = ip = .05,g = (.02),0 = %,’y = 1 and a few illustrative
cases:

For p = %,0 = 1,7, = (%), we first calculate & = a + 0 (u—1) = %—i—

(3 —1) =0.58333
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(2) o.935(1) +(1-3)(1) L o) =
+ (1+1(5-1))((:05)+1(.02) - 1 (.02) (1—(3)) 1+3 ('02)> -

7 0.58333

1 1 (0‘58333(}1)4»51 )

0.628 43

So the feedback effect has fallen to only 37 percent, rather than 53 percent,
when profits are taxed at the same rate as capital.

10.1.2 Labor tax results

1 [ dri (fik) +drn (fan) +dre (0 (n—1) f (k,n))
dR = — | 4dk[1g (frrk + fe) + 7o (faxn) + 72 (0 (0 — 1) fr)]
a L +dn [Tk (fenk) + Tn (fann + fo) + 72 (0 (1 — 1) fn)]
[ fun
T B 4 [k (fank) + T (fanm + fn) + 7 (0 (1= 1) £)]
For %“n, use result (9):
(L=7k) fe —p(p+79) =0 9)
dk _(1 _Tk)fknd‘inn
drn, (1 —7k) frr
dk fun dn
drn ek dra
dk a(l — )k In= dn
dr,  ala—1ke—2pl=2dr,
dk kdn
dr, ~ ndr,

For ddT", use results from the earlier analysis:

(I-70)(d-0a)(p+79)

O T D) (0 7g) —ag (7]
dn (1-a)(p+19) 1
dry, (1+0(p—1)(p+79) —ag(l —74) nv" + v
dn (1-a)(p+19) [(A+0(p—1)(p+y9) —ag(l—TK)]n o
drp (I+0(—1)(p+v9) —ag(l—T1k) —(1=7)1=0a)(p+9) l+o
dn -n o
drn l-7p)1l+0
Therefore,

dk ko

dr, (1—7p)l+40

57



So, using Cobb-Douglas and simplifying,

iR 1 (1 - a)knt-«
IR _ L] - a k= e+ (1 a) 7 (0 (n = 1) 254 4
Tn M +(1—a)kn* [ (@) + Tn (—a+1) + 72 (0 (n — 1)) %%
dR  (1—a)k*n'~® [« 1dk 1dn
ar. = {1+[aTk+(1—04)Tn+9(ﬂ—1)77r] T—akdr ndm

drR _ (1-o) kent-« « —k

g

)

dTn M{1+[Oﬂ'k+(1a)7—n+0(ﬂ1)’rﬂ}

drR _ (1-o) kenl=e e

1
1-ak(l-7,)1+0

g

*ia:n}nnia”

l1—« o

:{1—[ark—k(l—a)Tn—Fa(M—l)Tﬂ}

dr, L (1-a)(1—7p) 140
dR _ (1-a)k*n'—® 17047k+(1—a)7'n+0(/¢—1)7ﬁ o
dr, 1 (1—a)(1—=14) 1+o

11 Transitional Dynamics

For the transitional dynamics, we derive differential equations that describe the
time path of the capital stock, consumption, and the labor supply. Recall
that in our model of Section 2, we assume that labor enters the utility function
inside v(n). We specify the functional form for simplicity, but would not have
to. The equivalent results with no specified functional form are derived at the
end of this section.

v(n) = —fn'te
Note that this form implies:
!/
YW
v'(N)-N

.t (1 + %) nw

I (1 + %) %n%
o = o

So o is our standard constant consumption elasticity of labor supply.

As mentioned in the main text, the nature of our system is that, when taxes
are changed, consumption and labor supply are free to jump immediately, while
the capital stock is momentarily fixed at its original level. The mathematical
difficulty is finding these jump values. To be even more specific, we have three
key points in time when we need to know the values of the capital stock, con-
sumption, and labor: before the tax cut, immediately after the tax cut, and the
steady state after the tax cut. We will therefore have nine values of these three
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variables to calculate, which we will denote cg, ng, ko, ce, e, ke, c*,n*, k*. The
before-tax values and the steady state values can be derived with the standard
steady-state conditions—the tricky values are the three at ¢ = . Fortunately,
the capital stock is momentarily fixed, so kg = k.. We can derive the remaining
two values, the "jump" values c. and n., with the differential equations that
describe the transition path to the steady state. The differential equations will
give us a way to calculate ¢,n at any point in time, and specifically at ¢ = ¢
as € — 0. To find useable expressions of these differential equations, we begin
with the household’s utility function:

1
(cf,egt)Fwe(lf“’)("’)"1+ 71

H= e; " —
e(t) (1 — To)wN + (1 — Ti)rk — ¢ — gk + T

Performing the household’s maximization, we can derive the following re-
sults:

b (o rak NI (L DENE g
Ct Y

ﬁ _ ot (v =14 7p)ak® N + (1 — a)yg — ay§ (34)
N (2 +a)y—0(1+ )1 —y)NHz

The firm’s decisions are the same as before, so we have the following results.
We assume Cobb-Douglas from the start for simplicity.

ke = (1—71)kY — ¢+ kS — gk,
ky o
s, - = k&N a—k—t—g (35)

To derive analytical results, we linearize the system (33)-(35) around the
steady state. This will give results that are particularly applicable for small
tax cuts. To derive a first-order linear approximation of (33)-(35), rewrite they
system in terms of natural logs. We assume that v = 1, which is equivalent to
log utility, for simplicity.

dln ¢

o — a(l _ 7_k)e(oz—l)(lnk—lnn) —p—g (36)
dInn, 1 (a—1)(Ink—Inn) (Inc—Ink)

& = ail [arke —ae +p+ (1 —a)g| (37)
dlnk

Crllt t e(a—l)(lnk—lnn) _ e(lnc—lnk) —yg (38)

Now we use the fact that capital, labor, and consumption per efficiency unit
are constant in the long run to solve for steady-state expressions in terms of

parameters. We will use these later to simplify our first-order approximation
of (36)-(38)..
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6(ozfl)(ln k*—Inn™) _ Pty
Oé(l — Tk)

(Inec*—Ink™) _ Pty _
’ (a(l - 7

Now we take a first-order Taylor approximation of the log-linear system
(36)-(38) around the log deviations of ¢, n, k from their steady-state values.:

[ dlncs 7] [ 0 —afa — 1)(1 = 7 )eleDnk=Inn) (g — 1)(1 — 74 )ele-D(nk=lnn)
dlﬁtnt _ _e(ne—1nk) 7Oé(a71)7_ke(o¢—l)(lnk—lnn) a(ail),rke(a—l)(lnk—lnn)+ae(lnc—lnk)
i I I I
& (lc:ltiln k) C(Moﬂf—(yl)(ln k—Inn) (a_l)(lna]:_‘fn n) (Inc—In k)

L —a | —e —(a—1)e (a—1)e +e

[ — — _pPtg

r dlnc, 7 9 —a(a— 1)(]_ _Tk)a(fl)tg-k) OZ(OK 1)(1 Tk)a(lffk)
diin, | _ —o(mts—9) —a(a—1)ri g fS ala—1)m b ta (s —g
aih, |~ o — 1 o ot

L S — (22 - —(a — 1)L (0 —1)—LF 4 ptg

[ \et=ry 9 a(I=rs) o- D= + (ai=m —9
rodlne T [ 0 —(a—1p+g (a—1)p+g In(2)
dl(#nt —(p+9) 4 o9 —(a=1)7ulptg) (A+are—7u)(p+9) _ _ag e
a, | T (a+2)(—re) © atg (1—”‘)ga+%) (a+3)(1=7x) atl ln(%—*)
L b L et B 1 9 i (z)

To simplify going forward, we assume g = 0. We could have done so earlier,
but we have tried to retain generality as long as practical to allow for interested
readers to pursue the more general cases that we do not. We will discuss the
likely effects of our simplifying assumptions later.

dlncy 0 *(04*1)0 (Ol* 1)/) Lt

i, | _ =L —(a—D7ep_ (14(a=D7i)p 1111(%:)
ai | = | (e+3)a-m)  (-m)(e+3)  (atL)(1-r) n(ye)

dlnky _ —(a=1)p P In(£e)
dt a(l—7k) a(l—T1y) 1—7y k

Call this matrix A. The theory of differential equations tells us that we can
use A to derive the transition paths of our variables to their steady-state levels.
Specifically, we can find the eigenvalues and eigenvectors associated with A. To
do so, we form the characteristic equation of A and find the values of 3 for which
det[A — BI] = 0. The characteristic equation can be simplified to:

(ot =] 5 = [l 24 (= am 1= ] 8 = |10 - @+ (et D)1= )t =m0 9

(ot D=2 8 = [lat T+ - am) =] 8- [0 - 0P+ (@t D) -]

Ua+;+ﬂ—aﬁwﬂ—rwﬂi< [(a+ 2+ (1—a)m)d—7)p]
¢\ = [
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There are three eigenvalues, or roots to this equation, which we call ¢, A, 8.
The expressions for them are:

[(a+i+(1—a)r)(1-—

, _ Merertmamt (et for 010 a0 o
2[(a+ )1 —75)?]
Lt (1 a1 rg] (a+ L+ —a)r) (1 —7x)p]”
. [( +o‘+(1 ) k)(l k)p] (+4 [(Oz—i—%)(l _[Tk)Q] [i((l—a)Qj—(a—l—f)(l]—a))(l—Tk)pQ]
2 [(a + %)(1 - Tk)Q]
B =0

These can be simplified a bit:

- [(a+2+(1—a)m)p] + ([(a+§+(1—a)m) P +4la+ L) [L((1— )2+ (a+ L)1 —a)(1 —74)
$ = 2 [(at D)1 —70)]
L [(a+§+(1—a)m)p}—([(a+§+(1—a)m)p] +4e+H) [2((1-a)?+ (a+ 1)1 - )1 —75)
N 2[(a+ 1—T}c]
B =0

The first terms in the numerators of ¢ and \ are positive, as are the denomina-
tors. The absolute values of the second terms in the numerator are necessarily
larger than the first terms’, so ¢ is positive and A is negative. The eigenvectors
of the matrix A that correspond to these three eigenvalues can be derived for
a given set of parameter values with standard mathematical software. Call the
matrix of eigenvectors V. Then, we can describe the paths of the log values of
c,n, k with

Ineg = In ¢+ U116¢tb1 + ’0126/\tb2 + ’U13€Btb3
Inn, = Inn*+ 1}216¢tb1 + ’Ugge/\tbg + ’Uggeﬁtbg
Ink;, = Ink* + v31e?’b; + v30e by + v33¢ by

where v;; is the i,jth component of the matrix of eigenvectors, and by, bz, b3 are
coefficients that we must determine with boundary conditions.

For our boundary conditions, consider the case of t — oco. By assumption
¢ > 0, but lim; ., ¢; = ¢*, so we know that by = 0. Similarly, given that 5 = 0,
if b3 were not equal to zero, the variables would not approach their steady state
values as t — oo . Thus, b3 = 0. That leaves us with:

Inc; = Inc* + viae™by
Inn; = Inn* + vege by
Ink;, = In k" + ’U32€>\tb2
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At t = 0, we know that the capital stock is fixed at its initial level, ky. We
also know that kg = k., so:
(Inkg —Ink*) (Ink. —Ink*)

b2 = =
V32 V32

We can substitute this in to our other conditions to rewrite our system:

(Inke —Ink*) At

Inci —lnc®* = ———wvqe (39)
U32
Ink. — Ink*
Inn; —lnn* = 7( - - )Uzzext (40)
U32
Ink; —Ink* = (lnk.—1Ink") e (41)
thus, att = ¢,
Ink. — In k*
(Inn. —Inn*)e ¢ wvgz,
V32
so, Inny —Inn* = (lnn. —Inn*)eM e

As e — 0, this result implies that the rate of transition of the labor supply from
its level instantly after the tax cut approaches A:

Inn; —Inn* = (Inn. — Inn*) e (42)

Thus, results (41) and (42) imply that the rate of transition from the imme-
diately post-tax cut levels of £ and n to their post-tax cut steady-state levels is
the rate .

As discussed briefly above, the nature of our system is that, when taxes are
changed, consumption and labor supply are free to jump immediately, while the
capital stock is momentarily fixed at its original level. We want to derive the
values of ¢, n, k at three points in time, ¢ = 0, e, and the long run (steady state).
We will use our steady state conditions to derive the pre-tax cut levels cg, no,
and ko and the steady-state values c¢*,n*,k*. Because kg = k.,we can then
plug the steady state values of consumption, labor supply, and capital and the
initial level of capital into this system and calculate c. and n., the jump values
of consumption and labor supply, at ¢t = . The convergence of ¢ and n to their
steady state levels begins at the values to which they jump, ¢, and n., and is
at the rate .

To find ¢y, ng, and kg and the steady-state values ¢*, n*, k*, the steady state
conditions we need are:
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— kanlfa

Y
r = Olko‘flnl*a
w = (1—a)kn™®
1
— o
n o~ (U Tw)z
0T b
r = P
].—Tk
c =y

Note that we have continued to set ¢ = 0 and v = 1 for simplicity.

n* = (W)J;

1
T

1
T

o (ata) (S

1 _
T 1

© <a<1—m> (1 1a)) ’
ne = <(1—Tno 1—a>
ko = k5—< 1_Tk0) (1—771”2(1)_0[))1+

These yield

1
T

o

(46)

(47)

(48)

Note that equations (43)-(45) and (46)-(48) differ only in the tax rates that
apply: Tk, Ty O Tk 0, Tn0,Where the latter are pre-tax cut, the former are post-

tax cut.
Now, we plug these values into (40)-(41).
(Inke — Ink*) N

ln Ne — ln 'n,* = = Zuege £
V32

Ink. —Ink* = (Ink.—Ink*)e
As e — 0, these simplify to:
«  (Inke—Ink*)

Inn, = lnn +07v22
32

In kE = In ko

63



giving us our "jump" values of n and k.

With our values for n, k before the tax cut from (47) and (48), immediately
after the tax cut from (49) and (50), and in the steady state from equations
(44) and (45), we can calculate the present value of the transition path of tax
revenues. Specifically, let Ry, Re, and R* denote the pre-tax cut, jump level,
and steady state tax revenues per period. We can write

Ry = (atp+(1—a)1y) kgn(lfo‘
R. = (atp+(1—a)my) k?n;*”‘
R = (arp+(1—a)r)k"n* "

11.0.3 General labor disutility function is equivalent to specific
(ce9t)' 77 =MV _ 1
L=~

Performing the household’s maximization, we can derive the following re-
sults:

_ —pt
H=e¢

+ot)[(1 = Tp)wN 4+ (1 —1)rk — c— gk + T]

FOC. : e—pte(l—’v)gte(l—v)v(N)C(t)—’v =
—pePtegt1="1) g(1=7v(N) c=7 4.
dFOC, (1 — fy)ge*pte(I*W)Qte(lfﬂv(l\[)C*’Y+
Pop= / 7 —pt (1=)gt o(1—7)v(N) — 14)
dt (1 —~)v'(N)Ne~* e(1=Mgt o(1=7)v(N) o= _

W/efpte(l*"/)gte(l*"/)v(]v)077716'
—pePtegt=7)e(1=1v(N) =7 1
(1 —)ge Pte(l=Mgte(l="v(N) =74

(1 — ’y)’U/(N)Ne_[’te(l—’y)gte(l—'y)q;(N)C_,y_
fyefpte(lf'y)gte(lfry)v(j\])C,,Yilé

—((1 = 7)r — g)e PtedMatel=MvN) =y —

~((=mr=9) = —p+ =g+ (1-N/(NN —7elé
Aty = —pt (=g + (LW (NN~
(I—7p)r = p+vg+vg+(1—7)v’(N)N%
S = % (1—Tk)aka‘1N1‘°‘—p—vg—(l—v)v’(N)N(%}
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FOCy

dFOCy
dt

z2l=

Now,

So,

S*Ptegt(lf"/)c(t)lf'ye(lf'y)'u(N),U/(N) _ 7(1 B Tn)'LU(t)Cp(t)
_pefptegt(lfv)C(t)l—ye(l—y)u(N)v/(N)_’_
(1- ,y)ge—ptegt(l—W)C(t)l—ve(l—v)v(N)v/(N)_|_
(1 —)éctePtedtU=mc(t) =7 =Mv(N)y/ (N)+
(1 _ ,y)vl(N)e—l)te.‘]t(l—’Y)c(t)l—we(l—w)v(N)UI(N)N+
v”(N)Ne’ptegt(1*7)c(t)1*76(1*7)1’(1\’)
= —(L=7p)[w()e(t) + w(t)p(t)]
_pe—ptegt(l—fy)C(t)l—fye(l—'y)v(N)U/(N)_’_
(1 —7)gePtedt="¢(t)1 =71 (N)y/ (N)+
(1 — V)C'Cflefptegt(177)c(t)1776(177)1)(1\[)']_)/ (N)+
(1 _ ,}/)U/(A]\f)e*ptegt(lfw)C(t)lfwe(lfw)v(N)U/(AN)]\'[Jr
V" (N)Ne=Ptest1="¢(t)1=7e(1=1v(N)
i y anr—a) e PtedtA=1 ) 1=7e(A=Nv(N) /(N
((1 —a)a (% B %> KON ) —(1—Tn()()(1—(x)k°‘N—&) )

efptegt(l—'y)c lfwe(l—'y)u(N),Ul
— (1= a)k*N=*) (1 = 7)ok N1~ — g) 7(177,,L()t()(17a)kaN—“) = J

= —(1—=7n)

'U//

+ (1 =)' (N)N + -

—p+(1—-7)g+ (177) [(1 — TR)ak*TINTTY — p—yg — (1 - v)v’(N)N%

].{ N 1arl—a
« (k - N) —((1 = 7)ak* 'N'"* — g)

—2 (1 =yV(N)N+ (1 =)' (N)N + ——~—

1—
p—(1—=7)g— (fyPY) [(1—7)ak* !N — p— 9] + [k’klNl*a - % - g} —((1 = 7))k ' N

p— (1 _ ,.Y)g _ (1;7) [(1 o Tk)akalelfoz —p— ,Yg] Ta [kalelfoz o % o g] o ((1 o Tk)aka—lNl—

[0 C52(1 (W) + (1 =7 (V)N + 220N ]

L N  p+7pak® INT+ (1—a)g— at
1, simplify to N TR
a+ v (N)

v'(N)
v"(N) N

=0

N _ pA TRk TINTTY 4 (1 - a)g — af

N oz—i—%
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These are identical to when the specific functional form was assumed.

(1= 7)ak® INT= — p— g — (1 =)' (N)N

=

(1—7p)ak* INT=> —p—¢g

p+ TRak® T INTTY 4+ (1 —a)g — af

1
oz—l—o
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