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Recent advances show that neural networks embedded with physics-informed priors significantly
outperform vanilla neural networks in learning and predicting the long term dynamics of complex
physical systems from noisy data. Despite this success, there has only been a limited study on how
to optimally combine physics priors to improve predictive performance. To tackle this problem we
unpack and generalize recent innovations into individual inductive bias segments. As such, we are able
to systematically investigate all possible combinations of inductive biases of which existing methods
are a natural subset. Using this framework we introduce Variational Integrator Graph Networks - a
novel method that unifies the strengths of existing approaches by combining an energy constraint,
high-order symplectic variational integrators, and graph neural networks. We demonstrate, across
an extensive ablation, that the proposed unifying framework outperforms existing methods, for
data-efficient learning and in predictive accuracy, across both single and many-body problems studied
in recent literature. We empirically show that the improvements arise because high order variational
integrators combined with a potential energy constraint induce coupled learning of generalized
position and momentum updates which can be formalized via the Partitioned Runge-Kutta method.

I. INTRODUCTION

Accurately and efficiently learning the time evolution of
energy conserving dynamical systems from limited, noisy
data is a crucial challenge in numerous domains including
robotics [1], spatiotemporal dynamical systems [2], inter-
acting particle systems [3], and materials [4]. To address
this challenge, researchers have shown that enriching neu-
ral networks with well-chosen inductive biases such as
Hamiltonians [5], integrators [6–8] and graphs [9–11] can
significantly improve the learning of complex dynamical
systems over vanilla neural networks. Fundamentally,
physics-informed learning biases constrain neural net-
works to uncover and preserve the underlying physical
process of a system under investigation. Most methods
in this space typically combine multiple individual in-
ductive biases to improve overall predictive performance.
However, no study extensively quantifies the performance
uplift induced by an individual bias within these com-
binations. In addition, it remains an open challenge to
identify the best combination.

In this paper, we unpack recent innovations by group-
ing their inductive biases into generalized segments. We
then systematically investigate all possible combinations
of these biases. In doing so, existing methods are natu-
rally explored and generalized as they form a subset of
the entire ablation. Using this we identify and develop
Variational Integrator Graph Networks (VIGNs) - a novel
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method that brings together the core benefits of multiple
inductive biases and unifies existing approaches which
bring integrative, symplectic and structural form to mod-
eling energy conserving physical systems. We show that
higher order variational integrators, formalized via the
Partioned Runge-Kutta (PRK) method, can be used to
couple position and momentum updates for more pre-
cise learning. To benchmark our method we conduct
an extensive ablation study across recent developments
in physics-informed learning biases and show that VI-
GNs consistently outperform existing baselines including
Hamiltonian Graph Networks (HOGNs) [12], ODE Graph
Networks (OGNs) [12], Hamiltonian Neural Networks
(HNNs) [5], and Variational Integrator Networks (VINs)
[6] across energy conserved noisy many-body dynamical
systems.

In section II we describe the individual learning biases
that comprise VIGNs. We then outline the details of the
proposed architecture in section III. In Section IV we
demonstrate the performance of VIGNs across numerous
well known energy conserving physical systems such as the
simple pendulum and the many-body interacting spring
particle system. Finally, in section V we unpack the
performance uplift and highlight some of the limitations
of the existing method.

II. BACKGROUND

Numerous recent approaches tackle learning from phys-
ical data, but of them three methods stand out; Graph
Networks [10], Hamiltonian Neural Networks [5] and net-
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works with embedded integrators [6, 8]. VIGNs allow us
to combine the major strengths of each approach and
hence form a simple, unifying framework for learning the
temporal behaviour of dynamical systems. We briefly
review the methods in the following sections.

A. Graph Neural Networks

The state of a physical system can be represented by
a graph G = (u, V,E) [9]. For example, a node (V ) can
be a particle in a many-body problem. These nodes can
be used to represent the core features of the particle
like its position, momentum, mass, and other particle
constants. Edges (E) can represent forces between the
particles, and the ‘Globals’ (u) can represent universal
constants such as air density, the gravitational constant
etc. In representing physical systems this way, we are able
to preserve the structure of our data and find solutions
that conform to this prior structure using graph neural
networks[9–11, 13–18]. Graph neural networks carry out
a sequence of transformations to the graph nodes and
edges to update the graph parameters. The representation
is therefore powerful for many-body systems primarily
because the graph networks can operate within the known
constraints of physical systems.

B. Hamiltonian Neural Networks

In designing a neural network, the typical operation
of interest for many physical systems is one which ac-
curately models the time evolution of the system. Re-
cently, the work of [5] demonstrated that predictions
through time can be improved using Hamiltonian Neural
Networks (HNNs) which endow models with a Hamilto-
nian constraint. Given a system with N particles, the
Hamiltonian H is a scalar function of canonical position
q = (q1, q2, ...., qN ) and momentum p = (p1, p2, ...., pN ).
In representing physical systems with a Hamiltonian, one
can simply use Hamilton’s equations to extract the time
derivatives of the inputs by differentiating the Hamilto-
nian with respect to its variables as:

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (1)

where ȧ = da
dt ∀a(t). As a consequence, it is noted in

[5] that by training a network to learn H given inputs
[q,p], the system’s state-time derivatives can be naturally
extracted through auto-differentiation of the predicted
Hamiltonian with respect to the inputs. The Hamiltonian
in most systems represents the total mechanical energy of
the system and is therefore a powerful inductive bias that
can be utilized to evolve a physical state while maintaining
energy conservation.

C. Potential Neural Networks

Separable Hamiltonians found in many dynamical
systems can be written as H(q,p) = Ekinetic(p) +
Epotential(q). Typically, for rigid body systems the form

of the kinetic energy is Ekinetic = M−1

2 p2 where M
is an inertial mass matrix that connects the general-
ized momenta q̇ to the canonical momenta p such that
q̇ = ∂Ekinetic

∂p = M−1p. The authors of [19] and [6] exploit

this simplification when dealing with generalized position
q and velocity q̇ to collapse Eqn. 1 into:

dq

dt
= q̇,

dq̇

dt
= −M−1 ∂Epotential(q)

∂q
. (2)

Equation 2 allows us to learn a single function Epotential

with fewer network weights needed to learn a Hamiltonian
and a single backpropagation with respect to q as opposed
to [q,p] for HNN. Further, it gives us the flexibility to
learn the inertial mass matrix by explicitly learning Mθ

rather than nesting it in Ũθ = M−1U . As this type of
network has not been introduced formally as an individ-
ual inductive bias, we coin the term Potential Neural
Networks (PNNs) in reference to them.

In the case where we only have canonical coordinates,
potential networks can still be used but a separate neural
network needs to be designed to learn the inertial matrix
M [6].

D. Embedded Integrators

Dynamical systems can be represented by systems of
differential equations in the form:

ṡ = f(s, t), (3)

where s = (q,p)T is a state vector, t is time, and f is
an arbitrary function of time and the state vector. One
approach to solving Eqn. 3 is to parametrize the function
f by a neural network and minimize the euclidean distance
between the predicted state time derivatives ˆ̇s and the
ground truth ṡgt derivatives. One challenge in doing
this is it assumes access to the ground truth state time
derivatives, which can be hard to extract. To circumvent
this problem, researchers embed a numerical integrator
into the training process [8, 20]. Formally this equates to
integrating both sides of Eqn. 3 such that:

Short Range Integration:

st+1 = st +

∫ t+∆t

t

fθ(s, t)dt. (4)

Long Range Integration:

st+n = st +

∫ Tmax

t

fθ(s, t)dt, (5)
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where θ are the weights of the neural network. The
short range integration involves a single discrete step ∆t
whereas the long range integration involves a sequence
of discrete steps to the final time Tmax = n∆t. It can be
shown that if we integrate the system from t to Tmax, the
network above ends up being a composition of multiple
transformations as would be found in recurrent neural
networks and residual networks [8].

1. Symplecticity

While the embedded integrator resolves the challenge
of having to obtain state time derivatives, it introduces
a new complexity - the choice of integrator. Numerical
integrators are chosen based on their precision and trun-
cation error, however, when dealing with Hamiltonian
systems an additional factor to consider is whether the
integrator preserves the energy of the system. It has been
shown that symplectic integrators can preserve the energy
during integration making them versatile for long range
integrations of conserved quantities [21]. The performance
of these integrators on a range of different systems is out-
lined in the Appendix, where we see that for long range
integrations even low order symplectic integrators are as
performant as high order Runge-Kutta (RK) methods in
terms of energy conservation.

While Variational Integrator Networks (VINs) [6] and
Symplectic Recurrent Neural Networks [22] both illustrate
how an embedded symplectic integrator improves learning
over traditional RK methods, they only do so for low
order methods. To extend our investigation to higher
order symplectic integrators, we need to study Partitioned
Runge-Kutta methods.

Typically, RK methods can be described by Butcher
tables (see Appendix) and if the coefficients satisfy cer-
tain conditions then they can be made symplectic [21].
However, the additional symplecticity constraint on the
table of coefficients forces the integration scheme to be
implicit. While implicit integrators are powerful, they
require a root finding approach. Introducing such com-
plexity into an embedded NN is possible but significantly
complicates the backpropagation technique. As such, it
is of importance to establish whether explicit symplec-
tic methods can be developed. Fortunately, by creating
separate Butcher tables for position and momentum it is
indeed possible to describe a Partitioned Runge-Kutta
(PRK) method with coefficients that result in an explicit
symplectic integration scheme. Note that variational in-
tegrators, derived through variational calculus, can be
described by PRK methods [21]. As a consequence, it is
possible to generalize the result of Variational Integrator
Networks (VINs) to higher order methods (see Appendix
for details).

E. Related work

The notion of embedding physically-informed inductive
biases in neural networks can be found in numerous early
work aimed at modeling materials [23–27]. For example,
early efforts by Witkoskie and Doren [23] demonstrate that
in contrast to directly learning a potential energy surface,
the inclusion of gradients in the learning process can
drive a network to accurately model the forces. However,
most materials modeling frameworks are task-specific and
usually do not generalize well.

More general approaches that capture physical laws
include search algorithms [28], symbolic learning [15], as
well as regressive techniques [29–31]. In addition, graphs
have also been presented as natural inductive biases in
modeling physics [9, 13].

NeuralODE [8] has also re-sparked an interest in in-
ductive biases for differential equations. Inspired by this
work, [5] and [32] show that a neural network can be used
to predict a Hamiltonian which can be differentiated with
respect to the input (p and q) to obtain the time deriva-
tives of the system. With these derivatives accurately
learnt, a NeuralODE-type integration scheme can be used
to evolve a system. This general approach has formed
the basis for many advancements within physical learning
[6, 11, 12, 20, 33].

Although HNNs predict dynamics for few body systems
well (e.g. a swinging pendulum or mass spring system)
they are not readily adaptable to large N-body problems
when the input dimension grows. The work in [12] shows
that graph networks are ideal for resolving this type of
system because they can operate on structured data i.e.
the system does not need to be vectorized as would be
the case for multi-layer feed forward neural networks.

Inspired by NeuralODEs, variational integrator net-
works [6] propose a neural network whose architecture
matches the discrete equation of motion governing the
dynamical system, as derived by applying the Euler-
Lagrange equations to a discretized action integral. The
paper indicates major benefits when using the method
for noisy data, as well as providing precise energy and
momentum conservation.

While it is clear that the constrained HNN [34] is ca-
pable of solving Hamiltonian systems more efficiently, it
assumes we have access to Cartesian coordinates for all
systems and requires explicit rigid body constraints.

Our method brings together the inductive biases pre-
sented in all these papers and leverages them to solve
large many-body problems in noisy data settings.

III. METHOD

The architecture for our method is shown in Fig. 1.
The network takes as input state vectors s = (q) rep-
resenting generalized coordinates and learns to predict
the potential function and its derivatives with respect
to the inputs. Note, we adopt the potential neural net-
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FIG. 1: The architecture for our method takes as input the position vector [q] and feeds it through a graph network to
compute the potential energy E(q). Using backpropagation, the update for q̇ is computed and the input state is

integrated one step. Continuing this sequence yields an multi-step integration scheme.

work so we require generalized coordinates. However, the
transition to a Hamiltonian NN is straightforward. Since
the input training data can be described by a graph, we
show vertices Vi, edges Eij and globals u as input to
the graph network GNu to predict the potential energy
Epotential. The key difference between our graph approach
and HOGN [12] is that our network only takes the po-
sition q as input i.e. the nodes only have position data.
In the noiseless setting, the training loss is defined as
the mean-squared error (MSE) across all time steps and
across all state vectors. In the noisy setting, we follow a
similar approach to [6] and compute the full log-likelihood
of the predicted state vector spred as:

P (spred|s, σ2) =

Tmax∏

t=1

N (spred(t)|s(t), σ2I), (6)

where N is a Gaussian distribution, σ2 reflects the vari-
ance and I is an identity matrix.

To benchmark the performance of our method we con-
duct an extensive ablation study. Our ablation iterates
across all combinations of the inductive biases described
in the section II. Namely, it includes both graph and
non-graph methods that either learn the state derivatives
directly [5, 12], the Hamiltonian (Hamiltonian networks)
or the potential function (potential networks). We use 1st
through 4th order integrators that are symplectic and non-
symplectic. We also iterate over a multi-step integration
scheme with step sizes of 1, 5 and 10 to account for both
short, mid and long-range integrations during training.
Note that we can indeed integrate for more than 10 steps
but this increases the memory requirement. In addition,
since the ablation iterates over all possible combinations
of inductive biases, existing methods in the literature are
naturally covered. For example, VINs can be described
as low-order, long-range symplectic integrators coupled
with potential networks. While HOGNs couple low and
high order, short-range integrators with Hamiltonians and

graphs.
Since our work iterates across all these methods we

adopt a new naming convention for convenience. We refer
to networks that combine graphs with potential networks
as Potential Graph Networks (PGNs). Note that VIGNs
are PGNs under symplectic integration.

IV. EXPERIMENTS

We carry out our experiments on numerous datasets
used in recent literature and describe their configurations
here (see Appendix for full training/testing configura-
tions).
Training: For all the systems we investigate the training
data is generated using an 8th order Runge-Kutta method
with rtol = 10−12 so that the ground truth is precise and
conserves energy. The noise model for all systems is
chosen to maintain a noise-to-signal ratio of less than
30% which allows us to investigate which architecture
is the most robust to noisy data. For all noisy training
configurations, the noise source is a Gaussian N (0, σ).
The noise is added to each state vector similar to the
approach taken in [5] and [6].
Testing: To evaluate the performance of our models, we
sample 50 initial conditions and integrate these systems
to 3 times the training time horizon 3Tmax. In other
words, the true performance of the model is tested by
evaluating points beyond the training regime. For each
set of initial conditions we compute the MSE across the
entire trajectory between the prediction and the ground
truth states. Note that some of our 50 sampled initial
conditions can be slightly outside the training regime
which can lead to a few poorly predicted trajectories by
all the models. To prevent this skewing our final reported
results, we compute the geometric mean, a measure of
central tendency, of the MSEs computed across the 50
initial conditions.
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Here, we describe the systems investigated. A list of all
the experimental results can be found in the appendix. In
the following discussion, we only report the results of our
ablation with 4th order methods for clarity. The results
for these systems are summarized in Fig. 2 and the others
are summarized in the appendix.

Mass-Spring system

We start by considering a simple frictionless 1-D mass-
spring system modeled by the Hamiltonian as:

H =
p2

2m
+ k

q2

2
. (7)

For simplicity we set the mass m and spring constants to
1 without loss of generality. As is done in [5], the training
data is sampled uniformly in an energy range of 0.5 to
4.5.

Pendulum system

We carry out testing on a 1-D pendulum, which is
more complex than the simple mass spring because it is
a non-linear system. The Hamiltonian is modeled as:

H =
p2

2ml2
+mgl (1− cos(q)) , (8)

where the mass and lengths are set to 1, g is set to 9.81.
We use 25 initial conditions which satisfy the condition
that the total energy lies in [1.3, 2.3] for training. Note
that this energy yields strong non-linear behaviour.

2-body gravitational system

The 2-body system represents a particle system in which
the forces between particles is modelled by a gravitational
force. The system can be represented by the Hamiltonian:

H =
2∑

i=1

|pi|2
2mi

−
∑

1≤i≤j≤2

g
mimj

|qj − qi|2
, (9)

where we set masses to 1 and g to 1 without loss of
generality. The coordinates are assumed to be scaled by
the reduced mass µ, in addition, the center of mass is
assumed to be fixed at 0. We use 20 initial conditions
which satisfy the condition that the radius of a particle’s
trajectory is uniformly sampled between [0.5, 1.5] as is
done in [5]. We visualize the rollout of a single test point
in Fig. 3.

3-body gravitational system

The 3-body system represents a particle system in which
the forces between particles is modeled by a gravitational
force. The system can be represented by:

H =

3∑

i=1

|pi|2
2mi

−
∑

1≤i≤j≤3

g
mimj

|qj − qi|2
, (10)

where we set masses to 1 and g to 1.

N-body spring force system

We also carry out our experiments on a dataset similar
to that found in [12]. We develop a N-body dataset,
where the interaction force between particles is modeled
by Fij = −kikj(qi − qj) following the same sampling
procedure in [12], leading to a Hamiltonian as:

H =
1

2

N∑

i

|pi|2
2mi

+
N∑

i

N∑

i<j

1

2
kikj(qi − qj)

2. (11)

The overall mechanism closely aligns with important prob-
lems in N-particle systems used to model complex ma-
terials in solid state physics. Qualitative results for the
5-body problem are presented in Fig. 4.

Hénon-Heiles system

The systems investigate so far do not exhibit chaotic
motion. Hénon-Heiles is a system used to describe the
nonlinear motion of a star around a galactic center and
defined by the Hamiltonian:

H =
1

2
p2 +

1

2
q2 + λ

(
q2
xqy −

q3
y

3

)
, (12)

which exhibits chaotic motion, i.e. small perturbations on
initial conditions lead to drastically different trajectories.
It has been shown that Hamiltonian Neural Networks can
be used to capture dynamics in this setting [33, 35].

We show the test results of all systems in Figure. 2 with
models trained on noisy data using 10-step integration
during training. Most notable is that potential-based net-
works consistently perform the best with potential graph
networks doing the best in terms of state and energy MSE
for most systems. In addition, the performance of RK-
4 and the symplectic 4th order integrator are relatively
comparable across most systems, indicating 4th order
symplecticity constraints are more relevant for very large
integration time steps such as in our 2-body problem or
chaotic trajectories like Hénon-Heiles.
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FIG. 3: Qualitative evolution of a single test state of the 2-body gravitational problem with each model trained on
noisy data. The top row shows each method integrated with a RK4 integrator. The bottom is a 4th order symplectic
integrator. We see that PGN is the most performant method as it stays close to the ground truth lines (marked in

black) with the variational integrator variant of PGN (VIGN) doing the best (bottom right).

V. CONCLUSION

From our extensive ablation across both noisy and non-
noisy training data we find that VIGN is consistently the
most performant in the noisy data setting. We believe
that the reason inductive biases are not as successful with

noiseless data is that they overfit to the training set in
addition to the networks attempting to compensate for the
error induced by numerical integration. Noise naturally
reduces the overfitting and thus allows VIGN/PGN to do
well. Once we identified VIGN as the most performant we
needed to establish which biases were most useful. From
2 we see that a potential network bias drives the largest
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method integrated with a RK4 integrator and the bottom 4th order symplectic integration. Unlike OGN, PGNs

perform very well under symplectic integration and typically outperform HOGN in energy conservation.

performance increase against other approaches. We also
see that graph based methods are more performant for
larger many-body systems as is expected but remain
robust in the single body settings too. We also find
that using a long-range integration scheme in the noisy
data setting tends to help the overall performance of
all methods as it encourages the network to learn the
underlying dynamics using multiple noisy points rather
than one.

Although we do note that symplectic integrators are
good for long range integration and energy preservation,
their performance in many of the systems we investigate is
only marginally better than Runge-Kutta. In preserving
the energy, symplectic integrators are capable of drift-
ing from the ground truth state while ensuring energy
conservation which explains why we occasionally see RK
methods doing much better at state and energy conserva-

tion. However, we do note that symplectic integrators of
low order are much better at preserving the dynamics over
low order Runge Kutta methods. This result is consistent
with the theory of symplectic integrators.

We have shown that learning dynamics from data
strongly benefits from well-chosen inductive biases. We
present VIGNs as one such method capable of learning
from scarce, noisy data across a diverse array of domains.
We highlight that VIGNs are able to (1) unify graph
networks, ODEs, potential networks, and symplectic in-
ductive biases for learning precise trajectories in large
many-body systems, (2) make learning data-efficient, (3)
maintain flexibility in learning from generalized momenta
and easily extended to canonincal coordinates, and (4)
build higher order variational integrators through parti-
tioned Runge-Kutta methods.
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Appendix A: Training Regime

TABLE I: Training and Testing Parameters

Tmax Train Tmax Test ∆t Samples Training Points Total Samples Hidden Layers Nodes per Layer

Mass Spring 3 9 0.1 30 25 750 2 200

Pendulum 3 9 0.1 30 25 750 2 200

2-Body Gravitational 20 60 0.1 200 20 4000 2 300

3-Body Gravitational 2 3 0.1 20 200 4000 2 300

5 Spring Particle 4 12 0.1 40 100 4000 2 300

Heinon Heiles 2 3 0.1 20 100 2000 2 300

TABLE II: Parameter Sweep

System Model Embedded Graph Embedded Integrator Integrator Type Range Noise

Mass Spring Baseline Yes Yes RK1 1-step Yes

Pendulum Hamiltonian No No RK2 5-step No

2-Body Gravitational Potential RK3 10-step

3-Body Gravitational RK4

5 Spring Particle VI1

Heinon Heiles VI2

VI3

VI4

1
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Appendix B: Symplecticity

1. Symplectic Runge-Kutta

A Runge-Kutta method can typically be represented by a Butcher Tableau which outlines

the coefficients needed for an s-stage integrator.

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

TABLE III: Butcher Tableau

where:

ki = f(t0 + cih, y0 + h

s∑

j=1

aijkj), i = 1, ..., s

y1 = y0 + h

s∑

i=1

biki.

If the aij consists entirely of non-zero coefficients then the method is implicit. However, if

the method is only lower triangular then the method is considered explicit.

It can be shown that if a RK method preserves quadratic first integrals then it is symplectic.

This translates to having coefficients s.t.:

biaij + bjaji = bibj∀i, j = 1, ...s.

The constraint above enforces the integration scheme to be implicit.

2. Variational Integrators

To achieve high order explicit symplectic integration, we have to use PRK methods.

Variational calculus provides one pathway to illustrating the connection between high order

symplectic integration and Lagrangians.
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FIG. 1: We record the state and energy MSE of over 25 initial conditions for different ∆t

values and average them. Each system is integrated to Tmax = 2. We see that for some

systems a fourth order symplectic integrator performs much better than other integrators

with larger ∆t. Note, we exclude the RK1 and RK2 plots as they perform very poorly and

distract from the performance differences of the higher order methods.
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FIG. 2: We record the state and energy MSE of over 25 initial conditions for different ∆t

values and average them. Each system is integrated to Tmax = 10.

Lagrangian mechanics offers an alternative to the Hamiltonian in generalizing a dynamical

system. Rather than position and momentum (canonical coordinates) defining the state

space, Lagrangian mechanics is defined using a generalized coordinate state space (q, q̇).

This is particularly useful in physical settings where the description and measurement of

generalized coordinates may be easier to work with than canonical coordinates [? ]. Given

3



these coordinates, Joseph-Louis Lagrange showed that a scalar value A, referred to as the

action, can be defined as the integral of a Lagrangian, L(q, q̇):

A =

∫ t+1

t

L(q, q̇)dt (B1)

The integral can be thought as inducing multiple paths between points in state space i.e.

multiple walks in the domain of (q, q̇). However, only one path is a stationary state of the

action integral. This state lets us move from t→ t+ 1 with minimal energy. It can be shown,

through variational calculus, that this stationary state must satisfy the Euler-Lagrange

equation:
d

dt

(
∂L
∂q̇

)
=
∂L
∂q

(B2)

Although complex in form, the action integral and the Euler-Lagrange equations can be

discretized and collectively form the basis for variational integrators.

Variational Integrators discretize the action integral A of the Lagrangian L:

Ld(qt,qt+1, h) ≈
∫ t+h

t

L(q, q̇)dτ (B3)

Once discretized, the Euler-Lagrange equations, coupled with the separable Newtonian

Lagrangian (Eqn. B4), can be used to obtain the Störmer-Verlet equation (Eqn. B5):

L(q, q̇) = T (q̇)− V(q) =
1

2
q̇TM q̇− V(q) (B4)

qt+1 = 2qt − qt−1 − h2M−1∂V(q)

∂q
(B5)

Notice, the Störmer-Verlet equation looks like a discretized second-order differential equation

and has a truncation error of O(h2). The key distinction between this approach and the

Hamiltonian is that it allows us to represent information in terms of generalized coordinates

and naturally couples the dynamics of momentum with position.

To obtain higher order variational integrators, the work in [? ] considers discretizing the

Lagrangian by setting the elements of the Lagrangian to polynomials of degree s:

Ld(q0,q1) = h

s∑

i=1

biL(Qi, Q̇i) (B6)

where:

Qi = q0 + h

s∑

j=1

aijQ̇j, q1 = q0 + h

s∑

i=1

biQ̇i (B7)
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If we extremize this Lagrangian with respect to Q̇, [? ] show that we obtain a variational

integrator which allows us to update position and momentum through the following equations:

Qi = q0 + h

s∑

j=1

aijQ̇j, Pi = p0 + h

s∑

j=1

âijṖj (B8)

q1 = q0 + h
s∑

i=1

biQ̇i, p1 = p0 + h

s∑

i=1

biṖi (B9)

The result of extremizing the integral in this way results in a set of update rules that can

be described by a Partitioned Runge-Kutta (PRK) method. It can also be shown that the

equations provide a generalized higher-order form of the Störmer-Verlet equation which

allows us to couple momentum and position updates with increased accuracy.

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

,

ĉ1 â11 . . . â1s
...

...
...

ĉs âs1 . . . âss

b̂1 . . . b̂s

TABLE IV: PRK Butcher Tableau

c1 a1 0 0 0

c2 a1 a2 0 0

c3 a1 a2 a3 0

c4 a1 a2 a3 a4

a1 a2 a3 a4

,

c1 0 0 0 0

c2 d1 0 0 0

c3 d1 d2 0 0

c4 d1 d2 d3 0

d1 d2 d3 d4

TABLE V: Yoshida 4th order

The fourth order Yoshida method can be described by PRK coefficients as:

w1 = 1
2−21/3

and w0 = −21/3

2−21/3
then, a1 = a4 = w1/2, a2 = a3 = (w0 + w1)/2 andd1 =

d3 = w1,d2 = w0 and d4 = 0.

The fourth order Mcate method can be described by PRK coefficients as:

We should clarify that by conserving the 2-form, symplectic integrators are more consistent

with the underlying dynamics. However, enforcing the 2-form constraint doesn’t always

correlate to better state MSE. In other words, the constraint to stay on the 2-form is

5



coefficient value

d1 0.515352837431122936

d2 -0.085782019412973646

d3 0.441583023616466524

d4 0.128846158365384185

a1 0.134496199277431089

a2 -0.224819803079420806

a3 0.756320000515668291

a4 0.334003603286321425

TABLE VI: Mcate 4th order coefficients

strong enough to distort the trajectory since the symplectic integrators conserve a perturbed

Hamiltonian. Furthermore, the integration time horizon also affects the reported MSE. We

find that for small Tmax values, high order (n > 4) RK and VI methods are quite comparable.

This re-emphasises the point that symplectic high order methods are good for long range

trajectories.

Appendix C: Ablation Results

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 3: Mass Spring System with noiseless training data. Each bar represents the geometric

mean of the MSE of 25 test initial conditions.

6



(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 4: Pendulum with noiseless training data. Each bar represents the geometric mean of

the MSE of 25 test initial conditions.

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 5: 2-Body gravitational system with noiseless training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.

Appendix D: Rollout Errors

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 6: 3-Body gravitational system with noiseless training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.
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(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 7: 5-spring particle system with noiseless training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 8: Mass Spring System with noisy training data. Each bar represents the geometric

mean of the MSE of 25 test initial conditions.

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 9: Pendulum with noisy training data. Each bar represents the geometric mean of the

MSE of 25 test initial conditions.
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(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 10: 2-Body gravitational system with noiseless training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 11: 3-Body gravitational system with noisy training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.

(a) 2-step integration (b) 5-step integration (c) 10-step integration

FIG. 12: 5-spring particle system with noisy training data. Each bar represents the

geometric mean of the MSE of 25 test initial conditions.
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(a) RK4 rollout
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(b) VI4 rollout

FIG. 13: Rollout of mass-spring system of a single point in the test set. The methods are

pretrained with noisy data.
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FIG. 14: Rollout of mass-spring system of a single point in the test set. The methods are

pretrained with noiseless data.
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FIG. 15: Rollout of pendulum system of a single point in the test set. The methods are

pretrained with noisy data.
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FIG. 16: Rollout of pendulum system of a single point in the test set. The methods are

pretrained with noiseless data.
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FIG. 17: Rollout of 2-Body gravitational system of a single point in the test set. The

methods are pretrained with noisy data.
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FIG. 18: Rollout of 2-Body gravitational system of a single point in the test set. The

methods are pretrained with noiseless data.
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FIG. 19: Rollout of three body gravitational system of a single point in the test set. The

methods are pretrained with noisy data.
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FIG. 20: Rollout of three body gravitational system of a single point in the test set. The

methods are pretrained with noiseless data.
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FIG. 21: Rollout of 5 body particle spring system of a single point in the test set. The

methods are pretrained with noisy data.
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FIG. 22: Rollout of 5 body particle spring system of a single point in the test set. The

methods are pretrained with noiseless data.
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