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Complex spatiotemporal states arise frequently in material as well as biological systems consisting of 
multiple interacting units. A specific, but rather ubiquitous and interesting example is that of “chimeras”, 
existing in the edge between order and chaos. We use Machine Learning methods involving “observers” 
to predict the evolution of a system of coupled lasers, comprising turbulent chimera states and of 
a less chaotic biological one, of modular neuronal networks containing states that are synchronized 
across the networks. We demonstrated the necessity of using “observers” to improve the performance 
of Feed-Forward Networks in such complex systems. The robustness of the forecasting capabilities of 
the “Observer Feed-Forward Networks” versus the distribution of the observers, including equidistant 
and random, and the motion of them, including stationary and moving was also investigated. We 
conclude that the method has broader applicability in dynamical system context when partial dynamical 
information about the system is available.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The very purpose of natural science is to make reliable pre-
dictions about the future. These predictions, while possible in 
the Newtonian framework of several “simple” systems, become 
practically impossible in the presence of nonlinearity and larger 
number degrees of freedom. Chaotic systems with three degrees 
of freedom and above are notoriously impossible to predict in a 
long-time horizon. Similarly, spatiotemporal complex systems in-
volve a large degree of unpredictability that in most cases must 
be handled in a statistical manner. Artificial Intelligence (AI), on 
the other hand, also aims at forecasting the future, although in 
a way different from that of natural science; it uses past expe-
rience and training so that an AI-system first “learns” and then 
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predicts. Is it possible to merge the two approaches and produce 
a method that will increase the predictability of complex systems? 
Although there is no general answer, the very recent study of var-
ious important examples shows that this approach is very promis-
ing [1–11].

One could question the value of predicting a fully chaotic sys-
tem, if this was possible. Let us give a familiar example: On the 
surface of the sea we have formation of smaller and larger waves 
that are in constant state of change. Depending of the prevailing 
conditions of wind, pressure, temperature, etc these waves can ap-
pear to be stochastic. In these cases, a statistical picture is more 
useful rather than the knowledge of the evolution of each little 
wave, its collisions and transformations. On the other hand, there 
are instances in spatiotemporal systems where partial order and 
stochasticity or chaos coexist. Predicting the evolution of complex 
structures in an otherwise stochastic system is both challenging 
and relevant. Chimera states provide such complex states where 
order and chaos coexists in spatiotemporal dynamics and, as a re-
sult, provide interesting and relevant modes to investigate from the 
AI point of view.
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In the AI motivated work we need to select appropriate Ma-
chine Learning (ML) methods that in our case will be based solely 
on Artificial Neural Networks (ANN) [1,8]. Subsequently, we need 
to train the ANNs with “ground truth” data, i.e. simulated spa-
tiotemporal data that describe precisely the phenomena we in-
vestigate and then we let the trained ANNs to predict the fu-
ture evolution. In order to facilitate the ANNs in their perfor-
mance we introduce additionally sparse sensors that we term “ob-
servers”. These observers give partial system information to the 
AI units even after their training and thus “guide” them towards a 
better prediction. This observer-based approach was initially in-
troduced in the context of the Reservoir computing method [3,
12] but it has been shown to be quite efficient more generally 
[13].

While reconstructing and predicting complex nonlinear dynam-
ical systems using partial information through a small number 
of sparse sensors is a very challenging problem of great impor-
tance, a critical aspect of this problem is the optimum placement 
of the sparse observers, in order to achieve efficient prediction 
when the cost of acquiring and processing data is high [14–17]. 
The main motivation thus of the present work is to investigate 
how observers “interact” with the AI predictive units. More specif-
ically we look into the effect that the various distributions of 
static observes as well as observers in a dynamical state have in 
the predictability of the complex spatiotemporal systems we ana-
lyze.

Leading sparse sensing methods typically exploit either spa-
tial or temporal correlations, but rarely both [14]. Our work is 
motivated on the exploitation of both spatial and temporal cor-
relations by means of AI-ML methods and aims in addition to 
finding optimum sensor placement and dynamics for the predic-
tion of complex spatiotemporal behavior. We target primarily a 
distinct prototypical phenomenon, viz. partially coherent chimera 
states. Chimeras are archetypical complex phenomena appearing 
in many physical systems; their intrinsic dynamics delineate non-
trivial cases in the complexity of wave motion and present se-
vere challenges in predicting chaotic behavior in extended physical 
systems. What is especially interesting and, in a sense, “paradig-
matic” about chimera states is that they embody simultaneously 
both faces of nonlinearity, viz. order and chaos. Predicting order 
is unnecessary while predicting chaos is futile; the possibility of 
predicting a “mixed” complex state such as chimeras is thus very 
challenging since it demarks two completely different predictabil-
ity regimes.

In the present work, we focus particularly on the robustness 
of the long-term forecasting capability of fully connected Feed-
Forward Neural Networks (FNN) with Observers (OFNNs), as ap-
plied to the spatiotemporal evolution of two distinct types of sys-
tems that support quite different complex spatiotemporal states. 
The first is an optical system and involves turbulent chimeras in 
simulated arrays of coupled semiconductor lasers [13]. The sec-
ond is biological relates to complex dynamics in modular neu-
ronal networks based on the simulated connectome of the C.el-
egans soil worm [18]. This connectome is organized into six in-
terconnected communities, with neurons obeying chaotic burst-
ing dynamics. Both systems are of practical importance and they 
have been studied extensively. The OFNNs method, we employ, 
assigns one network to each one of the system’s nodes except 
for the “observer” nodes which provide continual “ground truth” 
measurements as input. The reason for using OFNNs is that they 
train much faster than similar (e.g. OLSTM) methods exhibiting 
better forecasting performance [13]. Here, we use the same im-
plementation of the OFNNs method as in [13] and we provide 
further evidence of the necessity of the “observers” in order the 
FNNs models to achieve satisfactory forecasting capabilities. Then, 
in order to investigate the robustness of the prediction capabili-
ties of the OFFNs method in respect of different observers place-
ments we use the following observers’ schemes: a) uniformly dis-
tributed (equidistant) observers at all time steps; b) randomly 
assigned observers at each time step; c) uniformly distributed 
(equidistant) observers moving over time in phase (performing os-
cillatory periodic motion around their positions, with amplitude 
equal to 5 nodes distance), both in training and testing; d) ran-
domly assigned observers, (at fixed positions for all time steps);
e) randomly assigned observers at fixed positions for all time 
steps, moving (in phase) around their fixed positions in an os-
cillatory periodic motion (amplitude equal to 5 node distance);
f) uniformly distributed (equidistant) observers, stationary during 
training, but moving (in phase) during testing (oscillatory pe-
riodic motion around their positions, with amplitude equal to 
5 node distance); and g) uniformly distributed (equidistant) ob-
servers during training, but moving (with random phase) during 
testing. Although there are many other observed distributions, the 
static and moving observers we chose to investigate practically ex-
haust the interesting modes of interaction of observes with the 
AI-ML system. From these modes we arrive at quantitative con-
clusions on observer-assisted AI predictability of spatiotemporal 
systems.

The outline of this article is the following. In the next Sec-
tion, we demonstrate the necessity of using “observers” in order 
to achieve satisfactory predictability in spatiotemporal dynamical 
systems. Section 3 and 4, provide the central results of this work 
for coupled semiconductor lasers and biological organized states 
respectively; in these sections we employ several sparse sensing 
schemes with different spatial and kinematic distributions and 
demonstrate the applicability of the OFFNs method for chimera 
predictions. In Section 5, we provide a quantitative comparison 
of the various schemes that gives through the prediction error 
the predictability horizon. In Section 6, we conclude and in Ap-
pendix A, we show the full evolution of the observers’ positions 
for each one of the schemes investigated.

2. The necessity of using observers in feed-forward neural 
networks

We study the forecasting capability of fully connected FNNs in 
the spatiotemporal evolution of multi-clustered turbulent chimera 
states in coupled lasers system, characterized by self-organized 
patterns of coexisting coherence and incoherence, as a function of 
the number of observers in the system.

Our initial approach comprises a simple model with a single 
FNN assigned to each system node, which is independent of all 
other FNNs in the system nodes. However, this simple model found 
to produce very large prediction error (see Fig. 1, blue line). This 
is because of the fact that chimera states are collective phenom-
ena (i.e. the nodes of the system are not isolated but correlated to 
each other) and thus one FNN model per node cannot learn the 
correlations between the nodes since it has no information from 
the surrounding environment.

This limitation of the FNNs models can be overcome by using 
OFNNs models [13] that can capture the correlations between the 
nodes. The advantage of using models with observers, providing 
real time data to the model, is that in this case the model is in-
formed about the surrounding environment and is capable, using 
this information, to react in real time in any change of the sys-
tem. Fig. 1, presents the performance of the OFNNs model (RMSE) 
as a function of the number of the observers, for the coupled 
lasers system chimeras. The blue line (in the top of the figure) 
depicts the RMSE (calculated over all the system nodes at each 
predicted time-step) for an FNN with no observers. As can be seen, 
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Fig. 1. RMSE of OFNNs with no observers (blue line), 1 observer (green line), 3 
observers (orange line), and 14 observers (red line), calculated over all the system 
nodes at each predicted time-step in a system of an array of 200 coupled lasers 
(turbulent chimeras). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

the prediction error for this model is very large, the largest of all 
cases studied. The error reduces by adding observers in the FNNs 
(making them OFNNs) as can be seen in the OFNNs with 1 ob-
server (green line), 3 observers (orange line), and 14 observers (red 
line). The root mean square error (RMSE) is calculated as in [3], 
Eq. (21).

3. Predicting turbulent chimeras in coupled lasers array using 
various observers’ schemes

The dynamics of the coupled lasers system have been initially 
studied from the point of view of ML-based predictability in [13]. 
Here in Fig. 2, we present the spatiotemporal plot of this turbulent 
chimera state. Subplot a) presents the simulated results (as gen-
erated in the 1-dimensional semiconductor Class B laser array in 
[13], see Fig. A.1 (a), studied numerically for a non-local coupling 
scheme). Subplot b) presents results for the same placement and 
motion cases as in Table 1. It should be noted that the thick ver-
tical black line represents the size of the training dataset used for 
training the OFNNs model (comprising 400 time steps; 20% of the 
total number of time steps).

4. Predicting synchronized states in modular neuronal networks 
using various observers’ schemes

Hizanidis et al. [18] considered a neuronal network inspired by 
the connectome of the C. elegans soil worm, organized into six 
interconnected communities. The neurons a) obey chaotic burst-
ing dynamics, b) are connected with electrical synapses within 
their communities and with chemical synapses across them, and 
c) the neuron dynamics are modeled in terms of the Hindmarsh-
Rose system. As their numerical simulations reveal, the coaction of 
these two types of coupling can shape the dynamics in such a way 
that various organized or partially organized states can happen. 
One type consists of a fraction of synchronized neurons, which 
belong to the larger communities, and a fraction of desynchro-
nized neurons that are part of smaller communities. Since this 
state is structurally similar to the one addressed in the context 
of the optical system previously, we focus on a different state 
where there is intermittent synchronization. In addition to the 
Kuramoto order parameter, they also employ other measures of co-
herence, such as the chimera-like χ and metastability λ indices, 
which quantify the degree of synchronization among communi-
ties and along time, respectively. The Kuramoto order parame-
ter, which measures synchronization, is bounded in the interval 
[0, 1] and is equal to 1 when neurons in the considered popu-
lation are completely synchronized and 0 when they are totally 
desynchronized. The relevant equations are presented in detail 
in [18].

In Fig. 3, subplot a) presents the spatiotemporal plot of the 
modular neuronal networks’ synchronized state (see also Fig. A.2). 
Fig. 2. a) Spatiotemporal plot of the turbulent chimera state as studied numerically in [13], data also in Fig. A.1a. Right, vertical inset: filled pink area presents the actual 
(ground-truth) time series for laser #96. Top inset: filled cyan area presents the snapshot of the spatial profile of the ground truth local curvatures for the entire array at 
time step tn = 1,600 (four times the training time). b) Top: presents the predicted time series for laser #96: red line depicts the predicted data by OFNNs and the filled pink 
area the actual (ground-truth) data. The thick vertical black line represents the size of the training dataset used for training the OFNNs model (comprising 400 time steps; 
20% of the total number of time steps). Bottom: snapshot of the spatial profile of the predicted local curvatures for the entire array at time step tn = 1,600 (four times the 
training time): blue line depicts the predicted data by OFNNs and the filled cyan area the actual (ground-truth) data. Colored boxes code as in Table 1.
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Fig. 3. a) Spatiotemporal plots of the modular partially synchronized state generated in Hizanidis et al. [18] Figure 3a. Right, vertical inset: filled pink area presents the actual 
(ground-truth) time series for node #135. Top inset: filled cyan area presents the snapshot of the spatial profile of the ground truth local curvatures for the entire array at 
time step tn = 4,000 (four times the training time). b) Top: presents the predicted time series for node #135: red line depicts the predicted data by OFNNs and the filled 
pink area the actual (ground-truth) data. The thick vertical black line represents the size of the training dataset used for training the OFNNs model (comprising 1000 time 
steps; 20% of the total number of time steps). Bottom: snapshot of the spatial profile of the predicted local curvatures for the entire array at time step tn = 4,000 (four times 
the training time): blue line depicts the predicted data by OFNNs and the filled cyan area the actual (ground-truth) data. Colored boxes code as in Table 1.

Table 1
On the left: Structure of each inner cell of this Table. On the right: Prediction errors (RMSEs) of the OFNNs 
methods calculated over all the predicted time-steps and over all the system nodes. Upper left corner of each 
inner cell (blue), turbulent chimera of the coupled lasers system; with 14 observers in a total of 200 nodes 
(7% of total). Lower right corner of each inner cell (black), synchronized states in modular neuronal net-
works; with 20 observers in a total of 277 nodes (∼7% of total). Colored boxes are used to easily distinguish 
the different observers’ distribution.
Subplot b) presents results for the same placement and motion 
cases as in Table 1. The thick vertical black line represents the size 
of the training dataset used for training the OFNN model (compris-
ing 400 time steps; 20% of the total number of time steps).

We emphasize that in both cases (of Fig. 2 and Fig. 3) these are 
very long-time predictions, not just short-term prediction of a few 
time steps beyond the training time.

5. Comparing prediction performance

Table 1, presents prediction errors for both the optical and the 
biological problem and for each observer-placement scheme, cal-
culated by means of the RMSE over all nodes for all predicted 
time steps. The cell on the left of Table 1, presents the struc-
ture that each inner cell of Table 1 has. On the upper left cor-
ner of each inner cell of Table 1, we present the corresponding 
RMSE value for the turbulent chimeras system and on the lower 
right corner the corresponding RMSE value for the modular neu-
ral network system. As can be seen, the OFNNs method is robust 
for different observer placement schemes and different motions of 
the observers and fails only in the case of completely randomly 
moving observers. The stationary uniformly distributed observers 
demonstrate the best prediction performance with stationary and 
uniformly placed observers for both types of optical and biological 
states, followed by randomly placed observers (with training em-
ploying stationary observers) for the coupled lasers array chimera, 
and moving observers for the modular neuronal networks’ syn-
chronized state.

This effect can be explained as follows: when the underlying 
physical system involves spatiotemporal dynamics (exhibiting tur-
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bulent chimeras), small movements (motions) of the observers can 
affect the predictability of the model since the observers may get 
values from a completely different environment (i.e. before the 
movement the observer can take ground-truth measurements from 
a coherent area and after the movement may take measurements 
from an incoherent area). This will affect the predictability of the 
model since the observer provides a very different value than the 
ones the nodes have been “trained” with. Stationary observers are 
the optimum ones in this case.

In contrast, when the system is not turbulent, small changes in 
the position of the observers will not affect much the ground-truth 
measurements taken by of the observer, and thus will not affect 
the predicted values of the model. Moving or stationary observers 
can both be good choices of observer motions.

6. Conclusions

Here, we address the issue of predicting complex spatiotempo-
ral systems using ML techniques involving “observers” in various 
placement schemes. The two systems considered in this work are, 
a system of coupled lasers, comprising turbulent chimera states 
and a biological one, of modular neuronal networks containing 
states that are synchronized across the networks, being less chaotic 
than chimera states. We demonstrated the necessity of using “ob-
servers” in order to improve the performance of FNNs models in 
such complex systems. The robustness of the forecasting capabili-
ties of the OFNNs models versus the distribution of the observers, 
including equidistant and random, and the motion of them, in-
cluding stationary and moving was also investigated. Especially, 
we found that in case of the turbulent chimeras the predictabil-
ity of the model does not show strong dependence on the spatial 
distribution of the observers; both equidistant and randomly dis-
tributed observers are able to predict the behavior of the system. 
When the observers are moving in phase, the prediction is less ac-
curate but still satisfactory. In cases where the model is trained 
with stationary uniformly distributed observers but in the predic-
tion stage the observers are moving around their initial position 
(oscillatory motion), the OFNNs is still able to predict the evolu-
tion of the system. However, the model fails in the case of random 
observers that are moving randomly at each step. In the case of 
the modular biological spatiotemporal state, the predictability of 
the model does not show strong dependence in either the spa-
tial distribution of the observers or in their motion. As before, the 
model fails in the case of random observers that execute a random 
walk. We believe that the method has broader applicability in dy-
namical system context when partial dynamical information about 
the system is available.

Methods

In both systems investigated in this work, the data were pre-
processed so that they have zero mean and unit variance, and 
smoothed by means of Gaussian Smoothing Kernel with standard 
deviation σ = 2.5. For each one of the time series of each system 
one OFNN model is trained. Each model contains, an input layer 
of N + 1 nodes (taking values at time t), where N is the num-
ber of the Observers, plus one value from the given time series, 
a hidden layer of 400 nodes with ReLU activation function and an 
output layer with one node giving output at time t + 1. A val-
idation set is used to determine the performance of the model. 
After each epoch the RMSE in the validation dataset is computed. 
Each model is trained for 200 epochs and the one with the small-
est validation error is selected to avoid over-fitting. Each selected 
OFNN network is then used to forecast the node’s state in the next 
time step in an iterative fashion. All the hyper-parameters of each 
OFNN model including the number of training epochs, the number 
of training batches, the number of neurons and the number of hid-
den layers are optimized so that the RMSE to converge. The Adam
stochastic optimization method [19] with a learning rate of 0.001 
as implemented in Keras [20] was used to optimize the OFNNs dur-
ing training.
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Appendix A. Pictorial representation of observer dynamics and 
associated spatiotemporal predictions

In the Appendix we show the full evolution and predictions of 
the case of Fig. 2 and Fig. 3 respectively. In the specific repre-
sentation the full movement of observes is visible as well as the 
predicted states.

The thick horizontal black line represents the time horizon of 
the dataset used for training the OFNNs model (comprising 400 
time steps; 20% of the total number of time steps). Black dots 
represent the position of the observers at each time step. Right, 
vertical inset: The predicted time series for laser #96: cyan line 
depicts the predicted date by OFNNs and the dashed orange line 
the actual (ground-truth) data.

Bottom inset: Snapshot of the spatial profile of the predicted 
local curvatures for the entire array at time step tn = 1,600 
(four times the training time): color code is as in the right in-
set.

The thick horizontal black line represents the time horizon of 
the dataset used for training the OFNNs model (20% of the total 
number of time steps; 1,000 time steps). Black dots represent the 
position of the observers at each time step. Right, vertical inset: 
The predicted time series for laser #135: cyan line depicts the 
predicted date by OFNNs and the dashed orange line the actual 
(ground-truth) data. Bottom inset: Snapshot of the spatial profile 
of the predicted local curvatures for the entire array at time step 
tn = 4,000 (four times the training time): color code is as in the 
right inset.
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Fig. A.1. Spatiotemporal plots of the turbulent chimera state generated in [13] Figure 
4V. a) the evolution of the chimera state as studied numerically in [13] for a non-
local coupling scheme; b) results obtained by incorporating uniformly distributed 
(equidistant) observers at all time steps; c) results obtained by incorporating ran-
domly assigned observers at each time step; d) results obtained by incorporating 
uniformly distributed (equidistant) observers moving over time in phase (perform-
ing oscillatory periodic motion around their positions, with amplitude equal to 5 
nodes distance), both in training and testing; e) results obtained by incorporat-
ing randomly assigned observers, (at fixed positions for all time steps); f) results 
obtained by incorporating randomly assigned observers at fixed positions for all 
time steps, moving (in phase) around their fixed positions in an oscillatory periodic 
motion (amplitude equal to 5 node distance); g) results obtained by incorporating 
uniformly distributed (equidistant) observers, stationary during training, but mov-
ing (in phase) during testing (oscillatory periodic motion around their positions, 
with amplitude equal to 5 node distance); h) results obtained by incorporating uni-
formly distributed (equidistant) observers during training, but moving (with random 
phase) during testing.

Fig. A.2. Spatiotemporal plots of the modular spatiotemporally synchronized states 
generated in Hizanidis et al. [18] Figure 3a. a) the evolution of the state as stud-
ied numerically in [18]; b) results obtained by incorporating uniformly distributed 
(equidistant) observers at all time steps; c) results obtained by incorporating ran-
domly assigned observers at each time step; d) results obtained by incorporating 
uniformly distributed (equidistant) observers moving over time in phase (perform-
ing oscillatory periodic motion around their positions, with amplitude equal to 5 
nodes distance), both in training and testing; e) results obtained by incorporat-
ing randomly assigned observers, (at fixed positions for all time steps); f) results 
obtained by incorporating randomly assigned observers at fixed positions for all 
time steps, moving (in phase) around their fixed positions in an oscillatory periodic 
motion (amplitude equal to 5 node distance); g) results obtained by incorporating 
uniformly distributed (equidistant) observers, stationary during training, but mov-
ing (in phase) during testing (oscillatory periodic motion around their positions, 
with amplitude equal to 5 node distance); h) results obtained by incorporating uni-
formly distributed (equidistant) observers during training, but moving (with random 
phase) during testing.
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