
One-Shot Transfer Learning of Physics-Informed Neural Networks

Shaan Desai1,2 Marios Mattheakis2 Hayden Joy2 Pavlos Protopapas2 Stephen Roberts1

1Machine Learning Research Group,
University of Oxford

2School of Engineering and Applied Science,
Harvard University

Abstract

Solving differential equations efficiently and
accurately sits at the heart of progress in
many areas of scientific research, from classi-
cal dynamical systems to quantum mechanics.
There is a surge of interest in using Physics-
Informed Neural Networks (PINNs) to tackle
such problems as they provide numerous ben-
efits over traditional numerical approaches.
Despite their potential benefits for solving dif-
ferential equations, transfer learning has been
under explored. In this study, we present a
general framework for transfer learning PINNs
that results in one-shot inference for linear sys-
tems of both ordinary and partial differential
equations. This means that highly accurate
solutions to many unknown differential equa-
tions can be obtained instantaneously without
retraining an entire network. We demonstrate
the efficacy of the proposed deep learning ap-
proach by solving several real-world problems,
such as first- and second-order linear ordinary
equations, the Poisson equation, and the time-
dependent Schrödinger complex-value partial
differential equation.

1 Introduction

Differential equations appear in a broad array of do-
mains, from infection models in biology (Kaxiras et al.,
2020) to chaotic motion in physics (Choudhary et al.,
2019). As such, efficiently and accurately solving these
equations under various conditions continues to be
an important and challenging problem in the scien-
tific community. While traditional approaches such
as Runge-Kutta (Dormand et al., 1987) and Finite

[Under Review]

Element Methods are well studied and provide solu-
tions of high fidelity, recently, Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019; Karniadakis
et al., 2021) have attracted significant attention as an
alternative framework for solving differential equations.
PINNs are Neural Networks (NNs) that exploit back-
propagation to compute partial derivatives and are
thus capable of enforcing a known differential equation
through a loss function. They have numerous advan-
tages over traditional approaches such as eliminating
the need for a numerical integrator, being able to gener-
ate continuous and differentiable solutions, improving
accuracy in high dimensions, and maintaining memory
efficiency (Karniadakis et al., 2021). However, a core
benefit of using NNs to solve differential equations that
remains under explored is transfer learning. This is
particularly important for PINNs as they can be ex-
pensive to train from scratch. We therefore illustrate
how the benefits of transfer learning, typically found
in computer vision and natural language processing,
naturally adapt to solving differential equations.

In this paper, we show that a PINN pre-trained on a
family of differential equations can be effectively re-
used to solve new differential equations. Specifically,
by freezing the hidden layers of a pre-trained network,
we demonstrate that solving new differential equations
reduces to optimizing/fine-tuning a linear layer. In
doing so, we prove that, for linear systems of differen-
tial equations, the optimization is equivalent to solving
the normal equations for a latent space of learnt func-
tions. This implies that the optimal linear weights
needed to satisfy a new differential equation can be
computed in one-shot with the computational cost of
a matrix inversion. This therefore entirely eliminates
the need for further training/fine-tuning, dramatically
reducing the training overhead while maintaining high
solution accuracy. We investigate the efficiency of this
approach by solving several ordinary differential equa-
tions (ODEs) as well as partial differential equations
(PDEs) of practical interest. For many systems, we
are able to identify highly accurate solutions to unseen
differential equations in a fraction of the time needed
to train the equations from scratch.

ar
X

iv
:2

11
0.

11
28

6v
1

 [
cs

.L
G

]
 2

1
O

ct
 2

02
1

One-Shot Transfer Learning of Physics-Informed Neural Networks

2 Background

The general form of an explicit nth order ODE can be
written as:

F (t, ψ, ψ(1),, ψ(n−1)) = ψ(n), (1)

where ψ(i) = diψ
dti is the ith derivative of the solution

ψ(t) with respect to the independent time variable
t. Non-homogeneous linear ODEs, a subclass of the
general form of Eqn. 1, can be represented as follows:

D̂nψ = f(t); D̂nψ =
n∑

i=0

ai(t)ψ
(i), (2)

where n denotes the order of the ODE, f(t) is con-
sidered a forcing (or control) term that influences the
homogeneity of the solution, and ai(t) is a time depen-
dent coefficient for each derivative.

Traditionally, when an ODE is known apriori, the
differential equation can be solved using integrators
(such as Runge-Kutta) for given initial conditions (ICs).
Recently, it has been shown that neural networks can
be used to efficiently determine accurate solutions to
such problems. One such approach uses PINNs. PINNs
use a neural network, with weights parametrized by
θ, to transform an input t to output solutions ψθ(t).
Then, by leveraging backpropagation and autograd
(Maclaurin et al.), exact derivatives of the network
output can be computed with respect to the input ∂ψ

∂t .

Therefore, given ICs uic = [ψ0, ψ
(1)
0 , .., ψ

(n−1)
0]T , and

known differential operator D̂n and force f(t), the loss
function of a PINN is defined as:

L = (D̂nψθ(t)− f(t))2 + (D̄0ψθ(t)− ψic)2, (3)

where D̄0ψ = [ψ(0), ψ(1)(0), ..., ψ(n−1)(0)]T . The first
term enforces the differential equation and the second
enforces the initial conditions.

Indeed, such a loss can be enforced for other archi-
tectures such as NeuralODE (Chen et al., 2018) and
Reservoir Computing (Mattheakis et al., 2021) which
exploit recurrent neural networks. However, such net-
works are not as easily adaptable to PDEs as PINNs
are. Many well known PDEs such as the diffusion, wave
as well as Schrödinger equation, can be modeled using
PINNs. With PDEs, additional variables are used as
inputs [t, x, y, ...], so the output is a function of these
inputs ψ(t, x, y, ..) subject to certain ICs and boundary
conditions (BCs). As such, a loss function similar to
Eqn. 3 can be defined for PDEs.

The benefits of using a NN architecture to solve differen-
tial equations (both ODEs and PDEs) over traditional
methods (such as Runge-Kutta or Finite Elements)

include rapid inference, elimination of the curse of di-
mensionality, no accumulation of errors as would be
found with integrators, continuously differentiable solu-
tions, and low memory cost (Karniadakis et al., 2021).
While these benefits have been extensively explored
across a range of applications (Sirignano and Spiliopou-
los, 2018; Mattheakis et al., 2020; Zhai and Hu, 2021;
Wang et al., 2021; McClenny and Braga-Neto, 2020;
de Wolff et al., 2021), a limited study exists on how
transfer learning techniques can be used (Guo et al.,
2021; Wang et al., 2021; Mattheakis et al., 2021). Here,
we explore this idea extensively and identify a novel
one-shot transfer learning framework for systems of
linear differential equations that significantly speeds
up inference on unseen differential equations.

3 Related Work

Constraining neural networks to learn solutions to dif-
ferential equations was first introduced by Lagaris et.al
(1998). The authors showed that partial derivatives
of a neural network output with respect to its inputs
can be analytically computed when the architecture
of the network is known. Therefore, given the solu-
tion and its derivatives, it is possible to simultane-
ously enforce the underlying differential equation as
well as the ICs and BCs. Indeed this approach forms
the basis of PINNs (Raissi et al., 2019; Karniadakis
et al., 2021) where the analytic derivatives from La-
garis et.al (1998) are replaced with backpropagation,
i.e. replacing the need for an analytic derivation of
the partial derivatives. PINNs have since been exten-
sively used across many applications including non-
linear structures (Zhang et al., 2020), fluid flow on
large domains (Wang et al., 2021), moving boundaries
(Wang and Perdikaris, 2021), inferring micro bubble
dynamics (Zhai and Hu, 2021), cardiac activation map-
ping (Sahli Costabal et al., 2020), ocean modelling
(de Wolff et al., 2021), bundle solvers (Flamant et al.,
2020) and stochastic and high-dimensional PDEs (Kar-
niadakis et al., 2021; Yang et al., 2018; Sirignano and
Spiliopoulos, 2018).

Recently, this technique has been extensively used to
learn underlying dynamics from data - a concept first
proposed by Howse et.al (1996). For example, numer-
ous works show that energy conserving trajectories
can be effectively learnt from data by enforcing known
energy constraints such as Hamiltonians (Greydanus
et al., 2019; Sanchez-Gonzalez et al., 2019), Lagrangians
(Cranmer et al., 2020) and variational integrators (Sae-
mundsson et al., 2020; Desai et al., 2021b) into networks.
Extensions in this direction have pushed the envelope to
also learn non-conservative/irreversible systems (Yin
et al., 2021; Desai et al., 2021a; Zhong et al., 2020;
Lee et al., 2021) and contact dynamics from sparse,

Shaan Desai1,2, Marios Mattheakis2, Hayden Joy2, Pavlos Protopapas2, Stephen Roberts1

noisy data (Hochlehnert et al., 2021). To increase the
pace of innovation, several software packages have been
developed that use neural networks and the backprop-
agation technique of PINNs to approximate solutions
of differential equations such as NeuroDiffEq (Chen
et al., 2020), DeepXDE (Lu et al., 2021), and SimNet
(Hennigh et al., 2020).

In spite of these developments, transfer learning re-
mains under explored. Wang et.al (2021) show transfer
learning methods can be used to stitch solutions to-
gether to resolve a large domain. Yet further work by
Mattheakis et.al (2021) illustrates how a reservoir of
weights can be transferred to new ICs. Here, we push
these further and identify a general model-agnostic
method to do one-shot inference for systems of linear
ordinary and partial differential equations.

4 Method

4.1 ODEs

We define a neural network such that the approxi-
mate network solution ψ(t) at time points t is: ψ(t) =
H(t)θHWθW + BθB . In other words, the neural net-
work, parametrized by θ = [θH , θW , θB], transforms
the inputs t ∈ Rt×1 into a high dimensional, non-linear
latent space H ∈ Rt×h through a composition of non-
linear activations and hidden layers. Then, a linear
combination of the latent space is taken, akin to reser-
voir computing (Jaeger and Haas, 2004), to obtain the
solution ψ(t).

To train the network, we design the final weights layer
to consist of multiple outputs, i.e. WθW ∈ Rh×q. This
is done so that multiple (q) solutions, ψ(t) ∈ Rt×q,
can be estimated and simultaneously trained to satisfy
equations that have different linear operators Dn de-
fined by different coefficients ai(t), as well as different
initial conditions ψic, and forces f . Bundle training
allows us to (1) integrate the training into a single
network and (2) to encourage the hidden states H(t)
to be versatile across equations.

At inference, the weights for the hidden layers are
frozen and H is computed at specific time points t̂.
The solution is therefore ψ(t̂) = H(t̂)Wout where Wout

is trainable. For a new set of ICs ψ′ic, source f ′, and

differential operator D̂′n the loss of the linear ODE
(Eqn. 3), becomes:

L = Ldiffeq + LIC

=
(
D̂′nHWout − f ′(t)

)2

+
(
D̄0HWout − ψ′ic

)2
(4)

Since Eqn. 4 is convex, the fine-tuning of Wout can
be computed analytically. In other words, to minimize

L we need to solve the equation ∂L/∂Wout = 0. The
derivative of the first term of Eqn. 4 is:

∂Ldiffeq

∂Wout
= 2

(
D̂′nH

)T (
D̂′nHWout − f ′(t)

)
. (5)

Taking the same approach for the second term of Eqn.
4 that enforces ICs, we obtain:

∂LICs

∂Wout
= 2(D̄0H)T (D̄0HWout − ψ′ic). (6)

We let D̂′nH = D̂H and D̄0H = D̄H to simplify the
notation. Adding the loss terms together and setting
them to zero yields the optimal output weights:

Wout =
(
D̂T
HD̂H + D̄T

HD̄H

)−1 (
DT
Hf
′(t) + D̄T

Hψ
′
ic

)
.

(7)

Therefore, given any fixed hidden states H(t̂) at fixed
time-points t̂, one can analytically compute a Wout

for any linear differential equation that minimizes 4.
Broadly, we can think of H as being a collection of
non-orthogonal basis functions that can be linearly
combined to determine the output function.

Note that one special outcome of this formalism is that
the matrix inversion at inference is independent of the
ICs ψ′ic and force f ′, which means for any new ICs
or f ′, Wout can be computed with a simple matrix
multiplication if the inverse term in Eqn. 7 is pre-
computed. The benefits of this approach are multi-fold,
given H we achieve fast inference (order of seconds
for 1000s of differential equations), eliminate the need
for gradient-based optimization as no further training
is required, and maintain high accuracy if H is well-
trained. Indeed this approach relies on determining
an inverse matrix. If DT

HDH has a large condition
number, the matrix will have many eigenvalues close
to zero - indicating ill-conditioning. Experimentally,
we circumvent this issue by using regularisation or QR
decomposition (see Appendix).

We have shown that an analytic Wout can only be de-
termined for linear non-homogeneous ODEs. However,
the proposed network design can still be used, as we
show later, for efficient transfer learning of non-linear
ODEs.

4.2 PDEs

An important outcome of the formalism for ODEs is
a natural extension to linear PDEs. Many PDEs that
appear in real-world problems are linear, including the
diffusion equation, Laplace equation, the wave equa-
tion as well as the time-dependent Schrödinger PDE.
Considering one spatial dimension x and one time di-
mension t, a general linear second order differential

One-Shot Transfer Learning of Physics-Informed Neural Networks

Differential Equation # Training Bundles # Test Bundles Test Time (s) Test Accuracy (MSE)
First-order linear ODEs 10 1000 7.4× 10−3 1.35± 1.65× 10−10

Second-order linear ODEs 10 1000 3.4× 10−3 2.84± 1.87× 10−9

Coupled linear oscillators 10 100 4.7× 10−2 2.29± 4.74× 10−12

Nonlinear oscillator 5 30 5.2 1.47± 3.88× 10−4

Poisson 4 100 33.2 3.60± 8.84× 10−5

Schrödinger 3 400 19.4 5.02± 8.92× 10−5

Table 1: Summary results of our method on all the systems investigated. Training on a few bundles is sufficient
to rapidly and accurately scale to many unseen conditions. Note that the nonlinear oscillator is optimized using
gradient descent whereas the other methods are all optimized using analytic Wout. For reference, training a PINN
requires several thousand iterations to obtain accurate solutions, where a single iteration costs 0.07s. All times
are reported for a CPU.

equation takes the form:
(
Dt +Dx +Dxt + V (t, x)

)
ψ(x, t) = f(x, t), (8)

where we denote a second order time operator Dtψ =∑2
i=1 ai(t, x)ψ

(i)
t , the spatial second-order operator

Dxψ =
∑2
i=1 bi(t, x)ψ

(i)
x , and a mixed space-time op-

erator, Dxtψ = Dtxψ = c(x, t)ψxt. The coefficients
a, b, c and commonly called source and potential f, V
functions, respectively, are continuous functions of x, t,
where the lower indices indicate partial derivatives ac-

cording to the notation: ψ
(i)
ν = ∂(i)ψ

∂ν(i) and ψνν′ = ∂2ψ
∂νν′ .

The structure of Eqn. 8 can generalize to higher orders
and for more variables.

The last part to complete the derivation is to enforce
the BCs and ICs in the loss function. For the purpose
of the derivation, we use Dirichlet BCs. Thus,

L = Ldiffeq + LIC + LBCs

=
(
D̂ψ − f(t, x)

)2

+ (ψ(0, x)− g(x))
2

+
∑

µ=L,R

(ψ(t, µ)−Bµ(t))
2
, (9)

where D̂ = (Dt + Dx + Dxt) + V (t, x), BL(t) and
BR(t) are the left and right boundary conditions, and
g(x) is the initial condition at t = 0. Similarly to the
derivation for ODEs, we analytically compute Wout of
Eqn. 9, namely we solve the equation ∂L/∂Wout = 0
considering a neural solution of the form ψ = HWout.
Starting with the first term of Eqn. 9, we read:

∂Ldiffeq

∂Wout
= 2D̂T

H(D̂HWout − f(t, x)) (10)

where D̂H = D̂H. Accordingly, for the IC loss compo-
nent we obtain:

∂LIC

∂Wout
= 2HT

0 (H0Wout − g(0, x)), (11)

with H0 = H(0, x). For the BCs loss components we
have:

∂LBCs

∂Wout
=
∑

µ=L,R

2HT
µ (HµWout −Bµ(t)) , (12)

where Hµ = H(t, µ). Piecing this all together yields:

Wout =


D̂T

HD̂H +
∑

µ=0,L,R

HT
µHµ



−1


D̂T

Hf(t, x) +
∑

µ=0,L,R

HT
µQµ(t, x)


 , (13)

where Q0 = g(x), QL = BL(t), and QR = BR(t).

We therefore show it is equally feasible to obtain an
analytic set of linear weights to determine solutions to
PDEs. Indeed, the accuracy of the solution depends
heavily on how well the hidden states H span the
solution space. To encourage a representative hidden
space, we typically bundle train a single network on
different equations, namely a network with multiple
outputs.

5 Results

We investigate our method on numerous well known
differential equations of practical interest. We present
a summary of our results in Table 1. The full training
regime, network design and test conditions can be found
in the appendix. For ODEs we report accuracy as the
MSE of the residual: |D̂nφθ(t) − f(t)|2. For PDEs
we report accuracy as the MSE between the predicted
solution and the analytic solution: |ψgt − ψpred|2.

In addition, we highlight how our solver can be used
to tackle specific challenges with learning from these
equations.

5.1 ODEs

5.1.1 Linear ODEs

To test the performance of our approach, we train
both first- and second-order methods of linear non-
homogeneous differential equations. For first order

Shaan Desai1,2, Marios Mattheakis2, Hayden Joy2, Pavlos Protopapas2, Stephen Roberts1

ODEs, the equation is defined by the operator of Eqn.
2 with n = 1 and by specifying three quantities: the
time-dependent coefficients a0, the forces f , and the
ICs. As such, any first-order linear non-homogeneous
ODE can be defined by the tuple (a0, f, ICs). Given
a pre-defined list of options for each quantity in the
tuple (see Appendix), we randomly sample 10 tuples
for training. We batch train our model on all the equa-
tions simultaneously (i.e. Wout ∈ Rt×10). We then
carry out inference on 1000 randomly sampled test
tuples using analytic Wout from Eqn. 7. Results are
presented in Table 1. It is clear that for first-order
differential equations, transfer learning analytic Wout is
significantly advantageous since we obtain high-fidelity
solutions. As such, we take a similar approach for
second order differential equations described by the
operator of Eqn. 2 for n = 2. We plot the results of
20 ODEs from the test set and compute their resid-
uals in Fig. 1 where ψ̇ = dψ/dt. Indeed, the overall
test accuracy depends on how well the hidden states
span the space of differential equations. We typically
find that more training bundles results in better test
performance (see Appendix).

−5 0 5
ψ

−10

0

10

20

ψ̇

0 1 2 3
Time (s)

10−10

10−8

R
es

id
ua

ls

Figure 1: Predicted (colored) versus ground truth
(dashed black) phase space, namely a plot of space
against velocity for different times, to 20 second-order
non-homogeneous ordinary differential equations. Av-
erage residuals are shown in the bottom panel.

5.1.2 Systems of ODEs

Since an analytic Wout can be computed for linear
ODEs, the method naturally extends to systems of lin-
ear differential equations (see Appendix for derivation).
To highlight this, we investigate a system of linear
second-order ODEs of the form ψ̈ = Aψ that describe
a system of two coupled oscillators where ψ = [ψ1, ψ2]
and A describes the coupling. The equation is of the
form:

[
m 0
0 m

] [
ψ̈1

ψ̈2

]
=

[
k1 + k2 −k2

−k2 k1 + k2

] [
ψ1

ψ2

]
. (14)

We train the network to satisfy 10 different {m, k1, k2}
values and initial conditions [ψ0, ψ̇0] (see Appendix for
sampling details) such that the pre-trained network can
be used to instantaneously compute accurate solutions
for different ICs of the coupled masses. We report the
result of testing 100 different systems sampled from
the same range as training in Table 1. Furthermore,
we investigate an interesting application in which the
network can be exploited to identify initial conditions
of a coupled-oscillator system capable of inducing beats
- when two normal mode frequencies come close (see
Fig. 2) (Schwartz, 2017).

5.1.3 Nonlinear ODE

Until this point, we have only investigated the success
of fine-tuning Wout analytically for linear ODEs, nev-
ertheless our network proposal can still be exploited to
transfer learn nonlinear ODEs. To do so, we replace
the computation of analytic Wout with gradient-based
optimization. Note, since the hidden weights are frozen,
the final hidden activations can be pre-computed given
sampling points t for efficient optimization. We use
this approach to solve a Hamiltonian nonlinear system
described by the ODE:

ψ̈ = −ψ − ψ3, (15)

that conserves energy given by the Hamiltonian:

H =
ψ̇2

2
+
ψ2

2
+
ψ4

4
. (16)

We train the system on 5 initial positions ψ0 randomly
sampled in the range [0.5, 2.0] and with initial velocity
ψ̇0 = 0. The loss function during training consists of (1)
a differential equation loss, (2) an initial condition loss,
and (3) an energy conservation loss penalty. The en-
ergy loss enforces the Hamiltonian at all points in time
to be the same, namely LE = (H(ψ, ψ̇)−H(ψ0, ψ̇0))2

(Mattheakis et al., 2020). We then evaluate the perfor-
mance of the hidden states on 30 ICs sampled in the
same range (see Fig. 3). Since we freeze the hidden
layers, we can pre-compute the hidden activations H(t̄)

One-Shot Transfer Learning of Physics-Informed Neural Networks

−1 0 1
ψ

−4

−2

0

2

4

ψ̇

x1

x2

−1

0

1

ψ

0.0 2.5 5.0 7.5 10.0
Time (s)

10−12

10−11

R
es

id
ua

ls

Figure 2: Phase space trajectories of the coupled os-
cillator system for fixed mass and spring constants
(top) and spatial solutions (middle). One solution that
induces beats is highlighted in color while the other
solutions appear in grey. The average residuals of the
total realizations are shown in the bottom panel. The
initial state of the masses influences how close the nor-
mal mode frequencies get. Our network can identify
solutions to all 100 initial conditions in ∼ 10−2 seconds.

at fixed time t̄ and then fine-tune Wout using gradient
descent for 5000 epochs. Note that the optimization
can be done using other methods as well, including
L-BFGS since the entire problem is reduced to convex
optimization.

5.2 PDEs

PDEs can be used to model complex spatio-temporal
systems,s making them of practical interest in numer-

−1 0 1
ψ

−2

−1

0

1

2

ψ̇
0 1 2 3

Time (s)

10−5

10−4

R
es

id
ua

ls

Figure 3: Top: phase space of predicted trajectories
of a nonlinear oscillator system. The training curves
ares shown in green and the test in blue. Dashed black
lines represent ground truth solutions. Bottom: average
residuals of 30 predicted solutions across different initial
conditions.

ous domains. Typically, the most well-studied PDEs
are linear and include the diffusion, Poisson, and wave
equations. To benchmark the performance of this ap-
proach, we investigate the Poisson equation and the
time-dependent Schrödinger equation.

5.2.1 Poisson Equation

The Poisson equation is an extensively studied PDE
in physics, typically used to identify an electrostatic
potential ψ given a charge distribution ρ. In 2-D, it
can be described by:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ρ(x, y). (17)

We define this PDEs in the domain x ∈ [xL, xR] and
y ∈ [yB , yT] with BCs:

ψ(xL, y) = ψ(xR, y) = ψ(x, yB) = ψ(x, yT) = 0. (18)

We train the network on 4 different charge distributions
ρ(x, y) = sin(kπx) sin(kπy) for k ∈ 1, 2, 3, 4. We then

Shaan Desai1,2, Marios Mattheakis2, Hayden Joy2, Pavlos Protopapas2, Stephen Roberts1

evaluate the performance of our network in two settings.
The first is an ablation across 100 linearly spaced values
of k in [1, 4] (see Table 1). As a second experiment we
test the proposed transfer learning method on a harder
testing force function of the form:

ρtest =
1

4

4∑

k=1

(−1)k+12k sin(kπx) sin(kπy). (19)

The solution is shown in the top graph of Fig. 4. To
assess the network performance, we plot in the lower
graph of Fig. 4 the mean square error (MSE) com-
puted between the predicted ψ(x, y) and the analytical
solution which reads:

ψ(x, y) =
−1

2(kπ)2
sin(kπx) sin(kπy). (20)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

-4e-02

-3e-02

-3e-02

-2e-02

-2e-02

-1e-02

-5e-03

0e+00

5e-03

1e-02

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0e+00

2e-05

4e-05

6e-05

8e-05

1e-04

1e-04

1e-04

Figure 4: Predicted solution (top) of the Poisson equa-
tion with an initial charge distribution ρ(x, y) composed
of multiple frequencies k. The network is pre-trained
on the individual frequencies and can obtain the so-
lution to the combination in one-shot (35s) with high
fidelity/low MSE (bottom).

0.50 0.75 1.00 1.25 1.50

σ

1

2

3

4

5

p 0

10−7

10−6

10−5

10−4

10−3

10−2

Figure 5: MSE between predicted and analytic so-
lutions |ψ|2 as a function of σ and p0. Red circles
represent the three configurations for which the net-
work was batch trained. We see that as p0 increases,
transfer learning Wout becomes less effective because
of the F-principle bottleneck for PINNs.

5.2.2 Time-Dependent Schrödinger Equation

In quantum mechanics the time-dependent Schrödinger
equation describes the propagation of a wavefunction
through space and time. The PDE in one-dimensional
space is of the form:

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t), (21)

where ψ(x, t) is a complex-valued function called wave-
function, V (x) is a stationary potential function, m
is the mass, and ~ is a constant. We investigate the
quantum free-particle evolution for which V (x) = 0 for
several initial states ψ(x, 0).

To train the complex-valued wave-function, we separate
the real ψR and imaginary ψI parts (Raissi et al., 2019),
namely ψ(x, t) = ψR(x, t) + iψI(x, t). By plugging the
above form of ψ into Eqn. 21 we obtain a coupled
system of real-valued PDEs as:

∂

∂t

[
ψR
ψI

]
=

[
0 −~/2m

~/2m 0

]
∂2

∂x2

[
ψR
ψI

]
, (22)

which is of the form ψt = Aψxx. The system is linear
and thus, we can obtain analytic Wout. We consider
a network with two outputs per equation associating
with ψR and ψI , where each output is, respectively,
described by a set of weights as Wout = [WR,WI]

T
.

Then, the network solutions read:

[
ψR
ψI

]
=

[
H 0
0 H

] [
WR

WI

]
, (23)

One-Shot Transfer Learning of Physics-Informed Neural Networks

By taking the L2 loss of Eqn. 22 as well as the BCs
and ICs we obtain:

Wout =(DT
HDH +HT

0 H0

+HT
d Hd + ḢT

d Ḣd)
−1(HT

0 ψ0),
(24)

where H0 = H(0, x), Hd = H(t, L) − H(t, R), and
Ḣd = Hx(t, L)−Hx(t, R).

To investigate a particular set of solutions, we define
the initial condition for this problem as:

ψ(x, 0) =
1

π1/4
√
σ
e−(x−x0)2/(2σ2)+ip0x/~, (25)

that leads to the exact solution:

ψ(x, t) =
e
− (x−(x0+p0t/m))2

2σ2(1+i~t/mσ2) ei(p0x−Et)/~

π1/4
√
σ(1 + i~t/mσ2)

, (26)

where E = p2
0/2m.

We train a network simultaneously on three solutions
of Eqn. (21) with pairs of σ, p0 such that the network
is trained for (σ, p0) = {(0.5, 1), (0.6, 2), (0.6, 3)}. We
show that by using only 3 training ICs, accurate solu-
tions to multiple other configurations can be obtained
instantly and with high accuracy (see Fig. 5). We
measure and present in Fig. 5 the accuracy of our
predicted solution by computing the MSE across time
and space against the analytic solution Eqn. 26. Fur-
thermore, we show that near the bundles, the predicted
real-imaginary complex space under different σ, p0 pairs
tightly couples to the analytic solution (see Fig. 6).
Our results also highlight the F-principle, a conclusion
drawn about deep networks which shows that high fre-
quency components require more training (Xu et al.,
2019) as can be seen in Fig. 5 by looking at higher p0

values which induce higher frequency components in
the solution ψ.

6 Conclusion

We have extensively shown how PINNs can be batch
trained on a family of differential equations to learn
a rich latent space that can be exploited for transfer
learning. For linear systems of ODEs and PDEs, the
transfer can be reduced to computing a closed-form
solution for Wout resulting in one-shot inference. This
analytic solution significantly speeds up inference on un-
seen differential equations by orders of magnitude, and
can therefore replace or augment traditional transfer
learning. In particular, we show that such a network
can identify first-order ODEs, second-order coupled
ODEs, Poisson and Schrödinger equations with high
levels of accuracy within a few seconds. Furthermore,
in the nonlinear setting, where a closed-form analytic

−0.5

0.0

0.5

σ
=

0.
5

−0.5

0.0

0.5

σ
=

0.
6

−0.5 0.0 0.5

p0 = 1

−0.5

0.0

0.5

σ
=

0.
7

−0.5 0.0 0.5

p0 = 2
−0.5 0.0 0.5

p0 = 3

Figure 6: Real (x-axis) against imaginary (y-axis) wave-
functions of the predicted solutions ψ(Tmax, x) for dif-
ferent realizations of σ, p0 with solid and dashed lines
representing the predicted and ground truth solutions.
The diagonal configurations are used for training. Non-
diagonals constitute test configurations.

Wout is not derived, we show that our approach can
still be used with gradient descent to identify accurate
solutions to the nonlinear oscillator system. These re-
sults are particularly important to practitioners who
seek to rapidly identify accurate solutions to differential
equations of the same type, namely of the same order,
but under different conditions and coefficients. Indeed
many new applications may arise as a consequence
of this approach, from transfer learning on large do-
mains, to solving high dimensional linear PDEs. Future
work in this direction may adapt to data-dependent
settings, incorporate non-linear outputs to develop one-
shot training for nonlinear equations, and investigate
properties of the learnt hidden space.

References

Feiyu Chen, David Sondak, Pavlos Protopapas, Marios
Mattheakis, Shuheng Liu, Devansh Agarwal, and
Marco Di Giovanni. Neurodiffeq: A python package
for solving differential equations with neural net-
works. Journal of Open Source Software, 5(46):1931,
2020. doi: 10.21105/joss.01931.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural Ordinary Differential
Equations. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 31, pages 6571–6583. Curran Associates,
Inc., 2018. URL http://papers.nips.cc/paper/

7892-neural-ordinary-differential-equations.

pdf.

Shaan Desai1,2, Marios Mattheakis2, Hayden Joy2, Pavlos Protopapas2, Stephen Roberts1

Anshul Choudhary, John F. Lindner, Elliott G. Holli-
day, Scott T. Miller, Sudeshna Sinha, and William L.
Ditto. Physics enhanced neural networks predict or-
der and chaos. arXiv:1912.01958 [physics], November
2019. URL http://arxiv.org/abs/1912.01958.
arXiv: 1912.01958.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter
Battaglia, David Spergel, and Shirley Ho. Lagrangian
Neural Networks. arXiv:2003.04630 [physics, stat],
March 2020. URL http://arxiv.org/abs/2003.

04630. arXiv: 2003.04630.

Taco de Wolff, Hugo Carrillo, Luis Mart́ı, and Nayat
Sanchez-Pi. Towards Optimally Weighted Physics-
Informed Neural Networks in Ocean Modelling.
arXiv:2106.08747 [physics], June 2021. URL http:

//arxiv.org/abs/2106.08747. arXiv: 2106.08747.

Shaan Desai, Marios Mattheakis, David Sondak, Pav-
los Protopapas, and Stephen J. Roberts. Port-
Hamiltonian Neural Networks for Learning Ex-
plicit Time-Dependent Dynamical Systems. CoRR,
abs/2107.08024, 2021a. URL https://arxiv.org/

abs/2107.08024. eprint: 2107.08024.

Shaan A. Desai, Marios Mattheakis, and Stephen J.
Roberts. Variational integrator graph networks
for learning energy-conserving dynamical systems.
Phys. Rev. E, 104:035310, Sep 2021b. doi: 10.
1103/PhysRevE.104.035310. URL https://link.

aps.org/doi/10.1103/PhysRevE.104.035310.

J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince.
Families of Runge-Kutta-Nystrom Formulae. IMA
Journal of Numerical Analysis, 7(2):235–250, 1987.
ISSN 0272-4979, 1464-3642. doi: 10.1093/imanum/7.
2.235. URL https://academic.oup.com/imajna/

article-lookup/doi/10.1093/imanum/7.2.235.

Cedric Flamant, Pavlos Protopapas, and David Sondak.
Solving Differential Equations Using Neural Network
Solution Bundles. arXiv:2006.14372 [physics], June
2020. URL http://arxiv.org/abs/2006.14372.
arXiv: 2006.14372.

Samuel Greydanus, Misko Dzamba, and Jason Yosin-
ski. Hamiltonian Neural Networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Sys-
tems 32, pages 15379–15389. Curran Associates,
Inc., 2019. URL http://papers.nips.cc/paper/

9672-hamiltonian-neural-networks.pdf.

Yali Guo, Han Zhang, Liang Wang, Huawei Fan, and
Xingang Wang. Transfer learning of chaotic systems.
Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31(1):011104, January 2021. ISSN 1054-
1500, 1089-7682. doi: 10.1063/5.0033870. URL http:

//arxiv.org/abs/2011.09970. arXiv: 2011.09970.

Oliver Hennigh, Susheela Narasimhan, Moham-
mad Amin Nabian, Akshay Subramaniam, Kaus-
tubh Tangsali, Max Rietmann, Jose del Aguila Fer-
randis, Wonmin Byeon, Zhiwei Fang, and Sanjay
Choudhry. Nvidia simnet: an ai-accelerated multi-
physics simulation framework. arXiv:2012.07938
[physics.flu-dyn], 2020. URL https://arxiv.org/

abs/2012.07938.

Andreas Hochlehnert, Alexander Terenin, Steindór Sæ-
mundsson, and Marc Peter Deisenroth. Learning
Contact Dynamics using Physically Structured Neu-
ral Networks. arXiv:2102.11206 [cs, stat], February
2021. URL http://arxiv.org/abs/2102.11206.
arXiv: 2102.11206.

James W. Howse, Chaouki T. Abdallah, and Gregory L.
Heileman. Gradient and Hamiltonian Dynamics Ap-
plied to Learning in Neural Networks. In D. S. Touret-
zky, M. C. Mozer, and M. E. Hasselmo, editors, Ad-
vances in Neural Information Processing Systems 8,
pages 274–280. MIT Press, 1996.

Herbert Jaeger and Harald Haas. Harnessing nonlinear-
ity: Predicting chaotic systems and saving energy in
wireless communication. Science, 304(5667):78–80,
2004. doi: 10.1126/science.1091277.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu,
Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics,
3(6):422–440, June 2021. ISSN 2522-5820. doi:
10.1038/s42254-021-00314-5. URL http://www.

nature.com/articles/s42254-021-00314-5.

Efthimios Kaxiras, George Neofotistos, and Eleni An-
gelaki. The first 100 days: modeling the evolu-
tion of the COVID-19 pandemic. arXiv:2004.14664
[q-bio], April 2020. URL http://arxiv.org/abs/

2004.14664. arXiv: 2004.14664.

I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artifi-
cial Neural Networks for Solving Ordinary and Par-
tial Differential Equations. IEEE Transactions on
Neural Networks, 9(5):987–1000, September 1998.
ISSN 10459227. doi: 10.1109/72.712178. URL
http://arxiv.org/abs/physics/9705023. arXiv:
physics/9705023.

Kookjin Lee, Nathaniel A. Trask, and Panos Stinis.
Machine learning structure preserving brackets for
forecasting irreversible processes. arXiv:2106.12619
[physics], June 2021. URL http://arxiv.org/abs/

2106.12619. arXiv: 2106.12619.

Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Kar-
niadakis. A deep learning library for solving differen-
tial equations. SIAM Review, 63:208–228, 2021. doi:
10.1137/19M1274067.

Dougal Maclaurin, David Duvenaud, and Ryan P

One-Shot Transfer Learning of Physics-Informed Neural Networks

Adams. Autograd Effortless Gradients in Numpy.
page 3.

Marios Mattheakis, David Sondak, Akshunna S.
Dogra, and Pavlos Protopapas. Hamiltonian
Neural Networks for solving differential equa-
tions. arXiv:2001.11107 [physics], February 2020.
URL http://arxiv.org/abs/2001.11107. arXiv:
2001.11107.

Marios Mattheakis, Hayden Joy, and Pavlos Protopa-
pas. Unsupervised reservoir computing for solving
ordinary differential equations. arXiv:2108.11417
[cs:LG], 2021. URL http://arxiv.org/abs/2108.

11417. arXiv: 2108.11417.

Levi McClenny and Ulisses Braga-Neto. Self-Adaptive
Physics-Informed Neural Networks using a Soft At-
tention Mechanism. arXiv:2009.04544 [cs, stat],
September 2020. URL http://arxiv.org/abs/

2009.04544. arXiv: 2009.04544.

M. Raissi, P. Perdikaris, and G. E. Karniadakis.
Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse prob-
lems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–
707, February 2019. ISSN 0021-9991. doi: 10.1016/j.
jcp.2018.10.045. URL http://www.sciencedirect.

com/science/article/pii/S0021999118307125.

Steindor Saemundsson, Alexander Terenin, Katja
Hofmann, and Marc Deisenroth. Variational In-
tegrator Networks for Physically Structured Em-
beddings. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence
and Statistics, pages 3078–3087. PMLR, June
2020. URL https://proceedings.mlr.press/

v108/saemundsson20a.html. ISSN: 2640-3498.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris,
Daniel E. Hurtado, and Ellen Kuhl. Physics-
Informed Neural Networks for Cardiac Activa-
tion Mapping. Frontiers in Physics, 8, 2020.
ISSN 2296-424X. doi: 10.3389/fphy.2020.00042.
URL https://www.frontiersin.org/articles/

10.3389/fphy.2020.00042/full. Publisher: Fron-
tiers.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cran-
mer, and Peter Battaglia. Hamiltonian Graph Net-
works with ODE Integrators. arXiv:1909.12790
[physics], September 2019. URL http://arxiv.

org/abs/1909.12790. arXiv: 1909.12790.

Matthew Schwartz. Lecture 3: Coupled oscillators.
page 6, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. DGM:
A deep learning algorithm for solving partial differ-
ential equations. Journal of Computational Physics,
375:1339–1364, December 2018. ISSN 00219991. doi:

10.1016/j.jcp.2018.08.029. URL http://arxiv.org/

abs/1708.07469. arXiv: 1708.07469.

Hengjie Wang, Robert Planas, Aparna Chan-
dramowlishwaran, and Ramin Bostanabad. Train
Once and Use Forever: Solving Boundary Value
Problems in Unseen Domains with Pre-trained Deep
Learning Models. arXiv:2104.10873 [physics], apr
2021. URL http://arxiv.org/abs/2104.10873.
arXiv: 2104.10873.

Sifan Wang and Paris Perdikaris. Deep learning of
free boundary and Stefan problems. Journal of
Computational Physics, 428:109914, March 2021.
ISSN 00219991. doi: 10.1016/j.jcp.2020.109914.
URL http://arxiv.org/abs/2006.05311. arXiv:
2006.05311.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao.
Training behavior of deep neural network in fre-
quency domain. arXiv:1807.01251 [cs, math, stat],
October 2019. URL http://arxiv.org/abs/1807.

01251. arXiv: 1807.01251.

Liu Yang, Dongkun Zhang, and George Em Kar-
niadakis. Physics-Informed Generative Adversar-
ial Networks for Stochastic Differential Equations.
arXiv:1811.02033 [cs, math, stat], November 2018.
URL http://arxiv.org/abs/1811.02033. arXiv:
1811.02033.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Em-
manuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. AUGMENTING PHYSICAL
MODELS WITH DEEP NET- WORKS FOR COM-
PLEX DYNAMICS FORECASTING. page 22, 2021.

Hanfeng Zhai and Guohui Hu. Inferring micro-bubble
dynamics with physics-informed deep learning.
arXiv:2105.07179 [physics], may 2021. URL http:

//arxiv.org/abs/2105.07179. arXiv: 2105.07179.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-
Informed Multi-LSTM Networks for Metamodeling of
Nonlinear Structures. Computer Methods in Applied
Mechanics and Engineering, 369:113226, September
2020. ISSN 00457825. doi: 10.1016/j.cma.2020.
113226. URL http://arxiv.org/abs/2002.10253.
arXiv: 2002.10253.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit
Chakraborty. Dissipative SymODEN: Encoding
Hamiltonian Dynamics with Dissipation and Con-
trol into Deep Learning. arXiv:2002.08860 [cs, eess,
stat], April 2020. URL http://arxiv.org/abs/

2002.08860. arXiv: 2002.08860.

Supplementary Material: One-Shot Transfer Learning of
Physics-Informed Neural Networks

1 System of second order differential equations

To compute the analytic Wout for a system of second order differential equation we begin by defining:

ψ̈ = Aψ

where dots denote time derivatives and

ψ =

[
H 0
0 H

] [
Wq

Wp

]
.

Then, by computing the L2 loss on the equation above including initial conditions ψ0 = ψ(0), ψ̇0 = ψ̇(0) we
obtain:

Wout =
(
DT
HDH +HT

0 H0 +HT
0dH0d

)−1
(
HT

0 ψ0 +HT
0dψ̇0

)

where

DH =

[
Ḧ 0

0 Ḧ

]
,

H0 =

[
H(0) 0

0 H(0)

]
,

H0d =

[
Ḣ(0) 0

0 Ḣ(0)

]
.

ar
X

iv
:2

11
0.

11
28

6v
1

 [
cs

.L
G

]
 2

1
O

ct
 2

02
1

Manuscript under review by AISTATS 2022

2 QR Decomposition

In the main manuscript, we define the loss function for ODEs as:

L = (D̂nuθ(t)− f(t))2 + (D̄0uθ(t)− uic)2, (1)

For ease of notation, let D̂nuθ(t) = Ŷ , f(t) = Y , D̄0uθ(t) = Ŷ0 and uic = Y0. The loss function above can be
re-written as a single loss function s.t.:

L =

([
Ŷ

Ŷ0

]
−
[
Y
Y0

])2

. (2)

To see this, we can expand the vector notation as:

L =
([
Ŷ Ŷ0

]
−
[
Y Y0

])([Ŷ
Ŷ0

]
−
[
Y
Y0

])
, (3)

which when expanded resolves to Eqn.1.

By differentiating the above loss equation with respect to Wout and setting it to zero, we obtain a linear least
squares problem as (

HTH +HT
0 H0

)
Wout =

(
HTY +HTY0

)
, (4)

which is of the form

ATA Wout = ATY. (5)

Since the left hand-side is a square matrix ATA, it is possible to take its pseudo-inverse. However, for a number
of problems, it is possible that the matrix A has a large condition number and therefore the squaring procedure
of the normal equations squares the condition number making it unstable. Although it is possible to take a
pseudo-inverse, in such cases, rather than using the normal equations to obtain a solution to Wout, it is possible
to solve for Wout using QR decomposition. In other words:

AWout = Y, (6)

and since A is not square, we can decompose it into A = QR such as

Wout = R−1QTY. (7)

One advantage of using QR is that it avoids forming the gram matrix ATA of the normal equations which can
be singular.

3 Computational Complexity

One special outcome of our formalism is that it separates the homogeneous part of the differential equation from
the initial conditions and forces. In other words, if we investigate the normal equations for Wout, we see that

Wout = (D̂T
HD̂H + D̄T

HD̄H)−1(DT
Hf
′(t) + D̄T

Hu
′
ic). (8)

Notice that the forces and initial conditions appear outside the matrix inversion. This is a particularly important
feature as it allows us to scale rapidly when the differential equation is fixed and the solution to many initial
conditions or forces is required. In fact, the computational complexity of the inversion is O(h3) where h is the
number of output neurons of the final hidden layer and the multiplication is O(h2m), where m is the number
of initial conditions and forces. Therefore, if the differential equation is fixed the total computational cost of
computing Wout is O(h3 +mh2). However, if the differential equation is not fixed and varies across all m samples,
then the inversion has to be computed m times such that the total computational cost is O(mh3 +mh2).

Differential Equation Architecture (N bundles) # training Bundles Training Iterations # Training Collocation Points Evaluation Domain Evaluation Deltas Activations Optimizer
First-Order Linear Inhomogeneous 1-100-100-1*N 10 10000 30 t in [0,3] dt = 0.1 tanh Adam

Second-Order Linear Inhomogeneous 1-100-100-1*N 10 10000 30 t in [0,3] dt = 0.05 tanh Adam
Coupled-Oscillator 1-100-100-2*N 10 10000 50 t in [0,10] dt = 0.01 sin Adam

Non-Linear Oscillator 1-100-100-1*N 5 10000 60 t in [0,3] dt = 0.05 sin Adam
Poisson 2-100-100-1*N 4 40000 1000 x in [0,1], t in [0,1] dx = 0.01, dt = 0.01 sin Adam

Schroedinger 2-100-100-2*N 3 40000 1000 x in [-10,10], t in [0,1] dx = 0.1, dt = 0.01 α sin +(1− α) tanh Adam

4 Training Configuration

All models are trained using an Adam optimizer with a learning rate of 10−3. The networks are all trained on a
Macbook Pro, 2.2 GHz Intel Core i7, 16 Gb RAM. We use 64-bit tensors.

First-Order Linear Inhomogeneous

The equation is of the form:
u̇+ a(t)u = f(t), (9)

subjected to an initial condition u0. We sample within:

f ∈ {cos(t), sin(t), t},
a ∈ {t, t2, 1},

(u0) ∈ [−5, 5].

Second-Order Linear Inhomogeneous

The equation is of the form:

ü+ a1(t)u̇+ a(t)u = f(t) (10)

with initial conditions u0 and u̇0. We sample within:

f ∈ {1, t, cos(t), sin(t)},
a ∈ {1, 3t, t2},
a1 ∈ {1, t2, t3},

(u0, u̇0) ∈ [−5, 5].

Coupled oscillator

The equation is of the form:

[
m 0
0 m

] [
ü1

ü2

]
=

[
k1 + k2 −k2

−k2 k1 + k2

] [
u1

u2

]
. (11)

We sample:

m ∈ [1, 2],

(k1, k2) ∈ [0.5, 4.5],

(u0, u1, u̇1,0, u̇2,0) ∈ [−1.5, 1.5].

Nonlinear oscillator

The equation is:

ü+ u+ u3 = 0. (12)

We sample within:

(u0, u̇0) ∈ [0.5, 2].

Manuscript under review by AISTATS 2022

Poisson equation
∇2u = ρ (13)

we sample:

ρ ∈ {sin(x) sin(y), sin(2x) sin(2y), sin(3x) sin(3y), sin(4x) sin(4y)}.

Schrodinger

[
u̇R
u̇I

]
=

[
0 −h̄/2m

h̄/2m 0

] [
u′′R
u′′I

]
(14)

where ψ = (uR, uI) and:

ψ(x, 0) =
1

π1/4
√
σ
e−(x−x0)2/(2σ2)+ip0x/h̄. (15)

and

σ ∈ {0.5, 0.6, 0.7},
p0 ∈ {1, 2, 3}.

5 Training Bundles

Typically, the more training bundles we use, the more diverse the hidden states have to be in order to generate
accurate solutions for all the training differential equations. As such, we would expect that a diverse set of hidden
states should also result in better inference for unseen differential equations. Experimentally, we find and show
in Fig. 1 that for first order differential equations this is true:

2 5 7 10 12 15 17 20
Number of Bundles

10−11

10−10

10−9

M
S

E

Figure 1: Test MSE as a function of number of bundles. The more bundles we use to train, the better our test
accuracy gets.

Of course doing this also increases the training overhead, thus empirically we use 10 consistently across our
experiments.

