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Introduction

Metamaterials (MMs)

Metamaterials (MMs)

I Artificial subwavelength structures
I Macroscopic properties obtained by

the microscopic structure and
properties of the compositional
materials

I Provide properties that have not
been found in nature, such as

I Negative refractive index
I Cloaking
I Flat slab perfect imaging
I Gradient refractive index (GRIN)
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Introduction

Gradient Index Refractive index (GRIN) lenses

Gradient Refractive Index (GRIN) metamaterials
I Formed via spatial variation of the refractive index
I Lead to enhanced light manipulation in a variety of

circumstances

Luneburg Lens

n(r) =

√
2−

( r
R

)2

Maxwell fisheye

n(r) = n0

1+( r
R )

2
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Methods for light propagation

Quasi 2D ray tracing

Quasi 2D ray tracing
Polar coordinates

I Fermat Principle of least time for a refractive index n(r)

S =

∫ B

A
n(r)ds =

∫ B

A
n(r)

√
1 + r2φ̇2dr , δS = 0

I Optical Lagrangian L and Hamiltonian H

L(φ, φ̇, r) = n(r)

√
1 + r2φ̇2 , H = −

√
n2r2 − p2

φ

r

I First integral of motion∫
dφ =

∫
pφ

r
√

n2r2 − p2
φ

dr where pφ =
∂L
∂φ̇

= constant
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Methods for light propagation

Quasi 2D ray tracing

Ray tracing solution for a Luneburg Lens (LL)
I Complete ray solution for an LL for rays with initial angle θ.

y(x) =

(
2x0y0 + R2 sin(2θ)

)
x

2x2
0 + (1 + cos(2θ)) R2

+

√
2Ry0 cos(θ)

√
(1 + cos(2θ)) R2 + 2x2

0 − 2x2

2x2
0 + (1 + cos(2θ)) R2

−
x0 sin(θ)

√
(1 + cos(2θ)) R2 + 2x2

0 − 2x2

2x2
0 + (1 + cos(2θ)) R2

I For rays parallel to the propagation axis x (θ = 0)

y(x) =
y0

x2
0 + R2

(
x0x + R

√
R2 + x2

0 − x2
)

M. Mattheakis et. al., “Luneburg lens waveguide networks” J. Opt. 14 (2012) 114005
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Methods for light propagation

Quasi 2D ray tracing

Break down of quasi 2D approach
I Quasi 2D method failures to describe backscattered rays

I This failure is due to the assumption that the radial
coordinate plays the role of time
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Methods for light propagation

Parametric 2D ray tracing

Parametric 2D ray tracing
In Cartesian coordinates

I Fermat Principle of least time for a refractive index n(x , y),
for x(τ) and y(τ) where τ the generalized time parameter

S =

∫ B

A
n(x , y)

√
ẋ2 + ẏ2dτ , δS = 0

I Optical Lagrangian L and Hamiltonian H

L = n
√

ẋ2 + ẏ2 , H =
k2

x + k2
y

2
− n2

2
,

(
kq =

∂L
∂q̇

)
I Ray tracing equation

~̈r =
1
2
∇n(~r)2 (

where ~r = (x , y)
)
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Methods for light propagation

Helmholtz wave 2D approach

Helmholtz wave equation approach
In Cartesian coordinates

I Helmholtz wave equation and standard assumption[
~∇2 + (nk0)2

]
u(x , y) = 0, u(x , y) = A(x , y)eiφ(x ,y)

I Resulting equations and derivation of Hamiltonian H

(∇φ)2 − (nk0)2 =
�
�
���

0
∇2A

A
~k ≡ (∇φ)

⇒ H =
~k2

2k0
− k0

2
n(~r)2

The term ∇2A
A is called Helmholtz potential and preserves the

wave behavior in the ray tracing equation. In geometric optic
approach can be neglected
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Methods for light propagation

Helmholtz wave 2D approach

Application of 2D ray solution to Luneburg index

~̈r =
1
2
∇n(~r)2

n(~r) =

√
2−

(
~r
R

)2


(

x(t)
y(t)

)
=

(
x0

y0

)
cos

(
t
R

)
+

(
kx0

ky0

)
R sin

(
t
R

)
(1)

M. Mattheakis et. al., “Luneburg lens waveguide networks” J. Opt. 14 (2012) 114005



Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks

Methods for light propagation

Numeric solution of Maxwell equations

Finite Difference in Time Domain (FDTD)

I FDTD solves numerically the time dependent Maxwell’s
equations

I Discretization both in space and time with grid unit cells
(∆x ,∆y) and ∆t respectively

I Stability criterion

∆x << λmin and ∆y << λmin

I Courant limit

∆t <

√
(∆x)2 + (∆y)2

cmax
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Methods for light propagation

Numeric solution of Maxwell equations

Application of FDTD to a Luneburg lens
I FDTD is applied for a monochromatic EM plane wave

source with wavelength λ
I Assumed the vacuum as bulk material (ε = 1)
I An LL is used with ε = 2− (r/R)2 with R = 10λ
I The steady state of the electric intensity is plotted

Transverse Magnetic waves
(TM polarization)

∂Hx

∂t
= −1

µ

∂Ez

∂y
∂Hy

∂t
=

1
µ

∂Ez

∂x
∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y

)
z/λ

y
/λ
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Networks of Luneburg Lenses

Waveguides formed by GRIN lenses

Luneburg lens waveguides
Ray tracing solutions

Electromagnetic waveguides can be formed by LLs.
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M. Mattheakis et. al., “Luneburg lens waveguide networks” J. Opt. 14 (2012) 114005
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Networks of Luneburg Lenses

Waveguides formed by GRIN lenses

Luneburg lens waveguides
FDTD wave simulations

Electromagnetic waveguides can be formed by LLs

M. Mattheakis et. al., “Luneburg lens waveguide networks” J. Opt. 14 (2012) 114005



Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks

Networks of Luneburg Lenses

Beam splitter formed by GRIN lenses

Beam splitter formed by Luneburg lens

A beam splitter can be formed by LLs
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The losses are ∼ 10%. 90% of the incoming rays are split and
guided through LLs configuration.
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Caustic formation

Caustics

I Caustics are areas with high intensity
I Caustics and branched flow can arise in light propagation

through random fluctuated refractive index
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Caustic formation

Statistics of caustics

Statistics of caustics

I Derivation of a Hamilton-Jakobi equation by an ordinary
Hamiltonian with unit mass (m = 1)

H =
p2

2
+ V (t , y)

~p =
∂S
∂y

⇒
∂

∂t
S(t , y) +

1
2

(
∂S
∂y

)2

+ V (t , y) = 0

I Definition of curvature of classical action S

u ≡ ∂p
∂y

=
∂2S
∂y2

I The singularities of curvature (u →∞) denote caustics



Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks

Caustic formation

Statistics of caustics

Statistics of caustics
I Orinary Differential Equations for curvature u derived by

HJE
d
dt

u + u2 +
∂2

∂y2 V (t , y) = 0

I Potential acts as delta correlated noise Γ(t)

∂2

∂y2 V (t , y) = Γ(t) ,
〈
Γ(t)Γ(t ′)

〉
= 2σδ(t − t ′)

I Relation between standard deviation σ and Diffusion
coefficient D

D = 2σ2

I Ordinary Stochastic Differential Equation for curvature u

du
dt

= −u2 − σΓ(t)
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Caustic formation

Statistics of caustics

Statistics of caustics
Scaling law

I Fokker-Plank equation (FPE) for probability density P

∂

∂t
P(u, t) =

[
∂

∂u
u2 +

∂2

∂u2
D
2

]
P(u, t)

I Backward Fokker-Plank equation (BFPE) for probability
density pf

∂

∂t
pf (u, t) =

[
−u2

0
∂

∂u0
+

D
2
∂2

∂u2
0

]
pf (u, t)

I Looking for the average first time that u →∞ for arbitrary
initial curvature u0, obtaining a scaling law for the mean
time of the first caustic onset

〈tc〉 ∼ σ−2/3
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Caustic formation

Simulations and Results

Simulations setup

I Monochromatic electromangetic waves propagate through
disordered Luneburg networks

I 150 randomly located generalized LLs each radius with
R = 10λ in lattice with dimensions 460λ× 360λ

I Generalized LL refraction index

n(r) =
√
α
(
n2

L − 1
)

+ 1

I α is called “strength” parameter and it is proportional to
random potential standard deviation σ

σ ' 0.1α
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Caustic formation

Simulations and Results

FDTD simulations

Simulation for different values of strength parameter α
I Left figure: α = 0.07
I Right figure: α = 0.1

M.

Mattheakis et. al., “Branched flow through optical complex systems” (working paper)
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Caustic formation

Simulations and Results

Scintillation index

I The scintillation index σI
shows the deviation of the
Intensity I of the mean
value of intensity 〈I〉

σ2
I =

〈
I(x)2〉
〈I(x)〉2

− 1

I Since caustics are high
intensity areas, a
maximum of σI shows
caustic formation

Yellow curve denotes the σI



Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks

Caustic formation

Simulations and Results

Numerical results
I Simulation for several values of strength parameter α are

taken place, resulting to the correspond scintillation
indexes plots.
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Rogue waves formation

Definition of Rogue Waves (RWs)

Definition of Rogue Waves (RWs)
I RWs are relatively large and

spontaneous surface waves
I Waves with height at least two

times greater than Significant
Wave Height (SWH)

I SWH is the mean wave height of
the highest (statistical) third of
the waves

I Long tailed height distribution
instead of Rayleigh distribution

I RWs have been found in
I Ocean water surface waves
I Microwaves propagation
I Financial systems
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Rogue waves formation

Rogue waves arise in Luneburg hole lens networks

Luneburg Hole (LH) lens consists random photonic
networks

I Luneburg Hole (LH) is a new GRIN lens with index

n(r) =

√
1 +

( r
R

)2

I LH has purely defocussing properties
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Rogue waves formation

Rogue waves arise in Luneburg hole lens networks

FDTD Results
I 400 randomly located LH lenses, each radius with

R = 3.5λ, consist a photonic disordered lattice
I Filling factor of the arrangement f = 0.17
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M. Mattheakis et. al., “Linear and nonlinear photonic rogue waves in complex

transparent media” (working paper)
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Rogue waves formation

Rogue waves arise in Luneburg hole lens networks

Experimental Results
I Photonic disordered lattices ((250× 250)µm2) consist of

five superposed layers of 400 LHs for each layer

M. Mattheakis et. al., “Linear and nonlinear photonic rogue waves in complex

transparent media” (working paper)
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Rogue waves formation

Rogue waves arise in Luneburg hole lens networks

Nonlinear permittivity function
I Introduce focusing nonlinearity (Kerr effect) in the

permittivity function

ε = n2 = εL + χ|E |2 (χ varying from 10−7 to 10−6)

I Linear RW
position and
statistics are not
affected by the
presence of
relatively small
nonlinearity
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Optical fiber lattices

Optical fiber lattices

Optical fiber lattices
I Fiber networks consist of 400 fibers in a square lattice
I Fibers extend in z axis, which in paraxial approximation

plays the role of time
I Fibers are coupled through interfiber interaction

(evanescent coupling)
I A disorder parameter ρ is introduced to control the

randomness level

F. Perakis, M. Mattheakis, G.P. Tsironis, “Small-world networks of optical fiber lattices”,

J. Opt. 16 (2014) 102003
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Optical fiber lattices

Transport properties

Wave-packet propagation
I Discrete Nonlinear Schrödinger Equation (DNLS) is

chosen for investigating transport properties

i
dψn

dt
=
∑

m

Vn,mψm − χ|ψn|2ψn

I DNLS allows to explore both the tunneling effect and the
influence of nonlinearity

I A wave-packet is placed in the central fiber (excitation of a
single fiber)

I Investigate the diffusion exponent by plotting the Mean
Square Displacement (MSD) as function of time t

I No Anderson localization takes place since the excitation is
initially localized
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Optical fiber lattices

Transport properties

0 1 2 3

(c)

(e)

(a)

0 2 4 6 8 10

0

50

100

150

200

250

M
S
D

Time (·103)

Time (·100)

0 2 4 6 8 10

0

1·10-3

3·10-3

M
S
D

Time (·103)

M
S
D

0

103

3·103

2·103

t = 0 t = 1 t = 3

t = 0 t = 104 t = 105

α = 2.00

α = 1.14

α = 0.18

t = 0 t = 104 t = 105

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

M
S
D

Time (·100)

(b) t = 0 t = 1 t = 3

S
m

a
ll
-w

o
rl

d

(ρ
=
0
.3

,
χ
=
0

)

B
a
li
st

ic

(ρ
=
0
,
χ
=
0

)

C
o
m

b
in

a
ti

o
n

(ρ
=
0
.2

2
,
χ
=
7
.5

 )

S
e
lf

-t
ra

p
p
in

g

(ρ
=
0
,
χ
=
0
-1

0
 ) χ = 4

χ = 6
χ = 7
χ = 8
χ = 9
χ = 10

χ = 0

ρ=1.0

ρ=0.0

ρ=0.3

R
a
n
d
o
m

(ρ
=
1
.0

,
χ
=
0
 )

(d) t = 0 t = 104 t = 105

α = 0.29

0 2 4 6 8 10

Time (·103)

0

10

20

30

40

M
S
D

4·10-3

5·10-3

2·10-3

ρ=0.22
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Optical fiber lattices

Transport properties

Diffusion exponent
I Passage from ballistic to sub-diffusion due to structural

disordered
I Transition from ballistic to sub-diffusion due to nonlinearity
I The combination of structural disordered with nonlinearity

leads to almost complete localization

F. Perakis, M. Mattheakis, G.P. Tsironis, “Small-world networks of optical fiber lattices”,

J. Opt. 16 (2014) 102003
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Active plasmonic systems

Surface plasmons characteristics

Surface Plasmon Polaritons SPPs
I Quasi particles formed by coupling of an EM wave with

metal’s free electron-oscillation field.
I Surface waves with evanescent decaying EM field in

transverse axis
I Due to ohmic loss the SPPs decays exponentially also in

propagation axis
I Maxwell equations support SPPs solutions for

I Transverse Magnetic Polarization (TM)
I Interface between metal (Re[εm] < 0) and dielectric

(Re[εd ] > 0)
Parameter Value

ε1 2.25
ε2 −15.13− 0.93i
ε3 1.69
d 50 nm
θ 66.74o
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Active plasmonic systems

Surface plasmons characteristics

SPPs excitation (COMSOL simulation)
I A monochromatic EM wave is used for SPPs excitation in a

dielectric-metal-dielectric configuration

C. Athanasopoulos, M. Mattheakis, G.P. Tsironis, “Enhanced surface plasmon polariton

propagation induced by active dielectrics”, Excerpt from the Proceedings of the 2014

COMSOL Conference.
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Active plasmonic systems

Surface plasmons characteristics

SPP characteristics
I Dispersion relation β

(kp = ωp/c)

β = k0

√
εdεm

εd + εm

I Propagation length L

L =
1

2Im[β]

I Penetration length td(m)

td(m) =
1
k0

Re

√εd + εm

−ε2
d(m)


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Active plasmonic systems

Active dielectrics

Active dielectrics
I Dielectrics with complex permittivity and refractive index

ε = ε′ + iε′′ = (nR + iκ)2 (ε′′ and κ account for gain)

I Gain counterbalance the ohmic loss of metal
I Enhanced propagation and penetration length
I Enhanced the SPP intensity
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Active plasmonic systems

Active dielectrics

Infinite propagation Length
I There is a critical value of gain for which Im[β] = 0

resulting to lossless SSPs propagation (L→∞)
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Theory

Numerically

C. Athanasopoulos, M. Mattheakis, G.P. Tsironis, “Enhanced surface plasmon polariton

propagation induced by active dielectrics”, Excerpt from the Proceedings of the 2014

COMSOL Conference.
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Conclusion

Conclusion

I Four methods for studying light propagation are developed
I GRIN lenses can form waveguides and beamsplitters
I Caustic and rogue waves formation arise in EM

propagation through random GRIN networks
I Wavepacket sub-diffuses in fiber lattices due to

randomness and nonlinearity
I Active (gain) dielectrics enhance SPP propagation and

penetration length
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