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Quantum control is a ubiquitous research field that has enabled physicists to delve into the
dynamics and features of quantum systems. In addition to steering the system, quantum control
has delivered powerful applications for various atomic, optical, mechanical, and solid-state systems.
In recent years, traditional control techniques based on optimization processes have been translated
into efficient artificial intelligence algorithms. Here, we introduce a computational method for
optimal quantum control problems via physics-informed neural networks (PINNs). We apply our
methodology to open quantum systems by efficiently solving the state-to-state transfer problem with
high probabilities, short-time evolution, and minimizing the power of the control. Furthermore, we
illustrate the flexibility of PINNs to solve the same problem under changes in parameters and initial
conditions, showing advantages in comparison with standard control techniques.

Introduction.— Optimal Quantum Control (QC) is cru-
cial to exploit all the advantages of quantum systems,
ranging from entangled states preparation and quantum
registers to quantum sensing. Nowadays, QC can be
achieved by means of controllable dissipative dynamics [1,
2], measurement-induced backaction [3–5], Lyapunov con-
trol [6, 7], and optimal pulse sequences [8]. These QC
techniques serves multiple purposes including state preser-
vation, state-to-state transfer [9], dynamical decoupling in
open systems [10–12] and trajectory tracking [13, 14]. Fur-
thermore, we have witnessed powerful applications across
multiple platforms including atomic systems [16, 17], light-
matter systems [18, 19], solid-state devices [20, 21], trapped
ions [22], among other. Dynamical QC stems from a time-
dependent Hamiltonian that steers the dynamics [26], and
it is subjected to several constraints like laser power, inho-
mogeneous frequency broadening, and relaxation processes,
to name a few. Therefore, finding the optimal sequence for
QC is highly cumbersome, and generally, it depends on the
particular system.

Complex computational calculations are at the forefront
of numerical methods to tackle down simulation of quantum
systems. For instance, a parametrization of quantum states
in terms of neural networks has enabled the approximation
of many-body wavefunctions in closed dynamics (dissipa-
tion free) [28–30], and it has also been extended to approach
the density operator in open dynamics (dissipative) [31–
36]. These approaches use restricted Boltzmann machine
parametrization, stochastic reconfiguration, and variational
Monte Carlo. Along these ideas, other models have focused
on hybrid implementations [37–39], probabilistic formula-
tions based on positive operator-valued measure [40, 41], or
data-driven model via time-averaged generators [42]. Over-
all, estimating the open dynamics of a quantum system is
a challenging problem. Beyond this point, one may won-
der how evolution can be controlled using a universal and
robust approach. Here, machine learning provides versa-
tile and promising algorithms to expand our alternatives
towards completing this task [50–56]. However, combining
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FIG. 1. PINNs architecture for solving inverse quantum control
problems. Quantum evolution can be translated into a dynam-
ical system ẋ(t) = A(λ,u(t))x(t), where x(t) and u(t) are the
state and control vectors, respectively, and λ are the system pa-
rameters. The input data (red circle) is given by the discrete
time vector t, and the outputs of the neural network (NN) are
Nx(t) and Nu(t) (blue circle). By minimizing the loss function
L the NN discover Nx,u(t) for the parameterized solutions x(t)
and u(t), where f(0) = 0.

time evolution and QC, being solved within a single deep
learning method remains relatively unexplored. The formu-
lation of the QC problem leads us to a non-homogeneous
set of differential equations that we aim to solve in an un-
supervised yet ansatz-free formalism.

Neural Networks (NNs) are commonly trained with data
allowing them to learn the dynamics of the quantum sys-
tem. However, NNs that preserve the underlying phys-
ical laws without preliminary data would have practi-
cal advantages. Hence, physics-informed neural networks
(PINNs) have been introduced as a new artificial intelli-
gence paradigm that only requires the model itself [68, 69].
This is a general physics-informed machine learning frame-
work that has been applied to solve high-dimensional par-
tial differential equations [70, 71], quantum systems with
many-body electronic interactions [72], inverse problems
using sparse and noisy data [73], and to discover under-
lying physics hidden in data structures [74]. Since PINNs
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are coded using physical laws, they can be applied to any
quantum evolution where the model is well known [60–65].

In this letter, we introduce a novel PINN architecture to
find optimal control functions in open quantum systems.
This is a data-free inverse modeling deep learning approach
where we have a target dynamical behavior instead of data.
Our approach suggests smooth control functions for driving
the quantum system to a pre-selected target state.

Control theory and physics-informed neural networks.—
Let us consider the following n-dimensional non-
autonomous dynamical system:

ẋ = A(λ,u(t))x(t), x(0) = x0, u(0) = u0, (1)

where x(t) = (x1, ..., xn)T ∈ Rn, u(t) = (u1, ..., um)T ∈
Rm, and λ = (λ1, ..., λs)

T ∈ Rs are the state, control,
and parameter vectors (with n,m, s ≥ 1 and m ≤ n2),
respectively. Here, A(λ,u(t)) is a real n × n dynamical
matrix that depends on u(t) and λ.

Given a dynamical system with known λ and with x(t)
satisfying Eq. (1), we can employ machine learning to dis-
cover an optimal control vector u(t) such that the system
evolves from x(0) to some desired target state xd. Well-
known techniques based on optimal control [27], Lyapunov
control theory [6] or linear control theory are based on opti-
mization rules to find a suitable control vector u(t). There-
fore, the main idea is to construct a PINN that minimizes
a generic loss function to achieve optimal quantum control.

(a) (b)

FIG. 2. (a) Open two-level system controlled by a time-
dependent atomic modulation ξ(t). Losses are included through
absorption (γabs) and emission (γem) processes. (b) Open three-
level Λ system controlled by two driving fields Ωp(t) and Ωs(t).
We include pure dephasing rates γi (i = 1, 2, 3) acting on each
state |i〉. One- (∆1,2) and two-photon (δ) detunings are consid-
ered in our numerical simulations.

A feed forward NN is known for being a powerful univer-
sal approximator. In other words, it can properly approxi-
mate any vector function F : Rp 7→ Rq (r, q ≥ 1), which is
granted by the universal approximation Theorem [75]. Let
us consider the NN architecture illustrated in Fig. 1. We
have set a time array t = (t1, ..., tM ) as the input to the
neural network, with M representing the dimension of the
sample points. We remark that PINNs do not required a
structured mesh and thus, ti can be arbitrary discretized.
The NN consists of multiple hidden layers with trigono-
metric sin(·) function used as the activation function for

the hidden neurons. This choice of activation has been
shown to improve PINNs’ performance in solving nonlinear
dynamical systems [76] and high-dimensional partial differ-
ential equations [71]. The outputs of the NN are the solu-
tions Nx(t) ∈ Rn and Nu(t) ∈ Rm. We construct a neural
state and control vectors that identically satisfies the initial
conditions by parametrizing x(t) = x(0) + f(t)Nx(t) and
u(t) = u(0) + f(t)Nu(t), where f(t) = 1 − e−t is a para-
metric function satisfying f(0) = 0 [76]. The network pa-
rameters, weights and biases, are randomly initialized and
then, they are optimized by minimizing a physics-informed
loss function defined by

L = Lmodel + Lcontrol + Lconst + Lreg. (2)

The component Lmodel describes the system dynamics:

Lmodel =

M∑
i=1

||ẋ(ti)−A(λ,u(ti))x(ti)||2, (3)

with ||·|| representing a Euclidean distance. The time
derivatives in the neural solutions are computed using
the automatic differentiation method provided by PyTorch
package [78]. By minimizing the above functional, the state
vector will approximately satisfy the system dynamics and,
thus, the underlying physics. The second term on the right-
hand side of Eq. (2) represents the control, that reads

Lcontrol = η

M∑
i=1

||x(ti)− xd||2, 0 ≤ η ≤ 1, (4)

where the factor η regulates the relevance of the control
condition compared to the leading loss component Lmodel.
Note that xd could be a constant (regulation) or time-
dependent (trajectory tracking) vector depending on the
control scheme — the proposed method is valid for both
schemes. The term Lconst takes into account additional
physical constraints for the state/control vector, respec-
tively, such as probability conservation or holonomic con-
straints of the form H(x,u, t) = 0. Finally, Lreg is a stan-
dard regularization loss term that encourages the network
parameters to take relatively small values avoiding overfit-
ting. In this data-free machine learning approach, the effect
of overfitting will be the prediction of a too complex u(t),
which might be practically unfeasible. We introduce Lreg

as a l2-norm of the network weights Lreg = χ
∑
i w2

i , where
χ is the regularization parameter.

The minimization of the physics-informed loss function
given in Eq. (2) yields NN predictions that obey the under-
lying physics and suggest optimal control functions. For the
training of the NN, namely, to minimize Eq. (2), we em-
ploy Adam optimizer [77]. Moreover, the points ti are ran-
domly perturbed during training iteration— this method
has been shown to improve the training and the neural
predictions [70, 76].
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Two-level system with amplitude damping and one con-
trol field.— We consider a two-level system as a proof-of-
principle example to illustrate the power of PINNs for QC.
In particular, we address the problem of generating Gibbs
(mixed) states of the form ρGibbs = Z−1

∑
j e
−βEj |j〉〈j|

with Z = Tr(e−βH) (partition function) and β = (kBT )−1

(inverse temperature). The preparation of mixed states is
relevant for simulating high-temperature superconductiv-
ity in variational quantum circuits [80]. In addition, QC of
two-level systems is also relevant in the context of pulse re-
verse engineering [79], feedback control [3], optimal control
theory [27], and controllable quantum dissipative dynam-
ics [43]. Let us consider the following Hamiltonian:

H(t) = ωzσz + ωxσx + ξ(t)σee, (5)

with ωx,z representing system parameters and ξ(t) describ-
ing the unknown control field. Here, σz = |e〉〈e| − |g〉〈g|
and σx = |e〉〈g| + |g〉〈e|, with |e〉 (|g〉) being the excited
(ground) state. The control relies on the atomic modula-
tion ξ(t) to drive the system towards any desired Gibbs
state. Furthermore, we consider an open dynamics de-
scribed by the Markovian master equation ρ̇ = −i[H(t), ρ]+∑
i=1,2 γi(LiρL

†
i − (1/2){L†iLi, ρ}), with [·, ·] and {·, ·} rep-

resenting the commutator and anticommutator, respec-
tively. The dissipation is described by absorption (L1 =
|e〉〈g|) and emission (L2 = |g〉〈e|) processes with rates γ1 =
γabs and γ2 = γem, respectively. A schematic representa-
tion of the system is given in Fig. 2-(a). In what follows,
we use the system parameters ωz = 2, ωx = 1, γabs = 0.1,
γem = 0.3, and the initial condition ξ(0) = 0. For ξ(t) = 0,
a straightforward calculation leads to the steady-state ρss =
0.2775|e〉〈e|+0.7225|g〉〈g|+[(−0.1106+i0.0083)|g〉〈e|+c.c].
Thus, we use ξ(t) to drive the system to another station-
ary state, say, ρd = (1/2)(|e〉〈e| + |g〉〈g|). The proposed
PINN handles only real-valued functions. Hence, to imple-
ment our PINN scheme, we introduce the real state vec-
tor x(t) = (x1, x2, x3, x4)T = (ρgg, ρee,Re(ρeg), Im(ρeg))

T ,
where ρij = 〈i|ρ(t)|j〉 are the elements of the density
matrix. Hence, the dynamics can be written as ẋ =
A(λ,u(t))x(t), with

A(λ,u(t)) =


−γabs γem 0 −2ωx
γabs −γem 0 2ωx

0 0 −Γ −2ωz − ξ(t)
ωx −ωx 2ωz + ξ(t) −Γ

 ,

(6)
where λ = (wx, wz, γabs, γem) is the set of known parame-
ters, u(t) = ξ(t) is the one-dimensional control vector that
needs to be discovered, and Γ = (1/2)(γ1 + γ2) is the effec-
tive dephasing rate. The implementation of the loss func-
tion and dynamical analysis of the system is described in
the Supplemental Material [81]. Hereafter, we use the pre-
dicted control function to simulate the dynamics in a stan-
dard integrator. In Fig. 3 we plot the dynamics using the
PINN’s prediction for the control ξ(t) (inset). The PINN

FIG. 3. Controlled dynamics for populations ρgg(t), ρee(t) and
quantum coherence C(t) for the control function ξ(t) predicted
by the PINN. The architecture of the NN consists of 4 hidden
layers of 200 neurons, it is trained for 4 × 104 epochs with a
learning rate 10−4, χ = 10−3, and η = 1.

discovers an optimal Gibbs state preservation with fidelity
F (ρ(t), ρd) = [Tr(ρ1/2(t)ρdρ

1/2(t))]2 = 0.99 (for t ≥ 20),
and the steady-state approaches to ρd within an error of 1%
for each component of the density matrix [81]. We remark
that our result outperforms the analytically optimized solu-
tion that finds ρssgg = 0.549, ρssee = 0.4510, Re(ρeg) = 0, and
Im(ρeg) = 0.049, for a constant control ξss = −4 (see [81]
for further details). The latter explains the asymptotic be-
havior for ξ(t) predicted by the PINN. Moreover, we note
in Fig. 3 that the quantum coherence C(t) = 2|ρeg(t)| is
highly activated during the transient dynamics in order to
generate an equally distributed mixed state, but it asymp-
totically reaches C ≈ 0.1014.

Three-level system.— We now explore a more complex
scenario that encompasses a three-level system interact-
ing with two control fields. We focus on a Λ-configuration
shown by Fig. 2-(b), which has been of paramount impor-
tance for the study of quantum effects like electromagnet-
ically induced transparency [44, 45], coherent population
trapping [46, 47] and adiabatic population transfer [48].
The latter, has been dubbed Stimulated Raman Adia-
batic Passage (STIRAP) [49] and it will be our main point
for comparison. Let’s begin with the system Hamiltonian
H =

∑
iEiσii + Hc(t), where Ei stands for the eigenener-

gies σij = |i〉 〈j|, and Hc(t) is the control Hamiltonian. In
a multi-rotating frame and after the rotating wave approx-
imation, the dynamics of the three-level system is governed
by (~ = 1):

H(t) = δσ22 + ∆1σ33 +

(
Ωp(t)

2
σ31 +

Ωs(t)

2
σ32 + h.c.

)
,

(7)
where ∆1 = E3 − E1 − ωp and ∆2 = E3 − E2 − ωs are
the one-photon detunings that originate from off-resonant
driving fields with frequencies ωp and ωs, while δ = ∆1−∆2

is the two-photon detuning. Here, Ωp(t) and Ωs(t) are the
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control fields to be found. A similar Hamiltonian can be
obtained from the interaction of a Nitrogen-Vacancy center
with a Carbon-13 nuclear spin [84, 85]. In what follows, we
showcase our population transfer problem to be solved by
PINNs. We aim to find the optimal control pulses (Ωp(t)
and Ωs(t)) to transfer population from state |1〉 to state
|2〉 via the lossy intermediary state |3〉. Our goal is to
train a PINN that completes the task reaching high fidelity,
with (i) minimizing the population in the state |3〉, (ii)
minimizing the transfer time, and (iii) minimizing the pulse
area. The equations for the open dynamics are obtained
from a pure dephasing Markovian master equation (~ = 1),

ρ̇ = −i[H(t), ρ] +

3∑
i=1

γi(2σiiρσii − σiiρ− ρσii), (8)

with γi > 0 representing dephasing rates associated with
transverse relaxation processes. Without loss of generality,
we set γ3 = 0.14 and γ1 = γ2 = 10−3, to account
for larger dissipation in the excited state. We decom-
posed our density operator in real and imaginary parts,
and passed the network a real-valued vector state: z =
(ρ11,ρ22,ρ33,Re[ρ12],Im[ρ12],Re[ρ13],Im[ρ13],Re[ρ23],Im[ρ23])T .
The set of differential equations for the components of z is
given in [81].

In Fig. 4-(a) we show the evolution of the population in
the Λ-system and the predicted NN solutions for the con-
trol fields Ωs,p(t). Note that our PINN successfully delivers
a population transfer method with smooth pulses. Further-
more, it attempts to implement a counterintuitive sequence,
turning on the Stoke pulse Ωs (red-solid) at the same time
that the pump field Ωp (blue-dashed)— for a genuine coun-
terintuitive sequence like STIRAP, Stokes pulse precedes
the pump pulse. This is remarkable considering that the
PINN has no knowledge about QC theory or the relevance
of following a dark state evolution. It is worthwhile notic-
ing that the Stoke pulse shown in the inset of Fig. 4-(a)
triggers the |2〉 ↔ |3〉 transition, which in STIRAP serves
the purpose of preparing a dark state [85], since initially,
all the population is in state |1〉.

For completeness, we depart from the polarized initial
state |1〉 and focus on a more general initial state given by
ρ(0) = σ11/2 + σ22/2 + ε(σ12 + σ21)/2. For ε = 0, we end
up with a fully mixed state (without quantum coherence),
while ε = 1 provides a balanced coherent state. It is worth
noting that neither STIRAP nor the other sequences are
designed to transfer population from these initial states.
Thus, adapting these sequences for the new purpose will
demand further calculations. However, our PINN can han-
dle this new task without changing the network’s architec-
ture, showing that PINNs provide a general and adaptive
framework for inverse design. We focus on small deviations
of ε = 1. Designing a deep learning approach that handles
arbitrary initial polarization is an interesting extension of
the network, and it is left to future work. In Figs. 4-(b) and
-(c) we show the population transfer and the corresponding
pulse sequences for ε = 1 and ε = 0.7, respectively. Note

(a)

(b) (c)

FIG. 4. (a) PINN successfully transfers population from the
initial state ρ(0) = |1〉〈1| to the target state |2〉〈2| with prob-
ability p2 = Tr[ρσ22]. (b) The PINN allows us to polarize the
system starting from a coherent (ε = 1) and quasi-thermal state
(ε = 0.7). The architecture of the NN includes 5 hidden layers
of 150 neurons and it is optimized over 2× 104 training epochs
with learning rate 8× 10−3, η = 0.2 and χ = 2.8× 10−3 [81].

that the PINN updates the pulses to deliver good polariza-
tions.

For a thorough benchmarking, we consider other meth-
ods used to find optimal control pulses besides STI-
RAP [48, 49], such as Stimulated Raman Exact Passage
(STIREP) [97], Inverse Engineering [89, 90] and Modified
Superadiabatic Transitionless Driving (MOD-SATD) [20,
91]. For detailed calculations of these pulses, see [81]. In
Table I we compare our results with the other pulse se-
quences. One can observe that PINN speeds up the pop-
ulation transfer with a high transferring rate. Moreover,
the predicted control functions have the smallest area A,
as compared to the other methods. We remark that the
regularization Lreg penalizes the fields for being too large
and provides smooth functions. Thus, we can control the
amplitudes of the fields and the pulse area to achieve a less
power-consuming transfer, which can be crucial in practi-
cal implementations with low energy consumption require-
ments. Another practical advantage of our machine learn-
ing protocol is the robustness against two-photon detuning
(δ). It is known that STIRAP deteriorates when increas-
ing δ [86, 92]. Furthermore, the optimization for the other
sequences with δ 6= 0 is cumbersome and there is not much
literature about it— to our best knowledge. To compare
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TABLE I. The Table shows the population p2 = Tr[ρσ22],

pulse area A =
∫ tf
0

dt
√
|Ωp(t)|2 + |Ωs(t)|2 and transfer time

tf (in arbitrary units). In parenthesis we report the values with
∆1/2π = 0.2 and δ/2π = 0.2, the one- and two-photon detun-
ing, respectively.

PINN STIRAP STIREP Inv. Eng. MOD-SATD

p2 0.97(0.93) 0.98(0.88) 0.98(0.91) 0.97(0.79) 0.98(0.89)

A 7.3 128.6 53.3 19.8 50.0

tf 2.0 35 9.4 3.0 13

the robustness of the earlier discovered pulse sequences, we
also report in Table I the population transfer in the pres-
ence of two-photon detuning δ/2π = 0.2. We stress that no
training or further optimizations has been made to account
for the new δ. Then, we observe that our PINN delivers a
robust population transfer scheme. In [81] we show that the
NN can be easily trained better to counteract the adversary
effect of δ.

Finally, we extend our calculations to a four-level system
and show that our PINN performs well against cross-talk to
the newly added state [81], i.e., improves selectivity. More-
over, it generalizes the others Λ-optimized sequences and
opens the path for a scalable method.

Conclusions.— In this letter, we introduced a physics-
informed neural network to find optimal control functions
in open quantum systems. We demonstrated a data-free
deep learning approach that jointly solves the open dynam-
ics of quantum systems and the inverse design of control
functions. First, we applied this formalism to prepare a
Gibbs state in a two-level system. Second, we applied it
to state-to-state transfer in a three-level system. We found
that the PINN provides a flexible method that adapts to
different parameters, initial states, and power consumption
requirements. We foresee an AI-assisted method that can
be applied to a wide variety of dynamical systems.
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Supplemental Material: Physics-informed neural networks for quantum control

Control and dynamical analysis in a two-level system

For the two-level system, we use the following loss function

L = ||ẋ−A(λ,u(t))x||2 + ||x− xd||2 + Lreg, (9)

where xd = (1/2, 1/2, 0, 0)T is the desired control vector which correspond to ρd. The first, second, and third terms
on the right-hand side of the above equation imposes the Markovian master equation, the state preservation problem
(ρ(t) → ρd) and the constraint for off-diagonal elements (ρeg → 0). From the equation of motion ẋ = Ax given in the
section for the two-level system, we found:

ẋ1 = γe − 2Γx1 − 2ωxx4, (10)

ẋ3 = −Γx3 − (2ωz + ξ(t))x4, (11)

ẋ4 = −ωx + 2ωxx1 + (2ωz + ξ(t))x3 − Γx4, (12)

where we have used x1 + x2 = 1 (Tr(ρ) = 1) and Γ = (γabs + γem)/2. First, we can analyze the steady state which
implies that solutions satisfy ẋi = 0 (i = 1, 2, 3). From numerical calculations using the PINN we found that ξ(t) converges
to a stable value, then we can asseverate that the steady state for ξ exist. Let us define xssi and ξss as the steady state
solutions, from equations (10)-(12), we obtain:

 2Γ 0 2ωx
0 Γ 2ωz + ξss

2ωx 2ωz + ξss −Γ


 xss1
xss3
xss4

 =

 γe
0

ωx

 . (13)

By solving the above linear system, we get the following analytical solutions in terms of the steady-state ξss

xss1 =
γem

γem + γabs
+

4w2
x(γabs − γem)

(γabs + γem∆(ξss))
, (14)

xss3 =
4wx(γabs + γem)(2wz + ξss)

(γabs − γem)∆(ξss)
, (15)

xss4 = −2wx(γabs − γem)

∆(ξss)
, (16)

∆(ξss) = (γabs + γem)2 + 8w2
x + 16w2

z + 16wzξ
ss + 4(ξss)2. (17)

For the particular case wx = 1, wz = 2, γabs = 0.1, and γem = 0.3 it follow that

xss1 =
3

4
− 25

2∆(ξss)
, xss3 = −25(ξss + 4)

∆(ξss)
, xss4 = − 5

2∆(ξss)
, ∆(ξss) = 451 + 200ξss + 25(ξss)2. (18)

Therefore, since the target state is defined as ρd = (1/2)(|e〉〈e|+ |g〉〈g|), or equivalently xd = (1/2, 1/2, 0, 0)T , we note
that in order to obtain xss3 = 0 it is necessary to have ξss = −4, as is shown in the inset of Figure. 3. In order to corroborate
this previous observations rigorously, we impose that the steady state must minimize the function f(ξ) = 1− F (ρ(ξ), σ),
where σ = (1/2)(|e〉〈e|+ |g〉〈g|) is the target state, F (ρ, σ) = [Tr(ρ1/2(t)ρdρ

1/2(t))]2 is the quantum fidelity, and ρ(ξss) is
the steady state density matrix for ξss, and is given by

ρ(ξss) =

(
xss1 xss3 + ixss4

xss3 − ixss4 xss2

)
, (19)
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where xss2 = 1 − xss1 . By emplying a nonlinear optimization package of MATLAB we minimize f(ξ) = 1 − F (ρ(ξ), σ)
over all possible values of ξss. We obtain

min
ξss

(1− F (ρ(ξ), σ)) −→ ξss = −4, and F (ρ(−4), σ) = 0.9988. (20)

By using the value ξss = −4, we obtain the best performance for the steady state solution in terms of the quantum
fidelity (F ≈ 1), which implie that xss1 = 0.549, xss3 = 0, and xss4 = 0.049.

Energy efficiency of the control scheme

Let us consider a general Markovian open quantum system described by the master equation (~ = 1)

ρ̇ = −i[H0 +Hc(t), ρ] + L(ρ), (21)

where H0 and Hc(t) are the bare and control Hamiltonians, respectively. Here, L(ρ) describes the loss term in the
Lindblad master equation. Then, the average energy of the system can be defined as 〈E〉 = Tr(H(t)ρ), with H(t) =
H0 +Hc(t). The average power can be written as

dU

dt
= Tr(Ḣ(t)ρ(t)) + Tr(H(t)ρ̇(t)) = Tr(Ḣc(t)ρ(t)) + Tr(H(t)ρ̇) = Ẇ (t) + Q̇. (22)

The term Ẇ = Tr(Ḣc(t)ρ(t)) is the power done by the system and Q̇ = Tr(H(t)ρ̇) is the rate of heat induced by the
reservoir. Thus, by direct integration we obtain the expression for the work W (t) and heat Q(t):

W (t) =

∫ t

0

Tr(Ḣc(t)ρ(t)) dτ, Q(t) =

∫ t

0

Tr(H(t)ρ̇) dτ. (23)

The time-dependent Hamiltonian competes with the heat flow induced by the environment. Therefore, we define
η = |W (t)/Q(t)| as the fraction of work done over the system compared to the internal heat that enters the system.

(a) (b) (c)

FIG. 5.

For the particular case of the two-level system presented in the main text, the work is given by

W (t) =

∫ t

0

ξ̇(τ)ρee(τ) dτ, (24)

where ξ(t) is the control field. As ρee > 0 and ξ̇ is extremely negative at the beginning of the dynamics, we get that
−W > 0. In Figure 5(a) we plot the ratio the quantities Q(t) and W (t) for the two-level system. Also, in Figure 5(b) we
show the temporal behavior of η(t) = |W (t)/Q(t)| for the same parameters used in Figure. 3. We note that we must apply
a large quantity of work to overcome the effect of the internal heat. However, as time increases, the ratio η converges to
1, showing that the applied work compensates for undesired heat effects. Consequently, the system reaches a stable and
free-losses state, which is required to preserve the state over time.
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Now, we shall elaborate on a measure to quantify the efficiency of the control protocol in terms of energy considerations.
By analyzing Figure 5(b), we note that an efficient quantum control solution can be recognized as the one that minimizes
the colored area for the curve η − 1 for η > 1. In other words, if we control a quantum system without inverting a
large quantity of energy, then Wapp ≈ Q, and therefore η > 1 only in a short time domain. Let us define the integral,
I1 =

∫
η>1

(η(τ) − 1) dτ as a measure of the region where η > 1. In the best scenario, I1 = 0, implying that the energy

efficiency will be equal to one. In addition, the total area of the curve η will be represented by I2 =
∫
η(τ) dτ . Based on

these observations, we define the energy efficiency over the whole process as Eff = 1− I1/I2, or equivalently

Eff = 1−

∫
η>1

(η(τ)− 1) dτ∫
η(τ) dτ

, 0 ≤ Eff ≤ 1. (25)

Since of I1 < I2 (by construction) and I1 = 0 is the minimum value, it follow that 0 ≤ Ef ≤ 1. Using this
definition we have that Eff = 0 (Ef = 1) is the worst (best) scenario. For the two-level system we obtain that
Ef = 0.5249. Now, if we consider the initial state parametrization ρ(0) = p|g〉〈g| + (1 − p)|e〉〈e|, we can calculate
the energy efficiency in terms of the mixing parameter 0 ≤ p ≤ 1. In Figure 5(c), we plot the efficiency of the PINN for
p = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Note that the efficiency is not reported for p = 0.5 since in such a a case,
the initial state is equal to the target state.

Control and dynamical analysis in a three-level system

As it was stated in the main text, our PINN only handles real-valued functions. Therefore, we rewrite the master
equation using the state vector ~z = (ρ11,ρ22,ρ33,Re[ρ12],Im[ρ12],Re[ρ13],Im[ρ13],Re[ρ23],Im[ρ23])T . Hence, the dynamical
equations reads,

0 = ż1 + Ωp(t)z7,

0 = ż2 + Ωs(t)z9,

0 = ż3 − Ωp(t)z7 − Ωs(t)z9,

0 = ż4 + δz5 + (γ1 + γ2)z4 +
Ωp(t)

2
z9 −

Ωs(t)

2
z7,

0 = ż5 − δz4 + (γ1 + γ2)z5 +
Ωp(t)

2
z8 −

Ωs(t)

2
z6,

0 = ż6 + ∆1z7 + (γ1 + γ3)z6 +
Ωs(t)

2
z5,

0 = ż7 −∆1z6 + (γ1 + γ3)z7 +
Ωp(t)

2
z3 −

Ωp(t)

2
z1 −

Ωs(t)

2
z4,

0 = ż8 − δz9 + ∆1z9 + (γ2 + γ3)z8 −
Ωp(t)

2
z5,

0 = ż9 + δz8 −∆1z8 + (γ2 + γ3)z9 −
Ωp(t)

2
z4 −

Ωs(t)

2
z2 +

Ωs(t)

2
z3. (26)

We can define the loss function that accounts for the model as Lmodel =
∑9
i=1 ‖Li‖2, where Li are given by the

right-hand side in Eq. (26). The control loss function comes from the target state, such that

Lcontrol = η‖z2 − 1‖2. (27)

It is well-known that the master equation in the Lindblad form ensures that the density matrix will be Hermitian,
positive, semi-definite, and Tr[ρ] = 1. However, we found that enforcing the last constraint helps the PINN to find the
best solution. Therefore, we add the following term to the loss function

Lconst = ηc(‖z1‖2 + ‖z3‖2), (28)

which together with Lcontrol enforces Tr[ρ] = 1. Finally we added a l2-norm regularization Lreg = χ
∑
i Ω2

i that
penalizes the control fields being too large and delivers smooth functions. Henceforth, the PINN tries to minimize the
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overall loss function:

L = Lmodel + Lcontrol + Lconst + Lreg, (29)

with a learning rate that amounts to 8 × 10−3. The weights in Lcontrol, Lconst and Lreg (η = 0.2, ηc = 0.1 and
χ = 2.8 × 10−3, respectively) regulate the relevance of the control, constraint, and smoothness conditions comparing to
the leading loss component Lmodel. These weights were adjusted by hand, without cross-validation. In Fig. 6 we show the
Loss function of the training process corresponding to Fig. 4-(a) in the main text.

FIG. 6. Convergence of the loss function defined in Eq. (29).

Pulse sequences for controlling a Λ-system.

In this section, we detail some control protocols that exploit adiabaticity, shortcuts to adiabaticity, or inverse engineering.
We aim to efficiently transfer population from an initially polarized state (|1〉) to a target state (|2〉) via an intermediary
state (|3〉). To achieve this state-to-state transfer, two radiation fields are used to induce transitions |1〉 ↔ |3〉 and
|2〉 ↔ |3〉, as shown in Fig. 2(b). In what follows, we provide a detailed derivation of each of these methods— some of
them already addressed by us in Ref. [84] and included here to make the present paper self-contained. We remark that
the optimization can be improved by increasing the control fields for most of these methods and our PINN. However, we
restrict them to Ωs,p ≤ 10 to fairly compare the methods. In Fig. 7 we compare all methods for the population transfer
between the states |1〉 and |2〉.

Stimulated Raman Adiabatic Passage (STIRAP)

First, we consider a well-known protocol for adiabatic transfer dubbed Stimulated Raman Adiabatic Passage (STI-
RAP) [48, 49, 92]. Under the rotating wave approximation, the Hamiltonian for this system is given by,

H(t) = δσ22 + ∆1σ33 +

(
Ωp(t)

2
σ31 +

Ωs(t)

2
σ32 + h.c.

)
. (30)

Hereafter, we set to zero the two-photon detuning δ = 0 (∆1 = ∆2 = ∆). The eigenstates of the Hamiltonian are:

|Φ+〉 = sin θ sinφ |1〉+ cosφ |3〉+ cos θ sinφ |2〉 ,
|Φ−〉 = sin θ cosφ |1〉 − sinφ |3〉+ cos θ cosφ |2〉 ,
|Φd〉 = cos θ |1〉 − sin θ |2〉 , (31)

with instantaneous eigenvalues Ed = 0 and E±(t) = ∆/2±
(
∆2 + Ω2

p(t) + Ω2
s(t)

)1/2
/2. The mixing angles are defined

through the relations

tan θ(t) =
Ωp(t)

Ωs(t)
, tan 2φ(t) =

√
Ω2
p(t) + Ω2

s(t)

∆
. (32)
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We note that the dark state (|Φd〉) has no contribution from the excited state |3〉, so the population transfer from
state |1〉 to state |2〉 is driven by the variation of the mixing angle θ(t). The latter implies that the Rabi frequencies
Ωp(t) and Ωs(t) must be correlated. First, we note that |Φd〉 coincides with |1〉 when θ(t) = 0, which is obtained from
Ωp(t)/Ωs(t) −→ 0. Second, the population transfer is completed when |Φd〉 coincides with |2〉 (θ(t) = π/2), that is
obtained from Ωp(t)/Ωs(t) −→ ∞. Hence, the population transfer is attained with a counterintuitive pulse order, i.e.
Ωs(t) precedes Ωp(t).

As mentioned above, the STIRAP protocol follows an adiabatic evolution, usually slower than superadiabatic control
protocols. Therefore, we now focus on three different modifications to STIRAP that use superadiabatic corrections [87,
88, 93, 94], inverse engineering [89, 90] and counteradiabatic approach [91].

Inverse Engineering

Inverse engineering is one of the protocols that achieves high fidelity in shorter times. The main goal is to design the
optimal control pulses Ωp(t) and Ωs(t). To determine these control fields, an invariant operator I(t) is used, which satisfies
the equation [89, 90],

∂I(t)

∂t
+

1

i~
[I(t), H0(t)] = 0. (33)

The condition ∆1 = 0 yields the following operator (~ = 1),

I(t) =
Ω0

2

 0 Ξ(t) Υ (t)

Ξ(t) 0 Ξ(t)

Υ ∗(t) Ξ(t) 0

 , (34)

with Ξ(t) = cos γ(t) sinβ(t) and Υ (t) = −i sin γ(t). The time-dependent auxiliary parameters γ(t) and β(t) satisfy the
following equations [95],

dγ(t)

dt
=

1

2
(Ωp(t) cosβ(t)− Ωs(t) sinβ(t)),

dβ(t)

dt
=

1

2
tan γ(t)(Ωs(t) cosβ(t) + Ωp(t) sinβ(t)). (35)

From the above equations one can find the optimal control fields as

Ωs(t) = 2(
dβ(t)

dt
cot γ(t) cosβ(t)− dγ(t)

dt
sinβ(t)),

Ωp(t) = 2(
dβ(t)

dt
cot γ(t) sinβ(t) +

dγ(t)

dt
cosβ(t)). (36)

Henceforward, we shall consider different Ansatzs for the auxiliary parameters γ(t) and β(t).

Ansatz 1: For simplicity, we choose γ(t) = ε and β(t) = πt/2tf [89], that leads to

Ωs(t) =
π

tf
cot ε cos

(
πt

2tf

)
,

Ωp(t) =
π

tf
cot ε sin

(
πt

2tf

)
. (37)

For the numerical calculations we set ε = 0.05 and tf = 10.

Ansatz 2: We choose the polynomial solution introduced in Ref. [89],

β(t) =

3∑
j=0

bjt
j , γ(t) =

4∑
j=0

ajt
j , (38)
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where the coefficients bj and aj are determined from the initial conditions

γ(0) = ε, γ̇(0) = 0, γ(tf ) = ε, γ̇(tf ) = 0, γ(tf/2) = δ,

β(0) = 0, β̇(0) = 0, β(tf ) =
π

2
, β̇(tf ) = 0. (39)

To obtain an optimal and fast population transfer we set ε = 0.02, δ = π/10 and tf = 3. We show our results for this
ansatz in Table I in the main text.

Ansatz 3: We choose the solution proposed in Ref. [96], that achieves successful population transfer in the presence of
unwanted transitions. The parameters are,

γ(t) = −8(π − 2d0)

T 4
t4 +

2(7π − 16d0 + T )

T 3
t3 − 5π − 16d0 + 3T

T 2
t2 + t,

β(t) = −π
(
t

T

)3

+
1

2
(2πd1 + 3π)

(
t

T

)2

+

(
−1

2
(2πd1 + 3π +

3π

2
)

)
t

T
+ d1 sin

(
πt

T

)
, (40)

where d0 = 1.8, d1 = 0.1 and T = 1. While this ansatz works fine, we did not include it in Table I due to the large
control field, which we could not decrease below 10 with a successful transfer rate.

Stimulated Raman Exact Passage (STIREP)

Recently, a new protocol combines inverse engineering and optimization methods [97]. Here, the control pulses are
determined by trajectories φ̃ and read,

Ω̃s = Ωs(t)/2η̇ = cos φ̃ sin θ̃ − ˙̃
φ cos θ̃,

Ω̃p = Ωp(t)/2η̇ = − cos φ̃ cos θ̃ − ˙̃
φ sin θ̃, (41)

with φ̃ = φ[η(t)]. The trajectory φ̃ is obtained by applying robust inverse optimization (RIO) [97], which optimizes

a cost function represented by the total area of the two pulses and is given by At = 2
∫ ηf
ηi
|η̇|
√

˙̃
φ2 + cos2 φ̃ dη. By using

the Euler-Lagrange equations and the Lagrange Multipliers method we obtain the following differential equations for the
trajectory,,

ẏ1 =
˙̃
φ± = y2,

ẏ2 =
¨̃
φ± = −(2y22 + cos2 φ̃±) tan φ̃± ± (λ0 sec φ̃±λ1 sin η − λ2 cos η)

(
y22 + cos2 φ̃±

)3/2
= 0. (42)

For the initial condition
˙̃
φ = 0 we end up with the Lagrange Multipliers λ0 = 0.394, λ1 = −0.064 and λ2 = 0.283.

Modified Superadiabatic Transitionless Driving (MOD-SATD)

The MOD-SATD [91] protocol is a different alternative, which bypasses the adiabatic condition while counteracting the
effect of the loss of adiabaticity. The fields in this protocol are parameterized according to [91]

Ωp(t) = −Ω′(t) sin θ′(t),

Ωs(t) = Ω′(t) cos θ′(t), (43)

where θ′(t) = θ(t)− arctan[gx(t)/(Ω(t) + gz(t))], Ω′(t) =
√

[Ω(t) + gz(t)]2 + g2x(t), µ(t) = − arctan[θ̇/(Ω(t) + g(t)/σm)],

gx(t) = µ̇, gz(t) = −Ω(t)− θ̇/ tan(µ), g(t) = A/ cosh(ζt) with A = 1/40, ζ = 9/(10σm) and σm = 2.0 µs. For the Gaussian
fields considered in STIRAP one finds that [91]

θ(t) = arctan
[
exp

(
tdt/σ

2
)]
,

Ω(t) = Ω0 exp

(
− t

2 + t2d/4

2σ2

)√
2 cosh

(
tdt

σ2

)
, (44)

with td = 6/5σ and Ω0/2π = 1 MHz.
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FIG. 7. Comparing all methods for population transfer from state |1〉 to |2〉.

Superadiabatic STIRAP (SA-STIRAP)

For completeness, we also show the SA-STIRAP sequence. However, we do not consider it in the main text (Table I)
because it relies on a pulse connecting states |1〉 and |2〉, which we have not allowed for our PINN.

The superadiabatic approximation requires an external control Hamiltonian Hc(t) [87, 88, 94], such that

Hsa(t) = H(t) +Hc(t), (45)

where H(t) is the original Hamiltonian in Eq. (30). The superadiabatic correction reads (~ = 1),

Hc(t) = i
∑
n=±,d

[|∂tΦn(t)〉 〈Φn(t)| − 〈Φn(t)| ∂tΦn(t)〉 |Φn(t)〉 〈Φn(t)|] , (46)

where |Φn〉 are the eigenstates H(t), as given in Eq. (31). After straightforward calculations we obtain the superadiabatic
correction

Hc(t) =
1

2
(iΩa(t)σ21 − iΩ∗a(t)σ12) , (47)

with Ωa(t) ≡ 2dθ(t)/dt, and θ(t) given in Eq. (32). Instead of Gaussian fields (as we used in the STIRAP protocol),
here we use Ωp(t) = Ω0 sin4(π(t− τ)/T ) and Ωs(t) = Ω0 sin4(πt/T ), with Ω0/2π = 1, τ = 0.1T and T = 4.

Optimization with two-photon detuning

The one-photon detuning does not have a detrimental role in the transfer protocol. For instance, it is known that it
does not affect STIRAP in the adiabatic limit [92, 98]. In contrast, the two-photon detuning (δ) hurts the success in
the population transfer [86, 92]. Back to STIRAP, neither the dark state nor the null eigenvalue are available, forcing
variations in the sequence (or a total departure from it) to achieve a successful transfer. Our PINN, on the other hand,
can be easily trained to counteract this effect. It only requires setting the new value of δ before the training process,
and then the PINN automatically updates the weights in the optimization and delivers a population transfer probability
with a final probability p2 = 0.94, see Fig. 8. Furthermore, it is worth noticing that the pulse sequence found by the
PINN does not experience a significant change. This means the sequence is robust without a subsequent optimization
(p2 = 0.93 in the main text). It is important to note that along the manuscript with have fixed the regularization
parameter χ = 2.8 × 10−3. However, decreasing it down to χ = 1 × 10−3 will increase the control fields and deliver a
population transfer with p2 = 0.97.

Four-level system

The optimization of control pulses is, in general, system-dependent. This means that once we have the optimal pulse
sequence for a Λ-system, the extension to a four-level system is not straightforward. For instance, the new system involves
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FIG. 8. Training the PINN considering one- (∆1/2π = 0.2) and two-photon (δ/2π = 0.2) detuning can easily improve the population
transfer from p2 = 0.93 to p2 = 0.94.

more non-linear equations and the possibility of cross-talk to the newly added state. Henceforth, any analytical approach
for optimization becomes a hard task. In this section, we show that our PINN can handle a four-level system without
modification to the architecture of the network. Then, we feed the PINN with the new set of differential equations, and we
add a new constraint in Lconst (28) for the population in the fourth state ‖z4‖2. Our goal is to train a PINN that succeeds
in transferring population from state |1〉 to state |2〉, with, (i) minimizing the population in the lossy intermediary state
(|3〉), (ii) minimizing the transfer time, (iii) minimizing the pulse area, and (iv) minimizing cross-talk to state |4〉. Note
that the last condition was unnecessary for the three-level system and guarantees selectivity.

To begin with, we consider the Hamiltonian of the system in a multi-rotating frame and in the eigenstate basis (~ = 1),

Ĥ = δσ22 + ∆3σ33 + ∆4σ44 +
Ωp(t)

2
(σ13 + σ14) +

Ωs(t)

2
(σ23 − σ24) + h.c., (48)

where Ωp(t) and Ωs(t) are the Rabi frequencies of the control fields and σij the ladder operators. The one-photon
detunings are ∆2 = (E3 − E2 − ωs), ∆3 = (E3 − E1 − ωp), ∆4 = (E4 − E1 − ωp) and the two-photon detuning is
δ2 = (∆3 −∆2). Ei are the eigenenergies and ωp and ωs are the frequency of the control fields. This Hamiltonian can be
obtained from the interaction of a Nitrogen-Vacancy center with a Carbon-13 nuclear spin [84, 85]. In Fig. 9 we show the
population transfer method.

FIG. 9. PINN delivers a successful population transfer method that can be scaled to a four-level system without changing the
network’s architecture.
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