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Abstract 

The objective of this paper is to illustrate how developing countries with limited datasets and 

capacity can utilize global hazard data to support risk-informed decision-making at the local level. 

Using urban hydrologic models for flood risk assessment requires the collection of intensive data for 

model calibration, and even after such an effort leads to considerable uncertainty for spatially 

specific risk assessment. The case study in this paper examines flooding events in Metro Manila, which 

routinely experiences the disasters.  We explore whether relationships between flood occurrence in 

Manila and remotely-sensed environmental data, such as rainfall amounts and vegetation moisture 

could be established using machine learning techniques such as visualization, decision tree, and 

logistic regression. The study demonstrated that a model that uses an appropriate rainfall index is 

better than one that uses only daily rainfall amounts or adds a vegetation index. The best predictive 

models are found to be: (i) one that uses rainfall type and rainfall amount; (ii) and one that integrates 

all the information including, rainfall amount, rainfall type and vegetation index. The case study 

demonstrates that globally available data used with machine learning techniques can be effective for 

local flood management.    

  



 

 
 

1. Introduction 

 The Dartmouth Flood Observatory (2018) indicates that floods caused 62,000 deaths and displaced 610 million 

people in the world since 1985. Recent floods in urban areas caused substantial economic damage and losses 

(Haraguchi & Kim, 2016; Haraguchi & Lall, 2015). Urban flooding is a phenomenon caused by multiple factors such as 

large rainfall amount, flood-prone topography, inadequate infrastructure for drainage and storage and poor water 

management. High population densities and informal settlements in waterfront areas as well as poor infrastructure and 

drainage systems make flood risk management a significant challenge in mega cities in developing countries. Often, 

detailed hydrologic and stream gage data is unavailable, which makes it challenging to mitigate and respond to flood 

risks at a local scale1 in developing countries (Haraguchi, 2018).  

Satellite data can be a useful resource for decision-makers to address disaster risks, both for emergency 

management and for disaster risk reduction (DRR) planning. In the era of big Earth Observation (EO) data, many of which 

are freely accessible, high-resolution, and frequently acquired, the applications for DRR and disaster risk management 

(DRM) are numerous and of great importance especially for those countries with limited national resources (Twele, Cao, 

Plank, & Martinis, 2016).    

We present a case study of urban flooding in Manila Philippines to show how global remote sensing (RS) 

technology and EO data can be used to assess local urban flooding in developing countries. The Philippines is a typhoon-

prone country. An average of 20 out of 36 tropical cyclones that develop over the Northwest Pacific basin per year impact 

the country.  Metro Manila in the Philippines has experienced numerous flooding incidents for many years. It 

experienced massive flooding in September 2009, which caused the deaths of 420 and 20,000 evacuees, with damage 

and losses equivalent to about 2.7 % of Gross Domestic Product (Stoutjesdijk, 2017). Innovative programs to improve 

the capacity to respond to the effect of extreme weather conditions are in place. For example, University of the 

Philippine’s Nationwide Operational Assessment of Hazards (UP NOAH) Center has developed hazard and risk maps 

that visualize the impacts of hazard events as a dynamic way (Cadiz, 2018). Specifically, the objective of this research 

 

 

 

1 In this paper, a local scale means a scale that covers from a city to a metropolitan area.  



 

 
 

was to 1) show how global satellite data sets can help local decision-makers addressing flood risk and 2) to examine the 

relationship between flood generation in Metro Manila in the Philippines and RS environmental data.  

2. Remote Sensing and Its Applicability to Local Floods Detection 

Satellite RS has been used for decades for disaster management. Its applicability has been demonstrated for 

near-real-time mapping (Brisco, Schmitt, Murnaghan, Kaya, & Roth, 2013; Cossu, Schoepfer, Bally, & Fusco, 2009; 

Henry, Chastanet, Fellah, & Desnos, 2006; Horritt, Mason, & Luckman, 2001; Martinis, Kersten, & Twele, 2015; Matgen, 

Schumann, Henry, Hoffmann, & Pfister, 2007), and operational emergency response (Bessis, Bequignon, & Mahmood, 

2004; Mahmood, 2012). The European Copernicus Emergency Management Service2, the International Charter on 

Space and Major Disaster3, and the UNOSAT Rapid Mapping Service4, provide institutional examples. Optical multi-

spectral data, acquired by different sensors such as Landsat, Sentinel-2 and MODIS, are employed for flood mapping 

(Brakenridge & Anderson, 2006; Cian, Marconcini, & Ceccato, 2018; Heimhuber, Tulbure, & Broich, 2018; Huang, Peng, 

Lang, Yeo, & McCarty, 2014; Islam, Bala, & Haque, 2010; Kordelas, Manakos, Aragonés, Díaz-Delgado, & Bustamante, 

2018; Qi et al., 2009; Ryu, Won, & Min, 2002; Thomas, Kingsford, Lu, & Hunter, 2011; Tong et al., 2018; Y. Wang, Colby, & 

Mulcahy, 2002) with the usual limitation that cloud coverage, very likely to happen during floods especially in tropical 

areas, can affect the detection of the flood extent.  In contrast, Synthetic Aperture Radar (SAR) is a powerful tool in the 

context of flood mapping since it can provide frequent observations (Alsdorf, Rodríguez, & Lettenmaier, 2007; Cian et 

al., 2018; Mertes, 2002; Ward et al., 2014) thanks to the capability to monitor land in almost any weather conditions 

(Marzano, Mori, Weinman, & Montopoli, 2012; Schumann, Bates, Horritt, Matgen, & Pappenberger, 2009) and during 

night-time (Waisurasingha, Aniya, Hirano, Kamusoko, & Sommut, 2007; Wilson & Rashid, 2005).  

Until a few years ago, the availability of RS data for disaster monitoring was limited due to the low time 

frequency (technical limitation of the sensors, limited storing capacity on board of satellites or limited capacity of data 

downlink) of data acquisition by satellites. Moreover, many methodologies use archived data, i.e., data acquired 

 

 

 

2 http://emergency.copernicus.eu/mapping 
3 https://disasterscharter.org 
4 https://unitar.org/unosat/unosat-rapid-mapping-service 



 

 
 

before the event, to perform a change detection analysis by comparing them with the images acquired during the 

disaster. This allows one to detect the extent of the flood or to assess damages occurred during the event. For the 

same reason mentioned, archived data has limitations of detecting changes in many cases. The advent of new EO 

constellations, such as the European Space Agency's (ESA) Sentinels (with optical and radar satellite acquiring data 

globally every week at a resolution of 10 m), or commercial constellations of hundreds of small satellites acquiring 

daily at a global scale, such as Planet5 (optical at 3 m) and ICEYE6 (radar at 10 m), have started the era of EO big data 

(Huang et al., 2014; Ma et al., 2015; Yang, Huang, Li, Liu, & Hu, 2017)  promising a new era for disaster monitoring and 

EO data exploitation. These new sources of data increase the probability of observing the evolution of a disaster given 

the higher frequency of observation and the higher resolution. 

RS can also be used to assess the impact caused by a flood. An event needs to be characterized by its extent, 

depth, and duration. The extent of events can be retrieved relatively with ease; a challenge is to extract its depth and 

duration. However, RS is regularly employed for post-disaster impact assessment (Haq, Akhtar, Muhammad, Paras, & 

Rahmatullah, 2012; Klemas, 2009; Van Westen, 2013), using optical sensors (Van der Sande, De Jong, & De Roo, 2003; 

Q. Wang, Watanabe, Hayashi, & Murakami, 2003; Yamagata & Akiyama, 1988) and radar sensors (Bhatt et al., 2017; 

Serpico et al., 2012) in an agricultural context (Kwak, Arifuzzanman, & Iwami, 2015; Pantaleoni, Engel, & Johannsen, 

2007; Tapia-Silva, Itzerott, Foerster, Kuhlmann, & Kreibich, 2011) and in a socio-economic perspective (Oddo, Ahamed, 

& Bolten, 2018). These analyses allow to estimate the impacts of disasters on crops and critical infrastructures as well 

as to determine the number of people affected and the number of damaged buildings.   

However, for the monitoring of flood extent in urban areas, some limitations remain. SAR data, due to their 

physical characteristics, are not ideal for monitoring urban flooding. For example, small areas in between buildings 

are difficult to detect as flooded using low  (50-by-50 meter per a pixel) and middle-resolution (20–30 meter)  images, 

because areas of interests are too small compared to the image resolution. High-resolution images also have 

difficulties due to the physical nature of the radar signal. It is hard to make a distinction between smooth surfaces of 
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streets with smooth surfaces of water or tall buildings close to each other, which prevents the radar signal from 

sensing the water surface in between them. Optical data in the absence of cloud would allow monitoring urban 

flooding in case of high resolution. However, high-resolution (below 3–5 meter) data are expensive, and the significant 

limitation of cloud cover remains, which can prevent the observation of the event itself (Rahman & Di, 2017). Table 1 

gives an overview of some of the existing EO satellite missions useful in the frame of disaster monitoring and post-

disaster assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Table 1: Existing EO satellite missions useful for disaster monitoring and post-disaster assessment. 

Dataset Characteristics Application Pros Cons 

Sentinel-1 SAR / High Res (10 m) 
/ 6 days repeating 
cycle / free 
Available from 2014 

Flood Mapping / 
damage 
assessment / land 
subsidence  

High resolution / frequent 
acquisition globally (6 days) 
/ free 

  

Sentinel-2 Optical Multispectral 
/ High Res (10 m) / 5 
days repeating cycle / 
free  
Available from 2015 

Flood mapping / 
land cover / 
vegetation 
monitoring 

High resolution / frequent 
acquisition globally (5 days) 
/ free 

  

Landsat Optical 
(Multispectral) / 
medium resolution 
(30 m) / free  
Available from 1984 

Flood mapping / 
land cover / 
vegetation 
monitoring 

Historical archive (since 
1984)  

Not frequent 
acquisition in the 
past / not high 
resolution 

MODIS Optical Multispectral 
/ low resolution (250 
m to 1 km) / Daily 
coverage / Free 
Available from 1999 

Flood mapping / 
land cover / 
vegetation 
monitoring 

Daily coverage Low resolution 

TerraSAR-X SAR / High Res (<1 m) 
Available from 2007  

Flood Mapping / 
damage 
assessment / land 
subsidence 

Very high resolution Not free / not 
frequent 
acquisition in 
certain countries / 
limited spatial 
coverage at high 
resolution 

COSMO-
SkyMed 

SAR / High Res (<1 m) 
Available from 2007  
 

Flood Mapping / 
damage 
assessment / land 
subsidence 

Very high resolution / 
Frequent acquisition in 
many locations also in 
developing countries 

Not free 

Planet Optical / High Res (3 
m) / Daily coverage 
Available from 2014 

Flood mapping / 
land cover / 
vegetation 
monitoring 

The very high resolution, 
daily coverage  

Not free 

Iceye SAR / High Res (3 m) / 
Daily coverage 
Available from 2018 

Flood Mapping / 
damage 
assessment / land 
subsidence 

The very high resolution, 
daily coverage  

Not free 

 

RS is useful not only in the response and recovery phases of DM, but also mitigation and preparedness 

phases. RS can support flood risk assessment monitoring rainfall by measuring river discharge and flood depth to 



 

 
 

forecast flooding and assessing vulnerability. An exhaustive review of the applications of RS in flood management in 

all its phases is provided by Rahman & Di (2017). Precipitation measurement is useful in the pre-event phase and 

during the event. Several datasets are available based on different satellite mission and technology. Table 2 provides a 

summary of some of the existing datasets. 

Table 2: Precipitation dataset which can be used for DRM 

Dataset Description Characteristics Citation 

CHIRPS (Climate Hazards 
Group InfraRed 
Precipitation with Station 
data) 

quasi-global rainfall dataset; 
gridded rainfall time-series 
obtained from infrared satellite 
data and in-situ station data 

0.05º resolution, daily and 5-
day composite, for trend and 
seasonal analysis, public, 
from Jan 1981 to present 

Funk et al. (2015)  

TRMM (Tropical Rainfall 
Measuring Mission)  

Designed to monitor and study 
tropical rainfall; gridded 
precipitation estimate 
obtained from infrared satellite 
measurements 

0.25º spatial resolution, 3-
hour or 1-month temporal 
resolution, public, from Jan 
1998 to present 

Adler et al. (2003)  

GPM (Global Precipitation 
Measurement) 

Estimates based on the 
Integrated Multi-satellitE 
Retrievals for GPM (IMERG) 
algorithm, using passive-
microwave and microwave-
calibrated infrared instruments 
and gauge analyses. 

0.1º resolution, 30 minutes, 
public, available from March 
2014 to present 

NASA PMM 

GSMaP Operational (Global 
Satellite Mapping of 
Precipitation) 

Estimation using a radiative 
transfer model with multi-band 
passive microwaves and 
infrared radiometers of the 
GPM Core Observatory 
satellite. Estimation is gauge-
adjusted using NOAA/CPC 
gauge measurement  

0.1º resolution, 1 hour, 
global, public, from March 
2014 to present 

Kubota et al. 
(2007)  
 

PERSIANN-CDR 
(Precipitation Estimation 
from Remotely Sensed 
Information Using Artificial 
Neural Networks-Climate 
Data Record) 

Estimation produced using 
Gridded Satellite infrared data. 
Produced quarterly with a lag 
of three months. 

0.25 º resolution, daily, 
quasi-global, public, from 
Jan 1983 to present 

Ashouri et al. 
(2015)  

Finally, the advances in big data computation provided by Google Earth Engine, open up new possibilities in 

image processing and data analysis. The deluge of data freely available, which are already contained in the Engine, 

allows efficient processing without the need to be downloaded, thanks to an intuitive and user-friendly interface, and 

cloud computing capabilities offered by Google. Limitations of computing power, RAM memory and storage space are 



 

 
 

now becoming part of the past. The world of RS has taken a revolutionary path at an unprecedented speed (Gorelick et 

al., 2017), which can be exploited for policy design, implementation and decision-making processes for DRM.  

3. Case Study - Study Design 

A case study of using RS and EO for urban flood management in Manila, Philippines is presented in this section. 

Several, previous studies discuss flooding in Manila. Bankoff (2003) examines the recorded history of floods in Manila. 

Flooding has been a part of daily life in Manila since at least the 19th century (Bankoff, 2003). Rapid urbanization 

magnified the extent of flooding in the metropolitan area. By the 1960s, almost 70% of the city was prone to floods with 

a depth from 3.6 to 4.5 meters (Bankoff, 2003).  By the 1970s, massive floods disrupted essential lifeline services and 

forced many people to evacuate (Bankoff, 2003). Floodwater depths continued to rise until the 1990s. At present, around 

20% of the city is classified as flood-prone (Bankoff, 2003). The root causes of vulnerability to floods in Manila lies in the 

dynamics between stakeholders, ecosystem, and natural hazards (Bankoff, 2003; Porio, 2011). Few studies, however, 

point out how to estimate actual precipitation amounts that lead to flooding in a rapid way, such as using RS. Garcia, 

Retamar, and Javier (2015) deploys a real-time urban flood monitoring system using Random Forest algorithms, but the 

paper has limited area coverages in Manila.  Tablazon et al. (2015) developed a storm surge inundation map based on 

simulated historical tropical cyclones and a storm surge model. The produced maps show that Metro Manila is 

vulnerable to storm-surge with a flood depth up to 4 m and extent of up to 6.5 km from the coastline. A research question 

to be addressed here is the following: 

How can floods be robustly identified given a lack of ground based data from stream gages or other local sensors?   

Specifically, using machine learning techniques7, this research attempts to answer the following research questions: 

 

 

 

7 Machine learning is a method of data analysis that systems can learn from data, identify patterns, and make predictions with 
minimal human explicit instructions. Specifically, we use supervised learning methods (Friedman et al., 2001).  



 

 
 

a. Can relationships between flooding in Manila and RS data such as rainfall and vegetation prior to or during the 

flood be established, so that the proxy RS information is effective for flood state assessment?  

b.  If so, can these be used to construct adequate models to predict floods in Manila? 

We explore the development of a model to predict and prepare for floods using machine learning techniques. First, the 

study looks at a time series of rainfall data and conducts an initial analysis with a baseline model. The study measures 

the intensity, volume, and duration of rainfall events. As the first analysis, the study used machine learning techniques 

such as visualization and a decision tree to improve the baseline model and find better models to predict floods in 

Manila, Philippines. Then, the models incorporate types of rainfall events and a vegetation index. The model 

improvement will be measured by the following indicators (Table 3): 

Table 3: Measurement of model performances 

 Actual Positive 
 (=Flood occurred) 

Actual Negative 
 (=Flood did not occur) 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

Precision= TP/(TP+FP) 

Sensitivity= TP/(TP+FN) 

Specificity= TN/(FP+TN) 

Accuracy= (TP+TN)/(TP+FP+FN+TN) 

Since the accuracy is considered most comprehensive, the study will most value this indicator. The second analysis of 

the study conducted cross-validated ridge regression to evaluate models. The models are evaluated through the AIC, 

BIC, and ROC curve. The whole process is summarized in Table 4.  

 

 

 

 



 

 
 

Table 4: Proposed steps and the application to our case study in Manila. 

Proposed steps Examples in our case study in Manila, Philippines 
1. Initial Analysis  

1.1. Identify flood events in a specified area. Specified the latitudes and longitudes of Manila and 
identified flood events from database from the Dartmouth 
Flood Observatory.  

1.2.  Assess if the satellite products can be used CMORPH is identified based on measurement errors 
1.3. Select vegetation index as proxy for vegetation 
moisture 

NDVI is identified 

2. Explanatory Analysis  
2.1. Identify a cut off value Identified 0.5 mm / hour 
2.2. Identify a rainfall event Defined a rainfall event as 1 successive day of rainfall for 

one rainfall event 
2.3. Calculate the volume and duration of each rainfall 
event 

 

2.4. Determine a baseline threshold Rainfall intensity: 1.5 mm per hour  
Rainfall volume: 20 mm per event 
Rainfall duration: 2 days per event 

3. Model Assessment, Selection and Evaluation  
3.1. Select predictors 4 models are built with the following selected predictors:  

Model 1 (Baseline): 1.5mm/hour of rainfall intensity 
Model 2: Adding the type of rainfall to the baseline 
Model3: Adding NDVI to the baseline 
Model4: Adding type of rainfall and NDVI to the baseline 

3.2. Select methods 
 

1. Decision trees and visualization  
2. Cross-validated ridge regression 

3.3. Evaluate models  
 

1. Precision, sensitivity, specificity, accuracy (ROC curve) 
2. AIC and BIC 

4. Data, Background Information, and Preparation of the Analysis   

The first attempt was to examine an accurate rainfall data that is observed at the ground level. However, 

nineteen out of twenty-two ground stations did not have a complete time series of data. Thus, a ground-data-based 

approach, even using a hydrologic model lacks sufficient data to construct a model to prepare for floods. Thus, as a 

proxy for rainfall, we used gridded satellite rainfall estimates, which are publicly available online. Additionally, 

vegetation indices, which are a proxy for the state of ground moisture, were used as additional information. The reason 

for this is that antecedent soil moisture also influences the occurrence of floods.  For example, when the ground retains 

moisture from preceding rainfall events, its capacity to hold water is exceeded by new rainfall. Therefore, a series of 

rainfall events can lead to floods even if the event rainfall is not extreme. We look at the indices in the following way:  

Dependent variable (DV): flood occurrence (binary) 



 

 
 

Independent variables (IV): precipitation intensity, volume, and duration (numerical); type of rainfall (binary: 

tropical cyclone or not); and vegetation index (numerical).    

Specifically, data are taken from the following various sources.  

Spatial Domain 

This project considers a watershed that includes Metro Manila because of the assumption that the flooding is 

induced by precipitation that has fallen in the larger watershed. The spatial domain is 14 Degree of North to 16.4 Degree 

of North and 120.0833 Degree of East to 121.5833 Degree of East (Fig. 1).  

 

Floods data (Dependent variable) 

Data of flood events were retrieved from the Dartmouth Flood Observatory. Seven flooding events were 

recorded in Manila areas since 2006 (Table 5). This study focused on from 2006 - 2011. From the perspective of risk 

analysis, the flood risk considered is that of a lower likelihood, but a high-impact event.  

 

 

 

Fig. 1. Water Shed Map of Manila  

Manila 



 

 
 

 Table 5. Historical Flood Events Since 2006 
Starting Date Ending Date Main Cause Number of  

Casualties 
Number of  Displaced 
People 

27-Sep-06 06-Oct-06 Tropical cyclone 260 250,000 
8-Aug-07 13-Aug-07 Tropical cyclone 11 12,000 
17-Aug-07  24-Aug-07 Tropical cyclone 42 600,000 
16-Jul-09 18-Jul-09 Tropical cyclone 5 n/a 
25-Sep-09 01-Oct-09 Tropical storm Ketsana/Ondoy 420 200,000 
2-Oct-09 17-Oct-09 Typhoon Parma 438 40,000 
30-Oct-09 04-Nov-09 Tropical Storm Mirinae n/a 98 
  Source: Dartmouth Flood Observatory (2011)8.   

 

4.1. Pre-assessment of Rainfall Data: Comparison between Station Data and Satellite Estimates  

There are 22 stations in the area of focus. However, only three stations have complete data for the periods 

between 2006–2009. They are Dagupan (IWMO#:  98325000, 120.3E 16.1N), Baguios (IWMO#:  98328000, 120.6E 16.4N), 

and Cabanatuan (IWMO#: 98330000, 120.97E 15.48N). The time period from January 2006 to October 2009 was used. As 

a satellite estimate, the study used the Climate Prediction Center Morphing Technique (CMORPH) updated daily by the 

National Oceanic and Atmospheric Administration (NOAA) at 0.25° latitude/longitude spatial resolution. The temporal 

resolution of this product is daily with units of mm/hour. The results show that the gridded satellite estimates are quite 

reliable (Fig 2). Therefore, CMORPH was used in this study to estimate precipitation. Also, the study relates a flood event 

with rainfall events with two days before the flood event throughout the whole study.  

In order to verify the gridded satellite estimates, we calculated the mean error (bias), root mean square error 

(RMSE), and correlation in a comparison between a station monthly precipitation time series and a time series of the 

satellite precipitation estimates of the pixels that contain the station location (Table 6). Station data was drawn from 

the NOAA NCDC GHCN v2beta station precipitation dataset. The temporal resolution is monthly and the database is 

composed of 7280 station data.  

 

 

 

 

8 http://www.dartmouth.edu/~floods/Archives/index.html 



 

 
 

 

Table 6. Satellite and Station Precipitation Error Statistics (mm/hours) 
Station Name Station # Location CMORPH 
Bias    
Dagupan Philippine 98325000 16.1N 120.3E -42.00 
Baguio Philippine 98328000 16.4N 120.6E -31.93 
Cabanatuan 98330000 15.48N 120.97E -53.35 
RMSE    
Dagupan Philippine 98325000 16.1N 120.3E 124.90 
Baguio Philippine 98328000 16.4N 120.6E 134.28 
Cabanatuan 98330000 15.48N 120.97E 191.63 
Correlation    
Dagupan Philippine 98325000 16.1N 120.3E 0.97 
Baguio Philippines 98328000 16.4N 120.6E 0.93 
Cabanatuan 98330000 15.48N 120.97E 0.76 

 

 

 

4.2. Vegetation Moisture 

As a proxy for vegetation moisture, the Normalized Difference Vegetation Index (NDVI) offered by USGS’s 

MODIS NDVI was employed in this study. NDVI has been used for many years to measure and monitor plant growth 

(vigor) and vegetation cover. The study considered using other indices such as the Enhanced Vegetation Index (EVI), 

which is also offered by USGS’s MODIS and the Normalized Differenced Water Index (NDWI). However, since the 

Fig. 2. Comparison of Satellite and Station 



 

 
 

preliminary analysis showed that these indices have strong correlations (0.98-0.99) over the study’s time and spatial 

range, this study will use only NDVI.   

NDVI is derived from measurements made by the USGS .LandDAAC .MODIS .version_005 .SEAS .reflectance. 

The time resolution is 16-day daily, and special resolution is 250 meters. The number of data and locations that are used 

in this study are summarized in Table A-1 in the Appendix.  

5. Exploratory Analysis 

To assess critical values that cause floods and construct a prediction model of floods in Metro Manila, the time 

series data of a weighted-average daily precipitation values from CMORPH for 14 flood-causing rainfall events in the 

area of focus (Fig 3) are plotted over the period of January 2006 – December 2009. 

 

 

Since the remote-sensing data records a very small amount of rainfall, we cut off the value below 0.5mm/hour. 

Then, we calculated one successive day of rainfall to one rainfall event. Thereafter, the volume and duration of each 

rainfall event have been calculated. During the period of the seven flood events, it can be estimated from the CMORPH 

that every flood event was accompanied by more than 1.5 mm/hour of rainfall intensity, which can be considered as a 

potential critical value that could indicate flood events in Manila. Also, most of the floods are similar with 20mm/event 

of rainfall volume and two days/event of rainfall duration (Table 7).  

Fig 3: Initial Analysis - Every Flood Occurs over 1.5mm/hour  

Flood 



 

 
 

Table 7. Flood Events and Associated Rainfall Intensity, Volume, and Duration 
Flood Starting 
Date 

Flood Ending 
Date 

Related Rainfall 
Event(s) 

Highest 
Precipitation 
(mm/hour) 

Rainfall Volume 
(mm/event) 

Rainfall Duration 
(days/event) 

27-Sep-06 06-Oct-06 Sept 27-28 1.16 46.64 2 
8-Aug-07 13-Aug-07 August 5 

August 7-9 
0.84 
1.86 

20.07 
96.70 

1 
3 

17-Aug-07
  

24-Aug-07 August 14-15 
August 17 
August 20 

August 22-24 

1.55 
2.25 
0.88 
1.48 

50.02 
54.02 
21.08 
89.69 

2 
1 
1 
3 

16-Jul-09 18-Jul-09 July 16-July17 2.17 68.22 2 
25-Sep-09 01-Oct-09 Sept 22- Sept23 

Sept 25 
Sept 27 

2.11 
1.83 
0.58 

74.88 
43.90 
13.93 

2 
1 
1 

2-Oct-09 17-Oct-09 Oct 2- Oct 4 
Oct 7- Oct8 

6.86 
12.34 

215.58 
376.88 

3 
2 

30-Oct-09 04-Nov-09 Oct 30 0.81 19.41 1 
Note that there is a two-day lag between flood and rainfall events. 

 

As seen in Table 8, the reliability of 1.5 mm/hour of rainfall intensity is not high (e.g., accuracy is 69%). Tables 

9 and 10 show that the critical value of two-day duration of one rainfall event has more accuracy than that of the volume 

(20mm/event). Therefore, none of these three models can provide an accurate forecast. In addition, the possibilities of 

false negatives can have devastating effects (i.e., if the prediction is wrong and then a flood occurs). Thus, it is necessary 

to improve the model. Since the highest rainfall intensity of 1.5 mm/hour has the largest accuracy, this study will 

continue to use this value. Then, using this value of 1.5 mm/hour, the study found rainfall events that did not cause 

flooding in Manila. Using a value of 1.5 mm/hour of rainfall is considered as the baseline model in this study and is 

compared with other models in terms of how other data will improve the model.  

 

 

 

 

 

 



 

 
 

Table 8. A matrix of Predicted Flood or True Flood Using Rainfall Intensity 

Highest rainfall intensity (mm/hour) 
Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive (>=1.5 mm/hour) 9 35 
Predicted Negative (<1.5 mm/hour) 6 81 

Precision 20% 

Sensitivity 60% 

Specificity 70% 

Accuracy 69% 
 

Table 9. A matrix of Predicted Flood or True Flood Using Rainfall Volume 

Volume (mm/event) 
Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive (>20.0mm/event) 12 82 
Predicted Negative  (<20.0mm/event) 2 35 

Precision 13% 

Sensitivity 86% 

Specificity 30% 

Accuracy 36% 

   
Table 10. A matrix of Predicted Flood or True Flood Using Rainfall Duration 

Duration (days/event) 
Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive (>=2 days) 8 40 
Predicted Negative  (<2 days) 6 77 

Precision 17% 

Sensitivity 57% 

Specificity 66% 

Accuracy 65% 

6. Visualization and Decision Tree  

6.1. Methodologies to Compare Different Models 

With this critical value in mind, the study looked at rainfall events that were not associated with floods in 

Manila, even if they were over the 1.5 mm/hour critical value. The results from CMORPH, with weighted average and 

over all areas of the watershed, are depicted in Figures A-1 to A-10 in the Appendix. There were 35 rainfall events of 1.5 

mm/hour or greater that were not associated with flooding. Thus, we tried to find other data to be added using 



 

 
 

visualization and a decision tree analysis. The models from the decision trees were evaluated in terms of sensitivity, 

precision, specificity, and accuracy. This method compares performance in the following models:  

Model 1 (Baseline): 1.5mm/hour of rainfall intensity 

Model 2: Adding the type of rainfall to the baseline 

Model3: Adding NDVI to the baseline 

Model4: Adding type of rainfall and NDVI to the baseline 

6.2. Model 2: Adding the Type of Rainfall (Binary: Tropical Cyclone or Not) 

Visualization 

First, the type of rainfall was then added from UNISYS for every rainfall event that was more than 1.5 mm/hour. 

Since the website of UNISYS provides information regarding storms such as hurricanes and typhoons from all over the 

world, the study tried to determine what kind of tropical cyclones were associated with each rainfall event with over 1.5 

mm/hour of rainfall. Figures A-1 to A-10 (in the appendix) and Table 5 show that floods were always associated with 

some type of tropical cyclones, while 81% of rainfall events with greater than 1.5 mm/hour rainfall that did not cause 

floods were not related with any tropical cyclone. 

Based on the above observation, the study added a binary value to the decision tree (Fig. 4), and constructed 

a decision tree with a size of 3. By adding this binary value, the mode accuracy improved to 88% and specificity to 94% 

(Table 11). Consequently, if rainfall events are tropical cyclones, more attention should be paid to prepare for floods. 

However, 36% in sensitivity is considered very low given its catastrophic impact. Therefore, the study will look at adding 

another data type: vegetation index.  

 



 

 
 

 

 
Table 11. 2 x 2 Matrix of Predicted Flood or True Flood Using Type of Rainfall 

Highest Intensity and Rainfall Type 
Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive  5 7 
Predicted Negative 9 110 

Precision 42% 

Sensitivity 36% 

Specificity 94% 

Accuracy 88% 
 

6.3. Model 3: Adding Vegetation Greenness and Moisture Index 

Since only the rainfall amount and type do not provide a reliable value that determines whether floods would 

occur or not, the study also conducted vegetation analysis using NDVI. This index was plotted for both the watershed 

areas of focus (120.0833E 121.5833E, 14N - 16.4N) and for smaller areas surrounding Manila (121E-121.5E, 14N-15N). The 

study looked at the mapping, decision analysis using vegetation indices, and the time series of these indices over the 

studied period of January 2006 – March 2011.   

Mapping  

We compare close periods with floods and without floods. We assume that differences in NDVI values indicate 

differences in soil moisture for the following reason. Considering that NDVI measures vegetation and its closeness of 

two periods (for example, in Fig 5-1, two images are within one month), it is reasonable to assume that differences in 

Fig. 4. Decision Tree of Adding Type of Rainfall  

(The number of flood 
occurrence/the number of no 
flood occurrence)  



 

 
 

NDVI values between two images would be not due to differences in vegetation but due to differences in soil moistures. 

It is clear that every time a flood occurred, NDVI indicated that soil moistures were high over the region (for example, in 

Fig. 5 the red region is more likely to have floods.) However, NDVI was high even when floods did not occur (for example, 

Fig. 5-1 and 5-2). Therefore, there were no significant differences in the NDVI map visualization for determining 

a critical metric to project a flood.  

 

 

 

As can be seen in Figures 6 and Table 12, the index will improve the accuracy and specificity if added. More 

than a 0.5 NDVI value has an accuracy of 73% and specificity 74%. However, the accuracy of this model has declined to 

73% from 88% of the one that uses the types of rainfall. Thus, this index as a single source cannot provide a critical value 

to provide early warning for floods in Manila.  

Fig. 5-1. NDVI when flooded Fig. 5-2. NDWI when no flood 



 

 
 

 

Table 12. A matrix of Predicted Flood or True Flood Using NDVI 

NDVI>=0.5 

Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive 8 30 
Predicted Negative 6 87 

Precision 21% 

Sensitivity 57% 

Specificity 74% 

Accuracy 73% 
 

6.4. Model 4:  Integration of Rainfall Amount, Rainfall Type, and Vegetation Indices 

Comparing these two decision trees, adding information on the type of rainfall largely improved accuracy and 

specificity while adding the vegetation index improved sensitivity. As can be seen, the model with the added type of 

rainfall and the vegetation index performs best in terms of accuracy, precision, specificity (Tables 13 and 14). In terms 

of accuracy, the study places the most value in Models 2 and 4. However, given the devastating effect of false negative, 

shown in the value of sensitivity, a policymaker should also look at the volume of a rainfall event whose value of 

sensitivity is high (86%).  

 

 

 

Fig. 6. Decision Tree  



 

 
 

Table 13. 2 x 2 Matrix of Predicted Flood or True Flood Using Rainfall type and NDVI 

Type of rain Every index  

Actual Positive (=Flood 
occurred) 

Actual Negative (=Flood 
did not occur) 

Predicted Positive 5 7 
Predicted Negative 9 110 

Precision 42% 

Sensitivity 36% 

Specificity 94% 

Accuracy 88% 
 

Table 14. Summary of the Evaluation Values for Each Model 
  Accuracy Precision Sensitivity Specificity 

Baseline 1.5 mm/h 69% 20% 60% 70% 

         Volume >20.0 mm/event 36% 13% 86% 36% 

         Duration >=2 days/ event 65% 17% 57% 66% 

Model 2: Adding type of rainfall 88% 42% 36% 94% 

Model 3: Adding NDVI 73% 21% 57% 73% 

Model 4: Adding type of rainfall and NDVI 88% 42% 36% 94% 

6.5. Times Series Visualization 

Next, we looked at the time series of NDVI from January 2006 – March 2011 (Fig. A-11 – A-13 in the Appendix). 

There are weak tendencies in the high vegetation index (NDVI) before flooding events (indicated by red vertical lines in 

Fig. A-11 – A-13 in the Appendix). However, there continue to be no apparent differences in the indices between the 

rainfall events leading to floods with more than 1.5 mm/hour rainfall and the ones that did not cause flood events 

(indicated by green vertical lines in Fig. A-11 – A-13 in the Appendix). Hence, it is critical to look at various indices when 

attempting to predict floods.    

7. Cross-validated Ridge Regression 

To predict a response variable, the study next conducted a logistic regression using cross-validation. First, data 

were split into training and test sets using an 80/20 split, and then conducting logistic regressions for four models: 

(1) Baseline model (IV: Rainfall amount) 



 

 
 

(2) Adding the type of rainfall to the baseline model (IV: rainfall amount, type of rainfall) 

(3) Adding vegetation indices to the baseline (IV: rainfall amount, NDVI) 

(4) Adding both types of rainfall and vegetation indices (IV: rainfall amount, type of rainfall, NDVI). 

A comparison of the Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) (Friedman, Hastie, & 

Tibshirani, 2001), which evaluates in-sample modeling, Table 15 indicates that the best models are Model 2 and Model 

4. 

Table 15. AIC and BIC Values for Each Model 

Model AIC BIC 

(1) Baseline model (IV: Rainfall amount) 351.8 392.2 

(2) Adding the type of rainfall to the baseline model (IV: rainfall amount, type of rainfall) 279.4 320.7 

(3) Adding vegetation indices to the baseline (IV: rainfall amount, NDVI) 347.5 396.9 

(4) Adding both types of rainfall and vegetation indices (IV: rainfall amount, type of rainfall, 
NDVI) 

281.4 327.7 

 

We then went on to use these models to make predictions for the test set. These models gave a probability of 

flood for each observation in the test set. A False Positive Rate (1-specificity) and True Positive Rate (sensitivity) were 

plotted as Receiver Operating Characteristic curves (ROC) (Friedman et al., 2001)in Fig. 7. In ROC curve, curves in the 

upper left indicates better models (Friedman et al., 2001). As can be seen, there is a clear indication that both Models 2 

and 4 show better performances in the test set than the Models 1 or 3. Yet, there were no clear differences between 

Models 2 and 4. This result is consistent with the result that is gained through the previous decision tree analysis. Namely, 

Model 2, which uses rainfall intensity and types, and Model 4, which utilizes all rainfall intensity, type, and vegetation 

index, can predict most accurately.  



 

 
 

  

8. Conclusions and Study Limitations 

We demonstrated an effective way of utilizing global satellite data for local risk-informed decision-making for 

urban flood management. The RS and EO sector is rapidly changing as the private sector enter the field and develop 

new technologies. CubeSats, Unmanned Aerial Vehicles (UAVs), smartphones are bringing a deluge of data and new 

measurements, which results in helping overcoming the limitations and complementing the potential of RS in DRM: 

real-time high-definition video, storm-cell development, flood propagation, precipitation monitoring, measurements 

of snow depth, and floods and estimated evaporation at sub-meter resolution from small unmanned drones. Petabytes 

of new data that may be a game-changing in hydrological sciences, such as in flood risk and DRM, if usefully exploited 

(McCabe et al., 2017).  

Our case study demonstrated that there were useful relationships between flooding and remotely-sensed 

environmental data, such as rainfall amount and vegetation moisture using several machine learning techniques, such 
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as visualization, decision tree, and logistic regression. The initial analysis of rainfall data indicated that most flooding 

events had more than 1.5 mm/hour of rainfall, 20 mm/event of rainfall volume, and two days/event of rainfall duration 

over the studied watershed area. Yet, we found that many rainfall events of 1.5 mm/hour or higher did not cause floods.  

To improve the performance of the prediction models, we explored the types of rainfall were associated with 

floods. All floods in our observation period were associated with tropical cyclones. In contrast, rainfall events of more 

than 1.5 mm/hour that did not lead to floods were unlinked at 81% with tropical cyclones. We also tried to find 

relationships between vegetation moisture and greenness and flood events. Prior to floods, there were tendencies for 

higher indices of NDVI. The decision tree shows that accuracy and specificity improved because of these indices. 

However, the study did not find a single critical value of these indices that can provide a reliable indication for the early 

prediction of floods. In contrast, as the result of decision trees, the classification rate and other indices such as 

sensitivity and specificity show that the best prediction models are the one that uses rainfall types, and the one that 

integrates rainfall amount, rainfall type, and vegetation indices. This result was also supported by findings from the 

cross-validated logistic regression. The study demonstrated that a model adding rainfall types is better than one that 

only utilizes rainfall amount or adds the vegetation index. Yet, the results did not show which is better, the model that 

uses only rainfall type or the one that integrates all the information including rainfall type and various vegetation 

moisture indices.  

In summary, it is essential for local policymakers to comprehensively look at such indices and rainfall intensity, 

volume, and duration to provide a flood prediction early-warning system in Manila. Local policymakers must consider 

rainfall amount and duration, type of rainfall, and vegetation indices along with other important indicators such as 

water height at local rivers and dams. Near term weather forecasts have improved dramatically in accuracy in many 

places, and several global weather forecasting products are now available and could be used together with an 

established model using global indicators to assess flooding threats. Eventually, addressing DRM has substantial 

synergies with sustainable development (Haraguchi & Lall, 2019).  

As with any study, there are some limitations. First, it considers only the time series of rainfall dated from 

January 2006 to December 2009 because of the lack of data on floods in Manila. With current data gathering now in 

progress, future researchers will have a broader time domain to examine. Second, this study only examined three types 



 

 
 

of predictors (rainfall amount, rainfall type, and three vegetation indices). Future work should consider other factors 

that cause floods in an urban area, such as any human-made and natural infrastructure considerations.  
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Appendix 

Table A-1: Summary of Data Used in This Study 

 Type of Data Number of data Location 

Flood occurrence Binary  7 Dartmouth Flood Observatory.9   

Rainfall Amount : Ground 

station 

Numerical  365 (days) x3 (years) x22 

(stations) = 24090 

NOAA NCDC GHCN v2beta station 

precipitation dataset10 

Rainfall Amount :CMORPH Numerical 365 (days) x3 (years) = 1095 NOAA 

Rainfall Amount :TRMM Numerical 365 (days) x3 (years) = 1095 NOAA 

Rainfall Type Binary (Tropical 

cyclone or not) 

365 (days) x3 (years) = 1095 UNISYS11 

Vegetation Indices: NDVI Numerical  52 weeks x 3 (years) = 156 USGS .LandDAAC .MODIS .version_

005 .SEAS .reflectance. 

 

 

 

9 http://www.dartmouth.edu/~floods/Archives/index.html 
10 http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.GHCN/ 
11 http://weather.unisys.com/hurricane/index.php 
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Figure A-11: NDVI (Jan 2006 – March 2011) 

Figure A-12: EVI (Jan 2006 – March 2011)   

Figure A-13: NDWI (Jan 2006 – March 2011) 
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